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1. Introduction

Let Ω be a bounded open subset of R
N with sufficiently smooth boundary ∂Ω and let

A(x, s) be a real symmetric matrix whose entries, aij : Ω̄ × R
+
0 → R, are Carathéodory

functions.
We assume that there exists a positive constant α satisfying, for every (x, s, ξ) ∈

Ω × R
+ × R

N ,
A(x, s)ξ · ξ � α|ξ|2. (A1)

In this paper we analyse the nonlinear eigenvalue problem

− div(A(x, u)∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,

}
(Pλ)

where we say that λ is an eigenvalue for this problem if (Pλ) admits a positive and non-
trivial solution, that is, if there exists u ∈ H1

0 (Ω), u � 0, u �≡ 0, such that A(x, u)∇u ∈
(L2(Ω))N and ∫

Ω

A(x, u)∇u · ∇v = λ

∫
Ω

uv, ∀v ∈ H1
0 (Ω).
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In addition to interest itself in the study of (Pλ), this kind of equation has been used
to model a species inhabiting Ω where its diffusion depends on the density of the species,
which arises in more realistic models (see [3,4] and references therein).

Problem (Pλ) is well known when A does not depend on s, i.e. when A(x, s) = B(x)
with B = (bij) and bij ∈ L∞(Ω), bij � b0 > 0 in Ω. In this case, there exists the principal
eigenvalue, denoted by λ1(B), for the problem

− div(B(x)∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,

}
(1.1)

being the unique eigenvalue with a positive eigenfunction (see, for example, [6]).
In [2], assuming that A satisfies (A1) and

|A(x, s)| � β for each (x, s) ∈ Ω × R, (A2)

the author proved that for each r > 0, there exists λr > 0 and a positive solution
ur ∈ H1

0 (Ω), of (Pλr
) such that ‖ur‖2 = r. Moreover, defining

λ0 := λ1(A(x, 0)),

he showed that if r → 0, then λr → λ0 and ur/r converges to a positive eigenfunction
associated with λ0 in H1

0 (Ω). Finally, if A also verifies

lim
s→∞

A(x, s) = A∞(x) uniformly in x ∈ Ω, (A3)

then λr → λ∞ and ur/r goes to a positive eigenfunction associated with λ∞ in H1
0 (Ω)

as r → ∞, where
λ∞ := λ1(A∞(x)).

In [5], a slight modification of (Pλ) is analysed. Under conditions (A1)–(A3), λu + h(x)
for some 0 � h ∈ L2(Ω) is considered instead of λu. But the arguments used to prove
the existence of a solution leads to the trivial one in the case h ≡ 0.

In [1], assuming in addition the existence of an Osgood function ω : R
+
0 → R such that

|A(x, s1) − A(x, s2)| � ω(|s1 − s2|), (A4)

for every (x, s1), (x, s2) ∈ Ω × R, using a bifurcation analysis, the authors study a more
general problem

− div(A(x, u)∇u) = f(λ, x, s), x ∈ Ω,

u = 0, x ∈ ∂Ω,

for f : R × Ω̄ × R 	→ R and A satisfying (A1)–(A4). In the particular case f(λ, x, s) = λs,
from their results can be deduced the existence of an unbounded continuum (closed and
connected subset) of positive solutions bifurcating from the trivial solution at λ = λ0 and
meeting with infinity at the value λ = λ∞. Thus, as a consequence, there exists a positive
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solution of (Pλ) for λ ∈ (λ0, λ∞) or (λ∞, λ0). In the following section we complete this
study for A satisfying (A1)–(A4) by giving sufficient conditions for the uniqueness of a
positive solution.

