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Abstract: This work proposes a hybrid control strategy for the optimal operation of a
solar membrane distillation facility. This kind of plants presents a hybrid nature allowing
their operation in several modes, which must be properly selected according to the operating
conditions. Thus, the control algorithm is based on a mixed logical dynamical characterization
of the solar membrane distillation facility, combined with the application of a practical nonlinear
model predictive control strategy for calculating the optimal control actions. The main objectives
of the control system are to increase the operating temperature and the distillate production
of the membrane distillation module, as well as the number of operational hours. For these
goals, the control algorithm has to select the most appropriate operating mode and the optimal
operating points in terms of water flow rate at each sampling time. Simulation results are
presented for evidencing the benefits of the proposed control approach.

Keywords: Mixed Logical Dynamical Systems, Model Predictive Control, Solar Energy,

Desalination.

1. INTRODUCTION

Solar Membrane Distillation (SMD) is an under investi-
gated separation technology, suitable for developing self-
sufficient plants to be used in applications like desalting sea
or brackish water (Zaragoza et al., 2014). However, despite
the promising features of the technology (Alkhudhiri et al.,
2012), it has not been industrially implemented so far,
being the combination with solar energy one of the main
barriers. The unpredictable nature of solar energy requires
intermittent operations, as well as the use of adequate
storage devices. From the control point of view, SMD
facilities can be considered as hybrid systems that can
be modeled using the Mixed Logical Dynamical (MLD)
framework, thus requiring suitable hybrid control strate-
gies for optimal performance.

Most of the papers related to automatic control of SMD
processes propose low level control strategies. Such strate-
gies are based on simple control loops, composed by Pro-
portional Integral (PI) or On/Off controllers (Chang et al.,
2012; Gil et al., 2018b), which have as main objective to
maintain desired temperature setpoints in some parts of
the facility at hand. A more advanced control strategy was
proposed in Porrazzo et al. (2013), in which a real time
optimization approach dealing with the maximization of
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the distillate production according to operating conditions
was presented. Nevertheless, these control techniques do
not take into account the hybrid nature of SMD facility
operations, which could be very relevant to reduce thermal
energy losses in the solar field, and to increase the distillate
production. A first step towards the hybrid consideration
of a SMD facility was presented in the previous work
Gil et al. (2018a), in which three operating modes were
considered, defining deterministic rules to make the change
between them, and using a Practical Nonlinear Model
Predictive Controller (PNMPC) strategy for the optimal
operation of each mode.

In this work, an improvement of the approach presented
in Gil et al. (2018a) is presented, by considering the
SMD facility as a MLD system, and developing a hybrid
PNMPC strategy that provides the optimal control actions
at each sampling time, which can be stated as a Mixed
Integer Linear Programming (MILP) problem. This fact
allows us to consider the hybrid nature of the facility in the
formulation of the control problem, taking into account the
changes among the different operating modes presented in
the plant along the control horizon. The objectives of the
control system are to maximize the number of operational
hours of the facility, the operating temperature and the
distillate production of the Membrane Distillation (MD)
module. For these goals, five operating modes were defined,
which are included in the optimization problem by means
of operational constraints. The control system selects
the operating mode and the optimal operating points in
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Fig. 1. Schematic diagram of the solar membrande distillation facility.

terms of flow rates at each sampling time, according to
the operating conditions. Simulation results are shown to
evidence the control system performance. In addition, a
comparison with the operation with a rule based controller
is provided.

2. SOLAR MEMBRANE DISTILLATION FACILITY

The facility used as reference in this work is located in
Plataforma Solar de Almeria and it was fully described in
Zaragoza et al. (2014).

2.1 MLD System modeling

The complete model of the SMD facility was already
developed and validated in Gil et al. (2018a,b,c). For this
reason, and due to the lack of space, only a simplified
model of the system is presented in this work, in order to
highlight the MLD characterization of the plant.

