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Abstract: A workflow headed up to identify crops growing under plastic-covered greenhouses 

(PCG) and based on multi-temporal and multi-sensor satellite data is developed in this article. This 

workflow is made up of four steps: (i) data pre-processing, (ii) PCG segmentation, (iii) binary pre-

classification between greenhouses and non-greenhouses, and (iv) classification of horticultural 

crops under greenhouses regarding two agronomic seasons (autumn and spring). The segmentation 

stage was carried out by applying a multi-resolution segmentation algorithm on the pre-processed 

WorldView-2 data. The free access AssesSeg command line tool was used to determine the more 

suitable multi-resolution algorithm parameters. Two decision tree models mainly based on the 

Plastic Greenhouse Index were developed to perform greenhouse/non-greenhouse binary 

classification from Landsat 8 and Sentinel-2A time series, attaining overall accuracies of 92.65% and 

93.97%, respectively. With regards to the classification of crops under PCG, pepper in autumn, and 

melon and watermelon in spring provided the best results (Fβ around 84% and 95%, respectively). 

Data from the Sentinel-2A time series showed slightly better accuracies than those from Landsat 8. 

Keywords: Landsat 8; Sentinel-2; WorldView-2; time series; object-based classification;  

greenhouse mapping; crop types classification 

 

1. Introduction 

Growing needs in food supply will require higher agricultural yields [1]. In this way, the use of 

plastic materials during the past 60 years, as a tool to move up the first harvest and increase the yield 

of horticultural crops, has been steadily increasing throughout the entire world [2]. In 2016, plastic-

covered greenhouses (PCG) have reached a total coverage of 3019 million hectares over the world [3]. 

They are mainly localized in Europe, North Africa, the Middle East, and China [4]. The increasing 

role of agriculture in the management of sustainable natural resources calls for the development of 

operational cropland mapping and monitoring methodologies [5]. Due to their synoptic acquisitions 

and high revisit frequency, the data obtained by remote sensing can offer a significant contribution 

to provide periodic and accurate pictures of the agricultural sector [6,7]. It takes special relevance 

considering that a new era of land cover analysis has emerged, which has been enabled by free and 

open access data (e.g., Sentinel-2 or Landsat 8 images), analysis-ready data, high-performance 
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computing, and rapidly developing data processing and analysis capabilities [8]. For instance, a 

combination of data from Sentinel-2 (2A and 2B) and Landsat 8 provides a global median average 

revisit interval of 2.9 days [9]. 

Regarding PCG mapping from remote sensing, an increasing amount of scientific literature has 

been published during the last decade that has mainly focused on Landsat imagery [4,10–16]. Novelli 

et al. [17] compared single-date Sentinel-2 and Landsat 8 data to automatically classify PCG. A few 

indices especially adapted to plastic sheet detection, such as the Index Greenhouse Vegetable Land 

Extraction (Vi) [18], Plastic-Mulched Landcover Index (PMLI) [10], Moment Distance Index (MDI) 

[12,19], Plastic Greenhouse Index (PGI) [13], and Greenhouse Detection Index (GDI) [16] have been 

recently proposed. 

In relation to the classification of crops via remote sensing, Badhwar [20] published one of the 

first works where Landsat imagery multi-temporal data (only three dates) were used for corn and 

soybean crops mapping. In fact, crop types classification from medium resolution satellite imagery 

was mainly conducted by using pixel-based approaches until approximately 2011. Just before 

Petitjean et al. [21] argued that the increasing spatial resolution of available spaceborne sensors was 

enabling the application of the object-based image analysis (OBIA) paradigm to extract crop types 

from satellite image time series, Peña-Barragán et al. [22] developed a methodology for outdoor crop 

identification and mapping using OBIA and decision tree algorithms. This methodology was also 

applied to a Landsat time series to map sugarcane over large areas [23]. This OBIA approach 

consisted of two main consecutive phases: (i) the delimitation of crop fields by image segmentation 

and, (ii) the application of decision rules based on physically interpretable thresholds of selected 

features that characterize every studied crop as affected by growing season period, crop calendars, 

and soil management techniques. Following this research line, Aguilar et al. [11] went one step 

further by addressing the identification of under PCG horticultural crops (indoor crops) from using 

Landsat 8 Operational Land Imager (OLI) time series and a single WorldView-2 satellite image. 

However, this research work left two important issues to be resolved. The first was implementing a 

fully automatic segmentation process. In fact, Aguilar et al. [11] carried out a manual digitizing over 

the WorldView-2 image to obtain the best possible segmentation on their reference PCG. Secondly, 

the authors did not deal with the preliminary problem related to the binary pre-classification of 

greenhouse (GH) and non-greenhouse (Non-GH) objects. In this sense, all of the reference segments 

were previously pre-classified as greenhouses. 

The innovative goal faced in this paper relies on the integration of all the necessary steps to carry 

out the identification of under PCG crops from using an OBIA approach based on multi-temporal 

(Landsat 8 and Sentinel-2 time series) and multi-sensor (WorldView-2, Landsat 8, and Sentinel-2) 

satellite imagery. This workflow is composed of four stages: (i) data pre-processing; (ii) segmentation 

aimed at mapping greenhouse objects; (iii) binary pre-classification in GH or Non-GH; and (iv) 

classification of under PCG crops in two agronomic seasons (autumn and spring). Moreover, the 

binary pre-classification phase will be used for testing, in the same conditions, several indices 

specifically proposed for PCG mapping such as PMLI, MDI, PGI, GDI, and Vi. Some of these stages, 

which have been included in the workflow, have already been addressed (but never at the same time) 

by our research team [11,12,16,17]. 

2. Study Area 

The study area is located in the province of Almeria (Southern Spain). It comprises an area of ca. 

8000 ha centered on the geographic coordinates (WGS84) 36.7824° N and 2.6867° W (Figure 1). It is 

just at the core of the greatest concentration of greenhouses in the world, the so-called “Sea of Plastic”. 

The practice of under plastic agriculture is a key economic driver in this area; tomato (Solanum 

lycopersicum), pepper (Capsicum annuum), cucumber (Cucumis sativus), aubergine (Solanum 

melongena), melon (Cucumis melo), and watermelon (Citrullus lanatus) are the most representative 

greenhouse horticultural crops. 
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Figure 1. Location of the study area: (a) Province of Almeria localization (in red) showing the Landsat 

paths 200 and 199 (yellow and pink outlines respectively) and the Sentinel-2A relative orbits R094 

and R051 (green and pink lines respectively); (b) Study area (yellow polygon) and the two scenes of 

Landsat 8 (200/34 and 199/35) and the scene of Sentinel-2A (30SWF) used in this study; (c) Detailed 

view of the study area based on a red–green–blue (RGB) WorldView-2 image taken in July 2015. 

Coordinate system: ETRS89 UTM Zone 30N. 

3. Datasets and Pre-Processing 

3.1. WorldView-2 Image 

WorldView-2 (WV2) is a very high-resolution (VHR) satellite launched in October 2009. This 

sensor can acquire optical images with 0.46 m and 1.84 m ground sample distance (GSD) at the nadir 

in panchromatic (PAN) and multispectral (MS) mode, respectively. It was the first VHR satellite 

providing eight MS bands: coastal (C, 400–450 nm), blue (B, 450–510 nm), green (G, 510–580 nm), 

yellow (Y, 585–625 nm), red (R, 630–690 nm), red edge (RE, 705–745 nm), near infrared-1 (NIR1, 760–

895 nm) and near infrared-2 (NIR2, 860–1040 nm). 

