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S U M M A R Y
Advances in the field of seismic interferometry have provided a basic theoretical interpretation
to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The
interpretation has been applied to ambient seismic noise data recorded both at the surface and
at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in
inversion schemes to estimate seismic wave velocity profiles that are useful input information
for engineering and exploration seismology both for earthquake hazard estimation and to
characterize surficial sediments. However, until now, the developed algorithms are only suitable
for on land environments with no offshore consideration. Here, the microtremor H/V(z, f)
modelling is extended for applications to marine sedimentary environments for a 1-D layered
medium. The layer propagator matrix formulation is used for the computation of the required
Green’s functions. Therefore, in the presence of a water layer on top, the propagator matrix
for the uppermost layer is defined to account for the properties of the water column. As an
application example we analyse eight simple canonical layered earth models. Frequencies
ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and
aid in practice to investigate subsurface structures in the depth range from a few meters to
a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the
fundamental frequency when a water layer is present. The water layer leads to variations in
H/V peak amplitude of up to 50 per cent atop the solid layers.

Key words: Numerical modelling; Earthquake hazards; Seismic interferometry; Site effects;
Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Over the past decades, using the single-station microtremor horizontal-to-vertical (H/V) spectral ratio as a method for shallow subsurface
characterization has attracted a number of site investigation studies both on land (e.g. Bard 1998; Fäh et al. 2003; Scherbaum et al. 2003; Lontsi
et al. 2015, 2016; Garcı́a-Jerez et al. 2016; Piña-Flores et al. 2017; Spica et al. 2018; Garcı́a-Jerez et al. 2019) and in marine environment
(e.g. Huerta-Lopez et al. 2003; Muyzert 2007; Overduin et al. 2015). The interest in the method is mainly due to its practicability, its
cost efficiency, and the minimum investment effort during microtremor (ambient noise or passive seismic) survey campaigns. The generic
engineering parameter directly estimated from the spectrum of the microtremor H/V spectral ratio is the site fundamental frequency (e.g.
Nakamura 1989; Lachet & Bard 1994). The fundamental frequency of a site generally corresponds to the frequency for which the microtremor
H/V spectral ratio reaches its maximum amplitude.
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Figure 1. Schematic representation of a 1-D layered medium. The representation without the water layer on top corresponds to the onshore case and the
representation with water layer corresponds to the offshore case. For the representation on the left, the receiver location is at the earth’s surface when no
water layer is present (onshore) and at the water (lake, sea, ocean) bottom when the water layer is present (offshore). For the representation on the right, the
receiver location is at depth. Except for the water layer in the offshore case where the shear wave velocity is zero, any other layer j either onshore or offshore is
characterized by the seismic parameters VP j , VS j , ρj, hj, QP j and QS j .

Although the peak frequency is relatively well understood, this is not straightforward for secondary peaks as they could represent higher
modes or materialize the presence of more than one strong contrast in the subsurface lithology. It is therefore important in the analysis to use
a physical formulation for the H/V spectral ratio that not only accounts for the full spectrum (including first and subsequent secondary peaks)
but also includes all wave constituent parts. Based upon the advances in seismic noise interferometry (e.g. Lobkis & Weaver 2001; Shapiro
& Campillo 2004; Curtis et al. 2006; Wapenaar & Fokkema 2006; Sens-Schönfelder & Wegler 2006; Gouédard et al. 2008), Sánchez-Sesma
et al. (2011) proposed a physical model for the interpretation of the full spectrum of the microtremor H/V spectral ratio. This has been
extended to include receivers at depths (Lontsi et al. 2015). This additional information from receivers at depth is an added value during the
velocity imaging process (Lontsi et al. 2015; Lontsi 2016; Spica et al. 2018). As the interpretation effort focuses on the H/V spectral ratio
acquisition on land, no significant effort has been made for the marine acquisition counterpart. An early study for a station on the seafloor
was performed by Huerta-Lopez et al. (2003), assuming that the wavefield is due to the propagation of an incident plane SH body wave. With
the evolving technology in borehole acquisition seismic instruments and data transmission (e.g. Stephen et al. 1994), there is a growing need
for efficient subsea exploration and geohazard estimation as reported by Djikpesse et al. (2013).

Here we further extend the diffuse field model (Sánchez-Sesma et al. 2011; Lontsi et al. 2015) to allow for the interpretation of the
H/V(z, f) both in marine sedimentary environment and on land even though applicability to marine environments is emphasized.

The Thomson–Haskell propagator matrix (Thomson 1950; Haskell 1953) is used to relate the displacement and stress for SH and P–SV
waves at two points within an elastic 1-D layered medium. The use of the propagator matrix formulation allows us to easily include a
propagator for a layer on top that accounts for the properties of the water layer and to subsequently compute the Green’s function for points
at different depths. The classical Thomson–Haskell method is unstable when waves become evanescent. To remedy this issue, many attempts
have been made (e.g. Knopoff 1964; Dunkin 1965; Abo-Zena 1979; Kennett & Kerry 1979; Harvey 1981; Wang 1999). Here, we use the
orthonormalization approach by Wang (1999) which preserves the original Thomson–Haskell matrix algorithm and avoid the loss of precision
by inserting an additional procedure that makes in situ base vectors orthonormal.

A synthetic analysis is performed on eight simple canonical earth models. The models differ by the presence of soft sediment structures
with different overall thickness (two in total) and the presence of a water column with varying depth at the top. The first sediment structure
is a very simple one layer over a half-space earth model and the second is a realistic structural model obtained from site characterization at
Baar, a municipality in the Canton of Zug, Switzerland. The H/V spectral ratio is estimated for frequencies ranging from 0.2 to 50 Hz. The
effects of the water column on the H/V spectrum at selected depths are interpreted.

2 M I C RO T R E M O R H / V S P E C T R A L R AT I O : A P H Y S I C A L I N T E R P R E TAT I O N

Here, the main steps linking the microtremor H/V(z, f) spectral ratio to the elastodynamic Green’s functions are presented. The basic
expressions for SH and P–SV wave contributions to the Green’s functions and some considerations for numerical integration are summarized.

2.1 H/V(z, f) interpretation: onshore case

Starting from three-component ambient vibration data, the microtremor H/V spectral ratio at a given point at the earth’s surface or at depth
(onshore: Fig. 1 without water layer) for a known frequency f is estimated using eq. (1).
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H/V (z, f ) =
√

E1(z, f ) + E2(z, f )

E3(z, f )
, (1)

where Em(z, f) = ρω2〈um(z, f)um
∗(z, f)〉 is physically regarded as the directional energy density, ρ is the mass density, ω is the angular frequency

and um (m = 1, 2, 3) is the recorded displacement wavefield in the orthogonal direction m. The indexes m = 1, 2 correspond to the horizontal
components while m = 3 corresponds to the index for the vertical component. The summation convention for repeated indexes is not applied
here. The symbol ∗ stands for complex conjugate. Using interferometric principles under the diffuse field assumption, it can be shown that
the average of the autocorrelation of the displacement field is proportional to the imaginary part of the Green’s function assuming the source
and the receivers are at the same point (Sánchez-Sesma et al. 2008; Snieder et al. 2009, see a summary in Appendix A). Eq. (1) in terms of
the Green’s function is expressed as

H/V(z, f ) =
√

Im[G11(z, z, f )] + Im[G22(z, z, f )]

Im[G33(z, z, f )]
=

√
2Im[G11(z, z, f )]

Im[G33(z, z, f )]
. (2)

We are therefore left with the computation of the Green’s functions G11 = G22 and G33. The elastodynamic Green’s function in a 1-D
elastic layered medium (onshore: Fig. 1 without water layer) is the set of responses for unit harmonic loads in the three directions. Using
cylindrical coordinates the contribution of the radial–vertical (P–SV) and transverse (SH) motions are decoupled. Therefore, it suffices to
solve each case separately using the integration on the horizontal wavenumber (Bouchon & Aki 1977).

