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Abstract

The management of software architectures is an important subject, espe-
cially in component-based web user interfaces to enhance their accessibility,
dynamism and management at run-time. The Cloud offers some favorable
mechanisms for this kind of systems, since it allows us to manage the soft-
ware remotely, guarantees high availability of the resources and enables us to
perform mass-storage. This article presents an infrastructure solution, based
on the use of web services and cloud computing, for managing COTS-based
architectures.
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1. Introduction

In general, the software available on the web is increasingly becoming an
element that needs to be changed, updated and adapted to the users de-
mands. In some cases, this software is built from components or component-
based architectures are used to describe its structure. In both approaches,
it is useful for those architectures to be accessible at any moment, dynamic,
managed at run-time and adaptable to changes (Bradbury et al., 2004). For
this purpose, the use of web services and cloud computing offers a favorable
infrastructure, since it allows us to manage the software remotely, it guar-
antees high availability of resources and it allows mass storage. An example
of such architectures are the component-based web interfaces, which do not
get out of this necessity and also require to be dynamic and adaptive to the
user. With this aim, new projects and proposals have come up in the last few
years to build customized web User Interfaces (UI) through the configuration
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of widgets that the user wants to visualize (Hoyer and Fischer| [2008). For
these applications, the user has normally one Graphical User Interface (GUI)
available that can be configured to create some kind of dashboard. This type
of interface is built from graphical components of high or medium granular-
ity (that is, they are not simple buttons or text fields) that group together
some functionalities related to each other and give rise to mashup applica-
tions based on widgets (Yu et al., 2008]), such as MyYahoo, Ducksboard or
Netvibes projects (Sire et al., 2009).

Within this context, we became interested in the development of an in-
frastructure for managing component-based software architectures. In par-
ticular, our research work is focused on dynamic management of component-
based Uls. With this aim, the three pillars on which our proposal is based
are: CBSE (Component-based Software Engineering), MDE (Model-Driven
Engineering) and Cloud Computing. CBSE (Crnkovic and Larsson|, 2002
is a software engineering discipline that improves software development by
reusing it, contributing reliability, and reducing the time required for cre-
ating such software. Contrary to traditional software development, CBSE
is focused on integrating previously constructed software components in the
construction of the system following a bottom-up development perspective
instead of a traditional top-down one. Several component architectures in-
dustries have defined their own technologies, such as Sun Enterprise Jav-
aBeans (EJB) or Microsoft COM. This concept of reuse and management of
components is also present in standards such as IEC/PAS 62814 (Belli, 2013).
Our proposal requires that the user interface be defined as a set of compo-
nents, in which each component of the application represents an individual
user interface component. This proposal follows a bottom-up perspective for
the building (at run-time) of the structure of the user interface from those
GUI components available in one or more third-party repositories. The UI
components, in our proposal, are called COTSgets, a combination of the
terms COTS (Commercial Off-The-Shelf) (Iribarne et al., 2004) and gadgets
(understand as‘“gadget” any software that can work alone or as a piece of
architecture).

The second pillar is Model-Driven Engineering. This engineering dis-
cipline is focused on constructing models on different levels of abstraction,
facilitating the software specification, and providing several mechanisms to
automate the development of the final product by means of the use of model
transformation techniques. Some systems developed with these techniques
attempt to provide software with adaptive capacities adapting the models at



run-time, so that their behavior can vary depending on the circumstances
that surround their execution, for instance, changes in the user interaction,
variation in available resources, different execution platforms, etc. In the
particular domain of component-based software systems, the use of MDE
techniques can facilitate the design and development of architectures, for
example, for defining their structure, the behavior of their components and
relationships, their interaction, or their functional and non-functional prop-
erties (Crnkovic et al., |2011). Furthermore, manipulation of architectural
models at run-time makes it possible to generate different software systems
based on the same abstract definition, for example adapting to the user pref-
erences, the component status or the target platform (Bencomo and Blair,
2009). In Figure , we can see that our component-based architecture is
structured on three levels of abstraction:

e Abstract architectural model, which corresponds to the Platform In-
dependent Model (PIM) level in Model Driven Architecture (MDA)
(Kleppe et al., 2003)), and represents the architecture in terms of what
type of components it contains and their relationships.

e Concrete architectural model, which corresponds to the Platform Spe-
cific Model (PSM) level and describes what concrete components com-
ply with architectural abstract definition.

e Final software architecture, which represents the source code (our com-
ponents) that will be executed or interpreted.

Thus, the adaptation of the architectures is done based on processes ex-
ecuted on the abstract and concrete architectural levels (Criado et al., 2010)
(Iribarne et al., [2010)). On the abstract level, Model-to-Model (M2M) trans-
formation processes (Czarnecki and Helsen, |2003) are executed to change and
adapt the abstract architectural models to the changes in context. However,
the concrete architectural models are realized by a trading process ([ribarne
et al., [2004)), calculating the configurations of concrete components that best
meet the abstract definitions. This provides the possibility of generating
different software architectures based on the same abstract definition, for ex-
ample to allow it to be executed on different platforms. The content of this
paper focuses only on showing the technological infrastructure used on the
concrete level and the final architecture, but not the adaptation performed
on either the abstract level (PIM perspective) or the trading process that

3



obtains the concrete architectures (PSM). Similarly, this paper does not dis-
cuss synchronization issues between abstract models and final architectures,
or how the changes in the models affect the executing architecture.

The third pillar is Cloud Computing. The strengths of cloud com-
puting for users and organizations have been widely described in scientific
literature, as in (Lee, 2010) or (Whaiduzzaman et al., |2014). The identified
benefits include the use of Software-as-a-Service (SaaS) and specifically that
of Models-as-a-Service (MaaS) as a software element of high level abstrac-
tion which is available for systems to use at any time on demand. The joint
use of MaaS and MDE in turn brings many benefits (Brunelire et al., 2010),
highlighting aspects such as the availability of such models, their run-time
sharing, improved scalability and distribution, etc. In our proposal, instead of
proposing a general use of this concept, our work focuses on the management
of software architectures based on our COTSgets components. Therefore, in-
spired by the use of these components in the use of models as services and
as a mechanism for access to these models through web services deployed
in the cloud, we have created a cloud service called COTSgets-as-a-Service.
To provide this service, a cloud infrastructure structured in three layers or
levels has been created (Figure : the client layer, the platform-dependent
server layer and the platform-independent server layer. The client layer is
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Figure 1: Abstraction levels and layers of our architecture



formed from the user built applications. Therefore, it is formed from the set
of components that form the final software architecture shown in the figure.
Currently all the developed applications use the web platform and have been
implemented using widgets, following the recommendation of W3C, and de-
ployed by means of a web browser. The platform dependent layer deals with
providing the client with the required services and interacting with the in-
dependent layer, thus obtaining some services from it and providing it with
others. Finally, the platform independent layer provides the system services
that are valid for all platforms. For this, its functionalities are based only
on the description of components and their relationships, regardless of the
platform where they will be deployed.

This article is based on a previous research work (Vallecillos et al., 2014)
framed in the field of distributed development of information system (Mishra
et al 2012). In this work the system architecture focusing on the three-
level data model used in the different layers of our architecture is described.
The work presented here in this manuscript focuses on the technological
infrastructure, based on web services and cloud computing, which is used for
the deployment of component-based architectures.

The rest of the paper is organized as follows: Section [2| shows an example
scenario to explain many of the concepts we use in the rest of the article. Sec-
tion |3| describes our architecture model (using a MDE perspective) based on
COTSget components. Section [4] explains how to implement the COTSgets-
as-a-Service cloud service. Section [5] illustrates the process used to validate
and evaluate the Cloud Service and its performance in managing COTSgets-
based architectures. Section [6] presents the related work, and finally, Section
[7l summarizes the conclusions and discusses the future work.

