
technical report University of Almeria

Software Engineering Timeline: major areas of

interest and multidisciplinary trends

Isabel M. del Águila, José del Sagrado and Joaqúın Cañadas
Department of Informatics, University of Almeŕıa,

Almeŕıa 04120, Spain

December 2019

Abstract

Society today cannot run without software and by extension, without
Software Engineering. Since this discipline emerged in 1968, practitioners
have learned valuable lessons that have contributed to current practices.
Some have become outdated but many are still relevant and widely used.
From the personal and incomplete perspective of the authors, this paper
not only reviews the major milestones and areas of interest in the Software
Engineering timeline helping software engineers to appreciate the state of
things, but also tries to give some insights into the trends that this complex
engineering will see in the near future.

Keywords: History of computing, Software Evolution, Software Method-
ologies

1 Introduction

Computer systems have progressed extraordinarily over the last half century
along with one of their core components - the software. This progress has
been mirrored by people’s ability to embrace it; all of us use a computer on a
day-to-day basis, whether directly or indirectly. Software Engineering (SE) is
tasked with fostering software development; it oversees all aspects of software
production, from the early stages of system specification through to system
maintenance until it comes into use [39].

Since the late 1970s, this knowledge area has been a subtle yet fundamental
part of our daily life given that software underpins countless everyday human
activities. Nevertheless, none of us are aware of its presence, nor its complexity
- until, of course, it fails or crashes [9].

The worldwide software industry generates a huge amount of money in rev-
enue annually and continues to expand in scope and revenue volume [32]. As
with most human disciplines, SE matured out of the necessity to deal with the
various challenges encountered since its inception 50 years ago. This has created

1

technical report

the widest variation of tools, methods and languages of any engineering field in
human history. Based on these challenges, we have constructed an SE time-
line that uncovers our personal multidisciplinary trend proposal that software
engineers might face in the near future.

Establishing a simile with the Oedipus’s answer to the riddle of the sphinx,
SE has been evolving through several ages from childhood to senescence, pass-
ing through adulthood (see Figure 1), although senescence has not been reached
yet. The transition from childhood to adulthood can be dated back to the early
nineties when software development established itself as a worldwide industry.
Software applications expanded to multiple domains such as telecommunica-
tions, the military, industrial processes, and entertainment, becoming in an
adult discipline. The Second Age is still with us; today, we cannot know whether
the advances to come, will drive SE towards a new stage, driven by multidis-
ciplinarity and knowledge, being these the last events drawn on the proposed
timeline.

We have divided the proposed ages into several eras, as it had done in others
SE history related works [12, 15], whose boundaries are a bit blurred. Each era is
defined by a prevailing idea (see table 1) about the main challenges characterized
within it. These challenges generated new SE methods and techniques to take
another step in SE evolution. The milestones that have been selected represent
either a unifying moment or a bifurcation leading to new approaches (e.g. the
first one marks the birth of SE as a discipline).

Table 1: Prevalent idea behind each era
Age Era Period This era is mastered by

Mastering the Machine 1956-1967 Hardware resources defined software
1 Mastering the Process 1968-1982 Methodologies guide the software

development
Mastering the Complexity 1983-1992 Domains and complexity raise force

enhanced methods and tools
Mastering Communications 1993-2001 Distributed environments change

the processes
2 Mastering the Productivity 2001-2010 Software factories manage the rules

Mastering the Diversity 2010-2017 Devices, platforms or approaches va-
riety expands the used methods

Mastering the Knowledge 2018- SE Knowledge should be managed
... new era?