A single WV2 bundle image (PAN + MS) in Ortho Ready Standard Level-2A (ORS2A) format 

was taken on 5 July 2015. The WV2 image presented a GSD of 0.5 m for the PAN image, and 2 m for 

the MS one. The acquired data was ordered with a radiometric resolution of 11-bit and without 

further processing in relation to its dynamic range. The PANSHARP module, which was included in 

Geomatica v. 2014 (PCI Geomatics, Richmond Hill, ON, Canada), was applied to produce a pan-

sharpened RGB image with 0.5 m of GSD. Seven ground control points (GCPs) were acquired to 

compute the sensor model based on rational functions refined by a zero-order transformation in the 

image space (RPC0). The orthorectification process was implemented by means of a medium 

resolution digital elevation model (DEM) (10-m grid spacing and 1.34-m vertical accuracy (RMSE)) 

provided by the Andalusia Government. The planimetric accuracy (RMSE2D) for the orthorectified 

pan-sharpened image was estimated on 32 evenly distributed independent check points (ICPs), 

yielding a value of 0.59 m. Both the GCPs’ and ICPs’ coordinates were obtained by post-processing 

of GNSS (Global Navigation Satellite System) survey data. It is worth noting that this RGB pan-
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sharpened WV2 orthoimage was exclusively used to manually digitize the ground truth and extract 

the necessary ground points to improve the co-registration of the Landsat 8 and Sentinel-2 images. 

An MS orthoimage with 2-m GSD, containing the full eight-band spectral information, was also 

produced. The same seven GCPs, RPC0 model, and DEM were used to attain the MS orthoimage 

(planimetric accuracy; RMSE2D = 2.20 m). In this case, and as a prior step to the orthorectification 

process, the original WV2 MS image was atmospherically corrected by using the ATCOR module, 

based on the MODTRAN (MODerate resolution atmospheric TRANsmission) radiative transfer code 

[24] that was included in Geomatica v. 2014. 

3.2. Landsat 8 Images 

The Landsat 8 (L8) satellite was launched in February 2013, carrying a two-sensor payload, the 

Operational Land Imager (OLI), and the Thermal Infrared Sensor (TIRS). The OLI sensor can capture 

eight MS bands with 30-m GSD: coastal aerosol (C, 430–450 nm), blue (B, 452–512 nm), green (G, 533–

590 nm), red (R, 636–673 nm), near infrared (NIR, 851–879 nm), shortwave infrared-1 (SWIR1, 1566–

1651 nm), shortwave infrared-2 (SWIR2, 2107–2294 nm) and cirrus (CI, 1360–1380 nm). In addition, 

L8 OLI presents a panchromatic band (P, 500–680 nm) with 15-m GSD. 

Fourteen cloud-free multi-temporal L8 OLI scenes (Level 1 Terrain Corrected (L1T)) were freely 

downloaded from the United States Geological Survey (USGS) website through the EarthExplorer 

tool [25] (Table 1). They were used as input data for both the binary pre-classification of greenhouses 

and non-greenhouses objects, and the subsequent under greenhouse crop type classification. In order 

to increase the number of available images, they were captured from two different Path/Row (200/34 

and 199/35), both comprising the whole study area (Figure 1). All of the L8 L1T scenes (terrain-

corrected to UTM 30N, WGS84, and Top-Of-Atmosphere reflectance products (TOA)) were taken 

with a dynamic range of 12 bits from June 2016 to June 2017. 

Table 1. Characteristics of the Landsat 8 Operational Land Imager (OLI) images. 

Path Row 
Date of Acquisition 

(Day/Month/Year) 

Start Time 

(UTC) 

Sun Azimuth 

(Degrees) 

Sun Elevation 

(Degrees) 

199 35 9 June 2016 10:43:50 120.25 67.76 

200 34 18 July 2016 10:50:09 124.64 64.65 

199 35 12 August 2016 10:44:27 131.41 60.96 

200 34 19 August 2016 10:50:17 136.86 58.58 

199 35 13 September 2016 10:44:38 146.09 52.72 

199 35 31 October 2016 10:44:45 159.50 37.21 

200 34 7 November 2016 10:50:31 160.92 33.88 

200 34 25 December 2016 10:50:25 158.92 26.14 

200 34 27 February 2017 10:50:03 148.98 39.21 

200 34 15 March 2017 10:49:55 146.52 45.22 

199 35 9 April 2017 10:43:55 140.16 55.59 

200 34 2 May 2017 10:49:27 135.83 61.80 

200 34 18 May 2017 10:49:39 130.47 65.19 

199 35 12 June 2017 10:43:50 119.63 67.78 

It was necessary to carry out some preliminary processing steps to ensure the proper use of the 

L8 scenes for greenhouse mapping and crop identification. The first one was to clip the original 

images, both PAN and MS, according to the study area. Taking into account that spatial resolutions 

equal or better than 8–16 m are recommended by Levin et al. [26] to work in the detection of 

greenhouses through remote sensing, the second stage consisted of fusing the information of the PAN 

and MS Landsat 8 bands through the application of the PANSHARP module included in Geomatica 

v. 2014. The pan-sharpened images were generated with a GSD of 15 m, 12-bit depth, and seven 

bands (C, B, G, R, NIR, SWIR1, SWIR2, and CI). The next processing step consisted of performing 

atmospheric correction by applying the ATCOR module (Geomatica v. 2014) to the L8 pan-sharpened 
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images. The goal was to attain ground reflectance values at Bottom-of-Atmosphere (BOA). More 

details about this third step can be obtained from Aguilar et al. [11]. The last process involved the co-

registration of the 14 clipped and pan-sharpened L8 images. Each pan-sharpened L8 image was co-

registered with the RGB pan-sharpened WV2 orthoimage (reference image) using 35 ground control 

points evenly distributed over the work area and a first-order polynomial transformation. The 

resulting RMSE2D for the finally co-registered L8 pan-sharpened images was assessed over 15 ICPs, 

ranging from 4.34 m to 4.95 m. 

3.3. Sentinel-2A Images 

The Sentinel-2 mission comprises a constellation of two polar-orbiting satellites placed in the 

same orbit and phased at 180° to each other (Sentinel-2A and Sentinel-2B). The images used in this 

work were taken by Sentinel-2A (S2A) MultiSpectral Instrument (MSI) that was launched in June 

2015. The S2A MSI sensor collects up to 13 bands with three different geometric resolutions ranging 

from 60 m to 10 m GSD. Note that only the four bands with 10-m GSD (i.e., B2—Blue (B, 458–523 nm), 

B3—Green (G, 543–578 nm), B4—Red (R, 650–680 nm) and B8—near infrared (NIR, 785–900 nm)) and 

the six bands with 20-m GSD (i.e., B5—Red Edge 1 (RE1, 694–713 nm), B6—Red Edge 2 (RE2, 731–

749 nm), B7—Red Edge 3 (RE3, 769–797 nm), B8a—Narrow NIR (NNir, 848–881 nm), B11—shortwave 

infrared-1 (SWIR1, 1565–1655 nm), and Band 12—shortwave infrared-2 (SWIR2, 2100–2280 nm)) were 

used in this study. 

Fourteen S2A MSI Level 1C (L1C) images were freely downloaded from the website of the 

European Space Agency (ESA)-Copernicus Scientific Data Hub tool [27]. They were used as input 

data for the binary pre-classification of greenhouses and non-greenhouses and the subsequent under 

greenhouse crop type classification. The L1C data corresponds to TOA reflectance values (12-bit 

dynamic range) after the application of radiometric and geometric corrections (including 

orthorectification and spatial registration onto the UTM/WGS84 coordinate system). As detailed in 

Table 2, all of the collected S2A MSI L1C images were contained in the T30SWF granule, being 

captured from two different orbits (R094 and R051) (Figure 1). 

Table 2. Characteristics of the Sentinel-2A images. 

