
Proceedings of the Royal Society of Edinburgh , 131A, 733{765, 2001

Bifurcation for some quasilinear operators

David Arcoya
Departamento de An´alisis Matem´atico, Facultad de Ciencias,
C/Ochoa, 18071 Granada, Spain (darcoya@ugr.es)

Jos¶e Carmona
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This paper deals with existence, uniqueness and multiplicity results of positive
solutions for the quasilinear elliptic boundary-value problem

¡div(A(x; u)ru) = f( ¶ ; x; u) in « ;

u = 0 on @ « ;

where « is a bounded open domain in RN with smooth boundary. Under suitable
assumptions on the matrix A(x; s), and depending on the behaviour of the function f
near u = 0 and near u = + 1 , we can use bifurcation theory in order to give a quite
complete analysis on the set of positive solutions. We will generalize in di® erent
directions some of the results in the papers by Ambrosetti et al ., Ambrosetti and
Hess, and Artola and Boccardo.

1. Introduction

Let « » RN be a bounded open set with su¯ ciently smooth boundary @« and
let f : R £ « £ R + ! R be a Carath´eodory function (i.e. f ( ¶ ; x; s) is measurable
with respect to x for all ( ¶ ; s) 2 R £ R + and continuous in ( ¶ ; s) for almost every
x 2 « ), such that f ( ¶ ; x; 0) > 0 a.e. x 2 « for every ¶ 2 R + and satisfying, for
some r > 1

2 N , that

for every bounded subset ¤ in R and for every s0 > 0, there exists a
positive function C(x) belonging to Lr( « ) such that

jf ( ¶ ; x; s)j 6 C(x) a.e. x 2 « 8 ¶ 2 ¤ 8s 2 [0; s0]: (f1)

We consider a symmetric matrix A(x; s) := (aij (x; s)), i; j = 1; : : : ; N , with Cara-
th́eodory coe¯ cients aij : « £ R + ! R such that there exist positive constants ¬
and  satisfying, for every (s; ¹ ) 2 R + £ RN and a.e. x 2 « ,

jA(x; s)j 6  ; (A1)

A(x; s) ¹ ¢ ¹ > ¬ j ¹ j2: (A2)
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In this paper we study the existence of positive solutions of the quasilinear
boundary-value problem,

¡ div(A(x; u)ru) = f ( ¶ ; x; u); x 2 « ;

u = 0; x 2 @« :

)

(P ¶ )

To establish the de nition of solution, we consider the usual Sobolev space H1
0 ( « )

and the space C0( ·« ) of the continuous functions in ·« which vanish on @« . Thanks
to (A1) and (f1), for a positive solution of this problem, we mean a non-negative
non-zero function u 2 H1

0 ( « ) \ C0( ·« ) satisfying
Z

«

A(x; u)ru ¢ rv =

Z

«

f ( ¶ ; x; u)v 8v 2 H1
0 ( « ):

Problem (P¶ ) has been extensively studied in the semilinear case, i.e. the case in
which the matrix A does not depend on s, by means of bifurcation, variational and
sub{supersolutions methods according to the behaviour of the function f . If the
matrix A(x; s) depends both on x and s, problem (P ¶ ) does not have variational
structure in general and it is no more possible to use directly variational tools.
The sub{supersolution method is applied in [7] for general matrices A and partic-
ular classes of nonlinearities f . Speci cally, the concave function f1( ¶ ; x; s) = ¶ sq,
with 0 < q < 1, and the concave{convex function f2( ¶ ; x; s) = ¶ sq + sp, with
0 < q < 1 < p, are considered. In addition to (A1), (A2), the authors impose the
existence of an Osgood function ! : R + ! R, that is,

! is not decreasing; !(0) = 0;

Z

0+

ds

!(s)
= +1;

such that

jA(x; s) ¡ A(x; t)j 6 !(js ¡ tj) 8s; t 2 R + : (A3)

This condition is essential to prove a comparison theorem that allows them to use
the sub and supersolutions techniques. Their results concern the existence of at
least one positive solution for every positive ¶ in the case f = f1; while, if f = f2,
they  nd a positive number ¶ ¤ such that problem (P¶ ) has at least one positive
solution for every ¶ 2 (0; ¶ ¤ ). The question of the uniqueness of the positive solution
for f = f1, and of the multiplicity of solutions for f = f2 and p < (N + 2)=(N ¡ 2),
as in the semilinear case (see [2, 10]), remained open.

It seems, at least to the best knowledge of the authors, that bifurcation theory
has not been used to study (P ¶ ). One of the main technical di¯ culties in apply-
ing this functional approach is based on the nonlinearity of the di¬erential opera-
tor ¡ div(A(x; u)ru). Indeed, this operator is not even homogeneous. Remember
that the homogeneity of the involved di¬erential operator is essential in apply-
ing the bifurcation techniques either in the semilinear case, like in [1], or in its
quasilinear extensions [3, 4] for homogeneous operators, like the p-Laplacian one
¢p ² div(jrujp¡2ru). (See also the work [14] for a di¬erent approach, also using
the homogeneity of the di¬erential operator.) Here, a careful analysis, by choosing
suitable test functions, allows us to show the change of index that is needed to
apply bifurcation theory [20], overcoming the dī culty of the lack of homogeneity.
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In this way, we show how bifurcation theory can be used to improve the previous
results by giving a more complete analysis of the set of solutions and allowing us
to handle more general classes of nonlinearities. Thus, in addition to generalizing
the result in [1] for quasilinear operators like ¡ div(A(x; u)ru) and asymptotically
linear functions f , either at zero (theorem 4.4) or at in nity (theorem 3.4), or both
(theorem 5.1), we improve [7]. Speci cally, in the case f = f1, we recover (theo-
rem 5.5) the same existence result as the one in [7]. Here, the new contribution is
to point out that this result is a consequence of the existence of a connected set in
R £ C0( ·« ) of pairs ( ¶ ; u), with u a positive solution of (P ¶ ), emanating from (0; 0),
whose projection on the ¶ -axis contains the interval (0; +1). In addition, under
suitable assumptions on the matrix A(x; s), we also prove a uniqueness theorem
(theorem 5.8), which extends to the case of quasilinear operators the result in [10].
If f = f2 and p < (N + 2)=(N ¡ 2) (N > 2), we improve the results in [7] by show-
ing in theorem 5.12 that there exist ·¶ , ¤ ¤ with 0 < ·¶ 6 ¤ ¤ such that problem (P ¶ )
has at least two positive solutions for every 0 < ¶ < ·¶ and no positive solutions
if ¶ > ¤ ¤ . Indeed, we  nd ¤ ¤ as an a priori estimate on the parameter ¶ and
we prove the existence of a connected set § 0 of positive solutions emanating from
u = 0 at ¶ = 0, which, in virtue of an extension (theorem 5.11) of the Gidas{Spruck
a priori estimate [16] for the positive solutions, turns back at a certain ¶ = ·¶ to
meet again ¶ = 0 (see  gure 6). Moreover, for a particular class of matrices of
the kind A(x; s) = A(x)a(s), we also prove (theorem 5.16) that ·¶ = ¤ ¤ , i.e. the
projection of § 0 on the ¶ -axis contains (0; ¤ ¤ ], the maximal interval of positive
¶ for which there is at least a positive solution of (P ¶ ). We point out that this
bifurcation approach to reach the maximal interval of positive ¶ as the projection
of § 0 (and consequently the existence of a second solution for ¶ 2 (0; ¤ ¤ )) seems
to be unknown up to now, even in the semilinear case. These results extend to the
quasilinear framework some of the results obtained in [2] for semilinear equations,
where sub and supersolution techniques are adopted to obtain the maximal interval
and variational tools are used to prove the existence of the second solution. Similar
questions are also studied for radial p-Laplacian operator in balls in [3] (see, in
particular, remark 3.13 of [3], where the authors set as an open question, in their
context, whether the continuum emanating from zero at ¶ = 0 gives the maximal
interval of ¶ ). We want to note that, since we use bifurcation techniques, we can
also treat more general classes of nonlinearities f . Indeed, our existence results only
require suitable hypotheses on the behaviour of f near the origin and near in nity.

The paper is organized as follows. Section 2 is devoted to showing that, under
the basic hypotheses (A1){(A3), we can reformulate (P ¶ ) as a  xed-point problem.
In xx 3 and 4 we prove some abstract results concerning global bifurcation, namely,
in x 3 we study under which conditions it is possible to get a global bifurcation from
in nity, while in x 4 we are concerned with bifurcation from the trivial solution. In x 5
we apply these results, together with some a priori estimates, in order to give a
global analysis of the set of solutions of problem (P¶ ), and to obtain existence,
multiplicity and uniqueness results depending on the behaviour of f .

1.1. Notation

In the sequel we will use the following notation.
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(i) Lr( « ), 1 6 r < 1, is the standard Lebesgue space and its norm will be
denoted by kukr.

(ii) H1( « ), H1
0 ( « ) are the usual Sobolev spaces. We denote by 2 ¤ the Sobolev

exponent related to H1( « ). We recall that 2 ¤ = 2N=(N ¡ 2) if N > 2 and
2 ¤ = 1 if N 6 2. H¡1( « ) is the dual space of H1( « ).

(iii) H1
0 ( « ) is endowed with the norm kuk = kruk2.

(iv) E := C0( ·« ) is the space of the continuous functions in ·« that vanish on @« ,
endowed with the norm kuk0 = sup« juj. For R > 0, consider the open ball
of radius R, BR = fu 2 E=kuk < Rg.

(v) C1
0( ·« ) is the subspace of the functions in C0( « ) that are of class C1 in ·« .

Let P denote the cone in C1
0( ·« ) of the non-negative functions, i.e.

P = fu 2 C1
0( ·« ) : u(x) > 0 8x 2 « g;

whose interior is given by

_P =

»
u 2 C1

0( ·« ) : u(x) > 0 8x 2 « ;
@u

@n
(x) < 0 8x 2 @«

¼
;

with (@u=@n)(x) denoting the outward normal derivative of u in the point
x 2 @« .

(vi) We denote by u + , u¡ the positive and the negative parts of a function u and
we recall that u¡ ² minfu; 0g.

(vii) By I we denote both the identity matrix and the identity operator. By
[A(x; s) ¡ A(x)] 6 0 (respectively, [A(x; s) ¡ A(x)] > 0) we mean that the
quadratic form induced by the matrix A(x; s) ¡ A(x) is de nite non-positive
(respectively, non-negative).

(viii) For operators © : E ! E of identity-compact type, deg( © ; BR; 0) denotes the
Leray{Schauder degree of © on BR with respect to zero, and i(© ; u0) is the
index of the isolated solution u0 of the equation © (v) = 0, v 2 E.

(ix) We also denote by Proj : R £ E ! R the projection of the product space
R £ E onto R.