The main goal of this work (see § 3) is to analyse (Pλ) when A is not necessar-
ily bounded and/or does not satisfy (A3). In this case, we show that there exists an
unbounded continuum of positive solutions bifurcating from the trivial one at λ = λ0. If,
in addition, there exists a continuous function g : R

+
0 → R, with lims→+∞ g(s) = +∞,

satisfying, for every (x, s, ξ) ∈ Ω × R
+ × R

N ,

A(x, s)ξ · ξ � g(s)|ξ|2 � α|ξ|2, (A∞)

then the bifurcation from infinity at λ = λ∞ (which exists in the bounded case) ‘dis-
appears’. Specifically, there exists at least one positive solution uλ for λ ∈ (λ0,∞) and
‖uλ‖ → ∞ as λ → ∞. However, if A is bounded in a subset of Ω, then again a bifurcation
to infinity exists.

Throughout the paper we will use the following notation.

(i) H1
0 (Ω) and E = C0(Ω̄) are the usual Sobolev space and the space of the continuous

functions in Ω̄ vanishing on ∂Ω endowed with the norms ‖u‖ = ‖∇u‖2 and ‖u‖0 =
supΩ |u|, respectively.

(ii) cl(D) denotes the closure of the set D.

(iii) S denotes the set

S = cl{(λ, u) ∈ R × E : u is a solution for (Pλ), u � 0, u �≡ 0}.

Any continuum subset of S will be called a continuum of positive solutions of (Pλ),
although it may contain the trivial solution (λ, 0) for some value of λ > 0.

(iv) I will denote both the identity matrix and the identity operator.

(v) Given square matrices B1, B2 we say that B1 > 0 (respectively, B1 � 0) if the
quadratic form induced by B1 is definite positive (respectively, semidefinite posi-
tive). We say that B1 < B2 (respectively, B1 � B2) if B2 − B1 > 0 (respectively,
B2 − B1 � 0).

(vi) The map Proj
R

: R × E 	→ R stands for the projection of the product space R × E

onto R.

2. The case of bounded matrices A

In order to study problem (Pλ), let us recall that, for matrices A satisfying (A1), (A2),
if u ∈ H1

0 (Ω) is a solution of (Pλ), then using the De Giorgi–Stampacchia Theorem
(see [9, Théorème 7.3] and [7, Theorem I] or [8, Theorem 8.29]), u ∈ C0,γ(Ω̄) for some
0 < γ < 1. Moreover, if the coefficients of the matrix A satisfy

aij ∈ C1,γ′
(Ω̄ × R) for some 0 < γ′ < 1, (2.1)

then by Theorem 15.17 in [8] we have that u ∈ C2,γγ′

0 (Ω̄).
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We also recall that for every (λ, u) ∈ S with u ∈ C1(Ω̄) and u �≡ 0, using the Hopf
maximum principle, we have that u > 0 in Ω and the normal exterior derivative ∂u/∂ne

is negative in ∂Ω.
The following lemma gives us necessary conditions in λ ∈ R for which (Pλ) admits a

solution in some special cases.

Lemma 2.1. Assume (A1), (A3) and that (Pλ) admits a positive solution. Then

(1) λ0 � λ (respectively, <, �, >) if for every s ∈ R
+, A(x, 0) � A(x, s) (respectively,

<, �, >); and

(2) λ∞ � λ (respectively, >, �, <) if for every s ∈ R
+, A∞(x) � A(x, s) (respectively,

>, �, <).

Proof. The result follows from the fact that for given symmetric matrices B1(x),
B2(x) for which there exist λ1(B1) and λ1(B2), with 0 < B1 � B2, then

λ1(B1) = inf
{∫

Ω

B1(x)∇u · ∇u, u ∈ H1
0 (Ω), ‖u‖2 = 1

}
� λ1(B2).

Thus, if u ∈ H1
0 (Ω) is a solution of (Pλ), we conclude by taking into account that

λ = λ1(A(x, u)). �

The main result of this section is the following.