Orbit Granule 
Date of Acquisition 

(Day/Month/Year) 

Start Time 

(UTC) 

Sun Azimuth 

(Degrees) 

Sun Elevation 

(Degrees) 

R094 30SWF 13 June 2016 11:05:59 132.42 71.65 

R094 30SWF 23 July 2016 11:07:12 135.11 68.14 

R094 30SWF 12 August 2016 10:56:22 142.91 64.02 

R051 30SWF 19 August 2016 10:50:32 141.47 61.07 

R051 30SWF 18 September 2016 10:50:22 153.95 52.19 

R094 30SWF 31 October 2016 11:02:02 166.98 38.16 

R051 30SWF 7 November 2016 10:52:42 164.56 35.56 

R051 30SWF 27 December 2016 10:54:42 161.83 27.93 

R094 30SWF 28 February 2017 11:00:01 155.74 42.62 

R094 30SWF 10 March 2017 10:58:41 154.63 46.45 

R094 30SWF 9 April 2017 10:56:51 150.93 58.11 

R051 30SWF 6 May 2017 10:50:31 139.81 65.44 

R094 30SWF 19 May 2017 10:56:51 140.54 69.43 

R051 30SWF 5 June 2017 10:50:31 129.34 69.89 

The Sen2Cor Algorithm developed by the German Aerospace Center (DLR) [28] Version 2.3.0 

[29] was applied to obtain the Level 2A (L2A) data from the corresponding L1C products. The L2A 

images provide BOA reflectance values. The S2A MSI L2A clips comprising the study area were 

extracted from the aforementioned granule. Those bands with 20-m GSD were resampled into 10 m 

by using the Sentinel-2 Toolbox implemented in the open source software Sentinel Application 

Platform (SNAP) developed by ESA. Finally, each clipped S2A MSI L2A image was co-registered 
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with the reference image (RGB WV2 pan-sharpened orthoimage) by using 44 ground control points 

evenly distributed over the study area and a first-order polynomial transformation. The RMSE2D 

values for the geometrically-corrected images were assessed on 15 ICPs, ranging from 3.20 m to 4.09 

m. 

3.4. Horticultural Crops under PCG Reference Data 

Two field campaigns were carried out to obtain rigorous and real information about the main 

horticultural crops growing under PCG in the study area. 

One of them was conducted in autumn 2016, from the end of October to the beginning of 

November. In this first fieldwork, 1202 individual PCG evenly distributed over the study area were 

inventoried. More specifically, 511, 379, 148, and 164 individual PCG containing pepper, tomato, 

aubergine, and cucumber, respectively, were monitored during the autumn field campaign (Figure 

2a). The second fieldwork was undertaken at the end of April 2017 (spring campaign). In this case, 

1114 individual greenhouses (225 pepper, 394 tomato, 161 aubergine, 64 cucumber, and 270 melon or 

watermelon) were visited (Figure 2b). It should be noted that the field campaigns were extremely 

time-consuming; the monitored greenhouses, both in autumn 2016 and spring 2017, were very 

representative of the main horticultural crops of the study area and the entire province of Almería. 

In fact, 849 greenhouses were visited in both field campaigns, while the rest were selected to maintain 

an adequate proportion of the different horticultural crops. The average area of the reference 

greenhouses took a value of 7279 m2, showing a very high standard deviation (4002 m2). 

 
(a) 

 
(b) 

Figure 2. Location of the reference horticultural crops growing under plastic-covered greenhouses 

(PCG). Reference image: WorldView-2 (WV2) multispectral (MS) RGB orthoimage: (a) Field campaign 

carried out in autumn 2016; (b) Field campaign carried out in spring 2017. 

The typical dates of transplantation (T) and removal (R) of the main horticultural crops under 

plastic in the province of Almería turn out to be very variable according to the crop variety, crop cycle 

(long or short crop cycle), and the market conditions (Table 3). 
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Table 3. Schematic summary of the typical dates of transplantation (T) and removal (R) for the studied 

horticultural crops. From June (month number 6) to June. 

Crop 
Month 

6 7 8 9 10 11 12 1 2 3 4 5 6 

Tomato   T T   T T/R T/R T R R R 

Pepper T T T T T  R R R R R R R 

Aubergine   T T   R  R R R R R 

Cucumber  T T T T/R R R T/R T/R R R R R 

Melon or Watermelon        T T T R R R 

4. Methodology 

The methodology proposed in this article addresses the following aspects: (i) pre-processing 

protocol for WV2, L8, and S2A images (explained in Sections 3.1–3.3); (ii) segmentation of the WV2 

MS orthoimage for delineating greenhouses; (iii) binary pre-classification of the entire study area into 

two classes (GH and Non-GH) by applying an OBIA approach based on the WV2 MS orthoimage 

segmentation and data from the L8 and S2A image time series; (iv) final classification of the main 

horticultural crops under PCG (Table 3) in autumn 2016 and spring 2017. A flowchart describing the 

methodology proposed is shown in Figure 3. 

  

Figure 3. Flowchart of the methodology proposed in this work. 

4.1. Segmentation 

The original approach relied on employing the WV2 MS geometrically and atmospherically 

corrected imagery from 2015 to obtain a good segmentation over the study area. In fact, Aguilar et al. 

[30] reported that the VHR satellite atmospherically corrected MS orthoimage was the best satellite 

imagery source to attain a good segmentation dealing with PCG. Moreover, the segmentation process 
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using an orthoimage with improved geometric resolution (e.g., PAN or pan-sharpened) required an 

extremely high computing time in our study area. 

The widely known multi-resolution (MRS) image segmentation algorithm implemented in the 

OBIA software eCognition Version 8.8 was used in this work. This segmentation approach is a 

bottom–up region-merging technique that starts with one-pixel objects. In several iterative steps, 

smaller objects are merged into larger ones [31]. This task highly depends on the target objects to be 

segmented [32]. The MRS algorithm is controlled by three main factors: (i) the scale parameter (SP), 

which determines the maximum heterogeneity allowed for the resulting segments; (ii) the weight of 

color and shape criteria in the segmentation process (Shape); and (iii) the weight of the compactness 

and smoothness criteria (Compactness). Users must also configure the combination of bands 

combination and their corresponding weights to be applied in the segmentation process. More 

information about its mathematical formulation can be found in Baatz and Schäpe [31], Tian and 

Chen [32] and in the eCognition reference book [33]. 

Novelli et al. [17,34] obtained the optimal parameter for the MRS algorithm in the case of the 

WV2 MS orthoimage that was employed in this work. The selection of the best MRS parameters was 

undertaken through a modified version of the supervised discrepancy measure Euclidean Distance 

2 (ED2) that was originally proposed by Liu et al. [35]. It is included in a free access command line 

tool named AssesSeg [34,36]. It is worth noting that 400 reference PCG objects, which were manually 

delineated on the WV2 orthoimage, were taken as reference objects [17] to compute the modified 

ED2. The aforementioned works showed that this number of reference objects is sufficient to 

guarantee a very good segmentation result at the considered study site. 

The best segmentation attained for the WV2 MS orthoimage from the results achieved in Novelli 

et al. [17,34] was transferred to the L8 and S2A time series using the chessboard segmentation 

algorithm implemented in eCognition. For instance, the segmentation from WV2 MS 2015 was 

uploaded into the eCognition project as a vector thematic layer, and then projected onto the 14 L8 

image time series. It is important to highlight that: 

 The 15-m GSD of the L8 pan-sharpened orthoimages was increased to 0.937 m by halving four 

times the original pixel size. This was necessary to guaranty a better fit between the L8 

segmentations (the entire L8 time series) and the WV2 segmentation. A more in-depth 

explanation of this process is provided in Aguilar et al. [11]. 

 In the case of S2A images (the entire S2A time series), the 10-m GSD was also increased to 1.25 

m by halving three times the original pixel size, following the same methodology that was used 

for L8 pan-sharpened orthoimages. 

