
Optimally Storing the User Interaction in
Mashup Interfaces within a Relational Database

Antonio Jesús Fernández-Garćıa1, Luis Iribarne1,
Antonio Corral1, Javier Criado1, and James Z. Wang2

1 Applied Computing Group, University of Almeria, Spain
2 The Pennsylvania State University, USA

{ajfernandez,luis.iribarne,acorral,javi.criado}@ual.es

jwang@ist.psu.edu

Abstract. Cross-device applications that have user interfaces managed
in multiple forms of interaction are prevalent. In particular, component-
based (or mashup) applications are growing in popularity due to their
easiness to build customized user interfaces with pieces of information
from different sources. Since the user interaction on mashup interfaces
can generate a large quantity of data, which can be useful to improving
the interaction and usefulness of the application, it may involve the cre-
ation of cloud infrastructures to manage the dynamic distributed user
interfaces within this context. Storing the generated data from the inter-
action performed over the user interface can be challenging. To achieve
these goals, in this paper, a relational database for storing this interaction
information generated on distributed user interfaces is proposed. Thus,
user interaction over heterogeneous interfaces and devices described in
detail, will be easily accessible for further analysis using machine learning
and data mining techniques to offer a better user experience.

Keywords: Mashup, user interaction, multiforms of interaction, cross-
device applications, relational database

1 Introduction

Today users consume information through heterogeneous devices such as com-
puters, laptops, tablets or smartphones. Moreover, each device has a different
way to interact with; some of them support classical forms of interaction by
means of keyboard and mouse, others interact through touch interfaces, gestural
interfaces or voice recognition (Natural User Interaction, NUI). Other interaction
technologies are emerging, e.g., virtual reality or wearables & IoT solutions.

Frequently, a same application needs to be available for multiple devices via
different user interfaces (UIs). Users expect applications to be accessible via any
device regardless of the screen size, the type of interaction, or the technologies
involved in it [1]. It becomes even more complicated when it concerns to the user
configuration of the interface. Usually, UIs manage some configuration options
and remember the behavior and the interactions performed by users and more
features progressively.



2 A.J. Fernández-Garćıa, L. Iribarne, A. Corral, J. Criado and J.Z. Wang

Due to the increasing amount of services and APIs available, it is becom-
ing a standard practice to use content from many sources in a Web application
through a single UI. These UIs, commonly referred to as component-based UIs
or mashup, allow users to easily customize their UI by employing different pieces
of information or data creating their own tailored UI. Mashup interfaces [2] are
typically used. Due to their granularity (coarse-grained) they facilitate the adap-
tation of their internal structure. A cloud infrastructure for the management of
mashup UI can be a natural approach. In previous works a series of Web services,
located in the platform-independent layer of a cloud infrastructure, have been
created to support component-based architectures of mashup UI [3, 4]. These
services include features such as managing users, component or sessions; and the
administration of modules, controllers and databases that underlies below. This
infrastructure provides a solid base to create dynamic UIs [5].

This paper focuses on the interaction of users over mashup interfaces. There
is an extraordinary potential in analyzing the interaction performed in mashup
interfaces to improve the user experience by adapting the interface at run-time
to the users’ requirements and even stepping to the users’ needs. Using machine
learning and data mining techniques over the interaction data acquired from
users makes it possible to discover behavioral patterns and create prediction
models. For that, it is necessary not only to acquire the data but also to know
exactly the morphology of component-based UIs and to create an optimized
relational database that can storage all the data for further analysis. Currently,
there is no database schema proposal to store user interaction. The problem is
not straightforward because there are many mashup UI and each one of them has
a different purpose and their users have different domain knowledge, skills and
expectations. Also, Web technologies are diverse and for that reason the data
acquisition process that has to be implemented to store the interaction in the
database should be independent of the technology used to develop the mashup
UI, as well as not intrusive and totally transparent for users.

The rest of the paper is organized as follows. Section 2 describes the mor-
phology of a basic mashup graphic user interface (GUI). Section 3 proposes a
relational database to store the interaction produced over this type of interfaces.
Section 4 shows a query to the information gathered in the database deployed
in a real mashup. We conclude and provide future directions in Section 5.

2 Essential Mashup GUI Morphology

Mashup User Interfaces (mashup UI) are Web applications that integrate one
or more components from one or more sources to create a unique UI that com-
bines different components that might or might not have relationship among
them. This section explains in detail how mashup UIs are composed, with focus
on mashup GUIs. A standard interface that covers all the common aspects of
mashups has been considered. There are many more features available in specific
interfaces but all of them have some core elements and operations, which have
been taken into consideration in this morphology definition.