The temperature at the outlet of the solar field was
modeled with a lumped-parameters model, which can be
described in a simplified way as

TT2 = fo(I(1), Ta(), TT1(t),5:(8) - FT1(1), (1)

where f5(+) is a function of its arguments, I is the global
irradiance (W/m?), T, is the ambient temperature (°C),
and 7 is a binary variable related with the logic state
of pump 1 (6;=0 when the pump is turned off and d;=1
when pump 1 is turned on). The rest of variables are
according to Fig. 1. It should be mentioned that, in order
to eliminate the discontinuity, the term &;- FT1 in eq. (1)
has been replaced by an auxiliary continuous variable z; by
using the methodology presented in Bemporad and Morari
(1999) (Big-M method) for transforming logic proposi-
tions in linear inequalities, satisfying that [6;=0]—[z1=0],
The inlet temperature of the solar field can be modeled
with a static model based on the mix produced in valve 1
(see Fig. 1):

TTI1(t) = TT2(t) - (1 — d2(¢)) + TT8(t) - d=2(t), (2)
where d5 is equal to 0 when valve 1 is in position I (see

Fig. 1), and equal to 1 when the valve 1 is in position II
(see Fig. 1).

A two-nodes stratified dynamic model was used for the
storage tank, which is described by

TT3 =f5(TT2(t), TT8(t),Tu (t),81 (t)-02(t)-FT1(t),85(t)-FT2(t)),
(3)

TT8 =fs(TT3(t), TT7(t),Ta(t),81(t)-82(t)-FT1(t),85(t)-FT2(t)),
(4)

where 63 is a logic variable equal to 0 when pump 2
is turned off, and equal to 1 when pump 2 is turned
on. Notice that the term §;-FT1 in eqs. (3)-(4) can be
replaced by the auxiliary variable z; previously defined.
So, following the Big-M framework, a new variable z
is defined for eliminating the discontinuity d2-z;. In the
same way, another auxiliary variable z3 replacing the term
03-FT2 in eq. (4) has been introduced.

The outlet temperatures at both sides of the heat ex-
changer were characterized with a first principles static
model:

TT6 =f6(TT5(t), TT10(t),54(t)-FT3(t),65(¢)-FT4(t)), ()

TTY9 = fo(TT10(£),TT5(t),TT6,,(¢),64(t)-FT3(t),85(t)-FT4(t)), (6)

where TT6,, is the temperature calculated in eq. (5), and
64 and J5 are logic variables associated with the discrete
states of pumps 3 and 4, which are equal to 0 when pumps
are turned off and equal to 1 when pumps are turned on.
As in the previous cases, the terms d4-FT3 and d5-FT4 in
egs. (5) and (6) have been replaced by two new auxiliary
variables z4 and z5 following the Big-M methodology.

Finally the distillate production (D) of the MD module
was modelled by means of a Multi-Layer Feedforward
Neural Network (Gil et al., 2018c):

D = fp(TTI(t), d5() - FTA(t), T peea(t), S(t)),  (7)

where T .q is the temperature of the feed water (fixed at
20 °C), and S the feed water salinity (fixed at 35 g/L).
In the same way, the temperature at the outlet of the
condenser channel of the MD module was modelled with
a static model that depends on the same variables:

TT10 = flO(TTg(t)’ 95 (t> : FT4(t)7 Tfeed(t>7 S(t» (8)

It should be pointed out that the term 05-FT4 in
egs. (7) and (8) has been also replaced by the auxiliary
variable zs.



2.2 System operating modes

The system operating modes can be defined from valve
1 position and pumps 1, 2, 3 and 4 discrete states. The
relation between the five operating modes used in this work
and the values of the variables associated with the discrete
states of actuators are presented in table 1. Besides, Fig. 2
shows the logic relations between modes.

In mode 1, the objective is to augment the outlet solar
field temperature. This mode is activated as long as the
global irradiance is higher than a determined value I'*, and
TT2>TT1. The second mode is devoted to increase the
temperature of the tank, and it is used when the outlet
solar field temperature is higher than that of the tank
(TT2>TT3), and the temperature in the tank does not
allow to operate the MD module over 60 °C, which is
the lower limit of the MD module temperature operating
range (Zaragoza et al., 2014). Once the temperature in
the tank permits operating the MD unit over 60 °C, the
mode 3 can be used. In this mode the tank feeds the
MD module, and the solar field is used to increase the
thermal energy stored in the tank. Mode 4 is used when
the MD module can be fed by the tank, but the solar field
cannot be run due to the condition TT2<TT1, and the
irradiance value is lower than I'*. Mode 5 is similar to the
mode 4, but in this case, the irradiance is higher than I'*,
and TT2>TT1, therefore the solar field can be operated.
However, TT2<TT3, so that, the fluid is recirculated
trough the solar field until reaching the temperature in the
tank (TT3). It should be commented that mode 0 is the
initial state of the plant. Note that the facility is always
started up in similar conditions, due to the fact that at
the end of the operation the tank approximately maintains
the same conditions that at the beginning, because of the
temperature operational range of the MD module.

