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Abstract: There is a growing demand for accurate high-resolution land cover maps in many fields,
e.g., in land-use planning and biodiversity conservation. Developing such maps has been traditionally
performed using Object-Based Image Analysis (OBIA) methods, which usually reach good accuracies,
but require a high human supervision and the best configuration for one image often cannot be
extrapolated to a different image. Recently, deep learning Convolutional Neural Networks (CNNs)
have shown outstanding results in object recognition in computer vision and are offering promising
results in land cover mapping. This paper analyzes the potential of CNN-based methods for detection
of plant species of conservation concern using free high-resolution Google EarthTM images and
provides an objective comparison with the state-of-the-art OBIA-methods. We consider as case study
the detection of Ziziphus lotus shrubs, which are protected as a priority habitat under the European
Union Habitats Directive. Compared to the best performing OBIA-method, the best CNN-detector
achieved up to 12% better precision, up to 30% better recall and up to 20% better balance between
precision and recall. Besides, the knowledge that CNNs acquired in the first image can be re-utilized
in other regions, which makes the detection process very fast. A natural conclusion of this work is that
including CNN-models as classifiers, e.g., ResNet-classifier, could further improve OBIA methods.
The provided methodology can be systematically reproduced for other species detection using our
codes available through (https://github.com/EGuirado/CNN-remotesensing).

Keywords: Ziziphus lotus; plant species detection; land cover mapping; Convolutional Neural
Networks (CNNs); Object-Based Image Analysis (OBIA); remote sensing

1. Introduction

Changes in land cover and land use are pervasive, rapid, and can have significant impact on
humans, the economy, and the environment. Accurate land cover mapping is of paramount importance
in many applications, e.g., biodiversity conservation, urban planning, forestry, natural hazards,
etc. ([1,2]). Unfortunately, land-cover mapping processes are often not accurate enough, costly,
and time-consuming. In addition, frequently the classification settings for an image in one site
cannot be directly applied to a different image in a different site.
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In practice, land cover maps are built by analyzing remotely sensed imagery, captured by satellites,
airplanes, or drones, using different classification methods. The accuracy of the results depends on the
quality of the input data (e.g., spatial, spectral, and radiometric resolution of the images) and on the
used classification method. The most commonly used methods can be divided into two categories:
pixel-based classifiers and Object-Based Image Analysis (OBIA) ([3]). Pixel-based methods use only the
spectral information available for each pixel. They are faster but ineffective in some cases, particularly
for high-resolution images and heterogeneous objects detection ([4,5]). Object-based methods take into
account the spectral as well as the spatial properties of image segments (i.e., set of similar neighbor
pixels). They are more accurate but computationally more expensive and very time-consuming since
they require high human intervention and a usually large number of iterations to obtain acceptable
accuracies. Currently, the most commonly used software implementing OBIA-methods is the privative
Definiens-eCognition ([6]), which provides a friendly graphical user-interface for non-programmers.
There exist several free and open source OBIA-software but they are less popular ([7,8]).

To detect a specific object (e.g., a particular plant species individual) in an input image, first,
the OBIA method divides the image into segments (e.g., by using a multi-resolution segmentation
algorithm), and then classifies the segments based on their similarities (e.g., by using algorithms such
as the k-nearest neighbor, Random forest, or Support vector machines [9–12]). This procedure has to
be repeated and optimized for each single input image and the knowledge acquired (i.e., the OBIA
segmentation and classification settings) from one input image cannot be directly reutilized in another.

Convolutional Neural Networks (CNNs)-based models have demonstrated impressive accuracies
in object recognition and image classification in the field of computer vision ([13–16] and are
starting to be used in the field of remote sensing ([17]). This success is due to the availability of
larger training datasets, better algorithms, improved network architectures, faster GPUs and also
improvement techniques such as data-augmentation and transfer-learning, which allow reutilization
of the knowledge acquired from a set of images into other new images. Currently, the most commonly
used software implementing CNNs is the open source library of Tensorflow by GoogleTM ([18]),
which requires programming skills since it does not have a graphical user-interface.