Storing the interaction in mashup interfaces using a relational database 3

There are many examples of commercial component-based interfaces. Nowa-
days, mashup interfaces (or component-based interfaces) are widespread in com-
mercial software, particularly in Web applications [6]. Geckoboard is a KPI dash-
board surface where users can visualize and work with their most important
business data in real-time focusing on sales, marketing or operations among
other features [7]. Cyfe allows users to build their own dashboard adding pieces
of information through social media, analytics, sales, finance or project manage-
ment components among others [8]. ENIA (Environmental Information Agent)
is a mashup component-based GUI for environmental management used by the
Andalusian Environmental Information Network (REDIAM) [9], a public orga-
nization that belongs to the Andalusian Regional Government (Spain) [10].

Figure 1 conceptually presents a component-based interface where the ele-
ments that form it are shown. Obviously, there may be many more elements and
they could be positioned differently. All mashup UIs studied share some core
elements and that is what is represented in Figure 1.

Fig. 1. Conceptual design of a component-based Web application.

Services. The capacities that the mashup application offers. They are available
to users in order to operate with them. An instance of a Service is a Component.

Services menu. In this menu a list of all the Services available in the mashup
application can be found. Users can navigate through this menu to find the
services they may need. Usually, this menu is categorized and grouped by types
of services and it has some search tools to locate them directly.

Component. When a user adds a Service to the workspace it is automatically
transformed into a Component. A Component is a Service that is being used
by a user at a certain moment in time. When a Component is instantiated, a
set of attributes like width, height or position are assigned to it.

Workspace. The Workspace is the work area where users have all the Components
(Services instantiated) they are working with.

Operations. All possible actions that are able to be applied over the Compo-
nents such as resize, move or delete, among others.



4 A.J. Fernández-Garćıa, L. Iribarne, A. Corral, J. Criado and J.Z. Wang

Therefore, a mashup GUI (M) is defined in the following manner: M =
{S,S, C,W,O}. Thus, M is comprised of a set of services S, a service menu S,
a set of components C, a workspace W and a set of operations O. The set of
services S is defined as S={S1, S2, .., SN} where N is the number of services
registered in the information system. The set of components C is defined as
C={C1, C2, .., CL} where L is the number of components instantiated in the
workspace W. A concrete component Ci has some properties so it could be
defined as Ci = {PosX,PosY,Width,Height}. Finally, the set of operations is
defined as O={Add,Delete,Move,Resize} and they are described below:

Add. Consists in adding a service to the workspace from the services menu, so
it is instantiated into a component. When instantiating, some properties such as
position in the x-axis, position in the y-axis, width and height are assigned to
the component.

Delete. Consists in removing a component from the workspace. That happens
mostly because it is of no use and users decide to dispense of it.

Resize. Consists in changing the size assigned to a component. It modifies the
‘width’ (w) and ‘height’ (h) properties. Sometimes the Resize operation can be
decomposed in several operations such as:

Resize(x) =


x = ResizeBigger | (wi ∗ hi) < (wi+1 ∗ hi+1)
x = ResizeSmaller | (wi ∗ hi) > (wi+1 ∗ hi+1)
x = ResizeShape | (wi ∗ hi) = (wi+1 ∗ hi+1)
∧ ((wi 6= wi+1) ∨ (hi 6= hi+1))

,

where ResizeBigger operation is considered when the area covered after the op-
eration is bigger; ResizeSmaller, when the area covered after the operation is
smaller; and ResizeShape when the area covered is the same but the values of
the properties are differents.

Move. Consists in changing the position of a component. It modifies the PosX
and PosY properties. When (PosXi 6= PosXi+1)∧(PosYi = PosYi+1) the com-
ponent has been displaced horizontally, when (PosXi = PosXi+1) ∧ (PosYi 6=
PosYi+1) the component has been displaced vertically and finally, when (PosXi 6=
PosXi+1) ∧ (PosYi 6= PosYi+1) the component has been displaced both hori-
zontally and vertically.