2. An example scenario

This section will describe a web-technology based application, which will
serve as an example scenario to explain many of the concepts used in the rest
of the article. This application (Figure [2)) has been dynamically constructed
from COTSgets components, within a Project of Excellence funded by Junta
de Andaluca (ENIA, [2010). The application deals with a query system of
Geographic information, allowing us to load visual layers with this type of
information. These layers offer data obtained from a set of Open Geospa-
tial Consortium (OGC) services provided by the REDIAM (Environmental
Information Network of Andalusia).
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Figure 2: Example of a web application developed with COTSgets component technology

The components in this application are not assembled alone (indepen-
dently of each other), but rather, as described below, they are related, helping
to build complex interactive applications. This application will be examined
with each component and the relationships between them described in more
detail. Looking at the upper right portion of the image, we can see two com-
ponents: UserInfo and Logout. The first is responsible for identifying the
user who has connected and showing information about them such as the
profile they are currently using in the system. Furthermore, the component
Logout closes the session of that user in the system. Both components are not
isolated from one another. In fact there is a component, called Header, that
besides controlling the display in the top bar of the user interface, brings to-
gether both components. By this grouping, the Header component provides
management of the access system. Below the menu bar we find components
specific to the user profile and their role in the system. One is the Map
component. This component is responsible for displaying the geographical
information found in layers from OGC services. Nevertheless, this compo-
nent does not have the implemented functionality to allow the user to indicate
which layers they wish to be displayed. To do this, this component is related
to the LayerList component (top left) which provides it with the information.



In addition, the web application displays certain information about the
layers being viewed on the map in a certain moment. This activity is per-
formed by the component Legend (left center) and as with the Map compo-
nent, obtains the necessary information from the Layerinfo component. If
we continue examining the figure, we can see that at the bottom we have a
report in table format (in the medium) and two graphs (a pie chart and a bar
chart) on the left side. Both the report (ReportResults component) and the
graphs (Piechart and Barchart components) only handle display information.
Another component exists ( TableParser) which is responsible for generating
the information and providing it to where it is needed. Finally on the right
there is an external RSS service for REDIAM notices. This service has been
encapsulated in a component (called RSS) and is an example of how we can
integrate services or external components in our architecture transparently,
although with limitations.

As can be seen from the example, it is possible to build web applications
where the components can be used for different purposes, e.g. to interact with
the user or simply display information, for activities in the background (with
no user interaction), to group others and form more complex components, or
to integrate external resources (developed by third parties). This diversity
of components is analyzed in detail in Section 3.1. All the components that
can be used in an application can be described by a set of abstract interface
components (Silval, 2001). Figure [3| shows an abstract representation of the
web application example scenario shown in Figure[2] In this figure we can see
only the components that include user interface. Therefore, the TableParser
component does not appear. This representation allows us to better under-
stand our component architecture model allowing us to disengage from the
visual aspect of the components and work solely with their features. Having
described the example scenario, the structure of our component architecture
and the relationships that exist between the various elements involved in this
architecture will be examined.

3. COTSget-based Architecture Model

This section will describe our architecture model based on COTSget com-
ponents. For the model we used a design inspired by MDE to build a Domain-
Specific Language (DSL) of the architecture as can be seen in Figure |4 This
representation (which has been described using a metamodel) will help in
understanding the different parts that make up the architecture. Looking
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Figure 3: Abstract representation of example scenario

at the figure, it can be seen that our architecture is composed of two types
of models: the abstract component architecture models (AbstractArchitec-
turalModel) and concrete component architecture models (ConcreteArchitec-
turalModel). As described in the introduction section, the former identify
abstract components, which define the interface; that is, the types of compo-
nents the interface must include to be considered correct. On the other hand,
concrete component architecture models identify concrete components that
have been selected as a solution to the types defined in the previous abstract
component architecture models. Furthermore, both types of architectural
model identify the relationships and links, which can be established between
components, as described below. This article focuses on the concrete archi-
tecture models as discussed in the introduction. Therefore, hereafter, when
we talk about component architecture, we are referring to the architecture
of concrete components.

Looking at the figure, we can see that each concrete architecture model
consists of a set of individual components (ConcreteComponent) and a set of
relationships between said components (Relationship). Each component has
a type, defined by ComponentType. The container component type identifies
a component that is used to contain other components. This makes it possible
to build more complex components from more basic ones. The functional
component type is used to construct functional components, which do not
include user interaction, therefore they can be built to execute background
code (internal code of the component). The userlnteraction component type
is used to build components that include user interaction or simply to display
information. Finally, the normal component type is the union of functional
and userlnteraction component types; components that include interaction
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Figure 4: Metamodel of our component-based architecture

with the user and the internal functionality of the component. Through
these types we define all the components present in a user interface. Each
component must also have at least one port (Port) which is responsible for
communication between components. In the following section, the types of
components and ports associated with them will both be discussed in detail.

Furthermore, relationships (Relationship) are modeled between compo-
nents. Each relationship connects two or more components simultaneously
and may be formed by elements of Connector type. A Connector repre-
sents the link that takes information from the output port to the input port.
Relationships can be of two types: Binary and Nary. Binary relationships
are those relationships that exist between two different components (e.g. as-
sociation, composition, etc.). The N-arys relationships are those that are
composed of at least two binary relationships and are therefore related to at
least three components of the architecture (e.g. hierarchy, sequence, etc.).
These relationships will be described in more depth in Section 3.2.

Not all the constraints of our architectural model can be expressed in
a metamodel. To do this, a set of OCL (Object Constraint Language) con-
straints has been defined, which help us to formally describe these restrictions
and improve our model, giving coherence and reliability. Below, we describe
some examples of these restrictions in connection with the relationships be-
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tween components. Since our architecture allows only a single relationship
between two components, i.e., a single binary relation whose origin is com-
ponent A and target component B, our first constraint is expressed as follows:

context ConcreteArchitecturalModel
inv: not(relationship -> exists(rl : Binary, r2 : Binary | rl <> r2
and r1.oclIsTypeOf (Binary) and r2.oclIsTypeOf (Binary) and rl.source =
ril.source and r2.target = r2.target));

This constraint is basic in the architectural model and helps us to restrict
the number of possibilities between components, making it more manageable
and useful. The second constraint indicates that if the relationship between
two components A and B is two-way, then there are at least two connectors:
one whose origin is A and destination is B, and other connector whose origin
is B and destination A. Therefore, the restriction in OCL would be:

context Binary
inv: isBidirectional = true implies (connector->exists(cl, c2 | cl <> c2
and cl.source.component = c2.target.component)) ;

That is, at least one output port of the first component must be con-
nected to an input port of the second, and wvice-versa. Furthermore, it has
been established that a component must have at least one port, however the
restriction is stronger, since it must have at least one input port. Therefore,
the corresponding OCL constraint would be the following:

context ConcreteComponent
inv: port->exists(p | p.oclIsTypeOf (InputPort));

This way we check that in the components collection of ports, there is
at least one that is of the InputPort type. The following subsections will
describe in detail the internal structure of the components and the relation-
ships that can be established between these components, highlighting the
structural aspects of these.