This paper analyzes the potential of CNN-based methods for plant species mapping using
high-resolution Google EarthTM images and provides an objective comparison with the state-of-the-art
OBIA-based methods. As case study, it aims to map Ziziphus lotus shrubs, the dominant species of the
European priority conservation habitat “Arborescent matorral with Ziziphus”, which is experiencing
a serious decline in Europe during recent decades ([19]) (though it is also present in North Africa
and Middle East). This case is challenging since Ziziphus lotus individuals have diverse shapes, sizes,
distribution patterns, and physiological status. In addition, distinguishing Ziziphus lotus shrubs from
neighboring plants in remote sensing images of different regions is complex for non-experts and for
automatic classification methods since the surrounding plants and the soil background strongly differ.
In particular, the contributions of this work are:

• Developing an accurate and transferable CNN-based detection model for shrub mapping using
free high-resolution remote sensing images, extracted from Google EarthTM.

• Designing a new dataset that contains images of Ziziphus lotus individuals and bare soil with
sparse vegetation for training the CNN-based model.

• Demonstrating that the use of small datasets for training the CNN-model with transfer learning
from ImageNet (i.e., fine-tuning) can lead to satisfactory results that can be further enhanced by
including data-augmentation, and specific pre-processing techniques.

• Comparing CNN-based models with OBIA-based methods in terms of performance,
user productivity, and transferability to other regions.

• Providing a complete description of the used methodology so that it can be reproduced by other
researchers for the classification and detection of this or other shrubs.
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From our results, compared to OBIA, the CNN-detection model, in combination with
data-augmentation, transfer-learning (fine-tuning) and a custom detection proposals technique,
achieves higher precision and balance between recall and precision for detecting Ziziphus lotus,
on two different regions, one is near and the other is far away from the training region. In addition,
the detection process is faster with the CNN-detector than with OBIA, which implies a higher user
productivity. Our results also suggest that OBIA-methods and software could be further improved by
including CNNs-classifiers ([12]).

This paper is organized as follows. A review of related works is provided in Section 2. A description
of the proposed CNN-methodology is given in Section 3. The considered study areas and how the
datasets were constructed can be found in Section 4. The experimental results using CNNs and OBIA
are provided in Section 5 and finally conclusions are given in Section 6.

2. Related Works

This section reviews the related works on OBIA and CNNs in land cover mapping. Then it
explains how OBIA, the state-of-the-art method, is used for the detection of plant species individuals.

2.1. Land Cover Mapping

In the field of remote sensing, land cover mapping has been traditionally performed using
pixel-based classifiers or object-based methods ([5]). Several papers have demonstrated that Object-Based
Image Analysis (OBIA) methods are more accurate than pixel-based methods, particularly for high
spatial resolution images ([3]). In the field of computer vision, object detection in an image is more
challenging than scene tagging or classification because it is necessary to determine the image area that
contains the searched object. In most object detection works, first a classifier is trained and then it is
applied on a number of candidate windows. Recently, deep learning CNNs have started to be used for
scene tagging and object detection in remotely-sensed images ([17,20–23]). However, as far as we know,
there are no studies in the literature on the use of CNNs for the detection of plant species individuals in
remotely-sensed images and any comparison between OBIA and deep CNNs methods.

The existing works that use deep CNNs in remotely-sensed images can be divided into two broad
groups. The first group focuses on the classification of high-resolution multi-band imagery (more than
three spectral bands) using CNNs-based methods ([20,21,24,25]). Most of these works reported good
accuracies on well known annotated hyper-spectral scenes (e.g., the Pavia University image and the
Indian pines image [26]).

The second group focuses on the classification or tagging of whole aerial RGB images (commonly
called scene classification). These works also reported good accuracies on benchmark databases such
as, UC-Merced dataset [27] and Brazilian Coffee Scenes dataset [28] ([22,29]). Both of these datasets
contain a large number of manually labeled images. For example, the Brazilian Coffee Scenes dataset
contains 50,000 of 64× 64-pixel tiles, labeled as coffee (1438) non-coffee (36,577) or mixed (12,989) and
UC-Merced dataset contains 2100 256× 256-pixel images labeled as belonging to 21 land-use classes,
with 100 images corresponding to each class. Several works have reached classification accuracies
greater than 95% on these database ([22,29]).