Theorem 2.2. Assume (A1)–(A4). We have that λ0 and λ∞ are the only bifurca-
tion points from the trivial solution and from infinity, respectively, and there exists a
continuum Σ ⊂ S of positive solutions meeting (λ0, 0) and (λ∞,∞); in particular, (Pλ)
possesses a positive solution for every λ ∈ (λ0, λ∞) or λ ∈ (λ∞, λ0). Moreover,

(i) the bifurcation from λ0 is subcritical (respectively, supercritical) if there exists
s0 > 0 such that

A(x, s) < A(x, 0) (respectively, A(x, s) > A(x, 0)), ∀s ∈ (0, s0),

(ii) the bifurcation from λ∞ is subcritical (respectively, supercritical) if

A(x, s) < A∞(x) (respectively, A(x, s) > A∞(x)), ∀s ∈ R
+.

Furthermore, we have the following.

(i) If A(x, 0) < A(x, s) < A∞(x) for every s ∈ R
+, then there exists a non-trivial

solution for (Pλ) if, and only if, λ ∈ (λ0, λ∞); in particular, Proj
R
Σ = [λ0, λ∞). If,

in addition, A(x, s) is increasing in s and it satisfies (2.1), the solution is unique.

(ii) If A(x, 0) > A(x, s) > A∞(x) for every s ∈ R
+, then there exists a non-trivial

solution for (Pλ) if, and only if, λ ∈ (λ∞, λ0); in particular, Proj
R
Σ = (λ∞, λ0].
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Proof. The existence of the continuum Σ of positive solutions follows by Theorem 5.1
in [1]; in particular, we have the existence of positive solutions for every λ in (λ0, λ∞) or
in (λ∞, λ0).

The description Proj
R
Σ, in the cases A(x, 0) < A(x, s) < A∞(x) or A(x, 0) < A(x, s) <

A∞(x) for every s ∈ R
+, follows directly from Lemma 2.1. Moreover, arguing as in that

lemma we get the laterality of the bifurcations.
Now, assume that A(x, s) is increasing in s and (2.1) is satisfied. In order to prove

the uniqueness of the solution for (Pλ), let us suppose that there exists λ ∈ (λ0, λ∞) for
which (Pλ) admits two solutions, u1, u2 ∈ E, with u1 �≡ u2. We claim that u1, u2 can be
chosen such that u1 � u2. Indeed, this is a consequence of the existence of a sequence
(λn, un) with λn → λ0 and un → 0 in E. In fact, by regularity results, un → 0 in C1(Ω̄).
Thus, for λn < λ, un is a subsolution for (Pλ) and for large n, un � min{u1, u2}. Then,
by the subsolution and supersolution method, there exists w ∈ E, a solution of (Pλ) with

un � w � u1, un � w � u2.

This implies that w �≡ u1 or w �≡ u2, and the claim is proved by taking u1 = w and
u2 = ui for some i = 1, 2.

Now we take v = u2
2/u1 as a test function in the equation satisfied by u1, and v = u2

in that satisfied by u2. Thus, subtracting both equalities we have

0 =
∫

Ω

A(x, u1)∇u1 · ∇
(

u2
2

u1

)
−

∫
Ω

A(x, u2)∇u2 · ∇u2

= −
∫

Ω

A(x, u1)
(

u2

u1
∇u1 − ∇u2

)
·
(

u2

u1
∇u1 − ∇u2

)

−
∫

Ω

(A(x, u2) − A(x, u1))∇u2 · ∇u2 < 0.

This contradiction gives the uniqueness. �

3. The case of unbounded matrices A

In this section, we study (Pλ) when A is not necessarily bounded and does not satisfy
(A3). We prove firstly that every solution of (Pλ) is bounded. More precisely we have the
following lemma.