2 The First Age

At the beginning, the main purpose of any software was to optimize the exploita-
tion of the limited hardware resources available. It was in 1956 when General
Motors produced the first operating system (i.e. GM-NAA I/O for IBM704),
becoming this year our starting point for our SE timeline, even when the term
SE had not been coined yet. Thus, Mastering the Machine (1956-1967) is
the first era we have identified as the start of this Age. It was characterized by

2

technical report

A
gi

lis
m

M
as

te
ri

n
g

C
o

m
m

u
n

ic
at

io
n

s

SO
A

1
9

6
0

1
9

7
0

1
9

8
0

1
9

9
0

2
0

0
0

2
0

1
0

Fi
rs

t
A

ge
Se

co
n

d
A

ge

2
0

1
8

M
as

te
ri

n
g

th
e

M
ac

h
in

e
M

as
te

ri
n

g
th

e
P

ro
ce

ss

D
ev

el
o

p
m

en
t

m
et

h
o

d
o

lo
gi

es
M

o
d

el
in

g
ap

p
ro

ac
h

M
as

te
ri

n
g

th
e

C
o

m
p

le
xi

ty

P
ro

ce
ss

vs
 p

ro
d

u
ct

A
gi

lis
m

M
as

te
ri

n
g

th
e

P
ro

d
u

ct
iv

it
y

M
as

te
ri

n
g

th
e

D
iv

er
si

ty

M
u

lt
id

is
ci

p
lin

ar
y

ap
p

ro
ac

hM
as

te
ri

n
g

th
e

K
n

o
w

le
d

ge

M
as

te
ri

n
g

th
e

D
iv

er
si

ty
M

as
te

ri
n

g
th

e
P

ro
d

u
ct

iv
it

y

2
0

1
0

2
0

1
8

2
0

0
1

M
as

te
ri

n
g

C
o

m
m

u
n

ic
at

io
n

s

1
9

9
3

Se
co

n
d

A
ge

(C
u

rr
en

t)

Q
u

al
it

y:
 C

M
M

U
M

L
/

R
U

P

M
D

E

6
 σ

/
Le

an

V
&

V.
 T

es
ti

n
g

M
o

b
ile

 d
ev

ic
es

X
aa

s

W
eb

 a
rc

h
it

ec
tu

re
s

P
ro

d
u

ct
le

ve
l

M
an

u
fa

ct
u

ri
n

g
le

ve
l

St
ra

te
gi

c
le

ve
l

C
o

lla
b

o
ra

ti
ve

d
ev

el
o

p
m

en
t

SO
A

O
p

en
 s

o
u

rc
e

so
ar

in
g

C
I/

C
D

D
ev

O
p

s

C
o

n
ta

in
er

s

M
u

lt
id

is
ci

p
lin

ar
y

ap
p

ro
ac

h
P

ro
ce

ss
vs

 p
ro

d
u

ct

Io
T

/C
lo

u
d

SE
 B

ig
 d

at
a

A
I m

et
h

o
d

s

M
ile

st
o

n
e

A
ge

Er
a

P
ro

d
u

ct
ar

ea
o

f
in

te
re

st

M
an

u
fa

ct
u

ri
n

g
ar

ea
o

f
in

te
re

st

St
ra

te
gi

c
ar

ea
o

f
in

te
re

st

F
ig

u
re

1
:

S
E

T
im

el
in

e

3

technical report

the lack of software development methods, which led to the origin of the term
Software Engineering in NATO Science Committee, Garmisch, Germany, 1968
[30] this was the development methodologies milestone.

The second era, Mastering the Process (1968-1982), was driven by the
infamous software crisis, or maybe software chronic disease [33], which forced
developers to focus on the stages of software specification and maintenance to
deal with software aging [13]. A number of structured methods arose, such as
Software Requirement Engineering Methodology (SREM) [37], or Structured
Analysis and Design Technique (SADT) [1], allowing the development of spec-
ification documents for business management software. These methodologies
extended the concepts of modularization and information hiding, previously ap-
plied in structured programming [23, 14], from design to specification phase.
The rise of software engineering standard is also a major accomplishment dated
in this age. The community as a whole were starting to focus on standards as
a means of achieving the goals [40]

