### **SUPPLEMENTARY DATA**

# Influence of pH and CO<sub>2</sub> source on the performance of microalgaebased secondary domestic wastewater treatment in outdoors pilot raceways

Esther Posadas<sup>1,2,\*</sup>, María del Mar Morales<sup>1</sup>, Cintia Gomez<sup>1</sup>, F. Gabriel Acién<sup>1</sup>, Raúl Muñoz<sup>2</sup>

1-Department of Chemical Engineering, University of Almería, Cañada San Urbano, s/n, 04120, Almería, Spain. Telephone: +34 950015443; Fax: +34 950015484.

2-Department of Chemical Engineering and Environmental Technology, Valladolid University, 47011, Dr. Mergelina, s/n, Valladolid, Spain. Phone: +34983186424; Fax: +34983184865.

\*Corresponding author: <a href="mailto:estherpo@iq.uva.es">estherpo@iq.uva.es</a>

### **Content:**

- 1-Calculations
- 2-Microscopic photograph of *Scenedesmus* (a) and the outdours pilot raceways (b,c)
- 3- Table S1

#### 1. CALCULATIONS

a) Removal efficiencies (REs) of COD, TOC, TC, TN, N-NH<sub>4</sub><sup>+</sup>, TP and *E. Coli* were calculated under steady state conditions according to equation (1) in each RW:

$$RE = \frac{(Q_{in} \cdot D_{in} - Q_{out} \cdot D_{out})}{Q_{in} \cdot D_{in}} \cdot 100 \tag{1}$$

where Q<sub>in</sub> represents the influent wastewater flow rate (L d<sup>-1</sup>) and Q<sub>out</sub> the effluent flow rate in each RW (L d<sup>-1</sup>). D<sub>in</sub> and D<sub>out</sub> are the influent and effluent concentrations of COD, TOC, TC, TN, N-NH<sub>4</sub><sup>+</sup>, TP and *E. Coli*, respectively (in mg L<sup>-1</sup> or cfu 100 mL<sup>-1</sup>).

b) The CO<sub>2</sub> transferred from the gas to the cultivation broth (mg L<sup>-1</sup> d<sup>-1</sup>) was calculated using equation (2):

$$CO_{2transferred} = Q_{gas/air} \cdot t \cdot \frac{(y_{CO2,inlet} - y_{CO2,outlet})}{V_{RW}}$$
 (2)

where  $Q_{gas/air}$  represents the flow rate of flue gas or air sparged in the RW, respectively (mg min<sup>-1</sup>); t (min<sub>gas/air</sub> d<sup>-1</sup>) corresponds to the elapsed time when valves were opened; and  $y_{CO2,outlet}$  are the  $CO_2$  gas molar fraction at the inlet and outlet flue gas or air in the RWs, respectively, and  $V_{RW}$  is the total working volume of each RW (L).

c) The carbon, nitrogen and phosphorus mass balances expressed in mg d<sup>-1</sup> were evaluated according to equations (3), (4) and (5):

$$C = (Q_{in} \cdot C_{in,liquid}) + (C - CO2_{transferred}) - \left(Q_{out} \cdot C_{out,liquid}\right) - \left(\frac{\%C_{biomass.}}{100} \cdot TSS_{RW}\right) + \left(\frac{\%C$$

$$Q_{out}$$
) (3)

$$N = (Q_{in} \cdot N_{in,liquid}) - (Q_{out} \cdot N_{out,liquid}) - (\frac{\% N_{biomass.}}{100} \cdot TSS_{RW} \cdot Q_{out})$$
(4)

$$P = (Q_{in} \cdot P_{in,liquid}) - (Q_{out} \cdot P_{out,liquid}) - (\frac{\%P_{biomass.}}{100} \cdot TSS_{RW} \cdot Q_{out})$$
 (5)

where C<sub>in,liquid</sub>, N<sub>in,liquid</sub> and P<sub>in,liquid</sub> and C<sub>out,liquid</sub>, N<sub>out,liquid</sub> and P<sub>out,liquid</sub> represent the concentration of total carbon, nitrogen and phosphorus present in the influent wastewater and treated effluent during steady state operation in the RWs, respectively (mg L<sup>-1</sup>), and C-CO<sub>2</sub> refers to the total C mass transferred from flue gas or air to the liquid phase (mg d<sup>-1</sup>), respectively; % C<sub>biomass</sub>, % N<sub>biomass</sub> and % P<sub>biomass</sub> stand for the C, N or P content in the harvested biomass, respectively, and TSS<sub>RW</sub> corresponds to the TSS concentration in the cultivation broth (mg L<sup>-1</sup>).

d) The areal biomass productivity (W) expressed in g m<sup>-2</sup> d<sup>-1</sup> was determined according to equation (6):

$$W = \frac{TSS_{RW} \cdot Q_{out}}{S} \tag{6}$$

where S is the illuminated surface in the RWs (8.33 m<sup>2</sup>).

e) The biomass extinction coefficient (Ka) was determined according to equation (7):

$$K_a = \frac{\overline{Abs}}{TSS_{RW} \cdot P} \tag{7}$$

where  $\overline{Abs}$  represents the average culture absorbance in the visible spectrum (400-800 nm) and P the light path of the cuvette (m).

## 2. PHOTOGRAPHS

Photograph 2a. Scenedesmus microscopic view (microalgae used as inoculum)



**Photograph 2.** Outdoor raceways pilot plants. **b)** RW1 before inoculation and **c)** continuous microalgae cultivation.

b)





Specific consumption rates of TN and TP in each RW under steady state operation in the four experimental stages.

Table S1

| Stage | RWs | TN                                          | TP                                          |
|-------|-----|---------------------------------------------|---------------------------------------------|
|       |     | (mg TN gTSS <sup>-1</sup> d <sup>-1</sup> ) | (mg TP gTSS <sup>-1</sup> d <sup>-1</sup> ) |
| I     | RW1 | 44±6                                        | 3±1                                         |
|       | RW2 | 41±6                                        | 3±0                                         |
|       | RW3 | 48±2                                        | 3±0                                         |
| П     | RW1 | 28±5                                        | 5±2                                         |
|       | RW2 | 29±3                                        | 5±1                                         |
|       | RW3 | 26±5                                        | 6±0                                         |
| III   | RW1 | 21±4                                        | 2±0                                         |
|       | RW2 | 19±6                                        | 2±0                                         |
|       | RW3 | 17±4                                        | 2±0                                         |
| IV    | RW1 | 32±8                                        | 3±0                                         |
|       | RW2 | 37±3                                        | 3±0                                         |
|       | RW3 | 33±7                                        | 3±0                                         |