2.2 SH and P–SV contribution to the Green’s function

Assuming the subsurface structure can be approximated by a stack of homogeneous layers over a half-space as depicted in Fig. 1 where, for
example, the jth layer is characterized in the onshore case by the compressional wave velocity VP j , the shear wave velocity VS j , the density
ρ j, the layer thickness hj, and the attenuation parameters QP j and QS j for the P and S waves, respectively, Im[G11], Im[G22] and Im[G33] are
given by

Im[G11] = 1

4π

∫ ∞

0
Im [g11SH] kdk + 1

4π

∫ ∞

0
Im [g11PSV] kdk (3)

Im[G33] = 1

2π

∫ ∞

0
Im [g33PSV] kdk· (4)

Because of symmetry, Im[G11] = Im[G22]. Here k is the radial wavenumber. The kernels g11SH, g11PSV and g33PSV correspond to the SH
and P–SV wave contributions. The explicit dependence of g11SH, g11PSV, and g33PSV on the Thomson–Haskell propagator matrix (2×2 for SH
waves and 4×4 for P–SV waves) for the layered elastic earth model presented in Fig. 1 is given in Appendices B and C.

2.3 H/V(z, f) interpretation: offshore case

In the particular case where the top layer is a perfect homogeneous water layer, the shear wave velocity and shear modulus do not exist
(are null). Substituting directly the corresponding properties into the formulae of the 4×4 propagator matrix for P–SV waves (eqs C9–C11)
leads to a singular matrix. In this limiting case, there is an alternative approach to consider P waves along the water column. A pseudo 4×4
propagator matrix Ppseudo is defined (eq. 5) and treated as in the onshore case (Herrmann 2008):

Ppseudo =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cosh(γ h) 0 − γ

ρω
sinh(γ h)

0 0 1 0

0 −ρω2

γ
sinh(γ h) 0 cosh(γ h)

⎞
⎟⎟⎟⎟⎟⎠, (5)

where γ =
√

k2 − ω2/V 2
P represents the vertical wavenumber for P wave in water and h the thickness of the water column. A full derivation

of Ppseudo is presented in Appendix E.

2.4 Considerations for numerical implementation

For the numerical integration, eqs (3) and (4) are transformed into a summation assuming virtual sources spread along the horizontal plane

with generic spacing L (Bouchon & Aki 1977). The parameter L also defines the integration step dk = 2π

L
. The vertical wavenumbers γ j and

ν j for, respectively, P and S waves in the jth layer relate to the horizontal wavenumbers k by

γ j =
√

k2 − ω2

V 2
P j

(6)
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Table 1. Seismic parameters for a homogeneous half-space. The model is used to estimate the directional energy
density profile with normalized depth.

h (m) VP (m s−1) VS (m s−1) ρ
(
kg m−3) QP QS

∞ 1732 1000 2000 100 100

0

1

2

3
z/
λ R

0 1 2 3

Normalized Amplitude

Im(G11)=Im(G22)

Im(G33)

Σi=1,2,3Im(Gii)

Dash: Lontsi et al. (2015)

Continous line: Prop. matrix

Figure 2. Normalized energy density profiles (Im(G11), Im(G22), Im(G33) and the total directional energy density) for the three orthogonal directions estimated
using (1) the algorithm based on the propagator matrix formulation (thin continuous line) and (2) the algorithm based on the global matrix formulation for a
layered medium (dashed thick line; Lontsi et al. 2015). The depth is normalized with the Rayleigh wavelength. There is a good agreement between the two
approaches for Green’s functions estimation. Input parameters used in the modelling are defined in Table 1.

ν j =
√

k2 − ω2

V 2
S j

. (7)

Because of pole singularities of the kernel that account for the effects of surface waves, a stable integration on the real axis can be
performed if a correction term ωI is added to the frequency to shift the poles of the kernel from the real axis, so that the effective frequency
is

ω = 2π f + ωI i, (8)

where i is the unit imaginary number. ωI is chosen as the smallest constant that effectively smooth out the kernels. Anelastic attenuation of
P- and S-wave energy is considered by defining complex seismic wave velocities (see e.g. Müller 1985).

Additional considerations are made to avoid the loss-of-precision associated with the Thomson–Haskell propagator matrix when waves
become evanescent. A numerical procedure is inserted into the matrix propagation loop to make all determined displacement vectors in situ
orthonormal (Wang 1999). The orthonormalization procedure, as implemented here, for both surface downward- and infinity upward wave
propagation of the determined base vectors is presented in Appendix D.

3 S Y N T H E T I C A NA LY S I S U S I N G C A N O N I C A L A N D R E A L I S T I C E A RT H M O D E L S

For testing the presented algorithm, the directional energy density profile for a homogeneous half-space is computed. Table 1 presents the
model parameters for this simple earth structure defined as a Poisson solid.

The energy variation with depth as depicted in Fig. 2 shows a good agreement with the known theory regarding the energy partition for
a diffuse wavefield (e.g. Weaver 1985; Perton et al. 2009). For depths larger than approximately 1.5 times the Rayleigh wavelength, there is
almost no surface wave energy contribution and the energy is equal for the three orthogonal directions (Fig. 2).

Further tests are performed by considering a simple one layer over a half-space (1LOH) and a realistic subsurface structure. The realistic
earth model has been obtained from site characterization at Baar, Canton Zug, Switzerland (Hobiger et al. 2016). The parameters for the
simple 1LOH model together with those of the realistic earth structure used in the second test are presented in Table 2. The 1LOH structural
model represents a very simple soft-soil characterized by a constant shear wave velocity (VS) of 200 m s−1, a velocity contrast of 5 in VS

and an overall sediment cover of 25 m. The realistic earth model at Baar has velocity contrast in VS of about 4 between the sediment layer
overlaying the half-space and the half-space. Here, the overall sediment cover is about 100 m. In comparison to VS values that remain almost
constant, water saturated sediment offshore has compressional wave velocity estimates that are much larger than the onshore values.

Figs 3(a) and 4(a), respectively, present the seismic velocity profiles (VP and VS) for the two investigated structural models. Considered
VP profiles for the water saturated sediments are represented by the blue solid line. The corresponding H/V(z, f) spectral ratio without a water
layer (onshore) and with water layer (offshore) are plotted together for different depths. This representation allows for a visual appraisal of
the effect of the water column (Figs 3b–d and 4b–d).
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1280 A.M. Lontsi et al.