 In other words, L8 and S2A segmentations were derived from the best WV2-based segmentation 

in order to improve the final results by taking advantage of the better spatial resolution of the 

WV2 data. 

4.2. Definition and Extration of Object-Based Features 

The object-based features that were used in this work to accomplish the two-step OBIA 

classification (binary pre-classification in GH and Non-GH classes, plus the final crop labeling) were 

retrieved from the L8 (eight bands) and S2A (10 bands) image time series. The mean and standard 

deviation (SD) values of the BOA reflectance values for all the pixels within an object for each band 

and type of orthoimage (L8 pan-sharpened and S2A time series) were labeled as basic spectral 

information. The rest of the features consisted of several spectral and vegetation indices for both L8 

(20 indices) and S2A (35 indices) single images. Note that one specific object (a greenhouse, for 

instance) will have 14 single values for each object-feature in the case of L8 time series data, but also 

for S2A. Table 4 shows the object features tested in this study for L8 (16 basic spectral information 

features and 20 indices). For the calculation of the Moment Distance Index (MDI), the Moment 

Distance from the Left pivot, and the Moment Distance from the Right pivot [12,19], λ represents the 

wavelength expressed in μm,  represents the normalized reflectance values ranging from 0 to 1, the 

subscript LP denotes the left pivot (located in a shorter wavelength), and the subscript RP denotes 

the right pivot (located in a longer wavelength). 
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Table 4. Landsat 8 single images’ object-based features. The features with an asterisk (*) were also applied to 

Sentinel-2A images. 

Name Definitions References 

Mean and Standard Deviation (SD) 

(16 features) 
Mean and SD of each pan-sharpened L8 band [33] 

BRI (Browning Reflectance Index) * ((1 G⁄ ) − (1 R⁄ )) NIR⁄  [37] 

BSI (Bare Soil Index) * ((SWIR1 + R) − (NIR + B)) ((SWIR1 + R) + (NIR + B))⁄  [38] 

Cirrus_NIR (CI − NIR) (CI + NIR⁄ ) [12] 

GNDVI (Green NDVI) * (NIR − G) (NIR + G⁄ ) [39] 

GRVI (Green Red Vegetation Index) * (G − R) (G + R⁄ ) [40] 

MDLP (Moment Distance from the 

Left pivot) * 
MD�� = � �(ρ�

� + (i − λ��)�)

���

�����

 [19] 

MDRP (Moment Distance from the 

Right pivot) * 
MD�� = � �(ρ�

� + (λ�� − i)�)

���

�����

 [19] 

MDI (Moment Distance Index) * MD�� − MD�� [19] 

GDI (Greenhouse Detection Index) * (MDI 3)⁄ − ((B − (SWIR1 + SWIR2)/2) (B + (SWIR1 + SWIR2)/2⁄ )) [16] 

MSAVI (Modified Soil-Adjusted 

Vegetation Index) * 
(�2 × NIR + 1 − ((2 × NIR + 1)� − 8 × (NIR − R)) 2⁄  [41] 

MSR (Modified Simple Ratio) * ((NIR R⁄ ) − 1) (�NIR R⁄ + 1)⁄  [42] 

NDBI (Normalized Difference Built-

up Index) * 
(SWIR1 − NIR) (SWIR1 + NIR)⁄  [43] 

NDVI (Normalized Difference 

Vegetation Index) * 
(NIR − R) (NIR + R)⁄  [44] 

NDTI (Normalized Difference Tillage 

Index) * 
(SWIR1 − SWIR2) (SWIR1 + SWIR2)⁄  [45] 

PGI (Plastic Greenhouse Index) * 100 × (B × (NIR − R) (1 − (B + G + NIR)/3)⁄  [13] 

PMLI (Plastic-Mulched Landcover 

Index) * 
(SWIR1 − R) (SWIR1 + R)⁄  [10] 

RPGI (Retrogressive Plastic 

Greenhouse Index) * 
(100 × B) (1 − (B + G + NIR)/3)⁄  [13] 

SW1_SW2_NIR * ((SWIR1 + SWIR2)/2 − NIR) ((SWIR1 + SWIR2)/2 + NIR)⁄  [12] 

SWIR2_NIR * (SWIR2 − NIR) (SWIR2 + NIR)⁄  [12] 

Vi (Index Greenhouse Vegetable 

Land Extraction) * 
((SWIR1 − NIR) (SWIR1 + NIR)⁄ ) × ((NIR − R) (NIR + R)⁄ ) [18] 

In the case of the S2A images, Table 5 depicts the 20 basic spectral information features (mean 

and SD of the 10 bands) and 16 specific indices that were only tested for S2A. It should be noted that 

all of the indices shown in Table 4 for L8 images, with the exception of Cirrus NIR (i.e., 19 indices), 

were also tested for S2A images. The extraction of the single object-based features (Tables 4 and 5) 

was carried out by transferring the WV2 MS orthoimage segmentation to the L8 and S2A image time 

series within the eCognition software environment (see Section 4.2). 

Table 5. Sentinel-2A single images’ object-based features. 

Name Definitions References 

Mean and Standard Deviation (SD) (20 

features) 
Mean and SD of each S2A band [33] 

ARI (Anthocyanin Reflectance Index) (NIR B⁄ ) − (NIR G⁄ ) [46] 

ARIRE (modified Anthocyanin 

Reflectance Index) 
(1 G⁄ ) − (1 RE1⁄ ) [46,47] 

BR (Blue Ratio) (R B⁄ ) × (G B⁄ ) × (RE1 B⁄ ) × (NIR B⁄ ) [48] 

CIRE (Chlorophyll Red-Edge Index) (NIR RE1⁄ ) − 1 [49] 

CRI2 (Carotenoid Reflectance Index 2) (1 B⁄ ) − (1 RE1⁄ ) [46] 

IRECI (Red-Edge Chlorophyll Index) (RE3 − R) (RE1 RE2⁄ )⁄  [50] 

LAISAVI (Leaf Area Index–Soil Adjusted 

Vegetation Index) 
−log (0.371 + 1.5 × (NIR − R) (NIR + R + 0.5)⁄ ) 2.4⁄  [46] 

Modified Swir1_NIR (SWIR1 − RE1) (SWIR1 + RE1)⁄  [12] 

MTCI (MERIS Terrestrial Chlorophyll 

Index) 
(RE2 − RE1) (RE1 − R)⁄  [51] 

NDWIRE (Red-Edge Normalized 

difference Water Index) 
(NNir − SWIR1) (NNir + SWIR1)⁄  [52] 
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RE-EVI2 (Red-Edge Enhanced 

Vegetation Index) 
2.5 × ((NIR − RE2) (NIR + 2.4 × RE2 + 1)⁄ ) [53] 

RENDVI (Red-Edge Normalized 

Difference Vegetation Index) 
(NIR − RE2) (NIR + RE2)⁄  [54] 

RE-NDVI2 (Red-Edge NDVI 2) (NNir − RE2) (NNir + RE2)⁄  [54] 

RERVI (Red-Edge Ratio Vegetation 

Index) 
NIR RE2⁄  [55] 

RR (Red Ratio) (NIR R⁄ ) × (G R⁄ ) × (NIR RE1⁄ ) [48] 

S2REP (Sentinel-2 Red-Edge Position) 705 + 35((((RE3 +  R)/2)  −  RE1)/(RE2 −  RE1)) [50] 

The idea of introducing the features from WV2 MS orthoimage in the classification process was 

discarded in order to obtain classification results that were totally independent of the VHR data that 

was used to carry out the segmentation stage. In other words, the aim was to build a decision tree 

model only based on L8 or S2A features in order to avoid training in subsequent campaigns. 