The study that is most similar to ours is ([30]), it addresses the detection of oil-palm trees in
agricultural areas using four spectral bands imagery at 0.5× 0.5 m spatial resolution via CNNs. Since in
plantations oil-palm trees have the same age, shape, size, and are placed at the same distance from each
other, the authors could combine the LeNet-based classifier with a very simple detection technique.
In addition, the authors used a large number of manually labeled training samples, 5000 palm tree
samples and 4000 background samples. Our study is more challenging, because Ziziphus lotus is not
a crop, it is a wild shrub that has very different shapes, sizes, and intensities of green color, and the
surrounding plants and background soil strongly differ across regions. In addition, we will show in
this paper that a much smaller training set can also lead to good results.
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2.2. OBIA-Based Detection

OBIA-methods represent the state-of-the art in remote sensing for object detection [31],
high-resolution land-cover mapping [32,33] and change detection [34]. However, contrarly to CNNs,
OBIA-based models are not learnable models, i.e., OBIA can not directly re-utilize the learning from
one image into another. The detection is performed from scratch on each new individual image.
The OBIA approach is performed in two steps. First, the input image is segmented, and then each
segment is assigned to a class by a classification algorithm. A simplistic flowchart of the CNNs-
and OBIA-based approaches is illustrated in Figure 1b. The OBIA-detectors used in this study are
implemented in eCognition 8.9 software ([6]) and work in two steps as follows:

• Segmentation step: First, the input image is segmented using the multi-resolution algorithm ([35]).
In this step, the user has to manually optimize and initialize a set of non-dimensional parameters
namely: (i) The scale parameter, to control the average image segment size by defining the
maximum allowed heterogeneity (in color and shape) for the resulting image objects. The higher
the value, the larger the resulting image objects. (ii) The shape versus color parameter, to prioritize
homogeneity in color versus in shape or texture when creating the image objects. Values closer to
one indicate shape priority, while values closer to zero indicate color priority. (iii) The compactness
versus smoothness parameter, to prioritize whether producing compact objects over smooth edges
during the segmentation. Values closer to one indicate compactness priority, while values closer
to zero indicate smoothness priority ([36]). The results of the segmentation must be validated by
analyzing the spatial correspondence between the OBIA-obtained segments and the field-digitized
polygons. In this work, the geometric and arithmetic correspondance was analyzed by means of
the Euclidean Distance v.2 ([37]).

• Classification step: Second, the resulting segments must be classified using: K-Nearest Neighbor
(KNN), Random Forest (RF) or Support Vector Machine (SVM) methods. In general, several works
have reported that SVM and RF obtain better accuracies ([12,38,39]). For this, the user has to
introduce training sample sites for each class. Then, objects are classified based on their statistical
resemblance to the training sites. The classification is validated by using an independent set
of sample sites. Typically, 30% of the labeled field samples are used for training, and 70% for
validation based on a confusion matrix to calculate the commission and omission errors, and the
overall accuracy ([40]). Finally, to provide a fair comparison between OBIA and CNNs, we applied
the same filtering method called detection proposal.

3. CNN-Based Detection for Shrub Mapping

We reformulate the problem of detecting a shrub species into a two-class problem, where the
true class is “Ziziphus lotus shrubs” and the false class is “bare soil with sparse vegetation”. To build
the CNNs-based detection model, (1) we first designed a field-validated training dataset, (2) then we
found the most accurate CNNs-classifier by analyzing two networks, ResNet and GoogLeNet,
and considering two optimizations, fine-tuning and data-augmentation (3) during the detection
process, we compared two options, the sliding-window technique and proposal detection technique
to localize Ziziphus lotus in the test scenes. A simplistic flowchart of the CNNs- and OBIA-based
approaches is illustrated in Figure 1a.
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(a) (b)

Figure 1. Flowchart of the Ziziphus lotus shrub mapping process using (a) Convolutional Neural
Networks (CNNs) considering two detection approaches: sliding window and detection proposals
and (b) Object-Based Image Analysis (OBIA). The best performance was obtained by ResNet-based
classifier combined with the detection proposal technique.

3.1. Training Phase: CNN-Classifier With Fine-Tuning and Data Augmentation

In this work, we use feed-forward Convolutional Neural Networks (CNNs) for supervised
classification, as they have provided very good accuracies in several applications. These methods
automatically discover increasingly higher level features from data ([13,41]). The lower convolutional
layers capture low-level image features (e.g., edges, color), while higher convolutional layers capture
more complex features (i.e., composite of several features).