Table 2. Test models consisting of one and three solid layers over a half-space (onshore). Offshore cases, characterized
by VS = 0 m s−1, are built by considering a water layer on top. In the case where the water layer is considered, the
VP velocities for the sediment at the bottom of the water column are modified to account for the saturation with
water. Considered values for VP are shown in parenthesis in the appropriated column. Scenarios for different water
environments ranging from shallow to deep are considered. The H/V spectral ratios at three different locations (surface
+ two additional depths) for these two illustrative cases are presented in Figs 3 and 4.

h (m) VP (m s−1) VS (m s−1) ρ
(
kg m−3) QP QS

One-layer over a half-space
8a(200b,5000c) 1500 0 1000 99999 99999
25 500 (1700) 200 1900 100 100
∞ 2000 1000 2500 200 200
Realistic earth model at Baar, Canton Zug
8a(200b,5000c) 1500 0 1000 99999 99999
5.3 672.8 (1600) 85.6 2000 100 100
29.2 738.9 (1600) 284.3 2000 100 100
68.4 2135.6 500.0 2000 100 100
∞ 3512.2 1841.1 2300 100 100

a Thin water layer. b Lake environment. c Deep ocean environment.
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Figure 3. (a) Seismic parameters for a simple soft soil layer over a half-space (defined in Table 2). The P-wave velocity in water is set to 1500 m s−1. The
water-saturated sediments have the velocity set to 1700 m s−1 (see solid blue profile). The shear wave velocity (VS) profile is set unchanged in the presence
of the water layer. (b) Comparison between H/V spectral ratios at the solid–liquid interface (z = 0 m). (c) Comparison between H/V spectral ratios at 19 m
depth and (d) at 25 m depth. The grey curve is obtained using the extended global matrix formulation for receivers at depth when no water layer is present (see
Lontsi et al. 2015). The computed H/V for a synthetic water layer of 200 and 5000 m shows nearly the same results and are almost overlaid with each other;
see green and red curves.

The H/V(z, f) spectral ratio computed with the propagator matrix algorithm for the 1LOH is calibrated with results obtained using the
global matrix formulation approach as presented by Lontsi et al. (2015) for receivers at depth when no water layer is present (compare solid
grey and dashed black lines on Figs 3b–d). The two approaches (propagator matrix and global matrix formulations) provide H/V spectral
ratios that agree with each other for all tested receiver locations for the onshore case.

The presented algorithm is further used to assess the variations of the H/V spectral ratios, at the surface and at depth, due to the presence
of the water layer. To this end, the structural models presented in Table 2 with three different water-layer thicknesses (8, 200 and 5000 m)
are used. The water layer thicknesses are selected to reflect different water environments ranging from shallow lake to deep sea. For the
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Figure 4. (a) Seismic parameters for a realistic earth model (defined in Table 2). The P-wave velocity for water is set to 1500 m s−1. The P-wave velocity for
water-saturated sediments is represented with the solid blue profile. The shear wave velocity (VS) profile is set unchanged in the presence of the water layer. In
addition, a sedimentary environment with a very shallow water table is considered. The VP for the sediment in this onshore case was set to 1600 m s−1. (b)
Comparison between H/V spectral ratios at the solid-free surface and solid–liquid interface (z = 0 m). For the solid-free surface interface (onshore), field data
exist and are used for validation of the presented algorithm (solid grey curve). Frequencies above 8 Hz (light grey box) were not used for the profile estimation.
(c) Comparison between H/V spectral ratios at 5.3 m within the sediment column and (d) at 102.9 m depth (sediment bedrock interface).

1LOH structural model and for a scenario of shallow water environment with 8 m water column, we observe at frequencies above 2 Hz
(peak frequency) an amplitude variation. Further scenarios with moderate (200 m) to deep (5000 m) water layer indicate that the amplitude
variations extend to low frequencies and reach up to 50 per cent around the H/V spectral ratio peak amplitude for the receiver at the surface.
Only marginal relative variations are observed for the H/V peak frequency when the water layer is present. The amplitude variation as well
as the marginal peak frequency variation observed for the 1LOH in different water environments is also valid for the realistic earth model
at Baar. For this particular test site, we further consider that the water table is very shallow and investigate the onshore scenario with water
saturated sediments’ cover. The VP velocity for the first two layers was set to VP = 1600 m s−1 to consider the saturation with water. The
resulting H/V spectral ratio computed at different depths indicates that changes in VP do have influence on the shape of the H/V spectral
ratio in the frequency band ranging from about 1 to 3 Hz for receivers at the surface and at depths, although very minor (see Figs 4b–d). At
Baar, onshore ambient vibrations data from array recordings are available. The surface waves’ analysis allowed to extract the average seismic
velocity profiles of the underlying subsurface structure (for more details, see Hobiger et al. 2016). The estimated velocity profiles did not
account for H/V information beyond 8 Hz shown in the light grey box (Fig. 4b). The H/V spectral ratio from the array central station is used
for calibration (grey curve in Fig. 4b).

Within the sediment column, and for all considered water column thicknesses, the variability of the H/V spectral ratio is observed up to
a certain cut-off frequency. This cut-off frequency is about 5 Hz at 19 m depth for the 1LOH structural model. For the realistic earth model at
Baar and for a receiver at about 5.3 m depth, the cut-off frequency is about 10 Hz. In the last case where the receiver is located at the bedrock
interface, marginal H/V amplitude variations are observed (Figs 3d and 4d). For both models, the low-frequency peak corresponds well with
the fundamental resonance of SH waves in the structure. In the case of the layer above the half-space it is given by the simple relationship

f0 = VS

4H
, where H is the thickness of the sediment column and VS is the shear wave velocity (Vs = 200 m s−1 and H = 25 m, Fig. 3a). For the

realistic model at Baar (Fig. 4a), the peak frequency can be estimated by using the simple expression found by Tuan et al. (2016) with about

10 per cent deviation. Secondary peaks for the simple 1LOH (Fig. 3a) satisfy the relationship fn = VS

4H
(2n + 1). For the realistic earth model

at Baar (Fig. 4), the second dominant peak at about 4 Hz corresponds to the response of the top layer characterized by a shear wave velocity
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Figure 5. Horizontal directional energy density variation at the seabottom using the structural earth model at Baar. Different water layer thicknesses are
considered.

Vs = 85 m s−1. The corresponding impedance contrast is about 3.34. A weak impedance contrast of about 1.76 exists between the second and
third layers. Additional peaks (grey box, Fig. 4b) would depend on very shallow features not represented by the considered velocity model.

4 U N D E R S TA N D I N G T H E H / V A M P L I T U D E VA R I AT I O N

The observed amplitude variation of the H/V in the presence of the water layer is investigated by analysing the modelled directional energy
densities (DEDs) both on the horizontal and vertical components. The earth model at Baar is used for the analysis. Figs 5 and 6 show the
modelled DEDs for the horizontal and vertical components, respectively. Considered scenarios include an earth model (1) without water layer,
(2) with no water layer but very shallow water table, (3) with water layer of 8, 200 and 5000 m. It comes out that the energy on the horizontal
component is not sensitive to the presence of the water layer. This is understood as no shear wave is expected to propagate in the considered
ideal fluid (no viscosity). On the contrary, we observe significant energy variations on the vertical component that can be associated with
multiple energy reverberations in the water layer.

We further assess the dependence of the amplitude variation with a much larger number of water layer thickness scenario. For this
purpose, the relative variation of H/V spectral ratio when there is water layer is studied. Fig. 7 depicts this relative variations in per cent for a
wide range of water columns. It can be observed that the presence of a shallow water layer mainly has effects on very high frequency. Deep
water environment affects the amplitude of the H/V spectral ratio on a very broad frequency range.