2. Preliminaries

Let A be a matrix function satisfying (A1), (A2). We extend the coe¯ cients aij(x; s)
to all « £ R by taking aij(x; s) ² aij(x; 0) for every x 2 « and s < 0. Note that
hypotheses (A1) and (A2) mean that the nonlinear operator Q : H1

0 ( « ) ! H¡1( « ),
de ned by

Q(u) = ¡ div(A(x; u)ru); u 2 H1
0 ( « );

is continuous (by (A1)) and coercive (by (A2)). Then, from the classical result due
to Leray and Lions [19], we deduce the existence of a (weak) solution u of the
problem

Q(u) = h; u 2 H1
0 ( « ); (2.1)

for every h 2 H¡1( « ). To be more speci c, we have the following result.
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Lemma 2.1. Assume that A satis¯es conditions (A1), (A2) and let h be in H¡1( « ).
Then there exists a weak solution u 2 H1

0 ( « ) of problem (2.1), i.e. satisfying
Z

«

A(x; u)ru ¢ rv =

Z

«

hv 8v 2 H1
0 ( « ):

Furthermore, if hypothesis (A3) holds, then this solution u is unique.

Proof. As we have observed, the existence is deduced from [19]. On the other hand,
the uniqueness is discussed in [6].

Remark 2.2. As a consequence of the preceding lemma, assuming (A1){(A3), we
can consider the inverse K : H¡1( « ) ! H1

0 ( « ) of the operator Q. In addition,
observe that, again by conditions (A1){(A3), the operator K is continuous between
H¡1( « ) and H1

0 ( « ) and compact in L2( « ). Indeed, we only have to show that
every sequence hn weakly convergent in L2( « ) to h possesses a subsequence hnk

such that K(hnk ) strongly converges in H1
0 ( « ) to K(h). To prove it, and writing

un = K(hn) and u = K(h), we take un as a test function to deduce from (A2) that

¬ kunk2 6
Z

«

A(x; un)run ¢ run

=

Z

«

hnun

6 khnk2kunk;

and thus un is bounded in H1
0 ( « ). Passing to a subsequence, if necessary, we can

assume that un weakly converges in this space to some v 2 H1
0 ( « ). Now, using the

fact that un solves (2.1) for h = hn, we obtain from the Rellich theorem that v
solves (2.1) for h = h, i.e. by (A3), v = K(h) = u. Taking un ¡ u as a test function
in the equation satis ed by un, condition (A2) yields

¬ kun ¡ uk2 6
Z

«

A(x; un)r(un ¡ u) ¢ r(un ¡ u)

=

Z

«

hn(un ¡ u) ¡
Z

«

A(x; un)ru ¢ r(un ¡ u):

Observe that, by Lebesgue’s theorem and (A2), the sequence A(x; un)ru strongly
converges to A(x; u)ru in L2( « ). Consequently, the right-hand side in the previous
inequality tends to zero and thus un strongly converges to u in H1

0 ( « ).

Remark 2.3. Moreover, if h belongs to Lr( « ) (r > N=2), then, by the De Giorgi{
Stampacchia theorem (see [21, theorem 7.3] and [13, theorem II] or [17, theo-
rem 8.29]), the solution is a C0;¬ ( ·« )-function (for some 0 < ¬ < 1). Furthermore,
if the coē cients aij are in C1;® ( ·« £ R + ), 0 < ® < 1, then, using a regularity
theorem due to Campanato (see theorem 8.1 in [18] and [11]), we have that every
solution u of Q(u) = h belongs to C2;¬

0 ( ·« ) for every h 2 C0;® ( ·« ).

Now, consider a Carath´eodory function f in R£ « £R + satisfying hypothesis (f1)
and such that f ( ¶ ; x; 0) > 0 for a.e. x 2 « and for every ¶ 2 R + . Similarly, we
extend the function f to R£ « £R by taking f ( ¶ ; x; s) = f ( ¶ ; x; 0) for every ¶ 2 R,
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x 2 « and s < 0. In this way, we prove, by the maximum principle, that positive
solutions u of problem (P ¶ ) ( ¶ 2 R + ) are just the zeros u of the operator © ¶ de ned
in E by

© ¶ (u) ² u ¡ K(f ( ¶ ; x; u)); u 2 E;

where, by simplicity, we denote in the same way the function f and the Nemystskii
operator related to it. Indeed, we have the following lemma.

Lemma 2.4. Assume that A satis¯es conditions (A1){(A3) and that f is a Cara-
th¶eodory function in R £ « £ R + satisfying hypothesis (f1) and that f ( ¶ ; x; 0) > 0
for a.e. x 2 « and for every ¶ 2 R + . Let u 2 E be a non-zero function and ¶ > 0.
Then the following hold.

(i) u is a positive solution of (P¶ ) if and only if

© ¶ (u) = u ¡ K(f ( ¶ ; x; u)) = 0:

(ii) If u is a positive solution of (P ¶ ), and, in addition, aij and f given in (f1)
satisfy the following conditions,

C1;® ( ·« £ R + ); 0 < ® < 1;

f( ¶ ; ¢; ¢) is a C1-function in ·« £ R + for every ¶ > 0;

)
(2.2)

then u 2 _P .

Remark 2.5. Notice that if u 2 E then, by (f1), f( ¶ ; x; u) 2 Lr( « ) (r > 1
2
N ) and

regularity theorems imply that K(f ( ¶ ; x; u)) 2 E. Thus © ¶ : E ! E is well de ned.

Proof. Let us prove part (i). Note that if © ¶ (u) = 0, then u 2 H1
0 ( « ) \ E and it

satis es Z

«

A(x; u)ru ¢ rv =

Z

«

f ( ¶ ; x; u)v 8v 2 H1
0 ( « ):

We claim that u > 0. Indeed, since f( ¶ ; x; s) = f ( ¶ ; x; 0) > 0 a.e. x 2 « and s 6 0,
we obtain from (A2), by taking v = u¡ as a test function, that

¬ ku¡k2 6
Z

«

A(x; u)ru¡ ¢ ru¡

6
Z

«

f ( ¶ ; x; u)u¡

6 0;

which implies u¡ ² 0.
With respect to (ii), if u > 0, u 6² 0, solves (P¶ ), observe that the regularity of

f in (2.2) implies the existence of m > 0 such that f ( ¶ ; x; s) + ms is increasing in
s 2 [0; kuk0]. Then, for h(x) = f ( ¶ ; x; u(x)) + mu(x) and B(x) = A(x; u(x)), we
have

¡ div(B(x)ru) + mu = h;

where 0 6 h 2 C0;¬ ( ·« ) and the coe¯ cient B is of C1 class. Hence, by the strong
maximum principle, u > 0 in « and (@u=@n) < 0 on @« . This means that u is in
the interior of the cone P .
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Remark 2.6. We want to point out that the regularity required to f in condi-
tion (2.2) can be relaxed in the rest of the paper. It is su¯ cient to assume that,
for every s0 2 R + , there exists m 2 R + such that the function f( ¶ ; x; s) + ms is
non-decreasing for s 2 [0; s0].

3. Bifurcation from in¯nity

In this section we study bifurcation from in nity of positive solutions. We will prove
the existence of a global bifurcation from in nity if the matrix A(x; s) satis es, in
addition to (A1){(A3), the following condition:

9 lim
s! + 1

A(x; s) = A(x; +1) a.e. in « : (A4)

With respect to f , we assume, in addition to (f1), that it is asymptotically linear
at in nity, i.e. there exists a positive function f 0

1 2 Lr( « ) (r > 1
2
N ), such that

lim
s ! + 1

f( ¶ ; x; s)

s
= ¶ f 0

1 (x); (f2)

uniformly with respect to x 2 « and for every ¶ 2 [0; +1).

Concerning the dependence on ¶ , we suppose that there exist positive functions
K1(x); K2(x) 2 Lr( « ) such that, for every ¶ ; ·¶ 2 [0; +1),

jf( ¶ ; x; s) ¡ f (·¶ ; x; s)j 6 j¶ ¡ ·¶ j[K1(x)s + K2(x)]; (f3)

for a.e. x 2 « and for every s 2 R + .
Note that conditions (f1){(f3) imply that if ¶ lies in a bounded set ¤ , there exist

positive functions C1(x), C2(x) in Lr( « ) such that

jf ( ¶ ; x; s)j 6 C1(x)s + C2(x) (3.1)

a.e. x 2 « , for every s 2 R + and ¶ 2 R.
Notice that the condition (f 0

1 ) + 6² 0 implies that the weighted eigenvalue prob-
lem (see [12])

¡ div(A(x; +1)ru) = ¶ f 0
1 (x)u in « ;

u = 0 on @«

possesses a  rst positive eigenvalue ¶ 1(f 0
1 ). In this section, we denote by

¶ 1 = ¶ 1(f 0
1 ): (3.2)

We also denote by Á the positive eigenfunction with kÁk = 1 associated to ¶ 1 .

Lemma 3.1. Assume that (A1){(A4) and (f1){(f3) hold. Let ¤ ³ [0; ¶ 1 ) be a
compact interval. Then there exists a number R > 0 such that, for every u in E
with kuk0 > R and for every ¶ 2 ¤ , t 2 [0; 1],

u 6= K(tf ( ¶ ; x; u)):
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Proof. We argue by contradiction and we suppose that there exist sequences ¶ n 2 ¤ ,
tn 2 [0; 1] and un 2 E with kunk0 ! 1, such that

un = K(tnf ( ¶ n; x; un)):

Since ¤ and [0; 1] are compact sets, we deduce that there exist ¶ 2 ¤ and t 2 [0; 1]
such that (up to a subsequence) ¶ n ! ¶ and tn ! t. By the Stampacchia and
De Giorgi theorems (see remark 2.3), from the convergence of kunk0 to in nity,
it derives also that kunk ! 1. Moreover, if we de ne the normalized sequence
zn := unkunk¡1, we have that zn veri es the following equation:

Z

«

A(x; un)rzn ¢ rv = tn

Z

«

f ( ¶ n; x; un)

kunk v 8v 2 H1
0 ( « ): (3.3)

Using (A2) and f( ¶ ; x; s) = f ( ¶ ; x; 0) > 0, for ¶ 2 ¤ » [0; 1), s < 0, we get, from
the maximum principle, that zn > 0.