3 Database Design for Storing Interactions

When an interaction occurs in the mashup application, a data acquisition process
will start and save all the information regarding the operation by the interaction.
Together with the operation it is convenient to save the information about the
user that generates the interaction as well as the component that is affected. It is
also advisable to save the state that remains in the workspace after the operation.
Although storing all the workspace might seem rather costly, it would make it
possible to rebuild all the users’ behavior step by step throughout the interfaces



Storing the interaction in mashup interfaces using a relational database 5

in case further analysis, not considered at design time, is required. That is why
this option is viewed in this proposal.

In order to store data of the interactions that have been performed by users in
the mashup UI, it is necessary to define a relational database model that would
be able to store all the relevant information of the interaction. This relational
database should be as complete as possible to have a good understanding of the
interaction itself and the circumstances that surround that interaction. Figure
2 shows a proposal relational database schema that represents the interaction
performed as well as the situation of the UI after it.

Each row of the Interactions table corresponds to an interaction taken by the
user and the field operationPerformed saves the kind of operation performed.
The Interactions table is related to the Sessions table, thus all the operations
performed in the same session are grouped. The Sessions table has two impor-
tant fields deviceType and interactionType. The first one storages the kind of
device used in the session where the operations are performed; it can be a Tablet,
a Laptop, a SmartPhone, Home Automation Systems or Smart Watches, among
others. The second one storages the type of interaction used when performing
the operation: mouse, keyboard, gesture, voice or presence, among other. Note
that there can be many sessions working currently because one application can
be use at the same time through more than one UI from the same or different
devices or systems.

The Users table, which is related to the Interactions one, has information of
all users registered in the application. Usually, there are a lot of users registered
in most of applications, therefore, it is important to distinguish the operation
performed by each one of them. Some information systems allow guest users to
access to the system and, for those kind of users, there is normally a specific row
in the Users table. Note that it would be necessary to obtain extra information
about users that do not come with the interaction, hence it would be useful a
request to Web services provided by the service, if any. In case the mashup UI
has no users registered the Users and Sessions tables can be thrown out.

Fig. 2. Database schema to storage interaction in a standard mashup UI



6 A.J. Fernández-Garćıa, L. Iribarne, A. Corral, J. Criado and J.Z. Wang

The Components table includes all components that populate the workspace
after and interaction has been performed. With the information gathered in this
table, it is possible to rebuild the workspace exactly as it was when the inter-
action was performed. The posx, posy, width and height attributes are enough
to set each component in the workspace. Finally, the Services table, related to
the Components table, has information about all the services that are regis-
tered in the Information Systems. As in the users table, it could be necessary,
but not mandatory, to access to external Web services to obtain more relevant
information about services that do not come with the interaction.

This database schema could seem rather costly due to the extensive resources
consumption that may involve to store the workspace with all the components
contained within. However, it is optimized in the sense that the database is ex-
pressive enough not only to generate datasets with rich data for further analysis,
but for recreate user interaction step by step in case that more information about
any aspect of the interaction could be detected as needed to infer a knowledge
not contemplated when designing the database schema.

4 Database Behavior in a Real Mashup

Once the relational database schema proposed has been deployed in a database
over a real environment, it is possible to access to all the interactions that have
occurred with a great detail. In this case, we deployed the relational database
in ENIA, the mashup interface previously described, which focuses on the man-
agement of environmental information. The real implementation of the database
has more tables and the mashup interface has more operations compared to the
set of fields and operations we have discussed previously in this paper. But,
as a matter of fact, the operations and tables described are present. The next
piece of SQL code queries a MySQL database deployed in a platform as a service
cloud infrastructure provided by Azure. ClearDB provides the MySQL databases
in Azure as database as a service. This query extracts all the operations that
have been performed by users and sessions specifying in each case the kind of
UI upon which the interaction was performed (browser, mobile browser, tablet
app, smartphone app...) as well as the type of interaction used to perform the
operation (mouse, keyboard, touch, gesture, voice...).

SELECT interactions.idInteraction, interactions.dateTime,

interactions.operationPerformed, interactions.Sessions_idSession,

interactions.Users_idUser, sessions.deviceType,

sessions.interactionType

FROM interactions, sessions, users

WHERE interactions.Users_idUser=users.idUserClient AND

interactions.Sessions_idSession=sessions.idSession

Figure 3 presents the data obtained from the SQL code shown before. We
can be distinguish between add, move and delete operations. All of them have
been performed in a desktop or laptop browser and the form of interaction has
been made by touching the laptop or computer screen.