Mode 01 62 03 4 05

0. Initial state

1. Solar field

2. Solar tank load

3. Solar tank load and MD

4. Tank unload and MD

. Solar field,

tank unload and MD

Table 1. System operating modes. V* means

that in mode 4, valve 1 could be in positions I
or II, depending on the previous mode.

—_ O = =0
o<~ rroOO
== -0 00
— RO OO
SN e ==

t

Fig. 2. Relations between operating modes. All the modes
can return to mode 0, however the joints have been
omitted for the sake of simplicity.

3. CONTROL SYSTEM DEVELOPMENT

The control strategy developed in this work has three main
objectives: 1) to extend the number of operational hours of

the system by increasing the thermal energy stored in the
buffer system; ii) to maximize the operating temperature
of the MD module, what implies an enhancement of the
thermal efficiency of the process (Gil et al., 2018a); and iii)
to increase the distillate production of the MD module.
In this sense, the control system has to select the most
appropriate operating mode and calculate the optimal
operating points in terms of flow rate for each pump at
each sampling time. The following subsections show the
development of the control system.

8.1 Practical Nonlinear Model Predictive Control technique

The PNMPC strategy was proposed by Plucenio et al.
(2007), and it uses an approximation for representing an
output prediction vector, Y, along a determined prediction
horizon, N, as a linear function of the future control
actions, Au:

Y=F+G-Au (9)
where Y=[Y ([t)..Y (t+Nt)]T *, F=[F(t|t)... F(t+N]|t)]7,
Au=[Au(t|t)...Au(t+N.-1[t)]T, N. is the control horizon,

and matrix G is the Jacobian matrix aaA—Yu calculated in
the operating point u. In this technique, the free response
F is calculated with the nonlinear model of the system
(Plucenio et al., 2007; Gil et al., 2018a). In this work, this
strategy is used to compute the prediction of TT2, TT3,
TT9 and D.

On the one hand, the prediction of TT2 (YTTz) is a
function of past inputs zy, past outputs TT2, and future
control increments Az =47 - AFT1, so that, following the
PNMPC procedure it can be calculated as:

Yrr2 ~ Frre + Gy - Az, (10)

)

where 37 is the Jacobian matrix 8@%72?

In the same way, the prediction of TT3 (YTT:;) can be
calculated as Y3 = f(TT3, 22,23, Azg, Azg):

Yrrs ~ Frrs + [Ga Gs] - [Azz; Azg), (11)
where Azo=0d02-Azl, Azz=0d3-AFT2, Gs is the jacobian
3YTT3 Y

6AZ2

On the other hand, the prediction of TT9 (YTTQ) can
be calculated as a function of past outputs TT9, past in-
puts zs3, z4, Z5, and future control actions Azg, Azy, Azs.
Nevertheless, FT3 is operated at the same value that FT4
(z4=25) to achieve the maximum thermal transference in
the heat exchanger, as was experimentally established in
Gil et al. (2018a). Therefore, Yrrg can be computed in a
simplified way as follows:

Yrro ~ Frro + [G4 Gs] - [Azs; Azs], (12)

where Az5A:65 . AFT4,Aand G4 and Ggy are the Jacobian

a-YTTQ
aAZ3

, and Gg the Jacobian matrix ‘{?[Aﬂ.
z3

matrices , and 8{;&2? respectively.
Finally, the prediction of the distillate production (YD)
can be calculated as:

Yp =~ Fp + Gg - Azs, (13)
* The nomenclature X(t+j|t) means the value of the variable X at

the instant time t+7j, calculated with the information acquire up in
instant t.




. . . Y p
Ge is the Jacobian matrix 3 Are

It should be remarked that, the advantage of using the
PNMPC strategy is that the dependence of predictions
to the manipulated variables are linear along the horizon,
allowing to formulate the optimization problem concerning
this work as a MILP problem. Moreover, this technique
has been complemented with a method for predicting
the global irradiance (Pawlowski et al., 2011) in order to
improve the predictions.