3.1. Components

As stated above, our model concrete architecture consists of a set of indi-
vidual components. Each component has to be specified using a DSL. In Fig-
ure 5| we can see part of the metamodel, which describes the internal structure
of said components. Each component is composed of four parts: Functional,
EzxtraFunctional, Packaging and Marketing. In the figure only the Functional
y ExtraFunctional parts have been expanded because these are essential for
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Figure 5: Metamodel of the internal structure of a component

understanding the internal structure of a component. When a component
is constructed all parts must be specified except the EztraFunctional part,
which is optional. The Marketing part of a component identifies the infor-
mation related to the entity that developed the component, such as the name
of the organization, contact name, etc. The Packaging part provides infor-
mation related to the packaging of the component, such as identifying the
repository where the component is located, the programming language used,
etc. The EztraFunctional part identifies the set of extra-functional proper-
ties that a component can have. These properties may provide information
on NFPs (Non-Functional Properties), properties related to quality of ser-
vice (QoS), properties related to the appearance of the component such as
width, height, etc., and the set of dependencies that a component can have
with other components. Finally there is the Functional part which will be
described in more detail since it is fundamental to the understanding of the
structure of a COTSget component. Each component implements its own
functionality, both related to the interaction with the user (InteractionCon-
tent) and the internal component itself (CoreContent). Both features are
optional, which allows a developer to build a component to suit their needs.
The different types of components are:
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e Functional Component: defined by the functional component type (see
list of types of components defined in ComponentType in Figure 4)).
This component only implements the internal functionality (CoreCon-
tent), without implementing functionality related to user interaction. It
can be used to perform background tasks, such as accessing a database.
In our example scenario the TableParser component is a functional
component that is responsible for generating the information related
to the reporting of results and table formatting. This component does
not interact with the user or display information on the screen. Once
this component generates and formats the data it is sent to the Re-
portResults component to display this information on screen.

o User Interaction Component: defined by the userInteraction compo-
nent type. This component only includes the functionality associated
with user interaction (InteractionContent) and is used to interact with
the user. It can also be used to display reports or some graphical in-
formation. In our example scenario several components of this type
appear. For examplethe Map component is used to display a map and
interact with it and where layers with information that have been se-
lected are shown in the LayerList component.

o Container Component: defined by the container component type. This
component has neither internal functionality nor functionality related
to user interaction. A container is a component that is composed of
several components, to jointly develop a common task or purpose. An
example of this type is the Header component in our example scenario.
This component contains the UserInfo and Logout components, and
is used to control access to the system. The Header component is a
good example of how we can use a set of components to create a more
complex common task.

In addition to the functionality that can be implemented in a compo-
nent, the Functional part includes the specification of two interfaces: the
interaction interface (InteractionInterface) and the controller interface (Con-
trollerInterface). Through the interaction interface, the user interacts with
the component entering data or receiving information. In this interface, user
events supported by the component are managed depending on the device
used for handling the component. The component developer should provide
the setting in which that component is executed (e.g. mobile environment,
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desktop, etc.), to develop its functionality according to the specific events of
that setting. This feature means that the components are dependent on their
setting. On the other hand we have the controller interface, which is used for
communication between components, so it is inaccessible to the user. This
interface allows the creation of a communications network between compo-
nents, giving the architecture great versatility. The controller interface is
comprised of a set of provided interfaces (ProvidedInterfaces) and required
(RequiredInterfaces), with the stipulation that each component has at least
one provided interface. The provided interfaces are those that define all the
functionality that the component establishes as visible to the outside world,
i.e., it describes methods that can be invoked in order to make the component
perform some operation.

The required interfaces of a component describe those operations belong-
ing to other components that are invoked by a component in order to operate
completely and correctly. Each interface defined in the controller interface
is specified by WSDL (Web Service Description Language), as can be seen
in the concept WSDLSpecification. This specification uses the concept of
portType, defined in WSDL 1.1 (http://www.w3.org/TR/wsdl), as a root
element for describing each of the interfaces. In Figure [6] we can see the
specification of a (PortType) interface.

Each interface has a name, so each interface within the same component
can be referred to univocally, and a set of operations ( Operation) with which

H WSDLSpecificatior| portType H PortType
T uri : AnyURI 1 | name: String
1> Ioperation
B Operation
T name : String
1 input 0.1], output
E] Input B Qutput
T name : String T name : String
T type : String T type : String
0.* element 1.* | element
H InputElement H outputElemen
I 1

H Element
T name : String
T type : String
= minOccurs : Int
= maxOccurs : Int

Figure 6: Specification of an interface (portType)
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information can be sent (OQutput) or received (Input). An interface should
always have an input operation and, optionally an output operation. The
input operation may or may not be formed by a set of input elements (In-
putElement) while the output operation will consist of one or more output
elements (OQutputElement). Each Element defines its name, type and, op-
tionally, the minimum (minOccurs) and maximum (mazOccurs) number of
times that must be present.

In Figure [7] we can see a fragment of the specification of the interface
provided manageLegend of the component Legend, from our sample scenario.
This interface describes two operations: loadLegend and removeLegend (lines
44 y 48). The first is a “request-response” type, since it defines an input
message and an output, while the second is a “one-way” type, since it only
defines an input message (lines 45-46 y 49-50).

Moreover, the definitions of data that describe the structure of these
messages can be seen in lines 9-32. For example, the loadLegend operation
receives the URL as input of an OGC service followed by a list of the layers

1: <?xml version='1.0' encoding="'UTF-8'?>

2: <wsdl:definitions name="RegisterImplService" targetNamespace=http://ws.cos.acg.ual.es/... >

8: <wsdl:types>

9: <xs:schema elementFormDefault="unqualified" targetNamespace=http://ws.cos.acg.ual.es/ version="1.0"
10: xmlns:tns=http://ws.cos.acg.ual.es/ xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

15: <xs:complexType name="loadLegend">

16: <Xs:sequence>

17: <xs:element minOccurs="1" maxOccurs="1" name="urlOGCService" type="xs:string"/>
18: <xs:element minOccurs="1" name="layer" type="xs:string"/>

19: </Xxs:sequence>

20: </xs:complexType>

21: <xs:complexType name="loadLegendResponse">

22: <Xs:sequence>

23: <xs:element minOccurs="1" maxOccurs="1" name="return" type="xs:string"/>
24: </xs:sequence>

25: </xs:complexType>

26: <xs:complexType name="removelLegend">

27: <xs:sequence>

28: <xs:element minOccurs="1" maxOccurs="1" name="urlOGCService" type="xs:string"/>
29: <xs:element minOccurs="1" name="layer" type="xs:string"/>

30: </xs:sequence>

31: </xs:complexType>

32: </xs:schema>
33: </wsdl:types>

43: <wsdl:portType name="managelLegend">

44: <wsdl:operation name="loadLegend">

45: <wsdl:input message="tns:loadLegend" name="loadlLegend"> </wsdl:input>

46: <wsdl:output message="tns:loadLegendResponse" name="loadLegendResponse"”> </wsdl:output>
47: </wsdl:operation>

48: <wsdl:operation name="removelLegend">

49: <wsdl:input message="tns:removelLegend" name="removelLegend"> </wsdl:input>

50: </wsdl:operation>

51: </wsdl:portType>
52: </wsdl:definitions>

Figure 7: Fragment of a specification in WSDL
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belonging to the service, which are to be loaded in the component caption
(lines 17-18). As output, the operation returns the result of its execution in
a text string (line 23), that is, whether it has been properly executed or if
an error has occurred.

The functionality implemented in a component (specified by Interaction-
Content and CoreContent), must be communicated to the relevant controller
interface if it wants to send/receive information to/from other component(s)
via ports. Since each component may be viewed as a black box, the only
information that can be obtained from a component is the information it
provides through its ports.

3.2. Relationships between Components

The previous section described the internal structure of a component by
examining its parts and identifying the different types that exist. In this
section we will describe the next aspect included in the architecture: the
relationships between components. As discussed above, each component is
related to other(s) through relationships, leading to different forms of com-
munication between these components. Before listing the set of relationships
between components, we must define the concept of a relationship. Every
relationship connects a component with other(s) through the entry and exit
ports of these components, i.e. if there is a relationship between two compo-
nents, at least one set of output ports of a component must be connected to
a set of input ports belonging to another component.