Lemma 3.1. Let A(x, s) satisfy (A1) and let u ∈ H1
0 (Ω) be a solution of (Pλ), then

u ∈ E. Moreover, there exist positive constants c1, c2, γ1, γ2 such that

‖u‖γ1
0 � c1 + c2‖u‖γ2 . (3.1)

Proof. Once we know that u ∈ L∞(Ω), and ‖u‖γ1
∞ � c1 + c2‖u‖γ2 for some positive

constants c1, c2, γ1, γ2, then the result follows directly from the De Giorgi–Stampacchia
Theorem. Let us prove the L∞(Ω)-estimate. We consider for every k ∈ R

+ the function
Gk : R

+
0 → R

+
0 given by

Gk(s) =

{
0, 0 � s � k,

s − k, s > k.
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Thus, we can take v = Gk(u) as a test function in the weak equation satisfied by u and
using (A1) we have

α‖∇Gk(u)‖2
2 �

∫
Ω

A(x, u)∇u∇Gk(u) � λ

∫
Ωk

uGk(u), (3.2)

where Ωk ≡ {x ∈ Ω : u(x) > k}.
Using the Sobolev and Hölder inequalities, in the case N > 2, by (3.2) we have, for

u ∈ Lr(Ω) with r > 2∗/(2∗ − 1) and for some positive constant c,

‖Gk(u)‖2
2∗ � c‖u‖r‖Gk(u)‖2∗(meas Ωk)(1−1/r−1/2∗). (3.3)

Taking into account that, for every h > k, Gk(u) � h − k in Ωh, (3.3) implies that

(h − k)(meas Ωh)1/2∗ � c‖u‖r(meas Ωk)(1−1/r−1/2∗),

or, equivalently,

meas Ωh � c‖u‖2∗

r (meas Ωk)2
∗−1−2∗/r

(h − k)2∗ . (3.4)

We can now apply the Stampacchia Lemma [9, Lemma 4.1] to deduce that

(i) if u ∈ Lr(Ω) with r > N/2, then u ∈ L∞(Ω) and ‖u‖∞ � c‖u‖r;

(ii) if u ∈ Lr(Ω) with r = N/2, then u ∈ Lt(Ω) for t ∈ [1,∞) and ‖u‖t
t � c + c′‖u‖t

r;
and

(iii) if u ∈ Lr(Ω) with r < N/2, then u ∈ Lt(Ω) for

t =
2∗r

(2 − 2∗)r + 2∗ − δ

and δ > 0 arbitrarily small—moreover, ‖u‖t
t � c + c′‖u‖t+δ

r .

Since u ∈ L2∗
(Ω) and 2∗ > 2∗/(2∗ − 1), we can argue as before for r0 = 2∗. Thus, if

2∗ > N/2, we obtain the L∞(Ω) estimate by using item (i) above. In the case 2∗ = N/2
we use item (ii) in order to take r1 > N/2 and again the L∞(Ω) estimate follows from
item (i) above. Finally, in the case 2∗ < N/2 we can take

r1 =
2∗r0

(2 − 2∗)r0 + 2∗ − δ1 > r0.

As before, if r1 � N/2, we easily conclude. In the other case we take

r2 =
2∗r1

(2 − 2∗)r1 + 2∗ − δ2.

By an iterative argument we conclude after a finite number of steps. Indeed, in the other
case, we have that rn is bounded, where rn is defined recurrently by

r0 = 2∗,

rn+1 =
2∗rn

(2 − 2∗)rn + 2∗ − δn+1,
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where limn→∞ δn = 0. Moreover, rn is non-decreasing and so it converges to r ∈ (2∗, N/2],
which satisfies

r =
2∗r

(2 − 2∗)r + 2∗ ;

that is, 2∗ = (2 − 2∗)r + 2∗, which implies that r = 0, and this is a contradiction.
Observe that the estimate (3.1) follows, after this finite number of steps, from estimates

in items (i)–(iii) and the Sobolev embedding.
Finally, in the case N = 2 we can choose r > q/(q − 2) for any q > 2 and argue as

before with 2∗ replaced by q. In this case we obtain the L∞(Ω) estimate directly by using
item (i) above. �

In this section we assume, instead of (A2), that for each s0 ∈ R
+ there exists β(s0)

such that
|A(x, s)| � β(s0), (Ã2)

for (x, s) ∈ Ω̄ × [0, s0].
We consider the truncated problems

− div(A(x, Tn(u))∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,

}
(Pλ,n)

Tn(s) being the map defined, for each n ∈ N, by

Tn(s) =

{
s, 0 � s � n,

n, s > n.