Since zn is uniformly bounded in H1
0 ( « ), we can deduce (up to a subsequence)

the existence of a function z belonging to H1
0 ( « ) such that

zn * z (weakly) in H1
0 ( « );

zn(x) ! z(x) > 0 a.e. in « :

Taking v = zn ¡ z as a test function in (3.3) and using hypothesis (A2), we get

¬ kzn ¡ zk2 6
Z

«

A(x; un)r(zn ¡ z) ¢ r(zn ¡ z)

= tn

Z

«

f ( ¶ n; x; un)

kunk (zn ¡ z) ¡
Z

«

A(x; un)rz ¢ r(zn ¡ z):

Thus we have, by (3.1),

¬ kzn ¡ zk2 6 tn

Z

«

³
C1(x)zn +

C2(x)

kunk

´
jzn ¡ zj ¡

Z

« +

A(x; un)rz ¢r(zn ¡ z); (3.4)

where « + := fx 2 « : z(x) > 0g. Note that un = kunkzn ! +1 almost everywhere
in « + . Thus, thanks to hypotheses (A1) and (A4), we can apply the Lebesgue
dominated convergence theorem to deduce that A(x; un)rz ! A(x; 1)rz strongly
in L2( « + ), and

Z

« +

A(x; un)rz ¢ r(zn ¡ z) ! 0:

Moreover, by the Rellich{Kondrachov compact embedding theorem and by the
boundedness in H1

0 ( « ) of the sequence zn, we also have that

lim
n ! 1

Z

«

³
C1(x)zn +

C2(x)

kunk

´
jzn ¡ zj = 0:
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Therefore, from (3.4), we deduce that zn ! z strongly in H1
0 ( « ), so z is not

identically zero. Moreover, we get

Z

« n « +

[A(x; un) ¡ A(x; 1)]rzn ¢ rv

6 2

Z

« n « +

jrznjjrvj

! 2

Z

« n « +

jrzjjrvj = 0;

and hence

lim
n ! 1

Z

«

A(x; un)rzn ¢ rv =

Z

«

A(x; 1)rz ¢ rv 8v 2 H1
0 ( « ):

On the other hand, by (f3), we have

Z

«

f( ¶ n; x; un)

kunk v ¡
Z

«

f ( ¶ ; x; un)

kunk v

6
Z

«

jf( ¶ n; x; un) ¡ f ( ¶ ; x; un)j
kunk v

6 j¶ n ¡ ¶ j
Z

«

µ
K1(x)zn +

K2(x)

kunk

¶
v:

Then, by the Sobolev embedding theorem and applying hypothesis (f2), we have

lim
n ! 1

Z

«

f ( ¶ n; x; un)

kunk v = ¶

Z

«

f 0
1 (x)zv 8v 2 H1

0 ( « ):

Passing to the limit in (3.3), we obtain that the non-trivial and non-negative func-
tion z veri es the following equation,

¡ div(A(x; 1)rz) = t¶ f 0
1 (x)z in « ;

which means that t¶ = ¶ 1 2 ¤ and z = Á, i.e. a contradiction with the fact that
t¶ < ¶ 1 .

Remark 3.2. The above lemma proves, in particular, that there are no bifurca-
tion points from in nity for (P¶ ) at (0; ¶ 1 ). However, we can prove even more.
Speci cally, there are no bifurcation points from in nity but, possibly, ¶ 1 . Indeed,
assume that ¶ > 0 is a bifurcation point from in nity, i.e. there exists a sequence
( ¶ n; un) such that un is a positive solution of problem (P ¶ ) for ¶ = ¶ n, kunk ! 1
and ¶ n ! ¶ . Following the same argument of lemma 3.1 (with t = 1), we get that
there exists z 2 H1

0 ( « ) with z > 0, kzk = 1 and z is a solution of the following
problem:

¡ div(A(x; 1)rz) = ¶ f 0
1 (x)z:

Then z = Á and ¶ = ¶ 1 .

Lemma 3.3. Let us assume that conditions (A1){(A4) and (f1){(f3) are satis¯ed
and let ¿ be a positive function in E \ H1

0 ( « ). If ¶ > ¶ 1 , then there exists R > 0
such that

u ¡ K(f ( ¶ ; x; u) + ½ ¿ ) 6= 0;

for every u in E with kuk0 > R, for every ½ > 0.
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Proof. Let us argue by contradiction, and suppose that, for some sequence un in E
with kunk0 ! 1 and for a sequence of non-negative numbers ½ n, we have

¡ div(A(x; un)run) = f ( ¶ ; x; un) + ½ n ¿ : (3.5)

Using u¡
n as a test function, we get

Z

«

A(x; un)ru¡
n ¢ ru¡

n =

Z

«

f ( ¶ ; x; u¡
n )u¡

n + ½ n

Z

«

u¡
n ¿ :

Since ½ n > 0 and ¿ is positive, taking into account that f ( ¶ ; x; s) = f( ¶ ; x; 0) > 0
for every s 6 0, we deduce from condition (A2) that

¬ ku¡
n k2 6

Z

«

(f ( ¶ ; x; 0) + ½ n ¿ )u¡
n 6 0;

and thus un > 0.
As in the proof of the previous lemma, by the Stampacchia and De Giorgi

theorems, we have that kunk ! 1, and if we de ne the normalized sequence
zn := unkunk¡1, we can assume that zn * z weakly in H1

0 ( « ) for some z 2 H1
0 ( « )

and z > 0. Taking ¿ =kunk as a test function in (3.5) and using conditions (A1)
and (3.1), we obtain that there exists a positive constant C such that

½ n

kunk

Z

«

¿ 2 6
Z

«

³
C1(x)zn +

C2(x)

kunk

´
¿ +  k ¿ k2 6 C:

Then, up to a subsequence, there exists ½ ¤ > 0 such that ½ n=kunk ! ½ ¤ .
Moreover, by taking (zn ¡ z)=kunk as a test function in (3.5), we get

Z

«

A(x; un)rzn ¢ r(zn ¡ z) =

Z

«

f ( ¶ ; x; un)

kunk (zn ¡ z) +
½ n

kunk

Z

«

¿ (zn ¡ z):

Subtracting
R

« A(x; un)rz ¢ r(zn ¡ z), we obtain from (A2) and (3.1) that

¬ kzn ¡ zk2 6
Z

«

A(x; un)r(zn ¡ z) ¢ r(zn ¡ z)

=

Z

«

f( ¶ ; x; un)

kunk (zn ¡ z)

+
½ n

kunk

Z

«

¿ (zn ¡ z) ¡
Z

«

A(x; un)rz ¢ r(zn ¡ z)

6
Z

«

³
C1(x)zn +

C2(x)

kunk

´
jzn ¡ zj

+
½ n

kunk

Z

«

¿ (zn ¡ z) ¡
Z

«

A(x; un)rz ¢ r(zn ¡ z): (3.6)

By the Rellich{Kondrachov compact embedding theorem, we have

lim
n! 1

Z

«

³
C1(x)zn +

C2(x)

kunk

´
jzn ¡ zj = 0; lim

n ! 1

Z

«

¿ (zn ¡ z) = 0:
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Conditions (A1) and (A4) imply that A(x; un)rz strongly converges in L2( « + ) to
A(x; 1)rz, where « + = fx 2 « : z(x) > 0g. Then we get

lim
n ! 1

Z

«

A(x; un)rz ¢ r(zn ¡ z) = lim
n! 1

Z

« +

A(x; un)rz ¢ r(zn ¡ z) = 0:

Hence (3.6) yields the strong convergence of zn to z in H1
0 ( « ) and z is not identically

zero. Dividing (3.5) by kunk and passing to the limit, we get that z solves the
following equation:

¡ div(A(x; 1)rz) = ¶ f 0
1 (x)z + ½ ¤ ¿ :

Using Á as a test function, we obtain, since z 6² 0, that

¶ 1

Z

«

f 0
1 (x)zÁ > ¶

Z

«

f 0
1 (x)zÁ;

which is a contradiction.

Now, combining the two previous lemmas, we can derive su¯ cient conditions to
have a global bifurcation from in nity at ¶ = ¶ 1 of positive solutions. In addition,
following the ideas of [5], we can also determine if the bifurcation is to the left or
to the right of ¶ = ¶ 1 .

We will denote by § the closure of the set

f( ¶ ; u) 2 R £ E such that © ¶ (u) = 0; u 6= 0g:

Theorem 3.4. Assume that conditions (A1){(A4) and (f1){(f3) hold and that
f ( ¶ ; x; 0) > 0 for a.e. x 2 « , and for every ¶ 2 R +

0 . Then ¶ 1 = ¶ 1(f 0
1 ) is a

bifurcation point from in¯nity of positive solutions, and it is the only one in R +
0 .

Furthermore, there exists an unbounded component § 1 » § such that

~§ 1 =

»
( ¶ ; u) with u 6= 0;

³
¶ ;

u

kuk2

´
2 § 1

¼
[ f( ¶ 1 ; 0)g

is connected and, if f (0; x; s) ² 0 for every x 2 « and s > 0, unbounded. In
addition, if the coe± cients of the matrix A(x; 1) are of class C1 and r > N (r
given in (f1)), the following conditions hold.

(i) If (2.2) holds and there exist "0 > 0, ¼ 2 (0; 3 ¡ 1=r) and C(x) 2 Lr( « ) such
that, denoting

· (x) ² lim inf
( ¶ ;s) ! ( ¶ 1 ; 1 )

[f( ¶ ; x; s) ¡ ¶ f 0
1 (x)s]s ¼ ¡1;

for a.e. in « , and for all s > 0 and ¶ 2 ( ¶ 1 ¡ "0; ¶ 1 + "0), we have

[A(x; s) ¡ A(x; 1)] 6 0;

[f ( ¶ ; x; s) ¡ ¶ f 0
1 (x)s]s ¼ ¡1 > C(x);

Z

«

· (x)Á2¡ ¼ (x) > 0;

9
>>>=

>>>;
(3.7)

then the bifurcation of positive solutions is subcritical (i.e. to the left of
¶ = ¶ 1 ).
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(ii) If (2.2) holds and there exist "1 > 0, ¼ 2 (0; 3 ¡ 1=r) and ·C(x) 2 Lr( « ) such
that, denoting

·· (x) ² limsup
( ¶ ;s) ! ( ¶ 1 ; 1 )

[f( ¶ ; x; s) ¡ ¶ f 0
1 (x)s]s ¼ ¡1;

for a.e. in « , and for all s > 0 and ¶ 2 ( ¶ 1 ¡ "1; ¶ 1 + "1), we have

[A(x; s) ¡ A(x; 1)] > 0;

[f ( ¶ ; x; s) ¡ ¶ f 0
1 (x)s]s¼ ¡1 6 ·C(x);

Z

«

·· (x)Á2¡ ¼ (x) < 0;

then the bifurcation of positive solutions is supercritical (i.e. to the right
of ¶ 1 ).

Remark 3.5. The fact that ( ¶ 1 ; 0) 2 ~§ 1 means that § 1 emanates from 1 at ¶ 1 .