The texture features based on the gray-level co-occurrence matrix (GLCM) proposed by Haralick 

et al. [56] were not considered because they did not add any valuable information for PCG mapping 

or under PCG crops identification [11,12,17]. 

In addition, six statistical seasonal features were also computed from both the L8 and S2A image 

time series. Those features were the MAX (maximum), MIN (minimum), DIF (difference between 

MAX and MIN), MEAN (mean value), SD (Standard Deviation) and NOR, a seasonal feature defined 

as the normalized value of DIF ((MAX − MIN)/(MAX + MIN)). This approach was already used by 

Zillmann et al. [57] and Aguilar et al. [12] for grassland and PCG mapping, respectively. They 

reported that seasonal statistics should be more consistent than the snapshot values that were 

attained from the original single images. 

The six statistical seasonal features were computed for all 14 images composing the L8 and S2A 

time series in the stage of GH and Non-GH binary pre-classification. Regarding the final crop 

classification stage, the image time series from L8 and S2A were split into two groups (see Section 

3.4): (i) autumn crops included the first eight images (Tables 1 and 2) taken from June to December 

2016; and (ii) spring crops included three images taken from July to August 2016 and another six 

images acquired between February and June 2017. Regardless of the number of images considered in 

the L8 and S2A time series, the number of statistical seasonal features was always 216 and 330 for L8 

(36 × 6) and S2A (55 × 6), respectively (see Tables 4 and 5). 

4.3. Decision Tree Modeling 

A decision tree (DT) classifier based on the algorithm proposed by Breiman et al. [58] was used 

for the two different classification stages, i.e., binary pre-classification and final crop identification. 

DT is a non-parametric rule-based machine learning method in which each node makes a binary 

decision that separates either one class or some of the classes from the remaining class (or classes). 

The choice of this classifier resides both in its structure (formed by several splits) and in the easy 

interpretation of the final results (terminal leaves). Although other classifiers such as Random Forest 

or Support Vector Machine (black box classifiers) could achieve better classification results, DT 

provides clear decision rules with fixed threshold values that can be used in further works without 

any training phase. Furthermore, the classification through the DT algorithm has already been 

applied in greenhouse mapping from remote sensing data with very good and robust results [10,12]. 

DT has also been the selected classifier in OBIA investigations that have focused on both outdoor 

crops [22,23] and under PCG crops identification [11]. 

STATISTICA v10 was used for the classification and regression decision tree analysis (StatSoft 

Inc., Tulsa, OK, USA). The algorithm implemented in STATISTICA v10 is a classification trees 

algorithm that was designed to implement discriminant-based splits among the input predictors. 

From a computational point of view, it has been adapted from the QUEST (Quick, Unbiased, Efficient 

Statistical Trees) algorithm designed by Loh and Shih [59]. Lastly, the DT algorithm seeks to split the 

data into segments as homogeneously as possible with respect to the dependent or response variable. 

The DT node-splitting rule was the Gini index, which is a measure of impurity for a given node [60]. 
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4.4. Accuracy Assessment for Binary Pre-Classification 

The binary pre-classification assigned a class (GH or Non-GH) to each previously segmented 

object in the study area using the object-based features extracted from L8 and S2A image time series. 

A dataset composed of 1500 segments for the GH class and 1500 for the Non-GH class (i.e., non-crop 

reference plots), which were well distributed in the study area, was selected from the WV2 MS 

segmentation by means of a visual-based sampling procedure. For the selection of this dataset, 

several orthoimages from WV2, L8, and S2A were consulted to assure that all these 3000 objects 

represented meaningful objects for each class in 2016 and 2017, so as to avoid mixed segments. The 

1500 selected Non-GH objects corresponded to bare soil, building, vegetation, and roads. 

The categorical dependent variable for the DT model was the class (GH or Non-GH), while the 

statistical seasonal features were selected as the continuous predictor variables. This binary pre-

classification analysis was performed for L8 and S2A image time series. 

Cross-validation was used in this work for attaining an objective measure of quality for the 

computed DT model [11,23,61]. The experimental design was implemented within the STATISTICA 

environment through a stratified 10-fold cross-validation procedure where all of the data are 

randomly partitioned into 10 equally sized samples. A single sample is used to validate the model, 

while the remaining nine samples are used to train the model. The cross-validation process is then 

repeated 10 times; thus, each one of the 10 samples is used exactly once as validation data. A final 

confusion matrix was obtained by summing all of them. 

In the case of binary pre-classification, since this confusion matrix was based on meaningful 

objects, the errors related to the segmentation process and/or mixed objects were not considered. In 

addition, and according to Aguilar et al. [12], a more realistic classification accuracy assessment based 

on a real ground truth comprising the entire study area was carried out. This real ground truth, in 

vector format, was manually digitized over the WV2 pan-sharpened orthoimage to visually classify 

the final delineated polygons in GH or Non-GH. For this task, the L8 and S2A image time series were 

also used to update the ground truth, which was finally exported as a raster file with 2-m pixel size. 

The classification accuracy assessment for the binary pre-classification stage was based on the ground 

truth shown in Figure 4 and a pixel-based error matrix. In this way, the error coming from the 

previous segmentation phase over the entire study area, instead of a sample of it, was taken into 

account. The accuracy measures computed were overall accuracy (OA) and kappa coefficient (kappa) 

[62]. 

 

Figure 4. Manually digitized ground truth (ETRS89 UTM coordinate system). 
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4.5. Accuracy Assessment for Crops Classification 

Once the binary pre-classification has been completed, the objects assigned to the GH class were 

re-classified according to the under PCG crop in both autumn 2016 and spring 2017. For this task, the 

reference crops (Figure 2) were used as ground truth. DT classifier and cross-validation were also 

applied in this stage, but now selecting the type of crop under PCG as the categorical dependent 

variable. Note that we counted on 1202 reference greenhouses during autumn 2016 and 1114 during 

spring 2017. Both in the autumn and spring campaigns, cucumber and aubergine crops were grouped 

into one class named “Others”, because they showed an extreme variability in their spectral 

signature. Furthermore, both the statistical seasonal features and single features from L8 and S2A 

images were tested as the continuous predictor variables. The accuracy measures computed for the 

crops classification phase were user’s accuracy (UA), producer’s accuracy (PA), OA, and kappa [62], 

but in this case, and according to Aguilar et al. [11], the resulting confusion matrices were only based 

on objects instead of pixels. Finally, the Fβ measure [63], which provides a way of combining UA and 

PA into a single measure, was also computed according to Equation (1), where the parameter β 

determines the weight given to the accuracy computed as PA or UA. The value used in this study (β 

= 1) weighs UA equal to PA. 

F� =
(β� + 1) × PA × UA

β� × PA + UA
 (1) 

An internal buffer of 5 m or 10 m inside the segmented greenhouse polygons was applied to 

avoid the likely mixed pixels located at the borders, which is a very usual issue related to the use of 

medium-resolution satellite imagery. The size of the internal buffer was automatically selected, 

depending on the value of an object-based geometry feature included in eCognition named “Width 

[for 2D Image Objects]”. The Width feature is calculated from the WV2 MS segmentation by dividing 

the total number of pixels contained in a polygon (representing a greenhouse in this case) by the 

length/width ratio of this object [33]. When the Width value was less than or equal to 35, then the 

internal buffer that was applied was 5 m. Otherwise, it took a value of 10 m. 

5. Results and Discussion 

5.1. Segmentation 

The optimal setting parameters reported by Novelli et al. [17] for the MRS algorithm applied to 

the WV2 MS atmospherically corrected orthoimage taken in July 2015 were used in this work. 