In this work, we considered the two most accurate CNNs, ResNet ([42]) and GoogLeNet ([43]).
ResNet won the first place on the 2015 ILSVRC (ImageNet Large Scale Visual Recognition Competition
(ILSVRC)) and is currently the most accurate and deepest CNN available. It has 152 layers and
25.5 million parameters. Its main characteristic with respect to the previous CNNs is that ResNet
creates multiple paths through the network within each residual module. GoogLeNet won the first
place of the 2014 ILSVRC. GoogLeNet is based on inception v3 and has 23.2 million parameters and
22 layers with learnable weights organized in four parts: (i) the initial segment, made up of three
convolutional layers, (ii) nine inception v3 modules, where each module is a set of convolutional and
pooling layers at different scales performed in parallel then concatenated together, (iii) two auxiliary
classifiers, where each classifier is actually a smaller convolutional network put on the top of the
output of an intermediate inception module, and (iv) one output classifier.

Deep CNNs, such as ResNet and GoogLeNet, are generally trained based on the prediction loss
minimization. Let x and y be the input images and corresponding output class labels, the objective of
the training is to iteratively minimize the average loss defined as

J(w) =
1
N

N

∑
i=1

L( f (w; xi), yi) + λR(w) (1)

This loss function measures how different is the output of the final layer from the ground truth.
N is the number of data instances (mini-batch) in every iteration, L is the loss function, f is the
predicted output of the network depending on the current weights w, and R is the weight decay with
the Lagrange multiplier λ. It is worth mentioning that in the case of GoogLeNet, the losses of the
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two auxiliary classifiers are weighted by 0.3 and added to the total loss of each training iteration.
The Stochastic Gradient Descent (SGD) is commonly used to update the weights.

wt+1 = µwt − α∆J(wt) (2)

where µ is the momentum weight for the current weights wt and α is the learning rate.
The network weights, wt, can be randomly initialized if the network is trained from scratch.

However, this is suitable only when a large labeled training-set is available, which is expensive in
practice. Several previous studies have shown that data-augmentation ([44]) and transfer learning ([45])
help overcoming this limitation.

• Transfer learning (e.g., fine-tuning in CNNs). The best analogy for transfer-learning could be the
way humans face a new challenge. Humans do not start the learning from scratch, they always use
previous knowledge to build new one. Transfer-learning consists of re-utilizing the knowledge
learnt from one problem to another related one ([46]). Applying transfer learning with deep CNNs
depends on the similarities between the original and new problem and also on the size of the new
training set. In deep CNNs, transfer learning can be applied via fine-tuning, by initializing the
weights of the network, wt in Equation (2), with the pre-trained weights from a different dataset.

In general, fine-tuning the entire network (i.e., updating all the weights) is only used when the
new dataset is large enough, otherwise, the model could suffer overfitting especially among the
first layers of the network. Since these layers extract low-level features, e.g., edges and color,
they do not change significantly and can be utilized for several visual recognition tasks. The last
learnable layers of the CNN are gradually adjusted to the particularities of the problem and
extract high level features.

In this work, we have used fine-tuning on ResNet and GoogleNet. We initialized the used CNNs
with the pre-trained weights of the same architectures on ImageNet dataset (around 1.28 million
images over 1000 generic object classes) ([13]).

• Data-augmentation, also called data transformation or distortion, is used to artificially increase
the number of samples in the training set by applying specific deformations on the input images,
e.g., rotation, flipping, translation, cropping, or changing the brightness of the pixels. In this way,
from a small number of initial samples, one can build a much larger dataset of transformed
images that still are meaningful for the case study. The set of valid transformations that
improves the performance of the CNN-model depends on the particularities of the problem.
Several previous studies have demonstrated that increasing the size of the training dataset using
different data-augmentation techniques increases performance and makes the learning of CNNs
models robust to changes in scales, brightness and geometrical distortions [44,47].

3.2. Detection Phase

To obtain an accurate detection in a new image, different from the images used for training the
CNN-classifier, we analyzed two approaches:

• Sliding window is an exhaustive technique frequently used for detection. It is based on the
assumption that all the areas of the input-image are possible candidates to contain an object class.
This search across the input-image can generate around 106 candidate windows. The detection
task consists of applying the obtained CNN-classifier at all locations and scales of the input image.
The sliding window approach is an exhaustive method since it considers a very large number
of candidate windows of different sizes and shapes across the input image. The classifier is
then run on each one of these windows. To maximize the detection accuracy, the probabilities
obtained from different window sizes can be assembled into one heatmap. Finally, probability
heatmaps are usually transformed into classes using a thresholding technique, i.e., areas with
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probabilities higher than 50% are usually classified as the true class (e.g., Ziziphus lotus) and areas
with probabilities lower than 50% as background (e.g., bare soil with sparse vegetation).