5 C O N C LU S I O N S

A theoretical model based on the diffuse field approximation is proposed for the estimation of the H/V(z, f) spectral ratio on land and in
marine environment. The propagator matrix method has been used to compute the Green’s function in a 1-D layered medium including a
liquid layer atop. For onshore cases, the modelled H/V(z, f) spectral curves are compared with estimations from the global matrix approach
and show good agreement for the considered synthetic structural models. In comparison to the global matrix method, the propagator matrix
provides an efficient approach for modelling the H/V spectral ratio within marine environments. Modelling results indicate that the H/V
spectral ratio is sensitive to the presence of a water layer overlying subseabed sediments. H/V relative amplitude variations are observed in
the complete considered frequency range (0.2–50 Hz) for deep water environment and may reach approximately 50 per cent around the peak
frequency. The amplitude decrease in the H/V peak can be understood as large P-wave energy on the vertical component result from multiple
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Figure 6. Vertical directional energy density variation at the seabottom using the structural earth model at Baar. Different water layer thicknesses are considered.
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Figure 7. Relative variation of the H/V spectral ratio in the presence of the water layer with respect the H/V spectral ratio when no water layer is present. Water
layer thicknesses ranging between 0.1 and 5000 m, sampled on a logarithmic scale are considered. Left: one layer over half-space structure. Right: realistic
earth model at Baar.

reverberation in the water column. The H/V data available at Baar (onshore) are used to validate the presented algorithm for a receiver at the
surface. For computed cases, changes in the fundamental frequency are marginal. In addition, primary resonances occur at frequencies that
satisfy the relationships used in practical applications. Secondary resonances in the 1LOH corresponds to overtones while in the realistic case
at Baar, they materialize the response of the subsequent layers within the sediment column.
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A P P E N D I X A : A M B I E N T N O I S E – G R E E N ’ S F U N C T I O N – R E P R E S E N TAT I O N
T H E O R E M – C RO S S - C O R R E L AT I O N – D I R E C T I O NA L E N E RG Y
D E N S I T Y – E Q U I PA RT I T I O N

Seismic sources at the origin of the ambient noise wavefield are ubiquitous and may be at surface or/and at depth. Generated seismic waves
are back-scattered in the subsurface. The recorded noise wavefield at a seismic station after a lapse time large enough compared to the mean
traveltime of ballistic waves (e.g. direct waves, first reflected waves) contains information regarding the underlying subsurface structure.

Let us assume that there is an asymptotic regime with a stable supply of energy that constitutes the background illumination. This
condition, for what it shares with the radiative transport, is called diffuse field. In an unbounded elastic medium a harmonic diffuse field is
considered random, isotropic and equipartitioned. The stabilization of the S to P energy ratio is reached asymptotically for long lapse times
(Paul et al. 2005). Within such a field the DED, Em, for a given orthogonal direction m is given in terms of the averaged autocorrelation of
the displacement wavefield and it is proportional to the imaginary part of the Green’s function of the system for the source and the receiver
at the same location. This is expressed in eq. (A1):

Em(x, f ) = ρω2〈um(x, f )u∗
m(x, f )〉 ∝ Im[Gmm(x, x, f )]. (A1)

Here ρ = ρ(x) is the mass density at point x, and ω = 2π f is the circular frequency. No summation over the repeated index m is assumed. In
practice, the DED is estimated from the autocorrelation (power spectrum) of the recorded ambient noise wavefield and averaged over short
time windows. This is equivalent to average over directions if the field is isotropic. For subsurface imaging purposes, the DED is computed
from the imaginary part of the Green’s function (eq. A1).

In order to demonstrate the validity of eq. (A1) and establish the proportionality factor, a simple homogeneous, isotropic, elastic medium
is considered. Therefore, the analytical expression to the Green’s function is known (Sánchez-Sesma et al. 2008).

The displacement field ui (x, ω) produced by a body force fi at a given point x of an elastic solid is described by the Newton’s law of
displacements (eq. A2):

∂

∂x j

(
ci jkl

∂ul (x, ω)

∂xk

)
+ ω2ρui (x, ω) = − fi (x, ω). (A2)

Eq. (A2) is often called elastic wave equation or the Navier equation. Here cijkl is the stiffness tensor. The Einstein summation convention
is assumed, that is, repeated index implies summation over the range of that index.

From eq. (A2), it is possible to derive the classical Somigliana representation theorem (e.g. van Manen et al. 2006; Wapenaar & Fokkema
2006; Snieder et al. 2007; Sánchez-Sesma et al. 2008, 2018)

um(xA, ω) =
∫

Γ

[Gim(x, xA, ω)ti (x, ω) − Tim(x, xA, ω)ui (x, ω)] dΓx +
∫

V
fi (x, ω)Gim(xA, x, ω)dVx (A3)

in which one has the displacement field for xA being a point at V inside the surface Γ in terms of body forces and the boundary values
of displacements and tractions. Here Gim(xA, x, ω) and Tim(xA, x, ω) are the Green’s functions for displacements and tractions when the
harmonic unit force are in the direction m. fi (x) is the body force distribution. ti (x, ω) and Tim(xA, x, ω) are defined by eq. (A4):

ti (x, ω) = n j (x)

(
ci jkl

∂ul (x, ω)

∂xk

)

Tim(xA, x, ω) = n j (x)

(
ci jkl

∂Glm(x, xA, ω)

∂xk

)
· (A4)

By considering for the internal point xB an harmonic body force fi (x) ≡ δ(x − xB)δin in the direction n and setting for the field the
time-reversed solution, then ui (x) ≡ Gin(x, xB, ω), ti (x) ≡ Tin(x, xB, ω), and eq. (A3) becomes∫

Γ

[
Tim(x, xA, ω)G∗

in(x, xB, ω) − T ∗
in(x, xB, ω)Gim(x, xA, ω)

]
dΓx = −G∗

mn(xA, xB, ω) + Gmn(xA, xB, ω), (A5)
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which is rewritten changing x by ξ , to represent boundary points on Γ , as

2iGmn(xA, xB, ω) = −
∫

Γ

[
Gmi (xA, ξ, ω)T ∗

in(ξ, xB, ω) − G∗
ni (xB, ξ, ω)Tim(ξ, xA, ω)

]
dΓξ · (A6)

Eq. (A6) is a correlation-type representation theorem. A similar form has been presented by van Manen et al. (2006). Then because the
theorem in eq. (A6) is valid for any surface Γ , it follows that if the field is diffuse at the envelope, that is, the net flux of energy is null, it is
also diffuse at any point within the heterogeneous medium

Starting from the analytical expressions for Gim and Tim in the farfield (Sánchez-Sesma & Campillo 2006; Sánchez-Sesma et al. 2008;
see e.g. Domı́nguez & Abascal 1984 for the full expression of Gim and Tim), it can be demonstrated that for random and uncorrelated sources,
the resulting illumination, after a lapse time large enough compared to the traveltime of ballistic waves, is an equipartitioned diffuse field.
Therefore, the right-hand side of eq. (A6) is proportional to the azimuthal average of cross-correlation of the displacement field:

Im[Gmn(xA, xB)] = −(2πξS)−1k3〈um(xA)u∗
n(xB)〉, (A7)

where k is the shear wave number and ξ S is the average energy density of shear waves and represents a measure of the strength of the diffuse
illumination. Assuming the source and the receiver are at the same location (xA = xB = x), one can thus write (Sánchez-Sesma et al. 2008)

Im[Gmm(x, x)] = −(2πξS)−1k3〈|um(x)|2〉. (A8)

An alternative approach linking the azimuthal average of cross-correlation to the imaginary part of the Green’s function under diffuse
assumption in the farfield and without prior knowledge of the full analytical expression of the Green’s function was presented by Snieder
et al. (2009).