Therefore, the band combination was set to Blue–Green–NIR2 equally weighted. The SP, Shape, and 

Compactness parameters set to perform the MRS segmentation were 37.0, 0.4, and 0.5, respectively, 

yielding a modified ED2 value of 0.198 and a segmentation composed of 10,990 objects for the entire 

study area. Note that the best segmentation reported by Aguilar et al. [12] for the same WV2 MS 

orthoimage, but using all eight equally weighted bands and the original ED2 metric proposed by Liu 

et al. [35], was reached with values of 34.0, 0.3, and 0.5 for SP, Shape, and Compactness, respectively. 

In this case, the attained ED2 value of 0.290 was clearly worse than the one achieved here by using 

the AssesSeg command tool and the Modified ED2 metric. Figure 5 shows, in a detailed view, the 

segmentations attained for WV2 MS ATCOR orthoimage (Figure 5a), L8 pan-sharpened images 

(Figure 5b), and S2A scenes (Figure 5c). 
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(a) (b) (c) 

Figure 5. Ideal segmentations achieved using the modified Euclidean Distance 2 (ED2) evaluation 

method on a detailed subarea (1000 m × 1000 m): (a) The best segmentation for WV2 MS image taken 

in July 2015; (b) The best segmentation transferred to L8 pan-sharpened images; and (c) The best 

segmentation transferred to S2A images. 

Figure 6 displays an example of the internal buffer application for the reference greenhouses 

depending on the value of the Width (the number located at the center of each greenhouse). Values 

of Width are less than or equal to 35 indicated greenhouses of small size and elongated shape. In this 

case, an internal buffer of 5 m was applied (e.g., object on the left in Figure 6). In greenhouses with 

Width values higher than 35, an internal buffer of 10 m was applied. For instance, looking at the 

greenhouse on the right in Figure 6, the mixed pixels that were situated close to the borders were 

avoided by using the proposed internal buffer. 

 

Figure 6. Application of an internal buffer of 5 m or 10 m to the segmented objects corresponding to 

the reference greenhouses depending on the value of Width (the number in the center of each 

greenhouse). The background image corresponds to the false color (near infrared, NIR; red, R; green, 

G) Landsat 8 scene taken in November 2016. 

5.2. Binary Pre-Classification 

Figure 7 shows the DT models computed from the L8 (Figure 7a) and S2A (Figure 7b) image 

time series based on the 3000 reference objects manually classified as GH or Non-GH. The standard 

deviation of the Plastic Greenhouse Index (SD (PGI)) turned out to be the most significant statistical 

seasonal feature (first split in the DT model) for both time series, although the split threshold was 

different for L8 (0.8) and S2A (2.0). This was not surprising after having contrasted the radiometric 

differences between L8 and S2A in Section 5.1. In the case of L8 (Figure 7a), the other statistical 

seasonal features computed by the DT model to improve the final binary classification (secondary 

splits) were the standard deviation of the Retrogressive Plastic Greenhouse Index (SD (RPGI)) and 

the mean value of the normalized index for the SWIR2 and NIR bands (MEAN (SWIR2_NIR). In the 
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case of S2A, the standard deviation of the Leaf Area Index–Soil Adjusted Vegetation Index values 

(SD (LAISAVI)) was the feature selected by the DT model to refine the binary classification (Figure 7b). 

The PGI proposed by Yang et al. [13] is an index that is very related to the vegetation beneath plastic 

cover, being higher when the crops inside the greenhouse are flourishing. Regarding our time series, 

the higher values of PGI were mainly obtained in November and December, which was just when 

the main crops were showing their maximum NDVI values. However, the values of PGI were very 

low (even negatives) in summer, coinciding with the greenhouses being whitewashed. That is, plastic 

sheets are usually painted white during summer to protect plants from excessive radiation and 

reduce the heat inside the greenhouse [64]. The good performance of SD (PGI) feature was actually 

based on this high range of variability over time to discriminate between GH and Non-GH classes. 

Yang et al. [13] also proposed the RPGI, a modified index of the PGI in which the term (NIR-R) was 

removed from the numerator of the PGI formula (Table 4). This index was also very variable for the 

GH class, although it was less sensitive to the crop under PCG. SWIR2_NIR [12] presented very high 

negative values for L8 images in greenhouses with flourishing crops. A behavior similar to that which 

was observed for the SWIR2_NIR index was found for LAISAVI [47] in S2A images, but always 

presenting positive values. 

 
(a) 

 
(b) 

Figure 7. Decision Tree (DT) models proposed for the binary pre-classification (greenhouse, GH and 

non-greenhouse, Non-GH) based on stable statistical seasonal features: (a) For the 14 images from 

Landsat 8 (L8), and (b) For the 14 images from S2A. 

Regarding the OA and kappa values obtained from the pixel-based accuracy assessment for the 

entire study area, the results from S2A DT (OA = 93.97%; Kappa = 0.875) were slightly better than 

those attained from L8 DT (OA = 92.65%; Kappa = 0.846). Note that the segmentation quality is also 

included in these pre-classification accuracy assessment results. Figure 8 displays the binary pre-

classification from applying the proposed DT models for both L8 and S2A image time series in a 

square area with 1000-m sides (previously used in Figure 5). Comparing the L8 classification map 

(Figure 8c) with the ground truth depicted in Figure 8a, we can see that the main source of error in 

brown was located at the elongated objects situated between greenhouses, where Non-GH objects 

(narrow streets) were classified as GH due to the presence of mixed pixels [4,12]. These 

misclassification errors were greatly reduced in the case of the S2A classification map (Figure 8b) due 

to its higher spatial resolution. The second, and smaller source of error, was related to the 

classification obtained from the proposed DT models. Very good OA values of 99.80% and 99.37% 

were achieved for L8 and S2A respectively when carrying out a cross-validation accuracy assessment 

based on the selected 3000 meaningful objects (GH and Non-GH). In this way, there was only one 

greenhouse incorrectly classified as Non-GH for S2A in Figure 8b. This greenhouse presented a value 

for SD (PGI) of 1.98, which turned out to be slightly lower than the threshold in Figure 8b. In the case 

of L8, this same greenhouse had values for SD (PGI) and SD (RPGI) of 0.73 and 20.18 respectively, 

which was correctly classified as GH thanks to SD (RPGI) split. This type of misclassification error 

(objects wrongly classified as Non-GH) was usually related to the decrease in the typical variability 
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of reflectance values in cultivated greenhouses (e.g., newly constructed or renovated greenhouses 

without crop during the field campaign). This is also the case of greenhouses covered by using 

double-screen films with an air chamber created between the two films (anti-drip effect in cucumber). 

The opposite case (i.e., objects wrongly classified as GH) was related to new buildings (industrial or 

farm buildings) built throughout the completion of the study. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Pixel-based accuracy assessment for the developed DT models over the same detailed area 

used in Figure 5 (1000 m × 1000 m): (a) Manually digitized ground truth; (b) Classification results 

using the DT model for S2A; and (c) Classification results using the DT model for L8. The GH class is 

represented in red, and the Non-GH class is represented in green. Light green and brown colors in 

both classification maps highlight the misclassification errors. 

In order to test whether the threshold values depicted in Figure 7 were sufficiently robust, two 

new classification maps were generated for L8 and S2A, but now using two time series composed of 

seven images covering the studied campaign (i.e., choosing the odd or even images corresponding to 

their chronological order in Tables 1 and 2). The OA values obtained for the two sets of seven images 

were quite similar to the ones obtained in the case of 14 images for both L8 and S2A (L8 Set 1: OA = 

92.78%; L8 Set 2: OA = 91.79%; S2A Set 1: OA = 93.62%; S2A Set 2: OA = 93.74%). These accuracy 

values were much more stable over the time than those reported by Lu et al. [10,65] working with 

time series from Landsat 5 TM and MODIS. 

