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Abstract— The water flow rate control, which is the principal
control loop required to operate stationary solar fields, can be as
simple as designing a PID controller for a unique pump whose
behavior can be approximated by a first-order system with
delay. Nevertheless, when the water flow rate is manipulated
with multiple actuators (pumps or valves), the problem presents
some challenges due to hydraulic interactions. This paper
presents a multivariable controller scheme to deal with the
control of a solar field with five pumping systems. Simulation
and experimental results are included to demonstrate the
effectiveness of the proposed controller.

I. INTRODUCTION

From the control point of view, stationary flat plate solar
collectors require fewer control loops than parabolic through
collectors because the solar collector movement is not a
degree of freedom. For this reason, the first variable that
must be controlled in this kind of systems is the heat transfer
fluid (HTF) flow rate, whose variations affect to the outlet
temperature of the solar field [3]. Therefore, to maintain
the desired outlet temperature despite the variability in the
operating conditions (such as the solar irradiance level), the
first control engineering work must be the design of the HTF
flow rate controller. Usually, this control design is a simple
stage because the solar fields are designed to assure similar
flow rates in all the loops and they have only a main pumping
system whose dynamics can be approximated by a first or
second order system with delay [4]. Nevertheless, some new
designs of solar collector systems, such as the one presented
in this paper, require a pumping system for each loop. In
these cases, the complexity of the HTF flow rate control
loop is higher because the variations in the pumping system
of one loop affect not only that loop, but also the other loops.
For large solar fields, the use of independent controllers for
the flow rates can improve the response of the temperature
controllers because the irradiance level can be different in
different parts of the solar field due to passing clouds.
Last studies related with appropriate controllers considering
multiple control variables, such as [6], [8], do not consider
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the hydraulic system as a MIMO system with coupling.
This paper demonstrates the importance of considering the
hydraulic interaction inside the design of the temperature
control strategy and it is organized as follows. Section 2
describes the experimental facility under study. In Section
3, the hydraulic model is presented and the results are
compared with data from the facility. Section 4 describes
the multivariable controller proposed and simulation and
experimental results are included in Section 5. Conclusions
are discussed in Section 6.

II. SYSTEM DESCRIPTION

The solar field AQUASOL-II (see Fig.1) located at the
Plataforma Solar de Almerı́a (PSA) in Spain, is composed
of 60 stationary flat plate solar collectors (Wagner LBM
10HTF) with a total aperture area of 606 m2. Its distribution
is shown in Fig. 2. There are five loops connected in
parallel: four of these loops (loops 2-5) have 14 flat-plate
collectors each one (and each loop has two rows connected
in series with 7 collectors in parallel per row) while loop
1 has 4 flat-plate collectors connected in parallel. There is
a main pumping system (Pump 0) and each loop has its
own pumping system (Pump 1-Pump 9). The main pump
is required to help the others secondary ones reaching high
flow levels.

Fig. 1. AQUASOL-II solar field facility at PSA (Spain).

As Fig. 2 shows, the water enters to the main pipe and
it is pumped by the main pump through the loops. In
loops 2-5 the water is pumped across the flat plate solar
collectors by two pumping systems (the one on the left
and the one on the right) and it flows to the main pipe to
continues its cycle into the plant. From the control point



Fig. 2. Schematic diagram of AQUASOL-II solar field facility.

of view, the pumps inside each loop are treated as unique
one. Therefore, the manipulated variable will be one for
loop and each pump variable-frequency drive will receive
the same value. It is important to mention that, during the
experimental campaigns performed to obtain the model and
test the controller, loop number 2 was out of order. For this
reason, this loop is not considered neither in the modelling
stage, nor in the control design.

III. HYDRAULIC MODEL

With the aim of tuning a controller to regulate the water
flow rates inside the solar loops, an hydrualic model of the
system has been obtained experimentally. Since the plant is a
multiple-input multiple-output (MIMO) system with 5 inputs
(pump speeds) and 5 outputs (water flow rates), the basic
transfer function model is y(s) = G(s)u(s), where y and u
are 5x1 vectors and G(s) is a 5x5 transfer function matrix.
There is interaction between inputs and outputs because a
change in one of the inputs affects all the outputs.