A P P E N D I X B : E S T I M AT I N G T H E S H WAV E S C O N T R I B U T I O N T O T H E I M A G I NA RY
PA RT O F T H E G R E E N ’ S F U N C T I O N

B1 Receiver at the surface

Following Aki & Richards (2002), and for the displacement u2 = v, the SH-wave equation in an arbitrary layer j presented in Fig. 1 is given
in linear elasticity by

∂2v

∂t2
= μ j

ρ j

(
∂2v

∂x2
+ ∂2v

∂z2

)
. (B1)

A solution to eq. (B1) can be of the form

v = l1(z, w, k) exp[i(kx − ωt)] (B2)

and the associated shear stresses:

τyz = μ j
∂l1

∂z
exp[i(kx − ωt)]

= l2 exp[i(kx − ωt)]

τxy = ikμ j l1 exp[i(kx − ωt)]·
(B3)

From eq. (B3), the differential eq. (B4) is obtained:

dl1

dz
= 1

μ j
l2 (B4)

From Newton’s second law, one gets

∂τxy

∂x
+ ∂τyz

∂z
= ρ j

∂2v

∂t2
. (B5)

This leads to

dl2

dz
= (k2μ j − ω2ρ j )l1. (B6)

Eqs (B4) and (B6) lead to the system of first-order differential eq. (B7):

d

dz

(
l1

l2

)
=

⎛
⎝ 0

1

μ j

k2μ j − ω2ρ j 0

⎞
⎠(

l1

l2

)
. (B7)

This equation is of the form

dl

dz
= A j l, (B8)
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where

l =
(

l1

l2

)
(B9)

and

A j =
⎛
⎝ 0

1

μ j

k2μ j − ω2ρ j 0

⎞
⎠· (B10)

Assuming a homogeneous layer medium (i.e. the layers’ properties are constant), the solution to eq. (B8) within the jth layer defined by zj

and zj + 1 is given by(
l1

l2

)
z j+1

= P j

(
l1

l2

)
z j

, (B11)

where

P j = exp[A j (z j+1 − z j )]. (B12)

Using linear algebra properties, it can be shown that if matrix A is diagonalizable, then there exists an invertible L so that

A = LeL−1 (B13)

where L is the matrix of eigenvectors of A, L−1 its inverse and e is the eigenvalue matrix. The series expansion of exp[A(z j+1 − z j )] using

exp(A) =
∞∑

k=0

Ak

k!
= I + A + A2

2!
+ A3

3!
+ · · · (B14)

allows to write

exp(L−1AL) = exp(e) = E = L−1

(
I + A + A2

2!
+ A3

3!
+ . . .

)
L = L−1[exp(A)]L, (B15)

where E = exp(e). For the problem investigated, A is replaced by A j (z j+1 − z j ).
The eigenvalues for the 2×2 A(z j+1 − z j ) for the SH wave propagation are obtained by finding the roots of the second-order polynomial

defined by

det[A j (z j+1 − z j ) − λI ] = 0. (B16)

This leads to

λ1 = (z j+1 − z j )ν j (B17)

λ2 = −(z j+1 − z j )ν j (B18)

where ν j =
√

k2 − ω2ρ j

μ j
=

√
k2 − ω2

V 2
S j

.

The eigenvectors are obtained by solving the equations (for the two eigenvalues)

[A j (z j+1 − z j ) − λ1 I ]

(
x1

x2

)
= 0 (B19)

and

[A j (z j+1 − z j ) − λ2 I ]

(
x1

x2

)
= 0. (B20)

Sample eigenvectors are therefore:
for λ1:

(x1, x2) = (1, μ jν j )x1 (B21)

and for λ2:

(x1, x2) = (1, −μ jν j )x1· (B22)

The eigenvectors can be arranged in the matrix

L j =
(

1 1
μ jν j −μ jν j

)
(B23)
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and the inverse of L j is given by

L−1
j =

⎛
⎜⎜⎝

1

2

1

2μ jν j
1

2

−1

2μ jν j

⎞
⎟⎟⎠. (B24)

Matrix E j is given by

E j =
(

exp[ν j (z j+1 − z j )] 0
0 exp[−ν j (z j+1 − z j )]

)
. (B25)

The eigenvalue problem has also been studied by Gantmacher (1959) and Gilbert & Backus (1966).
The propagator (or layer) matrix can therefore be written as

P j = L j E j L
−1
j

=
(

1 1
μ jν j −μ jν j

)(
exp[ν j (z j+1 − z j )] 0

0 exp[−ν j (z j+1 − z j )]

)⎛
⎜⎜⎝

1

2

1

2μ jν j
1

2

−1

2μ jν j

⎞
⎟⎟⎠. (B26)

This operation leads to

P j =
⎛
⎝ cosh[ν j (z j+1 − z j )]

1

μ jν j
sinh[ν j (z j+1 − z j )]

μ jν j sinh[ν j (z j+1 − z j )] cosh[ν j (z j+1 − z j )]

⎞
⎠. (B27)

In the next steps, the propagator matrix as defined by eq. (B26) is used. This representation allows to introduce a manipulation matrix that
aids to avoid the numerical instability issue.

For an n-layer over half-space system, we obtain(
l1

l2

)
zn+1

= PnPn−1...P1

(
l1

l2

)
z1

. (B28)

By introducing eq. (B2) into eq. (B5), a second-order differential equation is obtained for l1 where the solution can be written for layer 1 in
the form

l1 = Ś1 exp(ν1z) + S̀1 exp(−ν1z), (B29)

where Ś1 and S̀1 are constant representing the amplitude of upgoing and downgoing SH waves.
Eqs (B4) and (B29) lead to

l2 = μ1ν1 Ś1 exp(ν1z) − μ1ν1 S̀1 exp(−ν1z). (B30)

Eqs (B29) and (B30) combine to(
l1

l2

)
=

(
exp(ν1z) exp(−ν1z)

μ1ν1 exp(ν1z) −μ1ν1 exp(−ν1z)

)(
Ś1

S̀1

)
. (B31)

Without loss of generality, we have for the half-space:(
l1

l2

)
n+1

=
(

exp(νn+1z) exp(−νn+1z)
μn+1νn+1 exp(νn+1z) −μn+1νn+1 exp(−νn+1z)

)(
Śn+1

S̀n+1

)

=
(

1 1
μn+1νn+1 −μn+1νn+1

)(
Ś1 exp(νn+1z)

S̀1 exp(−νn+1z)

)

= Ln+1

(
Śn+1 exp(νn+1z)

S̀n+1 exp(−νn+1z)

)

= Ln+1

(
exp(νn+1zn+1) 0

0 exp(−νn+1zn+1)

)(
Śn+1

S̀n+1

)
.