Each connection between two ports of two distinct components is called
a connector (Connector concept in Figure . In Figure , a graphical rep-
resentation of a component can be seen, while in Figure8b, an example with
two components connected via their ports can be seen. As can be seen in
Figure [8b, there may be ports in the components which are not connected
by any connector and therefore do not participate in the architecture. These
ports may be linked by other relationships or may not be used in a specific
system. Therefore, depending on the application being implemented and the
relationships defined in the architectural model, some ports or others will be
used. Figure |8b also represents the connections, which exist within the rela-
tionship between the Legend and LayerList components in the example. It
should be noted at this point that, when the architecture is built from com-
ponents, the interfaces defined in the specification (Figure |5) are translated
to the ports of each component defined in the architecture (Figure [4)).
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Figure 8: (a) Graphic representation of a component; (b) Example of two components
connected by ports

Once the connectors have been defined, the concept of relationship can be
defined. A relationship (concept Relationship in Figure 4]) is used to connect
two or more components at once, allowing communication between them.
The relationships between components can be binary or N-ary. Binary rela-
tionships are those relationships that exist between two different components.
These relationships have a Boolean property called isBidirectional, to indi-
cate whether the involved components are connected so that the performance
of one affects the other and vice versa. A connector connects two ports, one
input and one output, from each of the components of a relationship. The
binary relations also include the BinaryType concept to identify the existing
types of binary relations and therefore different behaviors that can occur in
such relationships. In Figure [J] we can see the main binary relations and
symbols that represent them. These symbols are used to graphically model
component-based architectures.

To help understand the significance of these relationships, the architecture
components associated with our example scenario will be used (see Figure
. The association relationship is the most common and occurs when a
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Figure 10: Relationships between components in the example scenario

generic relationship exists between two components A and B. This relation-
ship is used to represent the regular exchange of information between two
components, where such exchange cannot be done with any of the other rela-
tionships. An example of this relationship appears for instance between the
Header and LayerList components; This relationship represents the request
of user information to the Header component by the LayerList component.
When the second component builds the list of available layers to show, it at-
tempts to acquire information from the first by calling on one of its methods.
However, if the component is not available or it is not in the architecture,
LayerList will display a list of default layers. This behavior of weak depen-
dence causes the relationship to be an association type.

The composition relationship is used when all of the interfaces of B are
in A. Any component wishing to access B will need to do it through A. This
relationship is used to create components from other components. In this way
a component can contain one or more components that together perform a
specific task or purpose. An example of composition relationship can be seen
with the Header, UserInfo and Logout components. The Header component
is a container type component containing the other two components. Thus
all operations produced from the UserInfo or Logout components outward,
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and all requests made on the methods of both components originating from
the outside, must be made through the ports of the Header component.

The dependence relationship appears when component A cannot exist
without component B. In our example scenario, this relationship appears be-
tween the Logout component and the UserInfo component. The first depends
on the second given that, without the necessary information about the user
and their session, it is impossible to execute the closing operations and, such
as cannot function correctly. This behavior of strong dependence causes the
relationship to be a dependence type. The inheritance relationship is given
when component A includes all the ports that have been defined in B. This
relationship does not appear in our example scenario. However, should we
suppose that a component called MapDB existed which was connected to
the Map component by this relationship. This component would include all
the ports (and such as the entire functionality) that have been defined in the
map. Furthermore it would be able to implement new functionalities such
as, for example, saving the searches made in the map in a database. These
new functionalities would be able to be offered optionally through additional
ports of the MapDB component.

The final binary relationship that will be described is the producer-
consumer relationship (producerconsumer). This relationship is given when
a relationship between A and B exists in which A produces information
which B consumes. This relationship is very useful in cases of access to
databases by the producer component, which will supply information (mod-
ified or not) to the consumer component. In our example scenario there are
various producer-consumer relationships. One case of this type is established
between the LayerList and Map components. The first of these acts as the
producer supplying the OGC services needed to be visualised on the map by
the second component.

All these relationships between two components cover a wide range of pos-
sible scenarios in the construction of componentbased systems. Nevertheless,
on occasion more complex relationships are necessary. For these cases N-ary
relationships have been created. An N-ary relationship is defined as a set
of relationships, which two-by-two (i.e. binary relationships) link the com-
ponents existing within the N-ary relationship. Figure shows the main
N-ary relationships together with the graphic symbols.

The first relationship that appears in the table is the sequence relation-
ship. This relationship provides a sequence order to a set of components
for the realisation of a common task or purpose. In Figure [12h, a graphical
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representation of this relationship can be seen. An example of this N-ary
relationship can be seen between the LayerList, Map and Legend compo-
nents, and is formed by the two binary producerconsumer type relationships
that link the LayerList and Map, and LayerList and Legend components,
respectively. The N-ary relationship sequence will describe that firstly the
operations associated with the first binary relationship are executed and sec-
ondly those associated with the second binary relationship.

Another N-ary relationship is the hierarchy which is given when all the
components of the set have a inheritance relationship with their parent com-
ponent (see Figure ) This relationship defines an inheritance tree be-
tween all the components, which form part of the relationship. The trading
relationship is given when one of the components carries out a task of me-
diation with the others (see Figure [[2k). As can be seen an association
relationship exists between component A and component B. When compo-
nent T carries out its job of trading it defines how components A and B must
communicate. Finally, the N-ary observer, controller and sink relationships
remain to be defined. These relationships have a similar structure, defined
graphically in the shape of a star in which the relationships, which arrive or
leave from the central component change. In Figure [13| graphic examples of
these structures can be seen. Although both of these relationships have a
similar graphical representation they are not used for the same purpose.

The observer relationship implies that the central component (component
O in the example) carries out observation tasks on all the other components
and acts in consequence. On the other hand the controller relationship im-
plies that the central component (component C in the example) does not only
observe but rather additionally sends control orders to the other components.
Therefore, although the binary relationships linked are association type, this
N-ary relationship is stronger than the observer relationship. Finally, the sink
relationship describes a relationship in which the central component (compo-
nent S in Figure , is the receiver of the information generated by the other
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Figure 13: Graphic representation of relations (a) observer, (b) controller and (c) sink

components involved in the relationship. Therefore, all binary relationships
of this relationship are producerconsumer type, in which the consumer is the
central component.

Once both the internal structure of the COTSgets components and the
principal relationships have been defined, the service of components in the
cloud and how it is implemented will be seen.

4. COTSget-as-a-Service

As indicated in the introduction, the main objective of our research is to
create a service of architectures based on COTSgets components (COTSgets-
as-a-Service) to support interactive systems running on different platforms.
Currently the service has been implemented on the web platform. To provide
this service, a cloud-based, three layer infrastructure has been created: the
client layer, the platform-dependent server layer and platform-independent
server layer. The client layer consists of user applications. The components of
these applications use the web platform (such as web-based technology) and
have been implemented by widgets as recommended by W3C. These applica-
tions are deployed by means of a web browser. The platform dependent layer
constitutes the intermediate layer of the system architecture. This layer deals
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with providing the client with the required services and interacting with the
independent layer, thus getting a number of services from it and providing
it with others. Finally, the platform-independent layer provides the system
services that are valid for all platforms. For this, its functionalities are based
solely on the description of components and their relationships, regardless of
the platform in which they will be deployed.

The following section describes the two layers of servers, fundamental to
understanding the infrastructure. Subsequently, in Section 4, some imple-
mentation details related to the deployment of all layers will be examined.