Remark 3.6. Since Á 2 _P , if r0 is the conjugate exponent of r, i.e. r0 = r=(r ¡ 1),
then

Á2¡ ¼ 2 Lr 0
( « ) () ¼ < 3 ¡ 1

r
:

Thus the range of values of the exponent ¼ is strictly related to the integrability of
the function Á2¡ ¼ . In this way, for ¼ < 3 ¡ 1=r, if there exists

lim
(¶ ;s) ! ( ¶ 1 ; 1 )

[f ( ¶ ; x; s) ¡ ¶ f 0
1 (x)s]s¼ ¡1 = · 2 R ¤

for a.e. x 2 « , then items (i) and (ii) imply that the side of the bifurcation from
in nity is decided by the sign of · . The condition ¼ < 3 ¡ 1=r is essential to
deduce the side of the bifurcation from hypotheses on the behaviour of f (and A)
at s = +1. Indeed, for the case A(x; s) = I , r = 1, it is proved in [5] that if
¼ > 3, it is not possible to determine whether the bifurcation is supercritical (or
subcritical) by just assuming the hypothesis on the behaviour of the nonlinearity
for large s, as in the third condition of (3.7).

Proof. In order to study the bifurcation from in nity, we follow the standard pattern
(see, for example, [1]) and we perform the change of variable z := kuk¡2u (u 6= 0).
We thus consider the map ª ¶ : E ! E de ned by

ª ¶ (z) =

(
z ¡ kzk2K(f ( ¶ ; x; z=kzk2)); z 6= 0;

0; z = 0:

By remark 3.2 we have that ¶ 1 is the only possible bifurcation point from in nity.
To prove that ¶ 1 is actually a bifurcation point from in nity, we show that the
index of the trivial solution for the equation ª ¶ (u) = 0 changes when ¶ crosses
¶ = ¶ 1 . Indeed, if 0 < ¶ < ¶ 1 , applying lemma 3.1 to the compact set ¤ = f ¶ g,
we obtain the existence of a positive number R > 0 such that, for every t 2 [0; 1]
and for every u in E with kuk0 > R,

u ¡ K(tf( ¶ ; x; u)) 6= 0:
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Thus we obtain from the homotopy invariance of the Leray{Schauder degree that

deg( ª ¶ ; B"; 0) = deg(I; B"; 0) = 1 8" 2 (0; R¡1];

and consequently,
i(ª ¶ ; 0) = 1 8 ¶ 2 (0; ¶ 1 ):

On the other hand, if ¶ > ¶ 1 , from lemma 3.3, we derive the existence of R0 > 0
such that

u 6= K(f ( ¶ ; x; u) + t¿ );

for every u 2 E with kuk0 > R0, and for every t 2 [0; 1]. Thus, if we de ne the
homotopy H in [0; 1] £ E by

H(t; z) =

(
z ¡ kzk2K(f ( ¶ ; x; z=kzk2) + t¿ ); z 6= 0;

0; z = 0;

then this homotopy is admissible in [0; 1]£B", for " 2 (0; R¡1
0 ]. Moreover, lemma 3.3

shows that H(1; ¢) has no zeros in B". Hence we have

deg( ª ¶ ; B"; 0) = deg(H(0; ¢); B"; 0) = deg(H(1; ¢); B"; 0) = 0:

Therefore, we have

i(ª ¶ ; 0) = 0 8 ¶ > ¶ 1 ;

and the conclusion can be obtained following the proof of proposition 3.5 in [1].
As for the study of the side of the bifurcation, i.e. of items (i) and (ii), we prove

only assertion (i); the other one can be proved in a similar way and it is left to the
reader. Let us argue by contradiction and consider a sequence ( ¶ n; un) of solutions
of the equation © ¶ (u) = 0, i.e. satisfying

Z

«

A(x; un)run ¢ rv =

Z

«

f ( ¶ n; x; un)v 8v 2 H1
0 ( « ); (3.8)

with ¶ n converging to ¶ 1 , ¶ n > ¶ 1 and kunk0 ! +1. By (2.2), every solution
un belongs to the interior of the cone P (see lemma 2.4 (ii)). Thus we can take
v = Á2=un as a test function in (3.8), and we get

Z

«

A(x; un)run ¢
µ
2

Á

un
rÁ ¡

³
Á

un

2́

run

¶
=

Z

«

f ( ¶ n; x; un)
Á2

un
:

Hence, denoting

g( ¶ n; x; un) := [f ( ¶ n; x; un) ¡ ¶ nf 0
1 (x)un]u ¼ ¡1

n ;

we yield

Z

«

g( ¶ n; x; un)
Á2

u ¼
n

=

Z

«

µ
A(x; un) ¡ ¶ n

¶ 1
A(x; 1)

¶
rÁ ¢ rÁ

¡
Z

«

A(x; un)

³
rÁ ¡ Á

un
run

´
¢
³

rÁ ¡ Á

un
run

´
:
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By the fact that ¶ n > ¶ 1 , we get, applying conditions (A2) and (3.7), that

0 >
Z

«

µ
A(x; un) ¡ ¶ n

¶ 1
A(x; 1)

¶
rÁ ¢ rÁ

¡
Z

«

A(x; un)

³
rÁ ¡ Á

un
run

´
¢
³

rÁ ¡ Á

un
run

´
:

In particular,

0 > lim inf
n ! 1

Z

«

g( ¶ n; x; un)
Á2

z ¼
n

;

where, as before, zn = unkunk¡1. Using the fact that zn converges uniformly to Á
and Fatou’s lemma, we obtain, thanks to (3.7), that

0 > lim inf
n! 1

Z

«

g( ¶ n; x; un)
Á2

z ¼
n

>
Z

«

· (x)Á2¡¼ > 0;

which is a contradiction.

4. Bifurcation from the trivial solution

We assume in this section that hypotheses (A1){(A3) and (f1) hold. In addition,
we suppose that the nonlinearity f satis es f ( ¶ ; x; 0) = 0, for a.e. x 2 « and for
every ¶ 2 R, and the following condition.

For every ¤ bounded set of R ¡ f0g and ¶ 2 ¤ ,

lim
s ! 0+

f ( ¶ ; x; s)

s
= ¶ f 0

+ (x; 0); uniformly in ( ¶ ; x) 2 ¤ £ « ; (f4)

with either 0 6 f 0
+ (x; 0) 2 Lr( « ), r > 1

2
N , not identically zero or

f 0
+ (x; 0) = +1 a.e. x 2 « .

For the case of integrable weight f 0
+ (x; 0), we also impose a similar condition

to (f3).

If f 0
+ (x; 0) 2 Lr( « ), with r > 1

2N , then the limit in (f4) is uniformly
in every bounded set ¤ » R and there exist a positive function K(x) 2
Lr( « ) and "0 > 0 such that, for every ¶ ; ·¶ 2 R,

jf( ¶ ; x; s) ¡ f(·¶ ; x; s)j 6 j¶ ¡ ·¶ jK(x)s 8s 2 (0; "0]: (f 0
3)

As in x 3, conditions (f1), (f 0
3) and (f4) imply that, if f 0

+ (x; 0) 2 Lr( « ) and ¤ is a
bounded set of real numbers, then there exists some positive function C(x) 2 Lr( « )
satisfying

jf ( ¶ ; x; s)j 6 C(x)s 8s 2 (0; "0] 8 ¶ 2 ¤ : (4.1)

With respect to the matrix A, we note that, since its coe¯ cients aij(x; s) are
Carath´eodory functions, there exists the limit

lim
s ! 0+

A(x; s) = A(x; 0) a.e. x 2 « : (4.2)
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Observe also that in the case of integrable weight f 0
+ (x; 0), the weighted eigenvalue

problem

¡ div(A(x; 0)ru) = ¶ f 0
+ (x; 0)u in « ;

u = 0 on @« ;

has a  rst positive eigenvalue ¶ 1(f 0
+ (x; 0)), and it is possible to choose an associated

eigenfunction ’ > 0 with k’k = 1. We de ne

¶ 0 =

(
¶ 1(f 0

+ (x; 0)) if f 0
+ (x; 0) 2 Lr( « );

0 otherwise.
(4.3)

Since we are looking for positive solutions, we can assume, without loss of generality,
that

f( ¶ ; x; s) = f ( ¶ ; x; 0) = 0 8x 2 « 8 ¶ 2 R 8s < 0:

As a consequence, we can apply again the maximum principle to deduce that, for
any ¶ 2 R, every solution of the equation u = K(f( ¶ ; x; u)), u 2 E, has to be
non-negative, and so part (i) of lemma 2.4 remains valid for negative values of ¶ .

Lemma 4.1. Let us suppose that the functions A(x; s) and f ( ¶ ; x; s) satisfy condi-
tions (A1){(A3), (f1), (f 0

3), (f4) and that f ( ¶ ; x; 0) = 0 for a.e. x 2 « and for
every ¶ 2 R. Consider a compact interval ¤ » ( ¡ 1; ¶ 0). Then there exists ¯ > 0
such that

u 6= K(tf ( ¶ ; x; u))

for every u 2 E with 0 < kuk0 6 ¯ , ¶ 2 ¤ and t 2 [0; 1].

Proof. We suppose, on the contrary, that there exist sequences ¶ n 2 ¤ , un 2 E ¡ f0g
and tn 2 [0; 1] such that un = K(tnf ( ¶ n; x; un)), with ¶ n ! ¶ 2 ¤ , kunk0 ! 0 and
tn ! t0 2 [0; 1]. Taking un as a test function and using condition (A2), we get

¬ kunk2 6
Z

«

A(x; un)run ¢ run = tn

Z

«

f ( ¶ n; x; un)un:

Observing that, by condition (f1),
R

«
f ( ¶ n; x; un)un converges to zero, we deduce

that un strongly converges to zero in H1
0 ( « ). Taking the normalized sequence

zn := unkunk¡1, we have that zn > 0 and that there exists z 2 H1
0 ( « ) such that,

up to a subsequence, zn weakly converges to z in H1
0 ( « ). The normalized sequence

zn veri es the following equation:
Z

«

A(x; un)rzn ¢ rv = tn

Z

«

f ( ¶ n; x; un)

kunk v 8v 2 H1
0 ( « ): (4.4)

If ¶ 0 = 0, i.e. f 0
+ (x; 0) = +1, then ¤ » ( ¡ 1; ¶ 0) = ( ¡ 1; 0) and, by (f4), we

note that there exists "1 > 0 such that f ( ¶ n; x; s) < 0 a.e. x 2 « and for every
0 6 s < "1, n 2 N. Thus, taking v = zn as a test function in (4.4), and using the
fact that kunk0 6 "1 for large n, we deduce from (A2) the following contradiction:

¬ 6
Z

«

A(x; un)rzn ¢ rzn = tn

Z

«

f( ¶ n; x; un)

kunk zn 6 0:
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On the other hand, if ¶ 0 > 0, by conditions (A1), (A2) and (4.1), following the
same arguments as in lemma 3.1, we deduce that zn strongly converges to z in
H1

0 ( « ). In particular, z 6² 0. We conclude this case by observing that (4.2), (f 0
3),

(f4) and (4.1) allow us to pass to the limit in (4.4), and derive that z veri es

¡ div(A(x; 0)rz) = t0 ¶ f 0
+ (x; 0)z in « :

Since z > 0 and z 6= 0, we get that z = ¿ and t0 ¶ = ¶ 0, which is also a contradiction.