To obtain the values of matrix G(s), an experimental
campaign was designed and performed; different steps were
applied in the loops pumps to obtain the water flow rates
responses via the reaction curve method. The experiments to
find the data were planned as follows:
• The loops pumps (Pump 0, Pump 1, Pump 3a, Pump

3b, Pump 4a, Pump 4b, Pump 5a, Pump 5b) were
characterized with steps from 40% to 90% of the input
range.

• The experiments described in the previous bullet were
repeated with different values in the principal pump
(Pump 0) input. In particular, the principal pump was
set to 20% 50% 80% of its input range.

In order to obtain a good data set, it was necessary to
acquire the data when the water temperature was near to the
operating point as the density of water changes according to
its temperature. For that reason, it was necessary to make

the experiments during a day with adequate solar radiation
and the inlet temperature was controlled with an air-cooler
located in the main pipe of the solar field. In order to use
as less as possible the air-cooler, the experiment with the
principal pump at 20% was done during the morning, when
the solar radiation was not too high and the others in the
afternoon. When required, the temperature of the water at
the inlet of the solar field was maintained at 40◦C using the
air cooler.

A. GAIN

During the experimental campaign performed to obtain
the transfer function models, it was observed that the static
gain of the process changes with the operating conditions
due to the nonlinearities of the actuators (pumps). In
particular, the gain of the models of the loops pump
depends on the working point of the main pump. This is
reasonable because the energy losses in the pipe, as the
Bernoulli equation states, depend on the square of the water
speed.

This static nonlinearity is combined with transfer functions
describing the linear part of the models, following the
strategy described below:

1) plotting the experimental loops pump gains according
to the pump 0 input signal;

2) interpolating the data with a polynomial;
3) considering two parts of the transfer function: one is a

polynomial, pi j, which defines the gain and the other
is the linear dynamic part, Gi j.

Therefore, the water flow rate in each loop, yi, where i = 0
is for the principal pump and i = 1,3,4,5 are for the loop i,
is calculated as:

yi = ∑
j

yi j, i, j = 0,1,3,4,5, (1)

where yi j is the contribution to yi due to the interaction
between loop i and loop j, and they can be obtained from

Yi j(s)
U0 j(s)

= pi jGi j, pi j = f (u0,u j), (2)

being pi j the polynomial that defines the gain and that
depends on the inputs of the main pump u0, and of the pump
of the other loops u j.

The values obtained for pi j and Gi j are included in Table
II in the Appendix. Notice that those transfer functions that
involve the main pump are first order transfer functions,
while the dynamics between pumps of different loops must
be defined with second order transfer functions.

1) MAIN PUMP: As shown in Eq. 2, to model the main
pump’s transfer function (pump 0), it is not necessary to
introduce an additional input signal because the gain changes
according only to the input u0. Fig. 3 shows the experimental
points obtained to evaluate the gain as a function of the
principal pump input. In this case, it is possible to model
this gain as a second order polynomial (see p00 in Table II).
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Fig. 3. Nonlinear gain obtained experimentally and the polynomial p00
curve fitting.

2) LOOPS PUMPS: The same procedure followed for
the main pump was used to achieve the model’s gain
between the principal pump and each loop (polynomials
p0 j, j = 0,1,3,4,5). These models are quite similar to the
one shown above, but in the loops, the equation for the
gain in the direct transfer functions (Gi j, being i = j) are
first order polynomials and for the indirect ones (Gi j, being
i 6= j) are second order polynomials.

B. DYNAMICS

The data collected to find out the model transfer function
were analyzed with the Matlab System Identification tool-
box. In order to find the correct transfer functions, it was
necessary to remove the value of the operating point to get an
incremental model. Since the signals of this hydraulic system
do not present a significant noise, they were not filtered.