Later, in the Mastering the Complexity era (1983-1992), the predom-
inance of hardware over software came to an end, and application complexity
increased exponentially. Computer Aided Software Engineering (CASE) tools
governed this SE period, as they gave support to engineers of this emerging disci-
pline. Even though the main modeling approaches - data modeling and function
modeling - still followed separate paths, they converged in object-oriented meth-
ods (OO) [29]; such was the case early on with structured methodologies, which
were first introduced into coding and design but eventually made their way into
specification and analysis. This OO approach enabled efficient software reuse
and thus improved productivity in the process for building software [29]. A
second milestone, at the end of the first SE age, was the need to evolve to a
modeling approach that encouraged models to support software construction,
which translated into the natural evolution of OO methods [8]. Nowadays, this
is a fundamental pillar in software development.

3 The Second Age

The second Age began after about 25 years after the first milestone, when SE
was sufficiently resilient to reach maturity [27]. Several changes forced SE to
grow up. On the one hand, software development started to be considered
as an industrial business, and on the other, globalization had a deep impact
on development processes, customer’ feedbacks, and competitiveness. What is
more, even research community provided nurturing advances in a variety of ways
to SE practitioners, although research impact was not fully felt until at least
10 years later [32]. A good example of this can be found in the work of the
software engineering coordinating committee, which began in 1997, to define
the “generally accepted” knowledge about software engineering as a profession.
This project, based on consensus, released the first trial version of the Guide to
the Software Engineering Body of Knowledge (SWEBOK) in 2001, which third
released in 2014 edition is the newest one [11].

4

technical report

One can delineate this second Age by describing several areas of interest that
join in the timeline (see the bottom of Figure 1).Some of them tend to set up a
string of connected links evolving around similar ideas; such as the case of the
thread comprising model-driven, service-oriented, containers and everything as
a service areas, which exploits the notion of building software by assembling
components or pieces. Figure 1 describes these areas considering three con-
nected points of view (or levels). The product level includes those topics that
view software as an artifact, as well as those that are physically closer to soft-
ware, such as infrastructure or hardware related issues. The manufacturing level
involves the processes and methodologies employed in building software appli-
cations. Finally, the strategic level focuses on the business perspective, dealing
with the high-level decisions and organizational tasks for the entire software
development business, also called umbrella areas [35].

3.1 Mastering Communication

Software companies became factories in the Mastering Communications
(1993-2001) era. The intertwining of commercial and research networks by
the early 1990s marks the birth of the Internet as a global accessible network.
On October 24, 1995, the Federal Networking Council unanimously passed a res-
olution defining the term Internet [26]. The emergence of the World Wide Web
brought with it a new software concept, which causes SE methods to encompass
distributed system development. Web applications and client/server architec-
tures appeared as a new area of interest at the product level [6]. Object-oriented
technology evolved into software reuse through the design of reusable patterns
[19] and components-based software development [25]. Modeling approaches
remained as a core element in software development and were included in a
significant number of emerging methodologies. After this burgeoning of meth-
ods, conflicts began to appear. Rational Corporation (now part of IBM) solved
them by integrating top three methods (James Rumbaugh’s, Grady Booch’s and
Ivar Jacobson’s methods), which led to the release in 1997 of Unified Modeling
Language (UML) [10].

Software factories needed to ensure quality control, which required the effec-
tive separation between process and product: the process vs product milestone.
The Rational Unified Process (RUP) was defined as UML partner to model the
development processes [24] RUP is use case driven, architecture centric, iterative
and incremental and including cycles, phases, workflows, risk mitigation, qual-
ity control, project management and configuration control. Certain frameworks
appeared to manage both the product and the process, providing guidance for
developing or improving processes to meet the business goals of an organization.
These included CMM/CMMI (capability maturity model/CMMintegrated) by
the Software Engineering Institute (SEI) which adapted the principles of process
improvement from the manufacturing field to the software field [34]