4.1. Architecture Server Layers

Our system architecture consists of a set of servers located in the depen-
dent and independent layers of the platform. To describe the operation of
these servers, we will use the business process diagram of Figure [14] Firstly,
the platform dependent layer will be described. This layer constitutes the
middle layer of the architecture and is responsible for providing the necessary
services to the applications that are running on the client layer as well as to
communicate with the platform independent layer. The services offered to
the client application layer are as follows:

e [nitial loading of the application: when the execution of an applica-
tion is to be initiated (Figure [14] task (a)), it is necessary to load the
components that make the application. The platform-dependent layer
will support this initial loading by means of a web application server
(task (b)), given that, as already stated above, it is only currently
possible to construct web-platform applications. As part of the initial
loading, the layer collaborates with the browser, where deployment is
done, to obtain and embed the widgets used to build the user interface
on the website (task (c)). This service is managed by a Node.js server
(http://nodejs.org).

e Component repository support: Given that applications are built with
components, it is necessary to have a server that manages the repos-
itories of said components. This management consists essentially of
creating and obtaining instances of widgets (task (d)). Different repos-
itories will exist depending on the platform on which they are run. For
components implemented with widgets, an Apache Wookie server is
used (http://wookie.apache.org).

21


http://nodejs.org
http://wookie.apache.org

o Communication between components: the dependent-layer indirectly

manages the communication established between components (wid-
gets), i.e. it is not responsible for calculating the communication paths,
but is responsible for receiving and sending messages to and from the
components. To manage this service a Node.js server is used. This
communication may occur for various reasons, for instance by user in-
teraction with the application (task (e)). When messages are sent, is
the client the responsible for receiving and executing the corresponding
operations arising from the communication (task (f)).
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Figure 14: Business process diagram of the architecture behavior
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By interacting with the independent-layer, the dependent-layer obtains
a series of services (task (g)) and provides others to the independent-layer
(task (h)). Regarding the services obtained, the dependent-layer obtains the
necessary code to create the initial web application and also consults which
route the information should follow to allow the components to communicate
between themselves. This is achieved using a web service implemented in the
independent-layer. Additionally, the dependent-layer offers information to
the independent-layer about the components it manages such as the address
of the instances of the widgets it uses to generate the application code.

The other layer is the platform independent layer. This layer has been
built to support different platforms and offers a number of features related
solely to the description of the components and the relationships between
them, regardless of the specific platform in which they will be deployed. It is
true that, in terms of deployment, there are certain particularities for each
platform which must be taken into account, for example the initialization of
a web user interface may be different from the initialization of component
architecture in a Java implemented application or the invocation of methods
between components as part of a communication task. However, there is one
part in common, an abstract view of the behaviors that can be extracted and
implemented independently of the platform.

Therefore, the services offered in this layer will be the same for all plat-
forms, although depending on the case, invocations to internal services re-
lated to a specific behavior for each platform will be made. This mechanism
hides the specifics of each platform to the outside and allows our approach to
be modular and scalable, allowing the progressive addition of new features to
new platforms that support the system in the future. The independent layer
has been implemented with a single server. This server (called COScore,
Cotsgets-based architecture Operating Support core) forms the core of the
management of component-based architectures. Its basic functions are:

e [nitialize the architecture of concrete components: when a new client
initiates the connection to the system, the component architecture that
is to be provided must be obtained (task (i)). Therefore, the corre-
sponding component instances are created (task (j)) and it will return
the appropriate data structure to be represented by the architecture.
In the particular case of web user interfaces, this service is responsible
for initializing the UI based widgets and re-turns the associated code
(task (k)).
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e Obtain the communication relationships between components: as men-
tioned above, this layer handles communication between components
indirectly. This service of COScore takes responsibility for providing
routing information for messages between components (task (1)) i.e.,
this service calculates which components should be sent a message us-
ing a message send request that comes from the dependent layer and
the information held on the component architecture and the relations
between these components, (task (m)).

These services are the only ones to be published externally, although there
is a number of internal services which complement the business logic of the
above. In brief these services include:

o [nitialize COScore services: during the system boot all necessary data
structures are constructed to allow all the offered services to be man-

aged (task (n)).

e Read the representative component architecture model: with the client
information provided by the application, the component architecture
model, which corresponds to the application is obtained (task (0)).

e Generate a data structure for routing: from the architecture model,
a data structure representing the relationships between the compo-
nents of said model is generated (task (p)). Recall that these relations
are used for communication between components. This data structure
must be updated each time the architecture model alters.

e Create instances of architectural components (task (q)): from the ar-
chitecture model, the component instances are also constructed and
information on said instances is associated to the corresponding client.

e Generate code of the architecture (task (r)): This service aims to build
the compiled or interpreted code for the platform on which the archi-
tecture will be deployed.

4.2. Architecture deployment

In order to understand the structure of the architecture proposed, in this
section we are going to demonstrate a number of implementation details
about the deployment from the client-side and from each of the servers. To
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facilitate understanding, we present some code fragments in order to illustrate
the behavior developed. In the three tables in this section the first column
indicates the execution order (step) of each code fragment.

Starting from the client layer, the user interfaces are developed by sharing
common web technologies such as HTML, CSS and JavaScript. With the
goal of registering the user interface to the system, it is necessary to connect
the web user interface with the platform dependent layer. Therefore, the
interface needs to establish a socket connection with Node.js server and to
request the GUI initialization (Figure [L5}step#1).

var socket = io.connect('http://acg.ual.es:6969");
socket.on('connect’, function(){

step #1 socket.emit('initGUI', { userID: userID }, function(confirmation){
if(!confirmation) alert('Error in GUI initialization'); });
1M
step #7 socket.on('addComponent', function(data){ $('body').append(data); });
<html> ...
<body> ...

<div id="legend">
<iframe id="ilegend" src="http://acg.ual.es/wookie/deploy/acg.ual.es/wookie/
widgets/Legend/index.html?idkey=ueMfpWWU3eTO57fkAeVkbaGKzwY.eq.&amp;proxy=
http://acg.ual.es:808/wookie/proxy&amp;st=&amp;userID=userl&amp;nodejsURL=
acg.ual.es:6969"></iframe>
</div>
<div id="layerList">
<iframe id="ilayerList" src="http://acg.ual.es/wookie/deploy/acg.ual.es/wookie/
widgets/LayerList/index.html?idkey=YRdAICRqjAYRI7z1tkWFV7X13HNg.eq.&amp;proxy=
step #8 http://acg.ual.es:80/wookie/proxy&amp;st=&amp;userID=userl&amp;nodejsURL=
acg.ual.es:6969"></iframe>
</div>
<div id="map">
<iframe id="imap" src="http://acg.ual.es/wookie/deploy/acg.ual.es/wookie/
widgets/Map/index.html?idkey=tuveYYw9ztkjVRHKTC6NDZz25D.s1.Y.eq.&amp;proxy=
http://acg.ual.es:80/wookie/proxy&amp;st=&amp;userID=userl&amp;nodejsURL=
acg.ual.es:6969"></iframe>
</div>
</body>
</html>

function emitLoadLayer(layer){
step #9 websocket.emit('send', getUrlvars()['userID'], 'layerList', 'loadLayer', layer);
}

var websocket = io.connect(getUrlVars()[ 'nodejsURL']);
websocket.on('connect', function(){ websocket.emit('adduser"’,
getUrlvars()['userID'], getUrlvars()['componentID'], "');});

step #12 websocket.on(getUrlvars()['componentID']+ '.loadLayer', function(data){
var newData = new Array();

for (var i = 1; i < data.length; i++) newData[i-1] = data[i];
newLayer(data[@], newData);

s

Figure 15: Client side code fragments
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Moreover, the application is waiting for a message with the HTML code of
the widgets, which is used to add these widgets into the user interface (Figure
step#?). As a result, the corresponding HTML code of the widget-based
user interface is deployed in the client layer (Figure[15}step#8). Furthermore,
for each widget to communicate with Node.js server, a connection to said
server and a declaration of the input and output ports must be established
(this code resides within each widget). In Figure step#9, it is shown the
code executed when the interaction with the LayerList component requires
to emit information (to the platform dependent layer) about the layers which
have to be loaded. On the other hand, in Figure [I5}step#12 we can see the
connection of the Map component as well as the declaration of an input
port named as loadLayer. This input port will receive (from the platform
dependent layer) the information generated and caused by the interaction
mentioned in Figure [15}step#9. This implementation of ports is a concrete
case for web platforms and it corresponds to the interface definitions that
the COScore server manages (see Section [3.1).