(B32)

In the half-space, there is no upgoing waves, therefore Śn+1 = 0, so that(
l1

l2

)
n+1

= Ln+1

(
exp(νn+1zn+1) 0

0 exp(−νn+1zn+1)

)(
0

S̀n+1

)

= Ln+1

(
exp(νn+1zn+1) 0

0 exp(−νn+1zn+1)

)(
0

1

)
S̀n+1.

(B33)
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Using eqs (B26), (B28) and (B33), we have

PnPn−1...P1

(
l1

l2

)
1

= Ln+1

(
exp(νn+1zn+1) 0

0 exp(−νn+1zn+1)

)(
0

1

)
S̀n+1. (B34)

This leads, for the displacement at the surface, to(
l1

l2

)
1

= P−1
1 ...P−1

n−1P−1
n Ln+1

(
0

1

)
S̀n+1 exp(−νn+1zn+1), (B35)

where P−1
n = LnE−1

n L−1
n .

Let set Cn+1 =
(

0

1

)
and Yn+1 = Ln+1Cn+1.

At the surface load point (z = 0), l1 = v = g22SH (the integrand of interest) and l2 = 1.
Eq. (B35) can be solved for g22SH at the surface.
The Green’s function in the 1-D layered medium is obtained by integration over the horizontal wavenumber:

Im
[
GSH

22 (z, f )
] = Im

[
GSH

11 (z, f )
] = 1

4π

∫ ∞

0
Im [g22SH] kdk (B36)

Note that a correction factor
k

4π
has been introduced in the kernel. This is trivial in cylindrical coordinates when the radius and azimuthal

components are set to zero.

B2 Receiver at depth

For a receiver at depth, the displacement stress just under the load point which is assumed to be at the interface j can be written as follows
(compare eq. B35):(

lb1

lb2

)
z j

= P−1
j ...P−1

n−1P−1
n Ln+1

(
0

1

)
S̀n+1 exp(−νn+1zn+1). (B37)

On the other hand, the result just above the source would be(
lu1

lu2

)
z j

= P j−1P j−2...P1

(
l1

l2

)
z1

. (B38)

The boundary conditions at the load point at depth are given (1) for the upper layer by lu1 = g22SH; and lu2 = τ u and (2) for the bottom layers
by lb1 = g22SH and lb2 = τ b. The unit load at the source is defined such that τ b − τ u = 1

Eq. (B38) can be rewritten as(
lu1

lu2

)
z j

= P j−1P j−2...P1

(
vs

0

)
z1

= P j−1P j−2...P1

(
1

0

)
vs .

(B39)

Let set Y1 =
(

1

0

)
as the basic displacement-stress solution at the surface. This basic vector is propagated downwards from the surface to the

source. So that(
Yu1

Yu2

)
= P j−1P j−2...P1

(
1

0

)
· (B40)

Respectively, the fundamental vector of plane-wave amplitude

(
0

1

)
at the half-space can be propagated upwards to the source:

(
Yb1

Yb2

)
= P−1

j ...P−1
n−1P−1

n Ln+1

(
0

1

)
. (B41)

The set of boundary conditions allows to extract g22SH as

g22SH = Yu1Yb1

Yu1Yb2 − Yu2Yb1
. (B42)

For this SH case, the Green’s function in the 1-D layered medium is given by

Im
[
GSH

22 (z, f )
] = Im

[
GSH

11 (z, f )
] = 1

4π

∫ ∞

0
Im [g22SH] kdk. (B43)

The integral can be numerically computed by making, for example, use of the discrete wavenumber approach.
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A P P E N D I X C : C O M P U T I N G T H E P – S V WAV E S C O N T R I B U T I O N T O T H E I M A G I NA RY
PA RT O F T H E G R E E N ’ S F U N C T I O N

Without loss of generality, consider the inplane solution (i.e. no dependence on the y coordinate) to the elastic wave or Navier equation. The
displacement-stress vector r = (r1, r2, r3, r4)T is obtained by the following expression (see also e.g. Aki & Richards 2002,Chap7, p263):

u = r1(k, z, ω) exp[i(kx − ωt)],

v = 0,

w = ir2(k, z, ω) exp[i(kx − ωt)].

(C1)

Here we used (u1, u2, u3) = (u, v, w). Let set the stresses associated with displacements:

τzx = r3(k, z, ω) exp[i(kx − ωt)],

τzz = ir4(k, z, ω) exp[i(kx − ωt)].
(C2)

Using Hooke’s and Newton’s law for a homogeneous medium it can be shown that

d

dz

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 k
1

μ
0

−kλ

λ + 2μ
0 0

1

λ + 2μ
4k2μ(λ + μ)

λ + 2μ
− ω2ρ 0 0

kλ

λ + 2μ

0 −ω2ρ −k 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠, (C3)

which is the first-order differential equation for displacement-stress vector r. λ and ν are the Lamé parameters.
Assuming a layer homogeneous medium (i.e. the layers’ properties do not depend on the depth z for a given layer), the solution to eq.

(C3) at two points z1 and z2 is given by⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

z2

= P

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

z1

(C4)

where

P = exp[A(z2 − z1)] (C5)

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 k
1

μ
0

−kλ

λ + 2μ
0 0

1

λ + 2μ
4k2μ(λ + μ)

λ + 2μ
− ω2ρ 0 0

kλ

λ + 2μ

0 −ω2ρ −k 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C6)

The eigenvalues for the 4×4 matrix A(z2 − z1) for the P–SV wave propagation are obtained by finding the roots of the fourth-order polynomial
defined by:

det[A(z2 − z1) − aI] = 0. (C7)

This leads to

a1 = γ =
√

k2 − ω2

α
(z2 − z1)

a2 = ν =
√

k2 − ω2

β
(z2 − z1)

a3 = −γ = −
√

k2 − ω2

α
(z2 − z1)

a4 = −ν = −
√

k2 − ω2

β
(z2 − z1),

(C8)

α and Vp and β and Vs are used interchangeably.
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Using linear algebra properties as presented in eqs (B13)–(B15), we obtain

L =

⎛
⎜⎜⎜⎝

αk βν αk βν

αγ βk −αγ −βk
−2αμkγ −βμ(k2 + ν2) 2αμkγ βμ(k2 + ν2)

−αμ(k2 + ν2) −2βμkν −αμ(k2 + ν2) −2βμkν

⎞
⎟⎟⎟⎠ (C9)

E =

⎛
⎜⎜⎜⎝

exp [γ (z2 − z1)] 0 0 0
0 exp [ν(z2 − z1)] 0 0
0 0 exp [−γ (z2 − z1)] 0
0 0 0 exp [−ν(z2 − z1)]

⎞
⎟⎟⎟⎠ (C10)

L−1 = β

2αμγ νω2

⎛
⎜⎜⎜⎝

2βμkγ ν −βμν(k2 + ν2) −βkν βγ ν

−αμγ (k2 + ν2) 2αμkγ ν αγ ν −αkγ

2βμkγ ν βμν(k2 + ν2) βkν −βγ ν

−αμγ (k2 + ν2) −2αμkγ ν −αγ ν −αkγ

⎞
⎟⎟⎟⎠, (C11)

where L, E are the corresponding eigenvector and exponential of the eigenvalue matrices, respectively.
Eq. (C4) can be rewritten as

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

z2

= P

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

z1

= LEL−1

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

z1

. (C12)