5

technical report

3.2 Mastering the Productivity

The fourth milestone, agilism, was a turning point in SE (agilemanifesto.org).
Agile methods promoted frequent inspection and adaptation by introducing
checkpoints where one can reassign customer requirements. They also encour-
aged software development as an incremental, cooperative, straightforward and
adaptive process. At the same time, Open-source movement propelled SE to
improve the collaborative and distributed software building methods, Not only
companies, but also developer communities started to share and enhance soft-
ware applications (www.linuxfoundation.org, www.eclipse.org). And even more,
supporting knowledge also started to be shared (stackoverflow.com). Open
source soaring and agilism radically affected how the software had to be built,
setting up the basis at manufacturing level.

Agilism ushered in a new era, Mastering the Productivity (2001-2010),
in which software became yet another company asset. The goals of software
factories became to reduce defects; to perform faster and more reliable processes;
to increase customer satisfaction and to get greater profits. It also was at the
start of this century, with the appearance of agilism, that one can date other
two areas of interest: Model-Driven Engineering (MDE) [31] and V&V testing
(730-2014 - IEEE Standard for Software Quality Assurance Processes, IEEE Std
1012-2012 (Revision of IEEE Std 1012-2004) - IEEE Standard for System and
Software Verification and Validation).

MDE empowered models as first class artifacts in software development,
adapting methodologies by increasing the abstraction levels of SE tasks up to
those used in the problem description; enhancing productivity by the auto-
matic execution of model transformations and code generation; and providing
domain specific languages for many software development tasks. To address the
software quality issue, verification and validation (V&V) methods focused on
testing technologies as a way of identifying software correctness from an agile
perspective.

Although quality management methods had already been applied to SE, it
is worth highlighting the use of quantitative approaches in this era, such as
6σ (Six Sigma) and Lean [7], to support decision making at the strategic level
in SE companies. Six Sigma, which was defined as a quality measurement to
reduce variation and prevent defects, also became a management approach that
promoted the need for fact-based decisions, customer focus, and teamwork.

At the end of the decade, the widespread use of mobile devices, together with
the extended use of collaborative software development platforms (e.g. GitHub,
Jazz Project and StackOverflow), led to service-oriented approaches (SOA) [18]
as a response to complexity, agile application development and software evolu-
tion that helped to improve business logic management in software industries.
Services encapsulated data and business logic and they contain a management
component, meaning that they can be perceived as units in the software assem-
bly line.

6

technical report

3.3 Mastering the Diversity

The soaring of mobile devices, the expansion in services, and increased data
availability all brought in the Mastering the Diversity (2010-2017) era. A
wide range of widgets, from smartphones to wearables, now interconnect and
exchange data continuously forming the Internet of Things (IoT). In this setting,
the Cloud Computing information technology paradigm came into play, enabling
ubiquitous access to shared resources and services over the Internet. Cloud
computing [2] redefines how applications and services are deployed, providing
scalable resources to serve customers quickly and effectively, using the required
global and connected infrastructure as needed.

Continuous Integration and Continuous Delivery (CI/CD) [38] provides de-
velopment teams with the automation tools and techniques necessary to de-
crease time to market, giving a rapid software quality feedback to developers.
The DevOps concept,[4] based on CI/CD, is considered the evolution of the
agile methods thread. It focuses on the collaboration between development and
operations staff throughout the development lifecycle, making operators to use
the same techniques harnessed by developers to ensure their systems work. An
important advance in both development and operating systems is Containers
technology [28], which enables developers and operators to set up isolated boxes
where applications are run both in development and production stages, thus
reducing problems in deploying applications and services. This technology al-
lowed software design to evolve into microservices architecture [3], connecting
suites of independently deployable services that can work together.