Remark 4.2. As a consequence of lemma 4.1, we deduce that problem (P ¶ ) does
not have bifurcation points of positive solutions from zero in ( ¡ 1; ¶ 0). Further-
more, following the same arguments of this lemma, it is also possible to show that
there are no other possible bifurcation point from the line of trivial solutions but
¶ 0. More precisely, we can prove that if un 6= 0 is a solution of problem (P ¶ ) for
¶ = ¶ n with ¶ n ! ¶ 6= 0, and kunk0 ! 0, then ¶ = ¶ 0. Indeed, as above, the
normalized sequence zn = un=kunk satis es (4.4) with tn = 1 and, without loss of
generality, we can assume that zn is weakly convergent to some z > 0 in H1

0 ( « ).
Now, if f 0

+ (x; 0) is integrable, then, as in lemma 4.1, we deduce that z 6= 0 is a
solution of the problem

¡ div(A(x; 0)rz) = ¶ f 0
+ (x; 0)z:

This means that z = ’ and ¶ = ¶ 0.
In the case that f 0

+ (x; 0) = +1, consider the eigenvalue problem

¡ div(A(x; un)rv) = · v; v 2 H1
0 ( « );

and let ¿ n > 0 be a normalized eigenfunction associated to the  rst positive eigen-
value · n. Recalling that · n is variationally characterized as the in mum of

Z

«

A(x; un)rv ¢ rv

¿Z

«

v2;

for v 2 H1
0 ( « ) ¡ f0g, we deduce from (A1) that, for all n 2 N, · n 6 M ² ·  ,

where · denotes the  rst eigenvalue of the Laplacian operator with zero Dirichlet
boundary conditions. Thus, if ¶ n does not converge to ¶ 0 = 0, then, passing to a
subsequence, we can assume from (f4) that there exists n0 2 N such that

f ( ¶ n; x; un(x)) > Mun(x) a.e. x 2 « 8n > n0: (4.5)

Taking v = ¿ n as a test function in the equation satis ed by un, we get

· n

Z

«

un ¿ n =

Z

«

f ( ¶ n; x; un) ¿ n > M

Z

«

un ¿ n 8n > n0;

i.e. a contradiction, proving also in this case that ¶ = ¶ 0.

Lemma 4.3. Let us assume that f( ¶ ; x; 0) = 0 for a.e. x 2 « and for every ¶ 2 R,
and conditions (A1){(A3), (f1), (f4) hold. Consider ¶ > ¶ 0. Then, for any positive
function ¿ belonging to E \ H1

0 ( « ), there exists ¯ > 0 such that

u 6= K(f ( ¶ ; x; u) + ½ ¿ );

for every ½ > 0 and for every u in E with 0 < kuk0 6 ¯ .
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Proof. We argue by contradiction and suppose that there exist sequences ½ n > 0,
un 2 E ¡ f0g with kunk0 ! 0, such that

¡ div(A(x; un)run) = f ( ¶ ; x; un) + ½ n ¿ : (4.6)

Since ½ n is non-negative, using u¡
n as a test function, we can get, as in the proof of

lemma 3.3, that un > 0. First, we prove that then f 0
+ (x; 0) 6² +1, i.e. ¶ 0 > 0. If

not, we follow the same argument of remark 4.2 and we get that (4.5) holds (with
M = ·  > · n). Taking again v = ¿ n as a test function in the equation satis ed by
un, we get

· n

Z

«

un ¿ n =

Z

«

f ( ¶ n; x; un) ¿ n + ½ n

Z

«

¿ ¿ n > M

Z

«

un ¿ n + ½ n

Z

«

¿ ¿ n 8n > n0;

i.e. a contradiction, proving that f 0
+ (x; 0) 6² +1. Now consider ¿ =kunk as a test

function in (4.6) to deduce that the normalized sequence of un, zn satis es
Z

«

A(x; un)rzn ¢ r ¿ =

Z

«

f ( ¶ ; x; un)

kunk ¿ +
½ n

kunk

Z

«

¿ 2:

In addition, notice that there exists z in H1
0 ( « ) such that z > 0 and zn * z

weakly in H1
0 ( « ). Since (4.1) holds, we can use Fatou’s lemma to obtain

Z

«

A(x; 0)rz ¢ r¿ ¡ limsup
n! 1

½ n

kunk

Z

«

¿ 2 > lim inf
n ! 1

Z

«

f ( ¶ ; x; un)

kunk ¿

> ¶

Z

«

f 0
+ (x; 0)z¿ :

Using (A1) and that f 0
1 (x; 0) 2 Lr( « ), we derive that

lim sup
n ! 1

½ n

kunk

Z

«

¿ 2 6 

Z

«

jrz ¢ r ¿ j ¡ ¶

Z

«

f 0
+ (x; 0)z ¿ < +1;

and ½ nkunk¡1 is bounded. Thus there exists ½ ¤ > 0 such that (up to a subsequence)
½ nkunk¡1 ! ½ ¤ . Taking now (zn ¡ z)=kunk as a test function in (4.6) and subtracting
the integral term

R
«

A(x; un)r(zn ¡ z) ¢ rz, we have, from (A2),

¬ kzn ¡ zk2 6 ¡
Z

«

A(x; un)rz¢r(zn ¡ z)+

Z

«

f ( ¶ ; x; un)

kunk (zn ¡ z)+
½ n

kunk

Z

«

¿ (zn ¡ z):

Observing now that, by (A1) and the Sobolev embedding theorem, we get

lim
n ! 1

Z

«

A(x; un)rz ¢ r(zn ¡ z) = 0;

lim
n! 1

Z

«

¿ (zn ¡ z) = 0;

and, moreover, by (f4) and (4.1),

lim
n ! 1

Z

«

f ( ¶ ; x; un)

kunk (zn ¡ z) = 0;

we deduce that zn ! z strongly in H1
0 ( « ), so z 6= 0.
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Now, divide (4.6) by kunk and note that conditions (f4), (4.1) and (4.2) allow us
to pass to the limit and obtain that z satis es the equation

¡ div(A(x; 0)rz) = ¶ f 0
+ (x; 0)z + ½ ¤ ¿ ; x 2 « :

Let us take ’ as a test function. Using the fact that ½ ¤ and ¿ are positive, we get

¶ 0

Z

«

f 0
+ (x; 0)’z =

Z

«

A(x; 0)rz ¢ r’ > ¶

Z

«

f 0
+ (x; 0)’z;

which is a contradiction since ¶ > ¶ 0.

Theorem 4.4. Assume that f( ¶ ; x; 0) = 0, for a.e. x 2 « and for every ¶ 2 R, and
that conditions (f1), (f 0

3), (f4) and (A1){(A3) hold. Let ¶ 0 be given by (4.3). Then
¶ 0 is a bifurcation point of (P ¶ ) from the trivial solution and it is the only one for
positive solutions. Furthermore, there exists an unbounded continuum, i.e. closed
and connected subset, § 0 in § meeting ( ¶ 0; 0). Furthermore, if ¶ 0 > 0, r > N ,
and (2.2) is satis¯ed, then the following conclusions hold.

(i) If there exist "0; s0 > 0, ¼ < 0 and C(x) 2 L1( « ) such that, denoting

· (x) ² lim inf
( ¶ ;s) ! (¶ 0;0+)

[f( ¶ ; x; s) ¡ ¶ f 0
+ (x; 0)s]s¼ ¡1;

for a.e. in « , and for all s 2 [0; s0] and ¶ 2 ( ¶ 0 ¡ "0; ¶ 0 + "0), we have

[A(x; s) ¡ A(x; 0)] 6 0;

[f( ¶ ; x; s) ¡ ¶ f 0
+ (x; 0)s]s¼ ¡1 > C(x);

Z

«

· (x)’2¡ ¼ (x) > 0;

9
>>>=

>>>;
(4.7)

then the bifurcation of positive solutions at ¶ = ¶ 0 is subcritical.

(ii) If there exist "1; s1 > 0, ¼ < 0 and ·C(x) 2 L1( « ) such that, denoting

·· (x) ² limsup
( ¶ ;s) ! (¶ 0;0+)

[f( ¶ ; x; s) ¡ ¶ f 0
+ (x; 0)s]s¼ ¡1;

for a.e. in « , and for all s 2 [0; s1] and ¶ 2 ( ¶ 0 ¡ "1; ¶ 0 + "1), we have

[A(x; s) ¡ A(x; 0)] > 0;

[f ( ¶ ; x; s) ¡ ¶ f 0
+ (x; 0)s]s ¼ ¡1 6 ·C(x);

Z

«

·· (x)’2¡ ¼ (x) < 0;

then the bifurcation of positive solutions at ¶ = ¶ 0 is supercritical.

Proof. First observe that applying lemma 4.1 and following the same argument of
theorem 3.4, we get that

i(© ¶ ; 0) = 1 8 ¶ < ¶ 0:

Now let 0 < " 6 ¯ , where ¯ is the number given in lemma 4.3. Then, from this
lemma and by homotopy invariance,

deg( © ¶ ; B"; 0) = deg(u ¡ K(f ( ¶ ; x; u) + a’); B"; 0) 8a > 0:
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Since lemma 4.3 implies also that the problem

u = K(f ( ¶ ; x; u) + a’); u 2 E;

has no solutions in ·B̄ , for every a > 0, we obtain that the degree in the right-hand
side is zero, proving that

i(© ¶ ; 0) = 0 8 ¶ > ¶ 0:

Then we can follow proposition 4.5 of [1] to conclude the  rst part of the theorem.
Let us prove assertion (i); the other can be proved similarly. We argue by con-

tradiction and consider a sequence of solutions ( ¶ n; un) with ¶ n > ¶ 0, ¶ n ! ¶ 0,
un 6= 0 and kunk0 ! 0. As in theorem 3.4, by (2.2), we can take as a test function
’2(un)¡1 and we get

Z

«

(f ( ¶ n; x; un) ¡ ¶ nf 0
+ (x; 0)un)

’2

un

=

Z

«

µ
A(x; un) ¡ ¶ n

¶ 0
A(x; 0)

¶
r’ ¢ r’

¡
Z

«

A(x; un)

³
r’ ¡ ’

un
run

´
¢
³

r’ ¡ ’

un
run

´
:

As before, we denote with zn the normalized sequence of un and we recall that
zn ! ’ strongly in H1

0 ( « ). Multiplying by kunk ¼ and applying condition (4.7), we
obtain from Fatou’s lemma that

0 > lim inf
n ! 1

Z

«

f ( ¶ n; x; un) ¡ ¶ nf 0
+ (x; 0)un

u1¡ ¼
n

z¡ ¼
n ’2 >

Z

«

· (x)’2¡ ¼ > 0;

which is a contradiction.