On the platform dependent layer, we have deployed two servers: an
Apache Wookie server and a Node.js server. The first server allows us
to deploy widgets based on the W3C specification (http://www.w3.org/
TR/widgets/)). The components that reside in the server are used for the
web platform case, where graphical user interfaces are built from widgets.
This server provides an API (http://wookie.apache.org/docs/api.html)
based on REST services (Richardson and Ruby, 2008) for the management
of widgets (insertion, elimination, modification, creation of instances, etc.).
In our approach, the server is deployed at http://acg.ual.es/wookie/ and
an example address of Map component for userl would be:

. http://acg.ual.es/wookie/deploy/acg.ual.es/wookie/widgets/Map
/index.html?7idkey=tuV6YYw9ztk jVRHKTC6NDz25D.s1.Y.eq. &

proxy=http://acg.ual.es:80/wookie/proxy&st=.

In this link, the address part http://acg.ual.es/wookie/widgets/Map
is the component identifier, and “tuV6YYw9ztkjVRHKkTC6NDz25D.sl.Y .eq.”
is the user’s instance identifier.

The second server is a JavaScript server, called Node.js, which can be used
as a link between the client and the platform independent server. In order to
manage communications with Node.js, we use sockets. This requires instal-
lation of the socket.io module (http://socket.io). We can see an example
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of this use in the code shown in Figure [I6}step#2. In this code, the Node.js
server establishes an input port initGUI in its initialization (connection).
This input port is invoked from the client web application to initialize the
user interface and, consequently, the web service of the COScore in charge
of getting the components, will be called. The result is sent through the
output port addComponent to the web client. Another example is shown
in Figure step#l(). This code establishes an input port (send) which is
invoked from the client layer to solve the communication process of the com-
ponents. Again, we can see that a web service of the COScore is called (in
this case, calculatedConnectedPorts) and then, the information is routed to
the corresponding components through the calculated ports.

On the other hand, to invoke the SOAP-based web services, we need
to install the node-soap module (https://github.com/vpulim/node-soap).
In the code fragment shown in Figure [16}step#3, we make use of this module
to create a SOAP client that invokes the corresponding method of the web

io.sockets.on('connection’, function (socket) {
socket.on('initGUI', function(data, fn) {

callWS('http://acg.ual.es:8080/cos/COSWS?wsdl’, 'initGUI',
args_iniGUI, function(ws_response) {
if(ws_response != 'Error') {
ws_response.forEach(function(value, index) {
io.sockets.in(users[data.userID]).emit('addComponent’, value); });
fn(true);
} else fn(false);
1)
1)
1)

step #2

function callWS(wsurl, methodname, args, callback) {
soap.createClient(wsurl, function(err, client) {
if(client==null) { callback('Error'); }
step #3 else client[methodname](args, function(err, result) {callback(result.return);});
1)
}

socket.on('send', function(user, component, port, data){
var args_calculateConnectedPorts = {componentID: component, portID: port};
callWS('http://acg.ual.es:8080/cos/COSWS?wsdl', ‘'calculateConnectedPorts’,
args_calculateConnectedPorts, function(ws_response) {

var pairs = ws_response.split('-');
pairs.forEach(function(pair){
pair_s = pair.split(',");
var ¢ pair_s[@];
var p pair_s[1];
io.sockets.in(users[user]).emit(c + '.' + p, data);

step #10

Figure 16: Node.js side code fragments
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service and returns the result obtained. To describe the client layer de-
ployment, we will use the implementation of the GUI initialization as an
example. On the client-side, it is necessary to include the code shown in
Figure [15}step#1 which is in charge of starting the connection between the
web application and the Node.js server. Next, through the initGUI port, it
sends a message with its user identifier to initiate the interface. Additionally,
it establishes an input port named addComponent that will be called from
the code described in Figure [15}step#7. This port adds the widgets into the
web interface. As a result of the initialization, we can see a code fragment
of the resulting widget-based web application in Figure [I5}step#38.

Regarding the platform independent layer, a JBoss application server has
been deployed (http://www.jboss.org/jbossas). This application server
offers a set of web services developed with JAX-WS (Chinnici et al. 2006)).
These services are called from the layer that is dependent on the platform
through SOAP messages (Graham et al., 2004)) and offer the functionalities of
the independent layer. All modules (capacities) of COScore are implemented
via EJB (Johnson, [2005) and internally managed through the lookup mecha-
nisms (lookup) of this server and through different types of session (stateful,
stateless and singleton) of beans. Following the previous code fragments,
there is a service in charge of resolving the initial widget list to be inserted
into the web user interface (named as initGUI). This service is responsible
for reading the data structure that represents the architecture of the user
interface and for creating the corresponding code that will be deployed by
the client (Figure step#4). For this purpose, widget instances are created
through REST services by using the Wookie API (Figure [17}step#5); and
then, the HTML code is constructed using the information from the instances
previously created (Figure step#6). Another example of these services is
shown in Figure [[7}step#11. This service implements the behavior of calcu-
lating which components (and through which ports) are going to receive to
information obtained from the client interaction.

5. Experimentation process

This section illustrates the process used to validate and evaluate the Cloud
Service and its performance in managing COTSgets-based architectures. The
previous section described the infrastructure of the architecture supporting
our proposal, explained how it has been deployed, and provided implemen-
tation details. Nevertheless, a performance evaluation is also required to
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public List<String> initGUI(String userID){
List<String> resultList = new ArrayList<String>();
ManageWookie wookie = new ManageWookie();

while(it.hasNext()){
Map.Entry<String,List<String>> entry = it.next();
//Create or get the instance for each widget
String widgetID = entry.getKey();

Iterator<Map.Entry<String,List<String>>> it=componentTable.entrySet().iterator();

step #4 WidgetData widgetData = wookie.getOrCreateWidgetInstance(userID, widgetID);

//Store the instance identifier into the existing table

resultList.add(divString);

//Return the code of the components that must be inserted
return resultlList;

¥

//Invoke REST service to create new widget instances
ClientConfig config = new DefaultClientConfig();
Client client = Client.create(config);

wookie/widgetinstances™).build());
// Form with widget data
MultivaluedMap formData = new MultivaluedMapImpl();

step #5 TYPE) .post(ClientResponse.class, formData);
String result = response.getEntity(String.class);
WidgetData widgetData = null;

String xml = result;

DOMParser parser = new DOMParser();

try {

widgetData = new WidgetData(url, identifier, title, height, width);
} catch (SAXException e) { log.error(e.printStackTrace()); }
catch (IOException e) { log.error(e.printStackTrace()); }
return widgetData;

¥

private String composeDiv(String widgetTitle, String instanceID, String
instanceURL, String userID){

String divString "<div id = '"+ widgetTitle + "'>" +
step #6 “<iframe id = 'i" + widgetTitle + "' src='" + instanceURL +
P "?userID=" + userID + "&" + "nodejsURL=" + nodejsURL + "'>" +
"</iframe>" + "</div>";
return divString;
}
public String calculateConnectedPorts(String componentID, String portID)
{
String result = "No results obtained";
TMC tmc = null;
try{
Context initialContext = new InitialContext();
tmc = (TMC)initialContext.lookup("java:module/TMC");
}
step #11 catch(NamingException e) { e.printStackTrace(); }
try {
result = (tmc.calculateConnectedPorts(componentID, portID)).get();
} catch (Exception e) { ... }

return result;

Figure 17: COScore side code fragments
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String divString = composeDiv(widgetTitle, instanceID, instanceURL, userID);

public WidgetData getOrCreateWidgetInstance(String userID, String widgetID) {

WebResource webResource = client.resource(UriBuilder.fromUri("http://acg.ual.es/

ClientResponse response = webResource.type(MediaType.APPLICATION_FORM_URLENCODED_

// Get widget attributes ('url', ‘'identifier', 'title', etc.) from REST response ...




validate our approach. Performance is measured in terms of the execution
and response times observed in the two main processes of the developed ar-
chitecture. These two processes are: (1) initialization of the GUI, and (2)
communication between the components present in the GUI.