The soaring levels of available services have led to the XaaS concept (everything-
as-a-service), [16] which evolved as a generalization of the services provided in
Cloud Computing (i.e, next element in the thread). XaaS became established
not only as a way for providers to offer services, but also, from a strategic per-
spective, as a means for software companies to access up-to-date technology that
is available as services, hence reducing expenditure on service consumption as
well as indicating the level of cloud adoption. Set also the strategic level, two
important areas of interest can be timelined in this era: Artificial Intelligence
methods adoption and Big Data applied to SE. SE should deal with decision-
making processes at the strategic level throughout the lifetime of a software
product. Consequently, SE can be considered a knowledge-intensive process
and therefore be framed within the AI domain. Furthermore, if a portion of
expert knowledge was modeled and then was incorporated into the SE lifecycle
(and into the tools that support it), it would greatly benefit any development
process. Several software development and deployment processes have already
seen the use of AI algorithms, such as predictive models for software economics
and risk assessment, or the search methods for finding ”good-enough” solutions
to large-scale SE problems caused by their computational complexity. For in-
stance, Search Based SE [22] has been applied to almost all SE activities, being
software testing the most prolific one due to their importance for collaborative
development.

A second recent “disrupt” to SE theory and practice is the widespread avail-

7

technical report

ability of Big Data methods that extract valuable information from data in order
to use it in intelligent ways, such as to revolutionize decision-making in busi-
nesses, science and society. This may lead to radical methods for overcoming
SE problems as well as unprecedented opportunities. Huge datasets can now
be stored and managed efficiently on cloud databases, providing the source for
Big Data applications. Many sources, such as forums, forges, blogs, Q&A sites,
and social networks provide a wealth of data that can be analyzed to uncover
new requirements. They provide evidence on usage and development trends for
application frameworks on which empirical studies involving real-world software
developers can be carried out [36]. In addition, real-time data collected from
mobile and cloud applications is being analyzed to detect user trends, pref-
erences and optimization opportunities. Diversity in these emerging areas of
interest has greatly impacted SE, forcing it to adopt a multidisciplinary stand-
point (the multidisciplinary approach milestone), where knowledge gath-
ered from diverse disciplines should be embedded in the SE processes leading
to an open SE era governed by knowledge and defining the current Mastering
the Knowledge era (2018-).

4 Multidisciplinary Trends. Towards Mastering
the Knowledge era

Given that today is yesterday’s tomorrow, it is time to glimpse the movements
that, in our opinion, will stay in power in the Software Engineering field during
the next years. Society, software developers and leading technologies are the
sources feeding the mainstream in which the three tributaries converge: connec-
tivity, artificial intelligence and security. We strongly believe that these trends
can help software engineers make advances in the software development lifecy-
cle, either at product, manufacturing or strategic levels. Without further ado,
let us discuss each of these trends in turn.

4.1 Connectivity

Systems are becoming more and more complex, and at an even faster rate
than before. You simply need to look at the variety of objects that are now
connected via wearables and appliances, from mobile devices to smart cars and
homes. These devices have to be able to work properly in places with both good
and bad connectivity. Not only appears the need of interconnection at gadget
level, but also at software level.Software engineers must focus on developing re-
liable software applications in case of temporary connection loss; development
process supported by connected devices and applications cannot bring the de-
velopment to a halt in case of eventual connectivity problems; and new formats
and protocols for sharing data and linking behaviour between connected services
will be addressed. These are not new issues, in the same way as Model-Driven
Engineering, Service-Oriented Architectures, IoT, Cloud and CI/CD are not ei-
ther; indeed, connectivity has been addressed yet, at least partially, by all of

8

technical report

them. However, this diversity of solutions should be approached from an SE
unified point of view, thus, the SE challenge is to improve continuous abstrac-
tion and integration of the numerous platforms, technologies and services that
will be increased in a common interconnected ecosystem. With this in mind, SE
should focus on achieving agreed faster delivery of the software quality process
in response to the needs of software availability and innovation.