Aguilar et al. [12] reported OA of 92.3% and 92.42% for two time series (years 2014 and 2015) of 

pan-sharpened L8 images in the same study area. In that work, a DT model based only on the 

minimum value of the Moment Distance Index (MIN (MDI)) and the difference between maximum 

and minimum values of SWIR1 (DIF (SWIR1)) was built for the two L8 time series. An OA of 90.56% 

was attained when this DT model was applied to our L8 data (14 images). This value can be 

considered quite good, considering that the used cutting thresholds were the same computed by 

Aguilar et al. [12]. Anyway, the PGI proposed by Yang et al. [13] proved to be the most significant 

object-based feature to perform an accurate binary pre-classification regarding GH and Non-GH 

classes for the two medium spatial resolution sensors that were tested. Moreover, its use in the form 

of a statistical seasonal feature resulted in very accurate and temporally stable classification results. 

5.3. Crop Classification 

After the data pre-processing, segmentation, and binary pre-classification stages, the next step 

deals with the automatic identification of crops under PCG over two seasons: autumn 2016 and 

spring 2017. 

Table 6 depicts the results obtained from the accuracy assessment carried out for crop 

classification using DT models restricted to seven to eight terminal nodes. Different strategies were 

considered for the two agronomic seasons using single object-based features or statistical seasonal 

features extracted from L8 or S2A image time series (i.e., L8 single, S2A single, L8 seasonal, S2A 

seasonal). In autumn 2016, the OA values ranged from 72.96 to 75.87%. Aguilar et al. [11] achieved 

very similar results (OA = 75.90%) in the identification of autumn crops under PCG in the same study 



Remote Sens. 2018, 10, 1751 16 of 25 

 

area. They also used seven to eight terminal nodes DT models and single features extracted from L8 

multi-temporal images. In this case, OA values of up to 81.3% were attained from using a DT model 

of 34 terminal nodes [12]. The main problem of this very complex DT model with a high number of 

terminal nodes seems to be their reproducibility in the years thereafter. In this sense, in this work, 

simpler DT models were trained and validated to extract knowledge from the statistical seasonal 

features in order to compute more consistent DT threshold values over years, making the multi-

temporal approach less dependent on the availability of particular acquisition dates and less sensitive 

to missing data on crucial dates. 

Table 6. Accuracy indices for crop identification from L8 and S2A time series using single and 

statistical seasonal features in autumn 2016 and spring 2017. OA: overall accuracy. 

Season Strategy OA (%) Kappa 
Fβ (%) 

Others Tomato Pepper Melon&Watermelon 

Autumn 2016 

L8 single 73.13 0.59 61.46 68.61 82.19 - 

S2A single 75.87 0.63 62.16 71.36 86.53 - 

L8 seasonal 74.04 0.61 63.01 70.40 84.41 - 

S2A seasonal 72.96 0.59 60.75 69.41 83.37 - 

Spring 2017 

L8 single 72.44 0.61 42.35 72.99 65.85 93.38 

S2A single 75.40 0.66 41.53 75.05 76.76 94.74 

L8 seasonal 73.79 0.64 45.37 73.77 70.04 95.08 

S2A seasonal 74.42 0.65 51.93 73.42 69.68 95.15 

Table 6 shows that the classification accuracies attained from single or statistical seasonal 

features for both L8 and S2A were similar (Table 6). In spring 2017, the OA values were very close to 

those attained in autumn 2016, although a new class was included in this season (melon or 

watermelon (Melon&W)). 

The type of sensor (L8 and S2A) did not clearly influence the final crop classification accuracy, 

although S2A single always yielded slightly better results. The OA values attained in this work for 

both seasons, ranging from 72.44% to 75.87%, are rather promising as compared to those reported by 

other authors who worked with a similar methodology but over outdoor crops. In this way, a very 

similar OA (76%) was achieved by Immitzer et al. [66] using an object-based approach for mapping 

crop types using a single S2A image and a supervised Random Forest classifier (RF). Peña-Barragán 

et al. [23] reached an OA of 79% from applying a DT classifier to detecting 13 major outdoor crops 

using multi-temporal ASTER satellite scenes. Inglada et al. [67] reported an OA above 80% for most 

sites around the world using RF. In another study, 12 outdoor crops and two non-vegetative land-

use classes were classified with 80.7% OA at the cadastral parcel level through multi-temporal remote 

sensing images [68]. Using DT and 13 Landsat 8 multi-temporal images, Patil et al. [69] achieved an 

OA of 81%, while an OA of 88% was reported by Zhong et al. [70] working on corn, soybean, and 

others, and using Landsat imagery. An OA of 94% was reported by Vieira et al. [23] by applying the 

DT classifier to Landsat time series in a binary classification approach to label sugarcane and other 

crops. Finally, Belgiu and Csillik [71] achieved better results in cropland mapping from Sentinel-2 

time series using an object-based instead of a pixel-based approach, reporting overall accuracies 

ranging from 78.05% to 96.19%. 

Table 6 also shows the accuracy per class in terms of Fβ. In autumn 2016, pepper was the most 

accurately classified crop, yielding an Fβ of around 84%, followed by tomato (Fβ values close to 70%) 

and others (including cucumber and aubergine) with Fβ values of around 62%. Also dealing with 

autumn crops, Aguilar et al. [11] reported Fβ values of around 87% for pepper, but worse in cucumber 

and aubergine crops, with Fβ values ranging from 50% to 63%. According to Aguilar et al. [11], the 

most defining characteristic for pepper identification turned out to be the unique whitewashing 

management in the case of this crop, which is mainly planted during July and August, needing a 

significant quantity of whitewash in summer to both enhance the growth of the plant and protect the 

transplant stage against heat. Therefore, the high reflectance values for SWIR1 and SWIR2 bands in 
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the months of July and August were related to the high level of white paint applied to the 

greenhouses containing pepper. In this way, the L8 autumn DT is depicted in Figure 9. At the bottom 

and outside of each black box in Figure 9 appears the statistical seasonal feature that is causing the 

next split in the DT. Below, readers can see the figure corresponding to the cutting threshold for each 

split. Oval nodes are terminal nodes belonging to a certain class. Inside each black box or terminal 

node (oval), there is information about the number of total objects (N) and the distribution by classes 

of those objects. In this sense, the maximum value of SWIR2 was the first split for the L8 autumn DT. 

The MAX (SWIR2) cutting threshold (46.005) provided the first pepper and non-pepper (tomato and 

others) split. In fact, only 69 out of the 520 greenhouses with MAX (SWIR2) values higher than 46.005 

were finally classified as non-pepper. In the case of S2A (Figure 10), the first split was computed from 

the standard deviation of the Moment Distance from the Right pivot (SD (MDRP)). The MDRP is 

defined as the sum of the hypotenuses constructed from the right pivot located at the maximum 

wavelength band (i.e., SWIR2 for S2A) to the value at successively shorter wavelengths [72]. Its SD 

values resulted in extremely high when the greenhouse had been strongly painted in summer; so, 

pointing to the pepper class. It is important to underline that similar and quite good OA values of 

84.61% and 84.94% for L8 and S2A, respectively, were yielded from using only the first splits 

mentioned above in a binary classification exercise (pepper and non-pepper classes). For the rest of 

the autumn crops (cucumber, aubergine, and tomato), there was no such clear rule to classify them, 

although good performance in distinguishing tomato crops was attained through applying statistical 

seasonal features based on single features such as Index Greenhouse Vegetable Land Extraction (Vi) 

[18], vegetation indices (NDTI, GNDVI, and GRVI, defined in Table 4), and mean spectral values per 

object (SD RED). 