By Theorem 2.2, there exist Σn unbounded maximal continua of positive solutions such
that (λ0, 0) ∈ Σn for each n ∈ N. Now, we can prove the following theorem.

Theorem 3.2. Suppose that A satisfies (A1), (A4) and (Ã2). Then there exists an
unbounded continuum Σ ⊂ S such that (λ0, 0) ∈ Σ.

Proof. Firstly, we denote by Σn
k the connected component of Σk ∩ (R × B̄n(0)) con-

taining (λ0, 0). We claim that

Σn
k = Σn

n for k � n. (3.5)

Indeed, if k � n and (λ, u) ∈ Σn
k , then u is a solution of (Pλ,n). Thus, Σn

k is a closed and
connected subset of

cl{(λ, u) ∈ R × E : u is a non-trivial solution of (Pλ,n)}

containing (λ0, 0). So, Σn
k ⊂ Σn, from which we deduce that Σn

k ⊂ Σn
n . We can rea-

son similarly and obtain that Σn
n ⊂ Σk ∩ (R × B̄n(0)); thus Σn

n and Σn
k are connected

components of Σk ∩ (R × B̄n(0)) containing (λ0, 0), which implies (3.5). So, we get

Σn
n = lim

k
Σn

k .
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Therefore, for each n ∈ N we have a continuum

Σn
n ⊂ cl{(λ, u) ∈ R × E : u is a non-trivial solution of (Pλ)}

containing (λ0, 0), and if (λ, u) ∈ Σn
n , then ‖u‖0 � n.

Now, we are going to prove that

Σn
n ⊂ Σn+1

n+1 for each n ∈ N. (3.6)

Indeed, observe that

Σn
n = Σn

n+1 ⊂ Σn+1 ∩ (R × B̄n(0)) ⊂ Σn+1 ∩ (R × B̄n+1(0)),

so, since Σn+1
n+1 is the connected component of Σn+1 ∩ (R × B̄n+1(0)) containing (λ0, 0)

and Σn
n is a connected component of such a subset containing it, (3.6) follows.

Finally, we show that the set

Σ =
∞⋃

n=1

Σn
n

satisfies the theorem. Firstly, observe that since Σn is unbounded, Σ is also unbounded.
Indeed, since Proj

R
Σn is bounded, so there exists a connected subset of Σn ∩ (R × B̄n(0))

containing (λ0, 0) and intersecting with R × ∂B̄n(0) for each n ∈ N; i.e. for each n ∈ N

there exists (λn, un) ∈ Σn
n , with ‖un‖0 = n.

On the other hand, since Σn
n is connected and (λ0, 0) ∈ Σn

n for each n ∈ N, it follows
that Σ is connected.

Finally, we will prove that Σ is closed. Let (λ, u) ∈ Σ̄. Since Σ̄ is connected, there
exists a connected and bounded set Σ′ ⊂ Σ̄ containing (λ0, 0) and (λ, u). Thus, there
exists n ∈ N such that

Σ′ ⊂ cl{(λ, u) ∈ R × E : ‖u‖0 � n, u is a non-trivial solution of (Pλ,n)}.

In particular, Σ′ ⊂ Σn ∩ (R × B̄n(0)), from which Σ′ ⊂ Σn
n and so (λ, u) ∈ Σn

n ⊂ Σ. �

Remark 3.3.

(i) We point out that the above result is true even in the case in which the limit of
A(x, s) does not exist as s → ∞.

(ii) In the case where A is bounded in some subset of Ω, we can conclude that Proj
R
Σ

is bounded. Indeed, assume that |A(x, s)| � γ if x ∈ B, where B is a ball such that
B ⊂ Ω, then using the monotonicity of the principal eigenvalue with respect to the
domain, we obtain

λ = λ1(A(x, u)) � λB
1 (A(x, u)) � λB

1 (γI) = γλB
1 (I).