C. MODEL RESULTS

In Fig. 4 it is possible to see the similarities between the
experimental data and the simulation results. In particular it
is worth analyzing the model gain and dynamics. It can be
observed that the steady state values reached in each loop for
different values of the input reflect that the nonlinear gains
are properly calculated to achieve the real values. Regarding
the dynamics, it is possible to note that an acceptable tracking
between the real flow and the simulation is obtained. Special
attention should be given to the presence of positive zero
which is distinctive of a non-minimum phase system. This
implies that the MIMO PID controllers design is more
challenging.

IV. MULTIVARIABLE CONTROLLER

In this solar field, each pump of the system influences all
the system’s pipes and not only the loop where it is located.
Therefore, before designing the controller, the coupling and
interactions between inputs and ouputs must be established.
One methodology to evaluate the degree of interactions is
the relative gain array (RGA) [7]. In this case, due to the
nonlinearities, the RGA matrix is not constant, it depends on
the operating point. Based on the experience at the facility,

the principal pump uses to work at more than 50% of
its speed. In order to follow as much as possible the real
operation point, the RGA matrix was calculated when the
pump 0 input is at 80%, obtaining the following one:

RGA80% =


21.24 −5.38 −5.27 −4.32 −5.27
−5.32 8.11 −0.63 −0.50 −0.66
−5.34 −0.61 8.43 −0.62 −0.86
−4.22 −0.51 −0.72 7.26 −0.82
−5.35 −0.61 −0.82 −0.82 8.61

 .
(3)

From the RGA matrix, it is clear that the input-ouput pairs
must be stablished as yi-ui, with i = 0,1,3,4,5. As expected,
the water flow rate in each loop must be controlled with the
pumping system of that loop. With the aim of reducing the
iteraction degree as much as possible, a decoupler has been
included [5].

As described in Section III, this hydraulic system is a non
linear system, so the MIMO controller includes some special
features to deal with nonlinearities. To compensate these
nonlinearities, the inverse of the pump characteristics can
be placed after the lineal controller and before it is applied
to the pump. As explained in [1], with this idea, it is possible
to obtain a considerable improvement in the performance of
the closed-loop system.

A. Principal pump

The principal pump does not directly control the flow in
the loops but it is necessary to support the other pumps. For
this reason it is controlled in open loop. In Fig. 5, the control
scheme for the principal pump is shown. It is composed of
three main blocks and the set-point is allocated as the sum
of the set-points of each individual loop.

1) Lookup table 1: In this block a linear function obtained
experimentally (see Eq. 4) receives the set-point SP0, and
provides a control signal u′0. The control signal passes from
0% when the SP is also at 0, to 100% when the SP is set to
maximum flow in a linear way:

u′0 = 0.8333× (SP0). (4)

2) Lookup table 2: In order to compensate the nonlin-
earities of the system, a lookup table was used to calculate
the control signal u0. It is implemented as a piecewise linear
function that approximates the inverse of the function that
describes the gain of the model:{

u0 = 2.91u′0−106.34 if u′0 < 50%,

u0 = 1.68u′0−44.75 if u′0 ≥ 50%.
(5)

3) Decoupling 0: In this block, the functions which are
used for decoupling each loop are placed. These functions are
not calculated in the ideal form because the transfer functions
present delays and positive zeros. These positive zeros, with
an ideal decoupling become positive poles that destabilise the
system. Simplified decouplings are calculated as Eq. 6, where
the first number indicates the loop pump and the second the



Fig. 4. Pumps speed (upper panel) and comparison between model results (blue solid line) and experimental data (black dashed line). Experimental test
performed on March 15th, 2018.
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Fig. 5. Control structure for the principal pump.

affected loop. The Di j transfer function in Eq. 6 are equal
to the Gi j transfer function (see Tab. II) without delay.

Ri j =−
Di j

D j j
i, j = 0,1,3,4,5. (6)

B. Loop pumps

All the pumps on the loop are controlled with the same
control scheme (see Fig. 6) and only the parameters change
according to the model.

SPj PID

u0

Decoupling

pjj

dji

d0j

dij

Uj

uj

Fig. 6. Control structure for the loop j. Inputs from the main loop, u0, d0 j ,
and from the other loops, di j , are required.