In spring 2017, the Melon&W class was the best classified, with impressive Fβ values of around 

94.6% (Table 6). Note that the melon and watermelon crops cultivated under greenhouse in Almería 

require full sun for proper growth, so the plastic sheet is usually maintained totally clean. This makes 

these horticultural crops easily detectable in the months of April or May, when they are in their 

maximum production stage, since they present high photosynthetic activity as compared to other 

contemporary crops. Figure 11 displays the L8 DT for the spring season, being the Standard Deviation 

of the Modified Soil-Adjusted Vegetation Index [42] (SD (MSAVI)) the feature located at the first split. 

Greenhouses with values of SD (MSAVI) in spring higher than 0.0877 were basically identified as 

Melon&W (258 out of 262). In the left branch, pepper crops were again discriminated from tomato 

and others thanks to MAX (SWIR2) statistical feature, which was directly related to the greenhouse 

being whitewashed in summer. Note that the set of nine images for both L8 and S2A that were used 

for the spring season included the three scenes taken in July and August. In the case of S2A (Figure 

12), the first split was given by the difference of the Red-Edge Chlorophyll Index [51] (DIF (IRECI)). 

As for the L8 spring DT, the Class 4 (Melon&W) showed the highest DIF (IRECI) values. It is 

important to highlight that the OA values of 97.31% and 97.67% for L8 and S2A, respectively, were 

obtained from using very simple DT models, only including the first splits mentioned above in a 

binary classification exercise (Melon&W and Non-Melon&W classes). Tomato classification yielded 

slightly better accuracy figures in spring season than in autumn, while pepper and others attained 

worse results. 
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Figure 9. Decision tree computed for the L8 dataset in autumn 2016 using statistical seasonal features 

(i.e., MEAN, MAX, MIN, DIF, SD, and NOR). N is the number of objects in each node, Class 1 (C1) = 

Pepper, C2 = Tomato, C3 = Others (i.e., Cucumber and Aubergine), NOR = DIF ((MAX − MIN)/(MAX 

+ MIN)). 

 

Figure 10. Decision tree computed for the S2A dataset in autumn 2016 using statistical seasonal 

features (i.e., MEAN, MAX, MIN, DIF, SD, and NOR). N is the number of objects in each node, Class 

1 (C1) = Pepper, C2 = Tomato, C3 = Others (i.e., Cucumber and Aubergine). 
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Figure 11. Decision tree computed for the L8 dataset in spring 2017 using statistical seasonal features 

(i.e., MEAN, MAX, MIN, DIF, SD, and NOR). N is the number of objects in each node, Class 1 (C1) = 

Pepper, C2 = Tomato, C3 = Others (i.e., Cucumber and Aubergine), C4 = Melon&W (i.e., Melon and 

Watermelon). 

 

Figure 12. Decision tree computed for the S2A dataset in spring 2017 using statistical seasonal features 

(i.e., MEAN, MAX, MIN, DIF, SD, and NOR). N is the number of objects in each node, Class 1 (C1) = 

Pepper, C2 = Tomato, C3 = Others (i.e., Cucumber and Aubergine), C4 = Melon&W (i.e., Melon and 

Watermelon). 
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6. Conclusions 

A workflow to carry out the identification of under PCG crops is proposed in this work through 

using an OBIA approach from multi-temporal (L8 and S2A time series) multi-sensor (WV2, L8, and 

S2A) satellite imagery. This workflow is composed of four stages: (i) Data pre-processing, (ii) 

Segmentation, (iii) Binary pre-classification in GH or Non-GH, and (iv) Classification of under 

greenhouse crops in two agronomic seasons: autumn 2016 and spring 2017. 

Regarding the segmentation stage, the automatic greenhouses delineation was ideally achieved 

using the widely known MRS algorithm applied to the WV2 MS atmospherically corrected 

orthoimage. The use of the free access command tool named AssesSeg allowed to set the optimal 

parameters for the MRS algorithm. This segmentation based on a VHR satellite image was then 

transferred to the L8 and S2A image time-series project. It is worth mentioning that the AssesSeg tool 

can work with segmentation algorithms other than MRS. Therefore, the evaluation of segmentation 

does not strictly depend on the use of eCognition. 

The next step consisted of the binary pre-classification of the previously segmented objects in 

GH or Non-GH. The DT classifier was applied to determine the best statistical seasonal features 

(MEAN, MAX, MIN, DIF, SD, and NOR defined as DIF ((MAX − MIN)/(MAX + MIN))) derived from 

several groups of single object-based features (spectral, vegetation indices, and plastic detection 

indices). The single object-based features were extracted from each L8 and S2A single pre-processed 

scene. Two very simple DT models were developed for L8 and S2A. The standard deviation of the 

Plastic Greenhouse Index (SD (PGI)) was the most important statistical seasonal feature for both 

image time series, although the cutting threshold value took different values for L8 and S2A. The OA 

and kappa accuracy values for the binary classification achieved from S2A DT (OA = 93.97%; Kappa 

= 0.875) were slightly better than the ones attained from L8 DT (OA = 92.65%; Kappa = 0.846), showing 

that the misclassification errors, mainly in the elongated objects representing streets between 

greenhouses, were greatly reduced in the case of S2A classification map thanks to its higher spatial 

resolution (10-m GSD for S2A and 15-m GSD for L8 pan-sharpened). According to our best 

knowledge, this is the first work in which several indices for PCG detection have been compared in 

the same conditions for L8 and S2A images, concluding that the PGI index reported by Yang et al. 

[14] proved to be the most outstanding. Furthermore, it was shown that a very accurate and stable 

classification of individual greenhouses can be achieved by only using the proposed DT models, 

meaning that the results are highly transferable because the classifier training phase would not be 

required. 

The last step addressed the classification of crops under PCG. The classification accuracies 

attained from single or statistical seasonal features for both L8 and S2A were similar. Since the main 

objective of this study was to obtain robust and consistent DT models, making the multi-temporal 

approach less dependent on the availability of particular acquisition dates and less sensitive to 

missing data on crucial dates, we focused on working with the more stable statistical seasonal 

features. Note that implementing an internal buffer for extracting object features in the crop 

classification phase may have diminished the possible differences between L8 and S2A due to ground 

pixel size. In autumn 2016, OA values of 74.04% and 72.96% were achieved for L8 and S2A seasonal 

features, respectively. In that season, pepper was the best-classified crop, presenting Fβ values of 

around 84% while tomato reached Fβ values of around 70%. Finally, the class Others (cucumber and 

aubergine) yielded clearly poorer results. In spring 2017, similar OA values to those observed in 

autumn were attained for L8 (73.79%) and S2A (74.42%). In this season, the Melon&W class achieved 

impressive accuracies (Fβ) better than 95% for L8 and S2A, while tomato (73.5%), pepper (70%), and 

others (48%) presented significantly worse results. Actually, pepper, in autumn, and Melon&W, in 

spring, were the only two crops classified with great consistency. The good results that were found 

for pepper classification were due to the high reflectance values in the SWIR1 and SWIR2 bands, 

which was an effect related to the practice of applying a significant quantity of white paint in summer 

(July and August) to protect crops against heat. In fact, MAX (SWIR2) and SD (MDRP) were the most 

important statistical seasonal features for pepper detection using L8 and S2A, respectively. In the case 

of Melon&W, the high levels of photosynthetic activity in April or May, together with the high 
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transparency of the plastic sheets, made this crop easily detectable, in which SD (MSAVI) for L8 and 

DIF (IRECI) for S2A were the most significant features. 

Overall, the proposed workflow has been successfully proved from using WV2, L8, and S2A 

satellite images, showing that S2A time series yielded slightly better accuracies than L8, mainly in 

the binary pre-classification phase. However, further works are needed to learn much more about 

the influence on the classification of crops under PCG of several factors such as crops varieties, type, 

age, and thickness of the plastic cover, and greenhouse roof geometry. 
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