Storing the interaction in mashup interfaces using a relational database 7

Fig. 3. Results from the query to the interaction db

This database allows to access to every operation performed in the UI from
heterogeneous devices; it also enables to recreate the user behavior step by step
by analyzing the workspace, as it has been later each operation performed, for
a better understanding of the user’s behavior.

5 Conclusions and Future Work

This paper proposes a relational database to allow mashup UIs to store the
interaction performed by users over them. The database is valid even when
the interface runs in distributed heterogeneous devices that support different
interactions modes. A clear definition of a mashup GUI morphology has been
made in order to study it and suggest a relational database that can save the
interaction with accuracy.

The creation of a data acquisition process is proposed as future work. This
data acquisition process could be a microservice than runs in the cloud and is
continuously listening to the request from different mashup UIs distributed in
multiple devices. It can just receive all the data directly from the client and
store it or even make some requests to the mashup UI services, if any, to obtain
extra information about users or components. Moreover, it can make a request
to third party services that can provide valuable context information.

The information stored in the database proposed contains valuable informa-
tion about the users’ behavior. Machine learning experiments can be performed
for the creation of an automatic learning system that can be used to offer a better
user experience. The discovery of behavioral patterns gives the opportunity to
create prediction models that assist users, providing them with the components
they are most likely to need, including the shape, size and layout configuration
properties they expects.



8 A.J. Fernández-Garćıa, L. Iribarne, A. Corral, J. Criado and J.Z. Wang

A future deployment of the data acquisition process that storage the interac-
tion in the relational database proposed and the machine learning experiments
can be used over the work shown at Criado et al. [11], where component-based
interfaces are adapted at run time using model transformation according to a
set of rules. The new rules generated can update the rules repository making the
application autonomously evolve over time [12].

Acknowledgments. This work was funded by the EU ERDF and the Spanish
Ministry of Economy and Competitiveness (MINECO) under Project TIN2013-
41579-R and under a FPI Grant BES-2014-067974 and by the Andalusian Re-
gional Government (Spain) under Project P10-TIC-6114. Wang has been funded
by the US National Science Foundation.

References

1. Elmqvist, N: Distributed User Interfaces: State of The Art. In: Distributed User
Interfaces DUI’2011, Human-Computer Interaction Series, pp. 1–12. Springer Lon-
don (2011)

2. Daniel, F., Matera, M.: Mashups – Concepts, Models and Architectures. Springer-
Verlag Berlin Heidelberg (2014)

3. Vallecillos, J., Criado, J., Padilla, N., Iribarne, L.: A Cloud service for COTS
component-based architectures. Computer Standards & Interfaces, Elsevier (2016)

4. Fernández-Garćıa, A.J., Iribarne, L.: TDTrader: A methodology for the interop-
erability of DT-Web Services based on MHPCOTS software components, repos-
itories and trading models. In: 2nd Int. Workshop of Ambient Assisted Living
(IWAAL2010), pp. 83–88 (2010)

5. Roscher, C., Lehmann, G., Schwartze, V., Blumendorf, M., Albayrak, S.: Dynamic
Distribution and Layouting of Model-Based User Interfaces in Smart Environ-
ments. In: Model-Driven Development of Advanced User Interfaces, SCI 340, pp.
171–197. Springer Berlin Heidelberg (2011)

6. Hoyer, V., Fischer, M.: Market overview of enterprise mashup tools. In: Service-
Oriented Computing – ICSOC’2008, LNCS 5364, pp. 708–721. Springer Berlin
Heidelberg (2008)

7. Geckoboard. Commercial mashup KPI dashboard, https://www.geckoboard.com/
8. Cyfe. Commercial mashup business dashboard, https://www.cyfe.com/
9. The Andalusian Environmental Information Network (REDIAM), http://www.

juntadeandalucia.es/medioambiente/site/rediam

10. ENIA. Environmental Inf. Agent, http://acg.ual.es/projects/enia/ui/
11. Criado, J., Rodŕıguez-Gracia, D., Iribarne, L., Padilla, N.: Toward the adaptation

of component-based architectures by model transformation: Behind smart user
interfaces. Software: Practice and Experience Journal. 45(12), 1677–1718 (2015)

12. Fernández-Garćıa, A.J., Iribarne, L. Corral, A., Wang, J.Z.: Evolving mashup In-
terfaces Using a Distributed Machine Learning and Model Transformation Method-
ology. In: OTM 2015 Workshops, LNCS 9416, pp. 401–410, Springer International
Publishing (2015)