(iii) In this case we can obtain a similar result to the main one in [2]. Indeed, for each
r > 0 there exists λr > 0 and ur ∈ H1

0 (Ω), a solution of (Pλ) with ‖u‖0 = r.
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In the next result we show that when A(x, s) tends to infinity as s → ∞ in the sense of
(A∞), then the bifurcation at infinity disappears, in some sense λ∞ → +∞ when A(x, s)
tends to infinity.

Theorem 3.4. Assume that A satisfies (A4), (Ã2) and (A∞). Then there exists a
continuum Σ ⊂ S such that (λ0, 0) ∈ Σ. Moreover, the interval (λ0, +∞) ⊂ Proj

R
Σ and

lim
λ→+∞

(λ,uλ)∈Σ

‖uλ‖0 = +∞.

Proof. The existence of the continuum unbounded Σ bifurcating from (λ0, 0) follows
by Theorem 3.2. Since λ = λ1(A(x, u)) � λ1(αI) = αλ1(I), there do not exist positive
solutions for λ small. So, it suffices to prove that bifurcation from infinity is not possible.
In order to do this, we observe that problem (Pλ) can be written as

− div(B(x, u)g(u)∇u) = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,

}
(Pλ)

where g is given by hypothesis (A∞) and

B(x, u) :=
A(x, u)
g(u)

.

Moreover, if we perform the change of variable

w = g̃(u) =
∫ u

0
g(t) dt,

problem (Pλ) is equivalent to

− div(C(x, w)∇w) = λf(w), x ∈ Ω,

w = 0, x ∈ ∂Ω,

}
(Qλ)

where
C(x, w) := B(x, g̃−1(w)) and f(w) := g̃−1(w).

Now we argue by contradiction, and assume that there exists a sequence of solu-
tions (λn, un) of (Pλn

) such that λn → λ̄ > 0 and ‖un‖0 → ∞. Then, by (3.1), we have
that ‖un‖ → ∞ and taking wn = g̃(un), it is clear that ‖wn‖0 → ∞. In addition, since
(A∞) implies that α2‖un‖2 � ‖wn‖2, we also have that ‖wn‖ → ∞. For the normalized
sequence zn := wn/‖wn‖ we know the existence of z ∈ H1

0 (Ω), such that

zn → z strongly in L2(Ω) and a.e. in Ω.

and so, taking wn/‖wn‖2 as a test function in (Qλn), we obtain that

α �
∫

Ω

C(x, wn)∇zn · ∇zn = λn

∫
Ω

f(wn)
‖wn‖ zn. (3.7)
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Now, taking into account that

f(s)
s

→ 0 as s → ∞

and that f(s) � (1/α)s for each s ∈ R
+, we can argue as in Theorem 5.5 in [1] and

conclude that ∫
Ω

f(wn)
‖wn‖ zn → 0 as n → ∞.

Indeed, we can write for every n ∈ N∫
Ω

f(wn)
‖wn‖ zn =

∫
Ω

f(wn)
‖wn‖ (zn − z) +

∫
Ω

f(wn)
‖wn‖ z

� 1
α

‖zn‖2‖zn − z‖2 +
∫

Ω0

f(wn)
‖wn‖ z,

where Ω0 = {x ∈ Ω : z(x) �= 0}. Thus, we only have to prove that

lim
n→∞

∫
Ω0

f(wn)
‖wn‖ z = 0,

which is a direct consequence of the Lebesgue Theorem, since for a.e. x ∈ Ω0, wn(x) =
zn(x)‖wn‖ → +∞ and then

f(wn(x))
‖wn‖ z(x) → 0 a.e. x ∈ Ω0.

Thus, taking limits in (3.7), we have that α � 0, which is a contradiction. �
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