4.2 Artificial Intelligence

Software Engineering, as any other business that wants to stay relevant, needs
to adopt AI. Nowadays, data are everywhere and the software business is no
exception. Data are gathered at every software stage, from requirements to
maintenance. In addition, it is almost certain that for any software decision, an
AI method can be found that can provide valuable help at the time of (when)
making it. Search-Based Software Engineering has provided the first insights
into this assertion, as it applies search-based optimization to SE lifecycle prob-
lems. Moreover, it should be pointed out that uncertainty reasoning and clas-
sification/prediction in AI have also provided assistance to software engineers
in modeling software reliability and project planning, respectively. Now, in the
21st century, the big challenge is to incorporate data into software project de-
velopment and to evolve towards intelligent SE automation, so that machines
carry out software engineering activities as well as humans do [17].

4.3 Security

Recently, security flaws have been found in computer processors or their software
applications that allow hackers to steal sensitive data without the users know-
ing, such as the soldiers’ smartphones [20].Other vulnerabilities have likewise
affected the National Health Service and several electoral campaigns in differ-
ent countries [5]. It is therefore essential that, as the guarantor of software safety
and quality, SE faces the challenge of ensuring that security vulnerabilities are
not introduced during software development. The first attempts at this can be
found in the Open Web Applications Security Project, where software security
is assessed and knowledge-based documentation concerning application security
is issued. Great efforts are being carried out to automate security vulnerability
checking in the software lifecycle. As example, GitHub started to report secu-
rity vulnerabilities in project dependencies [21] quite recently. However, that
is only the beginning of a wider and huge effort that must be addressed in the
following years.

Acknowledgements

This research has been financed by the Spanish Ministry of Economy and Com-
petitiveness under project TIN2016-77902-C3-3-P (PGM-SDA II project) and

9

technical report

partially supported by Data, Knowledge and Software Engineering (DKSE) re-
search group (TIC-181) of the University of Almeŕıa, the Agrifood Campus of
International Excellence (ceiA3).

References

[1] M. W. Alford. A requirements engineering methodology for real-time pro-
cessing requirements. IEEE Transactions on Software Engineering, (1):
60–69, 1977.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, Apr. 2010. ISSN 0001-0782. doi:
10.1145/1721654.1721672.

[3] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture. IEEE Soft-
ware, 33(3):42–52, May 2016. ISSN 0740-7459. doi: 10.1109/MS.2016.64.

[4] L. Bass. The Software Architect and DevOps. IEEE Software, 35(1):8–10,
January 2018. ISSN 0740-7459. doi: 10.1109/MS.2017.4541051.

[5] H. Berghel. Malice Domestic: The Cambridge Analytica Dystopia.
Computer, 51(5):84–89, May 2018. ISSN 0018-9162. doi:
10.1109/MC.2018.2381135.

[6] T. Berners-Lee. WWW: Past, present, and future. Computer, 29(10):69–77,
1996.

[7] R. E. Biehl. Six Sigma for software. IEEE Software, 21(2):68–70, 2004.

[8] G. Booch. Object-oriented development. IEEE transactions on Software
Engineering, (2):211–221, 1986.

[9] G. Booch. Software archeology and the handbook of software architecture.
In Workshop Software Reengineering, volume 126, pages 5–6, 2008.

[10] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley Professional, 1998.

[11] P. Bourque, R. E. Fairley, et al. Guide to the software engineering body of
knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press,
2014.

[12] A. Brennecke and R. Keil-Slawik. History of software engineering. In
Position Papers for Dagstuhl Seminar, volume 9635, 1996.

[13] F. Brooks and H. Kugler. No silver bullet - Essence and Accident in Soft-
ware Engineering. April, 1987.

10

technical report

[14] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured programming.
Academic Press Ltd., 1972.

[15] I. M. del Águila, J. Palma, and S. Túnez. Milestones in software engineering
and knowledge engineering history: A comparative review. The Scientific
World Journal, 2014, 2014.

[16] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu. Everything
as a Service (XaaS) on the Cloud: Origins, Current and Future Trends.
In 2015 IEEE 8th International Conference on Cloud Computing, pages
621–628, June 2015. doi: 10.1109/CLOUD.2015.88.