Remark 4.5. The conclusion of theorem 4.4 (ii) is also true in the case ¶ 0 = 0,
if we impose additional assumptions on f . For instance, assuming that, for some
p > 1 and s0 > 0, there exists K1(x) 2 L1( « ) such that

f(0; x; s) 6 K1(x)sp 8s 2 [0; s0];

f ( ¶ ; x; s) 6 f (0; x; s) 8 ¶ < 0; s 2 [0; s0];

)

(4.8)

then the bifurcation from ¶ 0 = 0 is supercritical. Indeed, we argue by contradiction
and assume that there is a sequence of solutions ( ¶ n; un) with ¶ n 6 0, ¶ n ! 0,
un 6= 0 and kunk0 ! 0. Take un=kunk2 as a test function to get

Z

«

A(x; un)rzn ¢ rzn =

Z

«

(f ( ¶ n; x; un) ¡ f(0; x; un))
zn

kunk +

Z

«

f (0; x; un)
zn

kunk ;

where zn = un=kunk. By conditions (A2) and (4:8), we obtain from Fatou’s lemma
that

¬ 6 lim sup
n ! 1

Z

fun>0g

f(0; x; un)

un
z2

n 6 0;



752 D. Arcoya, J. Carmona and B. Pellacci

which is a contradiction, proving the assertion. Examples of nonlinearities satisfying
the above condition are

f ( ¶ ; x; s) = ¶ sq; 0 < q (x 2 « ; s > 0; ¶ 2 R);

f ( ¶ ; x; s) = ¶ sq + sp; 0 < q 6 1 < p (x 2 « ; s > 0; ¶ 2 R):

5. Applications

In this section we complete the bifurcation results of xx 3 and 4 by studying the
existence or the non-existence of a priori bounds on ¶ or in the norm kuk0 of
solutions ( ¶ ; u) of (P ¶ ). This will allow us to describe the range of values ¶ for
which (P ¶ ) admits at least one solution or at least two solutions. We begin with a
result in which both bifurcations, from zero and from in nity, occur.

Theorem 5.1. Assume that f ( ¶ ; x; 0) = 0 for a.e. x 2 « and for every ¶ 2 R.
Suppose also that conditions (A1){(A4), (f1){(f4) and (f 0

3) hold. Let ¶ 1 and ¶ 0 be
given by (3.2) and (4.3), respectively.

(i) Problem (P ¶ ) has a positive solution for every ¶ between ¶ 0 and ¶ 1 provided
that one of the following conditions is satis¯ed.

There exists a function k(x) 2 L1( « ) such that

f ( ¶ ; x; s) > ¶ k(x)s 8( ¶ ; x; s) 2 R + £ « £ R + ; with k + 6² 0: (f5)

There exists ¶ ¤ 6 0 such that

f ( ¶ ¤ ; x; s) 6 0 a.e. x 2 « 8s > 0; (f6)

(ii) If condition (2.2) holds for every ¶ > 0, and for some ¶ ¤ 6 0 and ·s > 0, we
have (f6) and

f ( ¶ ; x; ·s) 6 0 a.e. x 2 « 8 ¶ 2 [¶ ¤ ; 1); (f7)

then there exist two solutions for ¶ > maxf ¶ 0; ¶ 1 g.

Remark 5.2. In  gures 1{3, we give some bifurcation diagrams that may occur in
the case (i) for ¶ 0 < ¶ 1 . We note here that the side of the bifurcation is important
in order to get the description of the range of values ¶ for which (P ¶ ) has a solu-
tion. Figure 1 corresponds to the case in which the hypotheses of theorems 4.4 (ii)
and 3.4 (i) are satis ed. Thus the bifurcation is to the right at zero and to the left
at in nity and we can only deduce the existence of a solution for ¶ 2 ( ¶ 0; ¶ 1 ). Fig-
ure 2 is a bifurcation diagram under assumptions of theorems 4.4 (ii) and 3.4 (ii). In
this case, the bifurcation is to the right at zero and at in nity. Hence there exist at
least two solutions for ¶ 2 ( ¶ 1 ; ¶ 1 + ") (for some " > 0) and at least one solution
for ¶ 2 ( ¶ 0; ¶ 1 ). On the other hand, if we assume the hypotheses of theorems 4.4 (i)
and 3.4 (ii), we obtain the bifurcation diagram given in  gure 3. The bifurcation
is to the left at zero and to the right at in nity. In this case, there exist at least
two solutions for ¶ 2 ( ¶ 0 ¡ "0; ¶ 0) [ ( ¶ 1 ; ¶ 1 + ") and at least one solution for
¶ 2 ( ¶ 0; ¶ 1 ). Figure 4 is an example of case (ii) of the previous theorem, where
the side of the bifurcation is always to the right (for instance, if we assume the
hypotheses of theorems 4.4 (ii) and 3.4 (ii)).
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Figure 1.
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Figure 2.

Proof. Theorems 3.4 and 4.4 prove that there exist two connected sets § 0 and § 1
of positive solutions of (P ¶ ) emanating, respectively, from ( ¶ 0; 0) and ( ¶ 1 ; 1), and
are the only ones. To prove (i), it su¯ ces to show that there exists either a number
¶ ¤ > maxf ¶ 0; ¶ 1 g such that the equation © ¶ (u) = 0 has no positive solution with
¶ = ¶ ¤ (this will be true if (f5) holds), or a number ¶ ¤ 6 minf ¶ 0; ¶ 1 g such that
© ¶ (u) = 0 has no positive solution with ¶ = ¶ ¤ (which is true provided (f6) holds).
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Figure 4.

Indeed, these facts imply that the projections Proj § 0 and Proj § 1 are intervals
bounded either from above (by ¶ ¤ ) or from below (by ¶ ¤ ). The global nature of the
continua § 0 and § 1 implies that either § 0 = § 1 or, if § 0 \ § 1 = ;, that Proj § 0

and Proj § 1 are unbounded intervals. In either case, the interval of extremes ¶ 0

and ¶ 1 is contained in Proj § 0 [ Proj § 1 , proving assertion (i). In order to prove
the claim, if (f5) is satis ed, we take a solution ( ¶ ; u) of © ¶ (u) = 0. Since k + 6² 0,
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there exists Á 2 H1
0 ( « ), kÁk = 1, such that

R
«

k(x)Á2 > 0. By choosing " > 0 and
Á2=(u + ") as test functions, we get

Z

«

A(x; u)ru ¢
³

2
Á

u + "
rÁ ¡

³
Á

u + "

2́

r(u + ")

´
=

Z

«

f ( ¶ ; x; u)

u + "
Á2:

Then, by (A1),

 > ¡
Z

«

A(x; u)

³
rÁ ¡

³
Á

u + "

´
ru

´
¢
³

rÁ ¡
³

Á

u + "

´
ru

´

+

Z

«

A(x; u)rÁ ¢ rÁ

=

Z

«

f ( ¶ ; x; u)

u + "
Á2;

and since f( ¶ ; x; u) > ¶ k(x)u for ¶ > 0 and
R

«
k(x)Á2 > 0, we deduce that

 > ¶

Z

«

k(x)
u

u + "
Á2:

Taking limits as " goes to zero yields

¶ 6 

¿Z

«

k(x)Á2:

Therefore, there are no positive solutions of problem (P ¶ ) for ¶ >  =
R

«
k(x)Á2. In

particular, since ¶ 0 and ¶ 1 are bifurcation points of positive solutions, this means
that



¿Z

«

k(x)Á2 > maxf ¶ 0; ¶ 1 g

and hence it su¯ ces to choose ¶ ¤ >  =
R

«
k(x)Á2 to obtain the claim in this case.

If (f6) is satis ed, then there is no positive solution u of (P ¶ ) for ¶ = ¶ ¤ . This is
easily proved by observing that the unique solution of (P ¶ ) for ¶ = ¶ ¤ is the trivial
solution. Indeed, if u is a solution of (P ¶ ) for ¶ = ¶ ¤ , then u > 0, and taking u as
a test function, we deduce from (A2) and (f6) that

¬

Z

«

jruj2 6
Z

«

A(x; u)ru ¢ ru =

Z

«

f ( ¶ ¤ ; x; u)u 6 0;

which means that u ² 0. Finally, as ¶ ¤ 6 0, we also have that ¶ ¤ 6 minf ¶ 0; ¶ 1 g.
This concludes the  rst part of the theorem.

To prove (ii), we recall that (f6) implies that

Proj § 0; Proj § 1 » ( ¶ ¤ ; +1):

In addition, we claim that for every ¶ 2 R there is no positive solution u of (P ¶ )
with kuk0 = ·s. Indeed, let us argue by contradiction and suppose that there exist
¶ 2 R and a solution u of (P¶ ) with kuk0 = ·s. Since f ( ¶ ; ¢; ¢) is C1 in ·« £ [0; 1),
there exists m > 0 such that f ( ¶ ; x; s) + ms is increasing in s 2 [0; ·s]. Then w = u
is a solution of the following linear equation:

L(w) := ¡ div(A(x; u)rw) + mw = f ( ¶ ; x; u) + mu in « :
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On the other hand, since f ( ¶ ; x; ·s) 6 0, then

L·s > f ( ¶ ; x; ·s) + m·s:

Subtracting the two previous expressions, we get

L(·s ¡ u) > 0 in « ;

·s ¡ u > 0 on @« :

Since the coe¯ cients of the matrix A(x; u) are C1( ·« )-functions, we can deduce from
the strong maximum principle that ·s ¡ u > 0 in ·« , which contradicts kuk0 = ·s and
the claim is proved.

In particular, we obtain the inclusions

§ 0 » f( ¶ ; u)=kuk0 < ·sg and § 1 » f( ¶ ; u)=kuk0 > ·sg;

and, moreover, § 0 \ § 1 = ;. Then we conclude the proof by observing that,
by the global nature of the bifurcations, we get that [¶ 0; +1) » Proj § 0 and
( ¶ 1 ; +1) » Proj § 1 , which implies that, for every ¶ > maxf ¶ 0; ¶ 1 g, we have
two positive solutions of (P ¶ ), one in § 0 and the other in § 1 .

Remark 5.3. Theorem 5.1 extends to the case of quasilinear operators in [1, theo-
rem A]. Moreover, applying theorem 5.1, it is also possible to handle nonlinearities
that have di¬erent behaviour near the origin and near in nity.

Remark 5.4. We note also that if both conditions (f6) and (f7) are satis ed, then
the continua § 0, § 1 emanating, respectively, from zero and from in nity are the
same set, i.e. § 0 = § 1 .

Theorem 5.5. Let (A1){(A4), (f1), (f3), (f4), (f 0
3) and (f6) be satis¯ed. Assume

that f ( ¶ ; x; 0) = 0 a.e. x 2 « and for every ¶ 2 R, and suppose that

lim
s ! + 1

f ( ¶ ; x; s)

s
= 0; uniformly for x 2 « 8 ¶ > ¶ ¤ ; (5.1)

where ¶ ¤ is given in (f6). Then there exists at least a positive solution of (P ¶ ) for
every ¶ > ¶ 0.

Remark 5.6. Under the hypotheses of the above theorem, if ¶ 0 = 0, then the
bifurcation diagram will be as in  gure 5.