3.2 Objective function

The cost function used in this work is composed by four
main terms (see eq. (14)), which are employed to achieve
the proposed objectives of the control architecture, and
due to the fact that the plant can be run in several modes
with different associated objectives.

N
J == (v(t+k|t)+w(t+k|t)
k;l A N A
— 72 ZYTTQ(t + k[t) — s - ZYD(t +klt) (14)
k=1 k=1

N 5
Fyae > > Azt + k=1t

k=1 i=1
where 71, Y2, 73, and 74 are weighting factors. In addition,
it should be commented that, due to the differences in
magnitude of the terms involved in the objective function,
they have been normalized.

To augment the number of operational hours of the system,
the thermal energy stored in the tank must be maximized.
To do this, the first term of the objective function is
composed by two objectives, which are changed according
to the operating mode. When the facility runs in modes 1
or b, in which the fluid is recirculated trough the solar field
(valve 1 in position I in Fig. 1), the objective consists on
maximizing the temperature at the outlet of the solar field,
trying to reach the temperature at the top of the tank as
fast as possible to start loading it. Once the temperature
at the top of the tank is reached, and the operating
mode is changed, the objective is to increase TT3. To
introduce this proposition in the objective function, three
new auxiliary variables have been defined. The first one
consists on a logic variable daux 1, which is introduced by
the following constraints:

5aux 1+ 62 < 1 5aux 1+ 52 > 0 (15)

where daux,1=[0quz, 1(t|t) aue 1 (tHN-1H)]T, and d; =
[62(t]t)...02(t+N.-1]t)]T, and 1 is a vector of ones of length
N.. This statement implies that [daux,1=0]—[02=1],
[0aux,1=1]—[02=0], where 0 is a vector of zeros of length
N.. The other two auxiliary variables can be defined as
v:6aux71~YTT2, and w=d2-Y s and introduced in the
problem by means of the Big-M methodology. The second
and the third term of the objective function are aimed
at maximizing the operating temperature (TT9 in Fig. 1)
and the distillate production (D) of the MD module. The
last term is devoted to penalize the control efforts as they
have associated economical costs.

3.8 Process constraints

Since the fluid of the heat generation circuit is demineral-
ized water, the temperature should be lower than 100 °C
to avoid the creation of vapour. In the same way, the tem-
perature at the inlet of the MD module cannot be higher
than 80 °C due to the thermal limit of membrane materials
(Zaragoza et al., 2014). So, the following constraints have
been added:

Y12 < 100, Yrrs < 100, Yo < 80. (16)
In addition, the physical limits of the pumps must be taken
into account. The maximum and minimum flow rate value
provided by each pump are:

7<FT1<20, 15<FT2<25, 7<FT3<10, 7<FT4<10, (17)
where the values are in L/min. Notice that these values
have been taken into account for defining z1, 23, z4 and z5

with the Big-M formulation.
3.4 Operational constraints

In this subsection, the constraints used for activating o
deactivating the pumps of the facility, and for opening and
closing valve 1 are shown. Notice that the operating modes
are defined according to the discrete states of actuators
(61, 02, 3, 44 and J5), as was established in section 2.2.
Thus, the constraints developed in this section are used to
represent the physical requirements of the operation of the
plant, following the relationships presented in Fig. 2.

Firstly, to activate 01, two conditions have to be satisfied.
The first one is related with the irradiance level, so
that, the solar field can only be turned on when I* is
reached. Thus, considering k=1, ..., N., this condition can
be described by the following constraints:

T(t4k|t) = Ogue 2 (t+E-1]t) - T* > 04 €,
(1 = Saua 2 (t+k-1[t)) - T(t+K[t) — I* < 0+ e,

where I(t+1[t)...I(t+N.|t) are the predicted values ob-
tained by the irradiance forecasting method, and 445 2 is
an auxiliary logic variable. Notice that the ﬁrst constraint
ensures that [Jquz o (t+k-1[t)=1]—[I(t+k[t) > I*] and the
second one that [Jguz o (t+k-1]t)=0]—[I (t+k|t) < I*].