Without loss of generality, for the elastic layer n with layer top labelled n, the displacement-stress vector at the bottom interface labelled n +
1 is given by

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

zn+1

= Pn

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

zn

(C13)

where

Pn = LnEnL−1
n . (C14)

For an n-layer over half-space earth model, we obtain

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

zn+1

= PnPn−1...P1

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

z1

. (C15)

It can also be shown that

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

n+1

=

Ln+1

⎛
⎜⎜⎜⎝

exp(γn+1zn+1) 0 0 0
0 exp(νn+1zn+1) 0 0
0 0 exp(−γn+1zn+1) 0
0 0 0 exp(−νn+1zn+1)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ṕn+1

Śn+1

P̀n+1

S̀n+1

⎞
⎟⎟⎟⎠

. (C16)
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In the half-space, there is no upgoing P and SV waves, therefore Ṕn+1 = 0 and Śn+1 = 0:⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

n+1

=

Ln+1

⎛
⎜⎜⎜⎝

exp(γn+1zn+1) 0 0 0
0 exp(νn+1zn+1) 0 0
0 0 exp(−γn+1zn+1) 0
0 0 0 exp(−μn+1zn+1)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0
0

P̀n+1

S̀n+1

⎞
⎟⎟⎟⎠

= Ln+1

⎛
⎜⎜⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎠

(
P̀n+1 exp(−γn+1zn+1)
S̀n+1 exp(−μn+1zn+1)

)

. (C17)

The later representation together with the defined manipulation matrix (Appendix D) allows to propagate the orthonormal base vectors (0,
0, 1, 0)T and (0, 0, 0, 1)T, that is, the 2×1 matrix in an efficient way and ultimately to avoid the loss of precision issue associated with the
Thomson–Haskell propagator matrix. See also Wang (1999).

C1 Receiver at the surface

Harmonic horizontal load: for a receiver at the surface, the boundary conditions for a harmonic horizontal load are the following:⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

1

=

⎛
⎜⎜⎜⎝

g11PSV

g31PSV/ i
−1
0

⎞
⎟⎟⎟⎠. (C18)

Harmonic vertical load: for a receiver at the surface, the boundary conditions for a harmonic vertical load are the following:⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

1

=

⎛
⎜⎜⎜⎝

g13PSV

g33PSV/ i
0

−1/ i

⎞
⎟⎟⎟⎠. (C19)

In the half-space, we have the following boundary conditions:⎛
⎜⎜⎜⎝

P̀
S̀
Ṕ
Ś

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P̀
S̀
0
0

⎞
⎟⎟⎟⎠· (C20)

For the harmonic horizontal load we then have⎛
⎜⎜⎜⎝

P̀
S̀
0
0

⎞
⎟⎟⎟⎠ = Ln+1

−1PnPn−1...P1

⎛
⎜⎜⎜⎝

g11PSV

g31PSV/ i
−1
0

⎞
⎟⎟⎟⎠ (C21)

and for the harmonic vertical load⎛
⎜⎜⎜⎝

P̀
S̀
0
0

⎞
⎟⎟⎟⎠ = Ln+1

−1PnPn−1...P1

⎛
⎜⎜⎜⎝

g13PSV

g33PSV/ i
0

−1/ i

⎞
⎟⎟⎟⎠· (C22)

The two equations above can be solved for g11PSV and g33PSV.
The Green’s function for the P–SV case in a 1-D layered medium are then given by

Im
[
GP-SV

22 (z, f )
] = Im

[
GP-SV

11 (z, f )
] = 1

4π

∫ ∞

0
Im [g11PSV] kdk (C23)

Im
[
GP-SV

33 (zF , f )
] = 1

2π

∫ ∞

0
Im [g33PSV] kdk. (C24)
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C2 Receiver at depth

The displacement-stress vector from the half-space to the source/receiver can be written in terms of the amplitudes of the waves in the
half-space as

Ln+1

⎛
⎜⎜⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎠

(
P̀
S̀

)
=

⎛
⎜⎜⎜⎝

r1

r2

r3

r4

⎞
⎟⎟⎟⎠

n+1

= PnPn−1...P j

⎛
⎜⎜⎜⎝

rb1

rb2

rb3

rb4

⎞
⎟⎟⎟⎠

j

(C25)

or⎛
⎜⎜⎜⎝

rb1

rb2

rb3

rb4

⎞
⎟⎟⎟⎠

j

= P−1
j ...P−1

n−1P−1
n Ln+1

⎛
⎜⎜⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎠

(
P̀
S̀

)
· (C26)

The displacement-stress vector from the free surface to the source/receiver are linked by⎛
⎜⎜⎜⎝

ru1

ru2

ru3

ru4

⎞
⎟⎟⎟⎠

j

= P j P j−1...P1

⎛
⎜⎜⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎟⎟⎠

(
u
w

)
· (C27)

The propagation of the fundamental independent solutions of the displacement stress at the surface down to the source can be defined as the
columns of⎛
⎜⎜⎜⎝

Yu11 Yu12

Yu21 Yu22

Yu31 Yu32

Yu41 Yu42

⎞
⎟⎟⎟⎠ = P j−1P j−2...P1

⎛
⎜⎜⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎟⎟⎠· (C28)

Similarly, the motion displacement stress just below the source compatible with unitary downgoing P and S waves at half-space are the
columns of⎛
⎜⎜⎜⎝

Yb11 Yb12

Yb21 Yb22

Yb31 Yb32

Yb41 Yb42

⎞
⎟⎟⎟⎠ = P−1

j ...P−1
n−1P−1

n Ln+1

⎛
⎜⎜⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎠. (C29)

For a horizontal harmonic load, the displacements are assumed to be continuous at the source. The solution above and below the source are
respectively⎛
⎜⎜⎜⎝

ru1

ru2

ru3

ru4

⎞
⎟⎟⎟⎠

z

=

⎛
⎜⎜⎜⎝

g11PSV

g31PSV/ i
σuh

0

⎞
⎟⎟⎟⎠ (C30)

and⎛
⎜⎜⎜⎝

rb1

rb2

rb3

rb4

⎞
⎟⎟⎟⎠

z

=

⎛
⎜⎜⎜⎝

g11PSV

g31PSV/ i
σbh

0

⎞
⎟⎟⎟⎠. (C31)

The continuity of the stresses leads to the following boundary conditions:

ru4 − rb4 = 0

σbh − σuh = rb3 − ru3 = 1.
(C32)

The first two equations above can be written as

Ax = bh (C33)
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where

A = (Yb, −Yu) =

⎛
⎜⎜⎜⎝

Yb11 Yb12 −Yu11 −Yu12

Yb21 Yb22 −Yu21 −Yu22

Yb31 Yb32 −Yu31 −Yu32

Yb41 Yb42 −Yu41 −Yu42

⎞
⎟⎟⎟⎠, (C34)

x =

⎛
⎜⎜⎜⎝

P̀
S̀
u
w

⎞
⎟⎟⎟⎠ (C35)

and

bh =

⎛
⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎠· (C36)

Similarly, for a vertical harmonic load (upper layer at load) it follows that⎛
⎜⎜⎜⎝

ru1

ru2

ru3

ru4

⎞
⎟⎟⎟⎠

z

=

⎛
⎜⎜⎜⎝

g13PSV

g33PSV/ i
0

σuv/ i

⎞
⎟⎟⎟⎠ (C37)

and⎛
⎜⎜⎜⎝

rb1

rb2

rb3

rb4

⎞
⎟⎟⎟⎠

z

=

⎛
⎜⎜⎜⎝

g13PSV

g33PSV/ i
0

σbv/ i

⎞
⎟⎟⎟⎠· (C38)

In this case, the boundary conditions are

ru4 − rb4 = 1

σbv − σuv = rb3 − ru3 = 0

ru1 = rb1 = g13PSV

ru2 = rb2 = g33PSV.