1) PID: this block implements a PID in the non-
interactive form. Due to the presence of positive zeros, the
derivative action is switched off.

2) Decoupling: the function in this block is calculated
as described in Section IV-A.3.

3) MATLAB Function: This is the main difference be-
tween this control scheme and the tipical MIMO control
structure. The signal from PID controller passes through
this block which modifies the signal to compensate the
nonlinearity. As it was said before, the nonlinear gain of
each loop is connected with the principal flow. The following
operations are performed in these blocks:

1) the value of the main flow is collected,
2) with that value the inverse of the model loop gain is

calculated,
3) the signal coming from the PID controller is multiplied

by the value obtained at the previous point and supplied
at the output.

Due to the use of the MATLAB Function block, the gain of
the system perceived by the PID controller in each moment is
equal to one, then for the PID controller tuning it is necessary
to consider a unitary gain. In this control scheme an Anti-
Windup structure is also included because when the flow
set-point is high the pump often achieves the saturation.

V. RESULTS

Different PID controller tunings were tested in simula-
tion, being the best results obtained with the Chien-Hrones-
Reswick rules [2], which are an improvement of the Ziegler-
Nichols ones because they provide a higher robustness. This
method provides different formulas for setpoint tracking and
disturbance rejection and for 0% and 20% overshoot. In this
case, the formulas for setpoint tracking and 20% overshoot
have been used. As mentioned before, the derivative action
was switched off because there is a positive zero in the sys-
tem. Considering the parallel structure of the PI controller:

C(s) = Kp

(
1+

1
Tis

)
, (7)

the obtained tuning is the one presented in Table I.
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Fig. 7. Results obtained with the MIMO controller at AQUASOL-II facility (water flow rate in blue line and setpoint in grey dashed line are in the left
axis, pumps speed in red line is in the right axis). Experimental test performed on March 31st, 2018.

PID Tuning LOOP 1 LOOP 3 LOOP 4 LOOP 5
Kp (%L/min) 0.42 0.59 0.48 0.55
Ti (s) 4.24 4.90 3.17 4.57

TABLE I
PID TUNING OBTAINED FOR THE MIMO SOLAR FIELD SYSTEM

The proposed PID-based technique was tested on the real
plant (see Fig. 7). The overshoot value is around 10% in
the loops 1, 3, 5 and only in the loop 4 it reaches the
20%. Not all of these values are equal to 20% as the Chien-
Hrones-Reswick rules said because of the model inaccuracy.
According to what it was said about the overshoot, the
oscillation is higher in the loop 4 while in the other loops are
almost zero. The settling times of loops 1, 3 and 5 are less
than one minute while loop 4 requires about two minutes
to suppress the oscillation. These times are proper in order
to control the temperature in the loops. The decoupling is
not ideal so it is possible to see a small interaction between
the loops but this interaction is indeed kept at an acceptable
level.

CONCLUSIONS

In this paper we have shown that the flow in a solar
collector system with a nonlinear MIMO dynamics can be
effectively controlled by means of standard PID controllers
by conditioning their output in order to compensate for
the nonlinearities. An effective solution to condition the
output is with a function that implements the inverse of the
nonlinear part in order to linearize it. In this way the PID
controllers see a linear system downstream.

This controller design is the first step to control the water
temperature in the solar field. As the thermodynamics laws

explain, the flow and the heat taken are connected and having
an accurate flow control is an essential requirement in order
to obtain a precise temperature control. In fact, the control
structure presented in this paper will become the inner part of
a cascade control where the master controller will calculate
the required water flow rate in each loop to maintain a
desired temperature at the outlet of the solar field. For this
reason, a detailed study of the MIMO controller tuning must
be performed; in particular, oscillations should be reduced
(mainly in loop 4), but a fast response is also required for
the cascade slave controller.