[17] C. Ebert and S. Counsell. Toward software technology 2050. IEEE Soft-
ware, 34(4):82–88, 2017. ISSN 0740-7459. doi: 10.1109/MS.2017.100.

[18] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005. ISBN 0131858580.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

[20] D. Guerra. How to manage personal device risk.
Risk Management, 64(11):8–10, 12 2017. URL
https://search.proquest.com/docview/1973343407?accountid=14477.

[21] M. Han. Introducing security alerts on github, Nov 2017. Retreived July
2018 from https://blog.github.com/2017-11-16-introducing-security-alerts-
on-github/.

[22] M. Harman and B. F. Jones. Search-based software engineering. Infor-
mation and Software Technology, 43(14):833 – 839, 2001. ISSN 0950-5849.
doi: https://doi.org/10.1016/S0950-5849(01)00189-6.

[23] M. A. Jackson. Principles of program design, volume 197. Academic press
London, 1975.

[24] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Develop-
ment Process. Addison-Wesley Professional, 1999.

[25] V. Kozaczynski and J. Q. Ning. Component-based software engineering. In
Proceedings of the 4th International Conference on Software Reuse (ICSR
’96), page 236. IEEE, 1996.

[26] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff. A brief history of the internet.
ACM SIGCOMM Computer Communication Review, 39(5):22–31, 2009.

[27] M. S. Mahoney. Finding a history for software engineering. IEEE An-
nals of the History of Computing, 26(1):8–19, 2004. ISSN 10586180. doi:
10.1109/MAHC.2004.1268389.

11

technical report

[28] D. Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239), Mar. 2014. ISSN 1075-3583.

[29] B. Meyer. Reusability: The case for object-oriented design. IEEE software,
4(2):50, 1987.

[30] P. Naur and B. Randell. Software engineering. Report of a conference spon-
sored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct.
1968, 231, 1969. URL https://ci.nii.ac.jp/naid/10029650767/en/.

[31] Object Management Group. MDA Guide Version 1.0.1. OMG document:
omg/2003-06-01, 2003. Retreived July 2018, from http://www.omg.org.

[32] L. Osterweil, C. Ghezzi, J. Kramer, and A. Wolf. Determining the Impact of
Software Engineering Research on Practice. Computer, 41(3):39–49, 2008.
ISSN 0018-9162. doi: 10.1109/MC.2008.85.

[33] D. L. Parnas. Software aging. In Software Engineering, 1994. Proceedings.
ICSE-16., 16th International Conference on, pages 279–287. IEEE, 1994.

[34] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber. Capability
maturity model, version 1.1. IEEE software, 10(4):18–27, 1993.

[35] R. S. Pressman. Software engineering: a practitioner’s approach. McGraw
Hill Book Company, 8th edition, 2015.

[36] F. Qi, X.-Y. Jing, X. Zhu, X. Xie, B. Xu, and S. Ying. Software effort
estimation based on open source projects: Case study of Github. Informa-
tion and Software Technology, 92:145 – 157, 2017. ISSN 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2017.07.015.

[37] D. T. Ross and K. E. Schoman. Structured analysis for requirements defi-
nition. IEEE transactions on Software Engineering, (1):6–15, 1977.

[38] M. Shahin, M. A. Babar, and L. Zhu. Continuous integration, deliv-
ery and deployment: A systematic review on approaches, tools, chal-
lenges and practices. IEEE Access, 5:3909–3943, 2017. doi: 10.1109/AC-
CESS.2017.2685629.

[39] I. Sommerville. Software engineering. New York: Addison-Wesley, 2010.

[40] L. Tripp and J. Fendrich. Taxonomy of software engineering standards:
A development history. Computer Standards & Interfaces, 6(2):195 – 205,
1987. ISSN 0920-5489. doi: https://doi.org/10.1016/0920-5489(87)90059-6.

12