To this end, we performed different tests to analyze the behavior of our
setup taking into account three parameters that could affect the performance.
These parameters are: (a) the size of the initial GUI which is loaded and
shown to the user, (b) the coupling degree of the architecture, i.e., the amount
of connections between components, and (c¢) the number of concurrent users
accessing at the same time. We know that other input parameters exist
which affect response times, such as the network latency or the browser used
by the client, among others. However, to ensure the correct performance of
the system, only experiments which validated features which can be managed
or limited were performed. To execute these experiments and measure the
performance times, we used a computer with an Intel(R) Core(TM) i5 CPU
660 @ 3.33 GHz, with 4 GB of physical memory and running the Windows 8.1
Professional 64 bits operating system. This machine included the platform,
dependent and independent servers deployed. For testing purposes a web
application has been developed as a client. Each result of the response times
is calculated as the average time for 100 executions of the same test unit.

As the proposed architecture has three layers (see Figure firstly, we
evaluated the meas-ured times in (A), (B), and (C), as shows Figure [18]

The time obtained in (A) indicates the execution time of the functions im-
plemented in the independent layer server (COScore). Subsequently, the time
represented by (B) is derived from (A) but it incorporates the time elapsed to
perform the behavior implemented in the platform dependent layer. Finally,
(C) represents the total time elapsed between the call being performed by
the client and the moment that a response is obtained and shown to the user.
Figure 19| shows the response times for the GUI initialization when we vary

Client Layer (C)

] 1
Platform g
Dependent Layer ®
! 1

Platform *
Independent Layer

Figure 18: Possible measurement locations in the evaluation process
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the number of components. The differences between times measured in (A),
(B) and (C) are very small. For this reason, the following performance times
are focused on the response time (C), because it is the largest response time
(in fact, it is equal to the total time of the process) and corresponds to the
real time that the user experiences as a response to the service usage.

The first group of tests that has been performed is intended to evaluate
the performance of the initialization of a GUI. We evaluated the times ob-
tained for different initial GUI sizes as they are shown to the user. Thus,
measurements were taken with models with 1, 2, 3, 5, 10, and 20 components.
These sizes were chosen since GUIs (developed within our COTS-based ar-
chitectures) are usually composed of less than 20 components. For example,
a typical user interface with only one component in the aforementioned do-
main is a GUI composed by a map with geospatial information. In addition
to the map, the user interface may contain a legend component and/or a
component with a list of the layers shown, thus forming typical examples of
GUIs with two and three components. Due to visual limitations and typical
user preferences, the normal scenario is to manage GUIs with a maximum
of four, five or six components. For completeness, we included experiments
with 10 and 20 components with the aim of testing the performance in less
favorable testbeds. At the very least the obtained results allow us to infer
the response times for scenarios with additional components. In addition, we
evaluated the performance for different degrees of coupling: “low”, “medium”
and “high”. If “n” is the number of components of the GUI, low coupling
represents a number of communications between components lower than “n
—1”. High coupling corresponds to a number of communications higher than
“n*n(n-1) /2", and medium coupling represents the intermediate lev-
els. Figure [20[ shows the results of this test. It is noteworthy that the times
shown in Figure [19| correspond to the different times shown in Figure [20] for
a ‘medium’ coupling.

We can extract three conclusions from Figures|19/and (1) the response
times grow in proportion to the number of components; (2) the coupling de-
gree does not affect (or has an insignificant influence on) the performance;
and third, the performance results obtained are suitable for the GUI initial-
ization process, since the worst response time is below 600 ms, resulting in
a good user experience. Nevertheless, we performed another group of tests
to evaluate the initialization process from concurrent users, with the aim of
testing the performance in a real exploitation/production environment. The
result of this experiment is shown in Figure [21] where rows Ui correspond to
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Figure 20: Performance results: Initialization of GUIs with different model sizes and
different coupling values

the response times obtained when different numbers of concurrent users i ac-
cessed the user interface, and Ci represents the size of the loaded model. Low,
medium and high coupling is represented by “1”, “m” and “h”, respectively.
The performance results are measured in milliseconds.

When multiple concurrent users perform a service request for the GUI
initialization simultaneously, the server side of our architecture is not able
to respond to all users at the same time. In this sense, the column “min” of
Figure 21| contains the time taken for the first user to receive the response
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and complete the initialization process. The column “max” depicts the time
taken for the last user to receive the response and complete the process.
Figure 22| shows a representation of the obtained results (one for model).

From results depicted in Figure [21] and the different graphs in Figure [22]
we are able to draw the following conclusions: (1) the “min” response time
remains almost constant and is not affected by the number of concurrent
accesses, (2) the “max” response time increases in proportion to the number
of concurrent users, (3) the larger is the model of the GUI, the higher is the
increase of the “max” value, and (4) the coupling degree of the architecture
representing the GUI does not influence the performance even if we increase
the number of concurrent users (as we previously stated for one user, see Fig-
ure . If we summarize the results of the Figure , focusing on the “min”
and “max” results, we obtain the graphics shown in Figure 23| and Figure
24} which represent the lowest and the highest times obtained, respectively.

The performance results obtained from these experiments are relatively
good in terms of response times for the initialization of the GUI with different
numbers of concurrent users. Nevertheless, for models with 10 components
the response time experimented by the last user (“max” value) begins to
exceed acceptable levels (3.5 seconds) once there are over 40 concur-rent
accesses. For models with 20 components, the highest response time is ex-
cessive (over 3.6 seconds) once there are over 25 concurrent initializations.
The reason the number of concurrent users influences the response time is
due to the application server (i.e., the platform-independent server) which
has some common points (common EBJs) is accessed by all the users and a
bottleneck can be created. An example of this common point is the EJB in
charge of managing the user sessions. For this reason, we performed another
experiment, which tried to reduce response time and to improve performance.
In this test, we deployed two and three platform-independent servers and we
balanced the workload by distributing the requests between the servers. The
results are show in Figure [25]

The results of the experiment allow us to take the decision of deploying
our cloud service architecture with two platform-independent servers instead
of one or three. This decision is based on two factors: (a) the use of more
than one server is useful to avoid a bottleneck in the system, and (b) using
more than two servers takes longer to choose the target server and affects
performance. In Figure AD it is possible to observe that using three servers
gives the same improved results for “max” times, but worse results in the
case of “min” times.
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Figure 22: Performance results for the initialization of GUIs with different model sizes
and different coupling values

Regarding the communication process, we measured the response times
with different numbers of components and with different coupling values. For
practical reasons, we did not perform the test with low coupling values of
the architectures, because there are very few connections enabling the com-
munication. In addition, we only executed the test for GUIs with a number
of components between 3 and 20, as these scenarios provide sufficient con-
nections to evaluate the process. In Figure [26| we can see the results of the
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experiment. The response times for the communication remain under 100
ms for a “medium” coupling value and less than 140 ms in the case of “high”
coupling. These times grow in proportion to the number of components, but
with a very low gradient. For this reason, we can assert that the communi-
cation process is executed in a suitable time.