APPENDIX
Transfer functions and polynomials to calculate the gains

of the hydraulic model are included in Table II.
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TABLE II
TRANSFER FUNCTIONS AND GAINS OF THE MIMO SYSTEM

LOOP 0 LOOP 1 LOOP 3

P0
G00(s) = 0.2464

s+0.2464 e−4s

p00 = 0.0048u2
0 +0.0073u0 +41.6

G10 =
0.1351

s+0.1351 e−4s

p10 = 0.007u2
0 +0.0680u0 +3.6

G30 =
0.4306

s+0.4306 e−5s

p30 = 0.0011u2
0 +0.0171u0 +10.5

P1
G01 =

0.08997
s2+1.02s+0.08997 e−4s

p01 = (8 ·10−6u2
0−0.0018u0 +0.2) ·u1

G11 =
0.2946s+0.006409

s2+0.2628s+0.006409 e−6s

p11 = (−0.0014u0 +0.2473) ·u1

G31 =
−0.2811s+0.008885

s2+0.4214s+0.008885 e−8s

p31 = (−5.7 ·10−6u2
0 +7 ·10−4u0−0.033) ·u1

P3
G03 =

2619
s2+2.675·104s+2619 e−4s

p03 = (−4 ·10−6u2
0−0.0003u0 +0.25) ·u3

G13 =
−0.101s+0.005787

s2+0.2839s+0.005787 e−5s

p13 = (−8.2 ·10−6u2
0 +0.0013u0−0.076) ·u3

G33 =
0.2895s+0.00306

s2+0.2189s+0.00306 e−5s

p33 = (−0.0014u0 +0.4) ·u3

P4
G04 =

3334
s2+2.724·104s+3334 e−4s

p04 = (−6.8 ·10−6u2
0 +0.0003u0 +0.17) ·u4

G14 =
−0.244s+0.01141

s2+0.588s+0.01141 e−5s

p14 = (−2.6 ·10−6u2
0 +0.0005u0−0.044) ·u4

G34 =
0.9392s+0.004963

s2+0.3571s+0.004963 e−4s

p34 = (1.3 ·10−6u2
0−3.4 ·10−5u0−0.028) ·u4

P5
G05 =

0.04489
s2+0.5968s+0.04489 e−2s

p05 = (−3.7 ·10−6u2
0−0.0003u0 +0.25) ·u5

G15 =
−0.1333s+0.005995

s2+0.3164s+0.005995 e−3s

p15 = (−5.8 ·10−6u2
0 +0.001u0−0.07) ·u5

G35 =
0.4043s+0.003194

s2+0.1939s+0.003194 e−4s

p35 = (2.8 ·10−6u2
0−0.0001u0−0.042) ·u5

LOOP 4 LOOP 5

P0
G40 =

0.4306
s+0.4306 e−5s

p40 = 0.001u2
0 +0.0031u0 +15.7

G50 =
0.3748

s+0.3748 e−5s

p50 = 0.011u2
0 +0.022u0 +10

P1
G41 =

−0.2008s+0.007278
s2+0.4699s+0.007278 e−8s

p41 = (−5.3 ·10−6u2
0 +0.0006u0−0.026) ·u1

G51 =
−0.4016s+0.01599

s2+0.4264s+0.01599 e−8s

p51 = (−6.2 ·10−6u2
00.0007u0−0.032) ·u1

P3
G43 =

0.3592s+0.002649
s2+0.175s+0.002649 e−4s

p43 = (5.6 ·10−6u2
0−0.0005u0−0.021) ·u3

G53 =
0.9557s+0.006807

s2+0.4268s+0.006807 e−8s

p53 = (5.6 ·10−7u2
0 +0.0002u0−0.048) ·u3

P4
G44 =

0.4598s+0.005299
s2+0.3321s+0.005299 e−4s

p44 = (−0.0008u0 +0.3) ·u4

G54 =
0.795s+0.005769

s2+0.35s+0.005769 e−4s

p54 = (−4.9 ·10−7u2
0 +0.0001u0−0.038) ·u4

P5
G45 =

0.5236s+0.003655
s2+0.261s+0.003655 e−5s

p45 = (3.2 ·10−6u2
0−0.0003u0−0.03) ·u5

G55 =
0.31s+0.0037

s2+0.2357s+0.0037 e−5s

p55 = (−0.0014u0 +0.4) ·u5