Proof. Thanks to theorem 4.4, there exists a bifurcation from zero at ¶ 0. In the
proof of theorem 5.1, we have seen that condition (f6) implies the non-existence of
positive solutions of (P ¶ ) for ¶ = ¶ ¤ . To conclude, it sū ces to prove that there is
no bifurcation point from in nity. In other words, we only have to prove the a priori
bound for solutions of (P ¶ ) in bounded sets of ¶ . Let us argue by contradiction,
so let ¶ n ! ¶ < +1 and let un be a non-trivial solution of (P¶ ) for ¶ = ¶ ¤ with
kunk0 ! +1. Without loss of generality, we can assume that zn ² un=kunk ! z
strongly in L2( « ). Then, taking un=kunk2 as a test function, we obtain that zn

satis es Z

«

A(x; un)rzn ¢ rzn =

Z

«

f( ¶ n; x; un)
zn

kunk :
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l 0

l

0
.||   ||

= 0

Figure 5.

Now, we get from conditions (A2) and (f3) that

¬ 6
Z

«

f ( ¶ n; x; un)

kunk zn

6 j ¶ n ¡ ¶ j
Z

«

³
K1(x)zn +

K2(x)

kunk

´
zn

+

Z

«

f ( ¶ ; x; un)

kunk z +

Z

«

f ( ¶ ; x; un)

kunk (zn ¡ z):

Condition (5.1) implies that
f( ¶ ; x; un)

un
! 0

almost everywhere in « + := fx 2 « =z(x) > 0g. Thus, by condition (3.1) (which
derives from (f1), (f3) and (5.1)), and the Lebesgue dominated convergence theo-
rem, we obtain that

lim
n ! 1

Z

«

f ( ¶ ; x; un)
z

kunk = lim
n ! 1

Z

« +

f ( ¶ ; x; un)

un + 1

³
zzn +

z

kunk

´
= 0:

Since zn converges to z, and by (3.1), we have

lim
n ! + 1

Z

«

f( ¶ ; x; un)

kunk (zn ¡ z) = 0:

Then, as ¶ n ! ¶ , we get a contradiction with the fact that ¬ > 0.

Remark 5.7. In [7], the method of sub and supersolutions is used to prove the
existence of at least one positive solution of (P ¶ ) for every ¶ > 0 for the nonlinearity
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f ( ¶ ; x; s) = ¶ sq, 0 < q < 1. Note that this result is a particular case of our theorem
with f 0

+ (x; 0) = +1 ( ¶ 0 = 0), with the additional information that there is a
solution lying in the continuum emanating from zero at ¶ 0 = 0. In addition, our
theorem also covers cases in which f 0

+ (x; 0) < +1.

In the semilinear case, i.e. A(x; s) = A(x), the uniqueness of positive solutions
of (P ¶ ) for ¶ > 0 and concave nonlinearities f ( ¶ ; x; s) in the variable s is well
known [10] (see also [9] for interesting di¬erent proofs of the uniqueness). With
respect to the extension of this uniqueness result to general coē cients A(x; s), the
following result holds.

Theorem 5.8. Let (A1){(A3) and (2.2) be satis¯ed and assume that there exists
"0 2 (0; +1] such that

A(x; s) is non-decreasing for with respect to s; 0 6 s < "0: (A5)

Also let ¶ > 0 be ¯xed. Assume (f1) and

f ( ¶ ; x; s)

s
is decreasing for 0 6 s < "0 a.e. x 2 « ; (5.2)

f( ¶ ; x; s) >  · 1s a.e. x 2 « ; s 2 [0; "0]; (5.3)

where · 1 denotes the ¯rst eigenvalue of the Laplacian operator. Then problem (P ¶ )
has at most one positive solution u with kuk0 < "0.

Remark 5.9. If we assume the following stronger hypotheses,

A(x; s) is non-decreasing with respect to s for 0 6 s < +1 a.e. x 2 « ; (5.4)

f( ¶ ; x; s)

s
is decreasing for 0 6 s < +1 a.e. x 2 « ; (5.5)

lim
s! 0+

f ( ¶ ; x; s)

s
= +1; uniformly in « ; (5.6)

then theorem 5.8 implies uniqueness of positive solutions of problem (P ¶ ).

Remark 5.10. Some words are in order with respect to condition (A5). In the case
that A(x; s) = a(s)I and f ( ¶ ; x; s) = ¶ f(s), performing the change of variable
v = â(u), where

â(s) =

Z s

0

a(t) dt;

we get that (P ¶ ) is equivalent to the following semilinear boundary-value problem:

¡ ¢v(x) = ¶ (f ¯ â¡1)(v(x)); x 2 « ;

v(x) = 0; x 2 @« :

Uniqueness theorems are known (see [10]) if the composed function f ¯ â¡1 is con-
cave. This is so when hypotheses (A5) and (5.2) are satis ed in this case.

Proof. We argue by contradiction and suppose that u1 and u2 are distinct solutions
of (P ¶ ) with kuik0 < "0, i = 1; 2. We claim that it is then possible to choose u1
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and u2 such that u1 6 u2. Indeed, let us recall that in [8] it is proved that, for each
r > 0, there exist ur 2 _P » E and ¶ r 2 R + such that kurkr = r and

¡ div(A(x; ur)rur) = ¶ rur; x 2 « ;

ur = 0; x 2 @« :

Moreover, we have kurk0 6 c0 ¶ rr. Following the same arguments of [7], by (5.3),
for su¯ ciently small r > 0, ur is a subsolution of (P ¶ ). Since, by lemma 2.4 (ii),
u1 and u2 are in _P , we have, for r su¯ ciently small, that ur 6 minfu1; u2g. Thus,
by the sub{supersolutions method (see [7]), there exists a solution w1 of (P¶ ) such
that

ur 6 w1 6 u1 and ur 6 w1 6 u2:

Hence we have obtained two ordered distinct solutions: either w1 and u1, or w1 and
u2. Therefore, we can always assume u1 6 u2 < "0, and u1 6² u2. We take u2

2=u1 as
a test function in the equation satis ed by u1 and we get

Z

«

A(x; u1)ru1 ¢
³

2
u2

u1
ru2 ¡

³
u2

u1

2́

ru1

´
=

Z

«

f ( ¶ ; x; u1)

u1
u2

2:

Now taking u2 as a test function in the equation satis ed by u2 yields
Z

«

A(x; u2)ru2 ¢ ru2 =

Z

«

f ( ¶ ; x; u2)

u2
u2

2:

Observing that u1 6 u2 < "0, we deduce from (A5) that A(x; u2) ¡ A(x; u1) is
non-negative de nite and, subtracting both equalities, we obtain from (5.2) that

0 > ¡
Z

«

A(x; u1)

³
ru2 ¡ u2

u1
ru1

´
¢
³

ru2 ¡ u2

u1
ru1

´

¡
Z

«

[A(x; u2) ¡ A(x; u1)]ru2 ¢ ru2

=

Z

«

³
f ( ¶ ; x; u1)

u1
¡ f ( ¶ ; x; u2)

u2

´
u2

2 > 0;

which is a contradiction.

Now let us deal with nonlinearities f that are superlinear at in nity. Speci cally,
we study the case in which there exists p 2 (1; 2 ¤ ¡ 1) and a bounded function h
such that, for every real compact interval ¤ ,

lim
s! + 1

f ( ¶ ; x; s)

sp
= h(x) > c > 0; uniformly; x 2 « ; ¶ 2 ¤ : (5.7)

The following extension of the a priori estimate of Gidas and Spruck [16] to
quasilinear operators will be useful.

Theorem 5.11. Let us assume that aij(x; s) 2 C1( ·« £ R) and conditions (A1),
(A2), (A4), (f1) and (5.7) hold. Then, for every compact interval ¤ » R, there
exists C > 0 such that every positive solution u 2 C1( « ) \ C0( ·« ) of (P ¶ ) with
¶ 2 ¤ satis¯es

u(x) 6 C 8x 2 « :
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Proof. The proof follows the outline of [16], with a few elementary changes. How-
ever, in order to make the paper as self-contained as possible, we include the details
here. Let us denote by BR(x) a ball in RN centred at x 2 RN of radius R > 0. We
argue by contradiction and suppose that un 2 C1( « ) \ C0( ·« ) are positive solutions
of (P¶ ) for ¶ = ¶ ¤ , with ¶ n 2 ¤ and Pn 2 « , such that

Mn = sup
«

un(x) = un(Pn) ! +1:

Then (up to a subsequence) we may assume

¶ n ! ¶ ; Pn ! P 2 ·« :

We divide the proof into two steps, in the  rst one we suppose that P 2 « , while
in the second one we deal with the case in which P 2 @« . In both cases, we will
obtain a contradiction.

Step 1. Suppose that P 2 « . Let 2d = dist(P; @« ) > 0, · n = M
(1¡p)=2
n and

vn(y) = · 2=(p¡1)
n un(Pn + · ny) for every y 2 Bd=· n (0): (5.8)

Observe that · n ! 0,
sup

y 2 Bd=· n (0)
vn(y) = vn(0) = 1;

and vn satis es the following equation in Bd=· n (0):

¡ div(A( · ny + Pn; · ¡2=(p¡1)
n vn(y))rvn)

= · 2p=(p¡1)
n f ( ¶ n; · ny + Pn; · ¡2=(p¡1)

n vn(y)): (5.9)

By (5.7), the right-hand side of this equation satis es

lim
n ! 1

j · 2p=(p¡1)
n f

³
¶ n; · ny + Pn; · ¡2=(p¡1)

n vn(y)

´
¡ h( · ny + Pn)vn(y)pj = 0:

Since conditions (A1), (A2) hold, by applying theorem 9.15 in [17], we get that
vn 2 W 2;s(Bd=· n

(0)), s > 1. Now  x R > 0 and let n0 be a positive integer such that
R < d=· n for every n > n0. For every R0 2 (R; d=· n), we obtain from theorem 9.11
in [17] that

kvnkW 2;s(BR(0)) 6 C(kvnkLs(BR 0 (0)) + kgnkLs(BR 0 (0)));

where C is a positive constant depending only on N , p, ¬ ,  and R0, and

gn(y) = · 2p=(p¡1)
n f( ¶ n; · ny + Pn; · ¡2=(p¡1)

n vn(y)):

Taking into account that

kvnkLs(BR 0 (0)) + kgnkLs(BR 0 (0)) 6 C1 = C1(R0; ¶ n) 8n > n0;

we deduce a uniform bound for kvnkW 2;s(BR(0)) for every n > n0. Choosing s
large enough, we obtain from Morrey’s theorem that kvnk

C1; (BR(0)) is uniformly
bounded. Therefore, we can apply the Ascoli{Arzeĺa theorem and deduce the exis-
tence of a function v 2 C0(BR(0)) such that (up to a subsequence) vn ! v in
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C0(BR(0)) and h( · ny+Pn) ! ¸ , for some ¸ > 0. Necessarily, we have that v(0) = 1
and, from (A4),

¡ div(A(P; +1)rv) = ¸ vp:

Then, by regularity, for ½ 2 (0; 1), v 2 C1;½ (BR(0)). From the arbitrariness of R > 0,
we deduce that v is de ned in RN and it is a solution, after rotating and stretching
coordinates, of

¡ ¢v(x) = vp(x); x 2 RN ;

v(0) = 1:

This contradicts theorem 1.2 in [16].