Furthermore, the following link http://acg.ual.es/enia/C0TSbased
ArchitectureExample offers a GUI example developed for the ENIA re-
search project (ENIA| [2010). This GUI application serves as an example of
a real application developed within our proposal. This way, the reader is able
to test and (probably) better understand the appearance of a COTS-based
architecture and the addressed goal.
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Figure 23: Lowest response times (obtained from the first user who is responded)

6. Related work

The use of cloud-based computing, as has already been presented in (Lee,
2010)), offers a number of advantages for both users and organizations that
want to make better use of the resources they manage. Among the benefits
identified, this work names the use of SaaS and specifically the use of MaaS as
a software element of a high level of abstraction available for systems to use
at any time, for example, to build software “top-down” from an approxima-
tion. The concept of MaaS as an on-demand decision element that could be
used by a software system was introduced in (Bhargava et al [1997) and has
had numerous applications since. For example, in (Kridel and Dolk| [2011)),
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the authors make use of this concept to provide data and decision analysis in
model form from expert knowledge and an automatic modeling system. In
(Brunelire et al., [2010) benefits that can be obtained from the MaaS concept
and the use of models with cloud computing are also identified. In this work,
the authors highlight aspects such as the availability of these models, their
run-time sharing, improved scalability and distribution, possible implemen-
tation, adaptation and evolution of these models or even building mashups
as a combination of MDE services offered by different “vendors”.

Inspired by this concept and the use of the mechanism for accessing mod-
els through web services, we also make use of cloud computing and models as
services in our proposal. Nevertheless, instead of proposing a general use of
this concept, our work focuses on the management of software architectures
based on specific named components such as COTSgets. Moreover, we show
the use of the developed system to manage and communicate graphical user
interfaces constructed from these components.

The Maa$S concept was also used in (Geller and Turner, 2007) to identify
ecological models represented and stored by a web system, for customers
who would like to share this information for management tasks and decision
making. Other authors (Roman et al.l 2009), demonstrate their potential
uses, the challenges to be addressed and provide a case study of their use
within a task which analyses oil spill risks. Other works (Goodall et al.,
2011)) propose a definition of web service interface and a specification for data
exchange in order to expose and offer “water resources” as web services.

On the other hand, there have also been other initiatives to enhance in-
teroperability between models repre-senting geospatial information and its
access through web services, additionally trying to make these services in-
creasingly reused (Nativi et al.,[2013). Our proposal also uses this mechanism
of accessing models through services. However, although we also use geospa-
tial information as a domain, with our research being linked to a regional
project named ENvironmental Information Agent (ENIA, [2010), the models
which we access through the cloud are models that represent the structure
of widgets-based GUIs and it is precisely these medium or high granularity
graphical components which are reused in our system.

Therefore, the domain could be any other application that uses a graphi-
cal interface in which components may be developed as widgets. Looking to
the future, we also believe that our proposal and the architecture presented
could be extended to other domains in which our COTSgets components do
not represent GUI widgets, but rather are used to describe software archi-
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tectures based on components from other areas, such as home automation
(Chinnici et al., 2006)), robotics (Edwards et al., 2009), communication net-
work infrastructures (Garlan et al., 2004)), etc.

Within the domain of our proposal (i.e. UI), there are examples of works
that integrate the use of cloud computing with user interfaces. In (Grenli
et al.| 2011) the authors work with Android devices to achieve more flexibility
in the user interfaces making use of information about the environment (for
example, via the ambient light sensor, the battery status, user interaction,
etc.). Our developed architecture is also designed to store information about
the environment, including the ability to capture the user’s interaction with
the components thanks to the management of the communication of the
Node.js server. In the literature there are other notable works that are not
directly related to cloud computing, but with GUIs built from components or
services. In (Wilson et al.2012) the authors analyzed the features of building
mashup GUIs by using widgets of the W3C and carried out a proposal to
extend the widget model. The reason for aiming to extend this model is to
give support to a variety of patterns of communication between components.
In contrast, our proposal developed a communication mechanism that did not
need a revision of the component model. In (Hsu| [2013), the authors carry
out a proposal based on MDA modeling to develop Web 2.0 applications
such as mashup. For UML constraints they make use of a profile developed
specifically for this domain. In our case, in place of a UML profile, we restrict
the modeling language using a domain-specific language (Gronbackl, [2009) to
describe our architectures and COTSgets component types.

7. Conclusions and future work

This paper presents a developed infrastructure for managing component-
based architectures by using web services. The proposal takes a general
approach with the aim of being applied to any type of software architecture.
Nevertheless, the architectures handled in our proposal must be defined us-
ing a DSL that has been developed. This language allows us to define which
components are present in the architecture and how they relate to each other.
For a description of these relationships, our language allows different types
of binary and N-ary relationships between components to be defined, pro-
viding information about the behavior of the communication and interaction
between them. In addition, this language describes how the architectural
components are connected at port level.
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When specifying components, our approach proposes the use of another
DSL. Thus, the possible application domains are restricted to those software
architectures built from components that meet our definition of component.
Our type of component has been named COTSget, from the combination
of COTS and “gadget” where gadget can be any software appliance that
can work alone or as a piece of architecture. Such components are com-
ponents of medium or high granularity that encapsulate some functionality
and can interact with other elements of architecture through their interfaces.
Therefore, inspired by the description of third party COTS components, the
proposed DSL defines the interfaces, properties and dependencies, as well as
providing information on implementation, packaging and marketing for each
component.

As has been noted in the metamodels, which represent the syntax, both
languages have been defined using MDE technologies. As a result, our pro-
posal benefits from all the development and implementation mechanisms and
tools that exist within this paradigm. In this sense, the article provides some
examples of OCL constraints that are applied in the construction of our mod-
els, which allow for syntactic and semantic checks that cannot be expressed
through the sole use of metamodels.

Building on established foundations, this paper demonstrates a three-
layer implementation infrastructure based on web services and cloud manage-
ment for component-based software architectures. The three layers consist of:
a client-side layer and two layers belonging to the server side, one being de-
pendent on the platform and the other platform independent. The platform
independent layer includes all the management services of the architectures
common to all possible platforms, such as management of communication be-
tween components. The platform dependent layer management provides the
services that are particular to a specific platform, such as creating instances
of widget-like components in the case of the web platform. The client layer is
where the final software architecture opens and interacts with the platform
dependent server layer to resolve all the required services.

As a specific application platform, a component-based prototype devel-
oped in the domain of user web interfaces is shown. Within this domain,
a web interface that serves as a “running example” throughout the article
is shown to explain the definitions of architectures and components and the
three layer infrastructure. To better understand how the platform works, the
deployment of technology, which solves the proposed infrastructure is shown,
providing specific examples of functionalities and their implementation.
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As future work, we intend to use the infrastructure, which has been de-
veloped and equip it with new capabilities and functionalities. One of our
main objectives is to apply elements from the field of “Business Intelligence”
(Moss and Atre, 2003)) and its uses from cloud computing through the “Big
Data” (Agrawal et al., 2011). Big Data involves a massive amount of data
collected from different sources over time and aims to facilitate the task of
analyzing this data via cloud services. Thus, in our architecture, user inter-
action with the components can be recorded for future decision making, for
example, to tailor the user interface to their specific needs.

Furthermore, the languages developed for specifying components and ar-
chitectures offer the possibility of being applied in different fields and plat-
forms. Although this paper shows an example for application in web tech-
nologies, we intend to extend the use of our infrastructure to other scenarios
such as home automation or robotics. These scenarios complement the va-
lidity of research and open new lines to improve our proposal.

Regarding the use of MDE technologies, there are different possibilities
that can greatly complement this work. Processing operations or refactor-
ing of models can be used to adapt or modify software architectures (at
run-time); for example, from changes in context or due to user interaction
(Rodriguez-Gracia et al., 2012). Furthermore, both the use of mediators
and solutions based on “trading” can provide an interesting mechanism for
the resolution of different platform dependent configurations from the same
platform independent architecture (Criado et al.| 2013).
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