On the other hand, the second condition used for acti-
vating/deactivating d; is in charge of ensuring that the
solar field is turned on as long as the outlet solar field
temperature is higher than the inner one, thus avoiding
thermal losses:

Yorra(t+k[t) — Gaua3(t+E-1]t) - TT1(t|t) > 0 + e,
(1 = Gaus,3(t-+k-1])) - Yrra(t+k|t) — TTL(t]t) < 0+ e,
(19)

where 0443 is also an auxiliary logic variable. As hap-
pened in the previous case, the first constraint ensures
that [dgque,s(t+k-1[t)=1]—[Yrr2(t+k[t) > TT1(t|t)] and
the second one that [Juue 3(t+k-1]t)=0]—[Ypra(t+k[t) <
TT1(t|t)]. It should be noted that the second constraint in
eq. (19) can be rewritten as:

(18)

Z 5Y rra( (t+k[t)
6Az (t+i-1]t)

- Azq (t+i-1)t) + F(t—l—k\t)) — TT1(t]t) <0+ €4,

(]- - 5auz 3 t+k 1‘t (20)



S0, as it can be observed, there is a bilinear term (dguq,3-21)
in the constraint. However, considering the case in which
Sauz3(t+k-1]t)=0, Ypro(t+k[t) is equal to the free re-
sponse, and considering dgyy 3(t+k-1[t)=1, the term (1-
Sauz3(t+k-1|t))Ypro(t+k|t) is zero. So that, the con-
straint can be formulated as:

(1 — Squz 3(t+k-11t)) - F(t+k]t)
In this way, the value of 61=[01(¢t + k — 1]t)...01(t + N. —
1/t)]T is calculated as 81=0aux 2 - daux.3, which can be
introduced in the optimization problem by using the Big-
M framework.

— TTI1(tt) <0 +eq. (21)

Secondly, the following proposition has been formulated
for opening valve 1 (position II in Fig. 1), [d2=1]«+[TT2>
TT3|, which can be introduced as:
(L= b2(t+k-1t)) - Yrro(t+k[t) — Yrrs(t+k|t) <0+ €s,
Yrro(t+k|t) — da(t+k-1[t) - Yrrs(t+E[t) > 0+ .
(22)
As in the previous cases, two constraints have been
used, the first one ensures that [d2(t+k-1[t)=0] —
[Yoora(t+k[t) < Yrrs(t+k[t)], and the second one ensures
[(52(t—|—k‘—1|t):1] — [YTTQ(t—f—k“t) > ?TT3(t+k|t)]. If these
two constraints are rewritten in the form of eq. (20), some
bilinear terms can be observed, which are ds- 21, d2- 22, and
do-23. Therefore, three new real variables have been defined
for replacing them, q=05-z1, r=02-2z2, and s=d3-z3, which
are introduced by means of the Big-M methodology in the
optimization problem. Thus, eq. (22) can be rewritten as:

Z OY oo (t+k|t) (A
0Az (t+i-1]t)

(1 — 62(t+k:—1|t)) .

21 (t+i-1[t) — Aq(t+i-1]¢))+

(t—l—klt)) - YArTTg(t—l-klt) <0+ es5,

Z oY s (t+klt)

Y (t+k|t)
rr2(tHkIt) Az (t+i-1]¢)

- Ar(t+i-1]t)+

Z SV s (t+k|t)
O0Az3 (t+i-1|t)

+ 62(t+k-1\t) -F(t+k|t)) <0+ e,

- As(t+i-1]t)+

(23)

Finally, 03, 4 and d5 are turned to 0 or 1 according to the
value of a new logic auxiliary variable d4,,7,4, which satisfies
that [dqug,4a=1]<>[TT3>T*], where T* is the required
temperature in the tank for operating the MD module
over 60 °C. This temperature can be computed at each
sampling time as T*(t)=60 °C+ATp.(t), where AT} (¢)
is the temperature difference of the heat exchanger, which
can be calculated with the model of the heat exchanger
(Gil et al., 2018a). Thus, the following constraints have
been formulated:

YTT3(t+/€|t) — (Sauw,4(t+k-1‘t) . T (t|t) >0+ ey,

(1 = Squa a(t+E-1]t)) - Yerra(t4k|t) — T*(t|t) <0 + es.
(24)

It should be noted that the first constraint ensures that
Oauz,a(t+k-11t)=1] — [Yprs(t+k[t) > T*(t|t)], and the
second one that [0uu. 4(t+k-1]t)=0] — [Yrrs(t+klt) <
T*(¢t|t)]. Again, the second constraint can be rewritten
in the form of eq. (20). However, in this case, only

one auxiliary real variable has to be used for replacing
the bilinear term Jgyq4-22. This variable is defined as
X=0aux,4°22, and introduced in the optimization problem
by means of the Big-M methodology. In this way, the
constraint can be rewritten as:

Z OY s (t+k|t) (A
0Azo(t+1-1|t)

+ (1 — Oquz,a(t+k-1|t) -

29 (t+i-1[t) — Ax(t+i-1]¢))+

F(t+E|)) — T*(t]t) < 0 + es.
(25)

It should be commented that e=[eq, ..., €s] is a slack vari-
able used to avoid infeasible solutions when the constraints
are equal to 0. This variable is also penalized in the
objective function with a term 10° - €. Notice also that
these kind of constraints can produce chattering problems,
however, the predictions have been filtered using the mean
values of the three previous sampling times, to avoid it.

4. RESULTS AND DISCUSSION

The control strategy has been tested in simulation (using
the nonlinear dynamical model of the facility as real
plant). Illustrative results are presented in this section
using meteorological data from PSA on the day March
6, 2017. The sampling time used was 5 min, selected
taking into account the system dynamics. N was fixed
at 6, due to the reliability of the irradiance forecasting
method (30 min), and N, at 3, following traditional
recommendations in MPC strategies, N, < N. The values
of the weighting factors were v;=0.3, y2= 0.3, v3=0.4,
and ~4=0.1 selected after systematic simulations until
obtaining the desired closed loop performance, and the
value of I* was fixed at 150 W/m? since lower values do
not help to increase the temperature in the solar field. To
solve the optimization problem the software Matlab, with
Yalmip toolbox and solver CPLEX, has been used. Besides
the initial conditions in the tank were established at 57 and
56 °C for TT3 and TT8 respectively.

Fig. 3 presents representative results. When the estimated
global irradiance value is higher than 150 W/m? and
the estimated TT2 is higher than TT1, the controller
activates mode 1, until reaching the temperature at the
top of the tank (8.15 h), instant in which the controller
changes to mode 2. In mode 1, FT1 is operated at its
minimum value for increasing TT2, then, in mode 2, FT1
is run at its maximum value thus increasing TT3. At
time instant 8.25 h, the controller closes valve 1 due to
irradiance disturbances, and then, after three sample times
it opens valve 1 again (mode 2). Mode 3 is activated at
time instant 10.20 h. It can be observed that at 13.50 h,
due to irradiance fluctuations, the controller decreases FT1
during two sample times. Finally, around 16.00 h, the
controller changes between modes 5 and 3 several times,
trying to continue loading the tank. Finally, the controller
selects mode 4 until the end of the operation, maintaining
FT4 at its maximum value for enhancing the distillate
production (Gil et al., 2018a,c).

To evidence the advantages of considering the changes be-
tween modes in the prediction horizon and calculating the
optimal flow rate setpoints at each sample time, the results
have been compared with an operation with a rule based
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Fig. 3. Simulation results. All the variables are according to Fig. 1

Controller  Distillate [L]  Operating  TT9max [°C]
hours [h]

Rule based 137.90 7.16 64.13

HPNMPC 139.60 7.97 64.90

Table 2. Comparison between results. HPN-
MPC is Hybrid PNMPC controller.

controller with fixed flow rate setpoints. This controller
was configured using the same conditions as in the hybrid
PNMPC technique for changing between modes, and using
flow rates similar as the ones provided by the hybrid PN-
MPC technique in each mode. However, is this controller
the conditions are checked with actual values, instead of
estimated ones. The results are quantitatively presented in
Tab. 2. As can be observed, the hybrid controller extends
the operations around 50 min more than the rule based
one. This fact together with the increase of TT9 cause
that the distillate production augments.

5. CONCLUSIONS

This paper has addressed the development of a hybrid
NMPC controller for a SMD plant. The controller showed
satisfactory performance, managing in an optimal way
the changes between the different operating modes, and
providing optimal flow rates according to the operating
conditions at each sample time. A comparison between
the proposed strategy and a state machine based operation
was carried out, showing an enhancement of the distillate
production of 1.40 % and an extension of the operational
hours of around 11 %. Notice that the algorithm has been
applied in simulation in a small pilot plant, in industrial
cases the improvements achieved (in absolute terms) could
be very relevant in the daily operation.
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