Step 2. Suppose now that P 2 @« . In this case, since @« is smooth, we can
suppose that a neighbourhood of P in « is contained in the set fx 2 RN : xN > 0g
and that near P the boundary of « is contained in the hyperplane xN = 0. We
set dn = dist(Pn; @ « ) = Pn ¢ en (en = (0; : : : ; 0; 1)), and we observe that the
function vn given by (5.8) is well de ned in « n ² B ¯ =· n

(0) \ fyN > ¡ dn=· ng,
for some ¯ > 0. Moreover, it satis es (5.9) in « n. By elliptic regularity up to the
boundary (see [17, theorems 9.13 and 9.15]) and Morrey’s theorem, we deduce,
again from (A1), (A2), that jrvnj is uniformly bounded in « n. Consequently,

1 =

vn(0) ¡ vn

³
¡ dn

· n
en

´6 C
dn

· n
;

i.e. dn=· n is away from zero. If, for a subsequence, dn=· n ! 1, we can apply
similar arguments to those of step 1 to reach a contradiction with theorem 1.2 in
[16]. On the other hand, if dn=· n is bounded from above, we assume, passing to
a subsequence if necessary, that dn=· n ! s > 0. Since vn satis es (5.9) in « n,
again by [17, theorem 9.15], for every R; " > 0, we get a uniform bound of vn in
C1;½ (BR(0) \ fyN > ¡ s + "g) for n large enough. Therefore (up to a subsequence),
we obtain that vn ! v in C1(BR(0) \ fyN > ¡ s + "g), h( · ny + Pn) ! ¸ , for some
¸ > 0, and, using (A4) and that R and " are arbitrary, v is a solution of

¡ div(A(P;+1)rv) = ¸ vp; fyN > ¡ sg;

v(y) = 0; fyN = ¡ sg;

v(0) = 1:

Now the contradiction follows from theorem 1.3 in [16] after a linear transformation
and a stretching of coordinates.

We are now ready to state our existence result.

Theorem 5.12. Assume (2.2) and that f( ¶ ; x; 0) = 0, for a.e. x 2 « and for
every ¶ 2 R, (f1), (f 0

3), (f4), (f5), (5.7) and (A1){(A4). Let ¶ 0 be given by (4.3).
Then there exist ¤ ¤ > ·¶ > ¶ 0 such that (P¶ ) has at least one positive solution for
every ¶ 6 ·¶ and no positive solution if ¶ > ¤ ¤ . In addition, if either ¶ 0 > 0 and
the hypotheses of theorem 4.4 (ii) hold, or ¶ 0 = 0 (i.e. f 0

+ (x; 0) = +1, for every
x 2 « ) and (4.8) is satis¯ed, then ·¶ > ¶ 0 and, for every ¶ 2 ( ¶ 0; ·¶ ), there exist at
least two positive solutions.
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Figure 6.

Remark 5.13. Under the hypotheses of theorem 5.12, once again, we see that the
study of the side of the bifurcation from ( ¶ 0; 0) is essential. If it occurs to the left
(for instance, if ¶ 0 > 0 and the hypotheses of theorem 4.4 (i) hold), only existence
of at least one positive solution for ¶ < ¶ 0 is deduced. On the other hand, if it is to
the right (e.g. if either ¶ 0 > 0 and the hypotheses of theorem 4.4 (ii) are satis ed
or ¶ 0 = 0 and (4.8) holds), then ·¶ > ¶ 0 and we obtain the existence of at least two
positive solutions for ¶ in a right-hand side interval of ¶ 0 (see  gure 6).

Proof. Since the hypotheses of theorem 4.4 are satis ed, from ¶ 0 emanates an
unbounded continuum § 0 » § . By (f5), as we have seen in the proof of theo-
rem 5.1 (i), there is an a priori upper bound for the set of values ¶ for which there
exists a solution of (P ¶ ). Thus

¤ ¤ ² supf ¶ 2 R; 9u 2 E ¡ f0g solution of (P ¶ )g < +1;

and Proj § 0 is a real interval bounded from above by ¤ ¤ . Hence, if ·¶ is the supre-
mum of Proj § 0, then ¶ 0 2 Proj § 0 » ( ¡ 1; ·¶ ]. Using theorem 5.11 and the fact
that § 0 is unbounded, we also deduce that ( ¡ 1; ·¶ ] » Proj § 0. This proves the
 rst part of the theorem. If either ¶ 0 6= 0 and the hypotheses of theorem 4.4 (ii)
hold, or ¶ 0 = 0 and (4.8) is satis ed, then the bifurcation is supercritical and so
¶ 0 < ·¶ . Therefore, we get the existence of at least two positive solutions for every
¶ 2 ( ¶ 0; ·¶ ).

A question remains open in theorem 5.12. Indeed, it is natural to wonder whether
the continuum § 0 gives the maximal interval of ¶ for which there exists a positive
solution of (P ¶ ), i.e. is it ·¶ = ¤ ¤ ? We can prove that the answer is positive for a
particular class of matrices A(x; s). Speci cally, we assume that

A(x; s) := a(s)A(x) (i; j = 1; : : : N ); (A6)
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where A(x) := (aij (x)) is a positive de nite matrix with C1-coe¯ cients aij(x) in ·«
and a : [0; +1) ! R a non-increasing C1-function with lims ! + 1 a(s) > 0. Note,
that in this case, conditions (A1){(A3) hold. With respect to f( ¶ ; x; s), we assume
that f( ¶ ; x; 0) = 0 a.e. x 2 « , for every ¶ 2 R and f is non-decreasing in s. We
need to prove the following theorem.

Theorem 5.14. Assume that (A6) holds, that f ( ¶ ; x; 0) = 0 a.e. x 2 « , for every
¶ 2 R and that f is non-decreasing in s. Let I » R be an interval, and § 0 »
I £ C1

0( ·« ) be a connected set of solutions of (P¶ ). Consider a continuous map
T : I ! C1

0( ·« ) such that T ( ¶ ) is a supersolution of (P ¶ ), which is not a solution. If
there exists ( ¶ 0; u0) 2 § 0 with u0 6 T ( ¶ 0) in « , then u 6 T ( ¶ ) in « 8( ¶ ; u) 2 § 0.

Proof. This theorem is an extension to quasilinear operators of the result in [15,
theorem 2.2]. Arguing in the same way as [15], we note that it is sū cient to show
the following extension of lemma 2.1 of [15].

Lemma 5.15. Let ·u 2 C1
0 ( ·« ) be a supersolution of (P ¶ ) and u 2 C1

0 ( ·« ) be a solu-
tion of (P ¶ ) such that u 6= ·u. Then ·u ¡ u 62 @P .

Proof. Let â : [0; +1) ! R be de ned by

â(s) =

Z s

0

a(t) dt:

The function â is increasing and â(0) = 0. In addition, by the chain rule, u is a
positive solution of (P ¶ ), i.e.

Z

«

a(u)A(x)ru ¢ rv =

Z

«

f ( ¶ ; x; u)v 8v 2 H1
0 ( « )

if and only if w = â(u) satis es

Z

«

A(x)râ(u) ¢ rv =

Z

«

f ( ¶ ; x; u)v 8v 2 H1
0 ( « );

i.e. w = â(u) veri es

¡ div(A(x)rw) = f ( ¶ ; x; u) > 0; x 2 « ;

w > 0; x 2 « ;

w = 0; x 2 @« :

Notice that, in this case, by the maximum principle, â(u) = w > 0 in « and

@â(u)

@n
= a(u)

@u

@n
< 0 in @« :

Consequently, u 2 _P . To prove the lemma, we argue by contradiction. If ·u ¡ u 2 @P ,
then, in particular, ·u > u, for every x 2 ·« and, since

¡ div(A(x)râ(·u)) > f( ¶ ; x; ·u)
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and

¡ div(A(x)râ(u)) = f( ¶ ; x; u);

we deduce from the monotonicity of f that

¡ div(A(x)r[â(·u) ¡ â(u)]) > f ( ¶ ; x; ·u) ¡ f( ¶ ; x; u) > 0:

Hence the strong maximum principle implies that

â(·u) ¡ â(u) > 0 in «

and
@(â(·u) ¡ â(u))

@n
= a(·u)

@·u

@n
¡ a(u)

@u

@n
< 0 in @« :

Moreover, since â is strictly increasing, we obtain ·u > u in « . By the fact that a is
non-increasing and that u 2 _P , we deduce that @(·u ¡ u)=@n < 0. Then ·u ¡ u 2 _P ,
which is a contradiction, proving the lemma and thus the theorem.

We can now give a partial positive answer to the above question with the following
result.

Theorem 5.16. Suppose, in addition to the hypotheses of theorem 5.12, condi-
tion (A6) holds and that f is non-decreasing in ¶ and s. If there exists a positive
non-decreasing function ` satisfying

f ( ¶ ; x; s) < 0 8 ¶ < ¡ `(s) a.e. x 2 « ; s 2 R + ;

then the constants ¤ ¤ and ·¶ given in theorem 5.12 are equal, i.e. problem (P¶ ) has
positive solutions if and only if ¶ 6 ·¶ = ¤ ¤ .

Proof. We claim that if un is a sequence of positive solutions of (P¶ ) for ¶ = ¤
with ¶ n ! ¡ 1, then kunk ! +1. Indeed, if, by contradiction, kunk0 6 s0, then,
for ¶ n < ¡ `(s0), we would have f ( ¶ n; x; un) < 0, and taking un as a test function,
by (A2), we would have that un = 0, a contradiction proving the claim. Thus the
unbounded continuum § 0 of positive solutions emanating from zero connects ( ¶ 0; 0)
and ( ¡ 1; +1). In order to prove the theorem, it su¯ ces to show that if, for some
¤ > ¶ 0, problem (P¶ ) for ¶ = ¤ admits a positive solution, then ¤ 2 Proj § 0.
Suppose that (P¶ ) for ¶ = ¤ has a positive solution u ¤ . Then u ¤ is supersolution
of (P ¶ ) for all ¶ 2 ( ¡ 1; ¤ ) ² I and, taking T ( ¶ ) = u ¤ for every ¶ < ¤ , we deduce
from theorem 5.14 that § 0 \ (I £ E) does not cross u = u¤ and the only way to
connect ( ¶ 0; 0) and ( ¡ 1; +1) is that § 0 cross the region ¶ > ¤ . In particular,
¤ 2 Proj § 0.
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