(C39)

From the first two equations, it is possible to write, as for the horizontal load,

Ax = bv (C40)

where A and x have been defined above. bv is defined in this case by

bv =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠. (C41)

Eqs (C33) and (C40) can be solved for g11PSV and g33PSV by using, for example, the Gaussian LU matrix decomposition.
The Green’s function in 1-D layered medium are then given by

Im
[
GP-SV

22 (z, f )
] = Im

[
GP-SV

11 (z, f )
] = 1

4π

∫ ∞

0
Im [g11PSV] kdk (C42)

Im
[
GP-SV

33 (zF , f )
] = 1

2π

∫ ∞

0
Im [g33PSV] kdk. (C43)

The solution to the integral can be obtained numerically by using, for example, the discrete wavenumber approach.
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A P P E N D I X D : O RT H O N O R M A L I Z AT I O N A L G O R I T H M F O R T H E P – S V WAV E S
P RO PA G AT I O N

D1 Propagation from the surface to the source

Starting from the definition of the base vector Y j at the layer interface j (Appendix C),

Y j+1 = P j Y j = L j E j L
−1
j Y j . (D1)

Let define C j such that

C j = L−1
j Y j (D2)

and

Y j+1 = L j E j C j . (D3)

Redefine Y to Y′ so that

Y′
j+1 = L j E j C

′
j , (D4)

where C′
j is defined such that

C′
j = C j Qu =

⎛
⎜⎜⎜⎝

C11 C12

C21 C22

C31 C32

C41 C42

⎞
⎟⎟⎟⎠

(
Qu11 Qu12

Qu21 Qu22

)
=

⎛
⎜⎜⎜⎝

1 0
0 1

C ′
31 C ′

32

C ′
41 C ′

42

⎞
⎟⎟⎟⎠. (D5)

This equation leads to

Qu11 = C22

C11C22 − C12C21
, (D6)

Qu12 = −C12

C11C22 − C12C21
, (D7)

Qu21 = −C21

C11C22 − C12C21
, (D8)

Qu22 = C11

C11C22 − C12C21
, (D9)

C′
j contains in each column different wave types together with the corresponding reflections.

D2 Propagation from the half-space to the source

For the wave propagation from the half-space to the source, the matrix of basis vectors can be written as

Y j = L j E
−1
j L−1

j Y j+1. (D10)

In this case, C j is defined such that

C j = L−1
j Y j . (D11)

This leads to

Y j = L j C j . (D12)

For the layer j + 1, we have

Y j+1 = L j+1C j+1. (D13)

We then obtain

Y j = L j E
−1
j L−1

j L−1
j+1C j+1. (D14)

Reset C j

C j = L−1
j L j+1C j+1, (D15)
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so that

Y j = L j E
−1
j C j . (D16)

Redefine Y′ so that

Y′
j = L j E

−1
j C′

j , (D17)

where C′
j is defined such that

C′
j = C j Qb =

⎛
⎜⎜⎜⎝

C11 C12

C21 C22

C31 C32

C41 C42

⎞
⎟⎟⎟⎠

(
Qb11 Qb12

Qb21 Qb22

)
=

⎛
⎜⎜⎜⎝

C ′
11 C ′

12

C ′
21 C ′

22

1 0
0 1

⎞
⎟⎟⎟⎠. (D18)

This equation leads to

Qb11 = C42

C31C42 − C32C41
, (D19)

Qb12 = −C32

C31C42 − C32C41
, (D20)

Qb21 = −C41

C31C42 − C32C41
, (D21)

Qb22 = C31

C31C42 − C32C41
. (D22)

In this representation, C′
j contains in each column different wave types separately together with their corresponding reflections.

A P P E N D I X E : P S E U D O 4 ×4 P RO PA G AT O R M AT R I X F O R A WAT E R L AY E R O N T O P
O F A L AY E R E D E L A S T I C M E D I U M

In the presence of a water layer, characterized by a shear stress μ = 0, only P waves contribute to the Green’s function estimation.
Starting from the wave equation for the P–SV case, it can be demonstrated that

r1 = k

ρω2
r4 (E1)

and

∂r4

∂z
= −ρω2r2

∂r2

∂z
= 1

ρω2

(
−k2 + ω2

α2

)
r4

(E2)

d

dz

(
r2

r4

)
=

⎛
⎝ 0

1

ρω2

(
−k2 + ω2

α2

)
−ω2ρ 0

⎞
⎠(

r2

r4

)
. (E3)

This equation is of the form

dr

dz
= Ar, (E4)

where

r =
(

r2

r4

)
(E5)

and

A =
⎛
⎝ 0

1

ρω2

(
−k2 + ω2

α2

)
−ω2ρ 0

⎞
⎠· (E6)
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The solution to eq. (E4) at two points z1 (at the water surface) and z2 (at the ocean floor) is (Gantmacher 1959; Gilbert & Backus 1966; Aki
& Richards 2002)(

r2

r4

)
z2

= P

(
r2

r4

)
z1

, (E7)

where

P =

⎛
⎜⎝ cosh[γ (z2 − z1)] − γ

ρω2
sinh[γ (z2 − z1)]

−ρω2

γ
sinh[γ (z2 − z1)] cosh[γ (z2 − z1)]

⎞
⎟⎠. (E8)

To obtain the pseudo 4×4 matrix, we rewrite eq. (E7) as follows (see also Herrmann 2008):

⎛
⎜⎜⎜⎝

r1|z2

r2|z2

r3|z2

r4|z2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cosh[γ (z2 − z1)] 0 − γ

ρω2
sinh[γ (z2 − z1)]

0 0 1 0

0 −ρω2

γ
sinh[γ (z2 − z1)] 0 cosh[γ (z2 − z1)]

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

r1|z2

r2|z1

r3|z2

r4|z1

⎞
⎟⎟⎟⎠. (E9)

The pseudo-propagator matrix in terms of eigenvector (L) and eingenvalues (E) matrices can be given by

Ppseudo =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cosh[γ (z2 − z1)] 0 − γ

ρω
sinh[γ (z2 − z1)]

0 0 1 0

0 −ρω2

γ
sinh[γ (z2 − z1)] 0 cosh[γ (z2 − z1)]

⎞
⎟⎟⎟⎟⎟⎠

= LEL−1

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 − γ

ρω2
0

γ

ρω2

0 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 exp[γ (z2 − z1)] 0 0
0 0 1 0
0 0 0 exp[−γ (z2 − z1)]

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −ρω2

2γ
0

1

2
0 0 1 0

0
ρω2

2γ
0

1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(E10)

where γ =
√

k2 − ω2/V 2
P .

From this point on, the algebra is again similar to the derivations presented earlier. The effect of the presence of the water layer on the
estimated H/V spectral ratio curves is discussed in the text.
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