• Detection proposals are techniques that employ different selection criteria to reduce the
number of candidate windows, thereby avoiding the exhaustive sliding window search ([48]).
These techniques can also help to improve the detection accuracy and execution time. In general,
detection proposals methods determine the set of pre-processing techniques that provides the
best results. This set depends on the nature of the problem and the object of interest. From the
multiple techniques that we explored, the ones that provided the best detection performance
were: (i) Eliminating the background using a threshold based on its typical color or darkness
(e.g., by converting the RGB image to gray scale, grays lighter than 100 digital level corresponded
to bare ground). (ii) Applying an edge-detection method that filters out the objects with an area
or perimeter smaller than the minimum size of the target objects (e.g., the area of the smallest
Ziziphus lotus individual in the image, around 22 m2).

4. Study Areas and Datasets Construction

This section describes the study areas and provides full details on how the training and test sets
were built using Google EarthTM images. We consider the challenging problem of detecting the Ziziphus
lotus shrubs, since it is considered to be the key species of an ecosystem of priority conservation in the
European Union (habitat 5220* habitat of 92/43/EEC Directive). During recent decades, several studies
reported that Ziziphus lotus is declining in SE Spain, Sicily and Cyprus ([49]). In Europe, the largest
population occurs in the Cabo de Gata-Níjar Natural Park (SE Spain), where an increased mortality of
individual shrubs of all ages was observed in the last decade ([50,51]).

4.1. Study Areas

In this study, we considered three zones: one training-zone, for training the CNN-model, and two
test zones (labeled as test-zone-1 and test-zone-2) for testing and comparing the performance of both
CNN- and OBIA-based models.

• The training-zone used for training the CNN-based model. This zone is located in Cabo de
Gata-Níjar Natural Park, 36◦49′43′′ N, 2◦16′22′′ W, in the province of Almería, Spain (Figure 2).
The climate is semi-arid Mediterranean. The vegetation is scarce and patchy, mainly dominated
by large Ziziphus lotus shrubs surrounded by a heterogeneous matrix of bare soil and small
scrubs (e.g., Thymus hyemalis, Launea arborescens and Lygeum spartum) with low coverage ([49,52]).
Ziziphus lotus forms large hemispherical bushes with very deep roots and 1–3 m tall that trap and
accumulate sand and organic matter building geomorphological structures, called nebkhas, that
constitute a shelter micro-habitat for many plant and animal species ([19,49,53]).

• Test-zone-1 and test-zone-2 belong to two different protected areas. Test-zone-1 is located 1.5 km
west from the training-zone, 36◦49′28′′ N, 2◦17′28′′ W. Test-zone-2 is located in Rizoelia National
Forest Park in Cyprus, 34◦56′09′′ N, 33◦34′26′′ E (Figure 2). These two test-zones are used for
comparing the performance between CNNs and OBIA for detecting Ziziphus lotus.
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Figure 2. Localization of the three study areas used in this work: Training-zone and Test-zone-1 in
Cabo de Gata-Níjar Natural Park (Spain), and Test-zone-2 in Rizoelia National Forest Park (Cyprus).
The three images are 230 × 230 m with a native resolution in Google EarthTM of 0.5 m per pixel
(but downloaded as 1900× 1900 pixel images). Ziziphus lotus shrubs can be seen in the three images.
The used projection was geographic with the WGS84 Datum.

4.2. Datasets Construction

4.2.1. Satellite-Derived Orthoimages from Google EarthTM

The satellite RGB orthoimages used in this work were downloaded from Google EarthTM in
European Petroleum Survey Group (EPSG) 4326 using a geographic coordinate system with the
WGS84 datum. The scenes of the three areas, training-zone, test-zone-1 and test-zone-2, have an
approximate size of 230× 230 meters. The images were downloaded at two Google Earth’s zoom
levels: (i) the closest zoom level (i.e., 19) to the native resolutions (see below), that resulted in scenes
of 456× 456 pixels with a resolution of 0.5 m, (ii) the maximum available zoom level in their area
(i.e., 21), that resulted in scenes of 1900× 1900 pixels with an increased resolution of 0.12 m due to the
smoothing applied by Google Earth. Since all results always showed better accuracies (3% better on
average) with the images at 0.12 m resolution, we did not include the results at 0.5 m in the manuscript
to save space. The characteristics of the satellite images used by Google to produce the orthoimages of
the three areas were:

• Training-zone and test-zone-1 images (SE Spain) were captured by Worldview-2 satellite under 0%
cloud cover on the 30 June 2016, with an inclination angle of 12.7◦. The multispectral RGB bands
have a native spatial resolution of 1.84 m, but they are pansharpened to 0.5 m by Worldview-2 using
the panchromatic band. The RGB bands cover the following wavelength ranges: Red: 630–690 nm,
Green: 510–580 nm, Blue: 450–510 nm.

• Test-zone-2 image (Cyprus) was captured by Pléiades-1A satellite under 0.1% cloud cover on the
8 July 2016, with an inclination angle of 29.2◦. The multi spectral RGB bands have a native spatial
resolution of 2 m, but they are pansharpened to 0.5 m by Pléiades-1A using the panchromatic band.
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They RGB bands cover the following wavelength ranges: Red: 600–720 nm, Green: 490–610 nm,
Blue: 430–550 nm.

4.2.2. Dataset for Training OBIA and for Ground Truthing

We addressed the Ziziphus lotus detection problem by considering two classes, (1) Ziziphus lotus
shrubs class and (2) Bare soil with sparse vegetation class. In OBIA, the training dataset consisted of a
set of georeferenced points from the same scene that we want to classify and covering the two targeted
classes. Conversely, for CNNs, the training dataset consisted of two sets of images that contained each
class of interest, but these images do not have to belong to same scene that we aim to classify, allowing
for transferability to other regions, which is an advantage of CNNs over OBIA methods.

• In test-zone-1, 74 Ziziphus lotus individual were identified in the field. The perimeter of each
was georeferenced in the field with a differential GPS, GS20, Leica Geosystems, Inc. From the
74 individual shrub, 30% (22 individual shrubs) were used for training and 70% (52 individuals)
for validation in the OBIA method. Images containing patches from all 74 individual shrubs were
used for validation in the CNN method (see below).

• In test-zone-2, 40 Ziziphus lotus individuals were visually identified in Google Earth by the
authors using the vegetation maps and descriptions provided by local botany experts ([54]).
These individuals were also validated in the field by one of the co-authors, J. Cabello. All 40
individual shrubs were used for validation in both the OBIA and CNN methods.

In both test zones, the same number of Ziziphus lotus individuals (74 and 40, respectively) was
georeferenced for the Bare soil with sparse vegetation class (Table 1).

4.2.3. Training Dataset for the CNN-Classifier

The design of the training dataset is key to the performance of a good CNN classification model.
From the 82 Ziziphus individuals georeferenced by botanic experts in the training-zone, we identified
100 80× 80-pixel image patches containing Ziziphus lotus shrubs and 100 images for Bare soil with
sparse vegetation. Examples of the labeled classes can be seen in Figure 3. We distributed the
100 images of each class into 80 images for training and 20 images for validating the obtained CNNs
classifiers, as summarized in Table 1.

Table 1. Training and testing datasets for both CNN and OBIA used for mapping Ziziphus lotus shrubs.
Bare soil: Bare soil and sparse vegetation; Img: 80 × 80-pixel image patches; Poly: digitized polygons.

Class

CNN Classifier OBIA Classifier Accuracy

Training Validation Training Assessment

Training-Zone Test-Zone-1 Test-Zone-2 Test-Zone-1 Test-Zone-2

Ziziphus 80 img 20 img 22 poly 0 poly 52 poly 40 poly
Bare soil 80 img 20 img 22 poly 0 poly 52 poly 40 poly



Remote Sens. 2017, 9, 1220 10 of 22

Figure 3. The two top panels show examples of the 80× 80-pixel image patches used to build the
training dataset for the CNN model: (left) patches of Ziziphus lotus class, (right) patches of Bare soil
with sparse vegetation class. The bottom panel shows the training-zone dataset with 100 Ziziphus lotus
patches labeled with a green contour and 100 Bare soil and sparse vegetation patches labeled with
yellow contour.

5. Experimental Evaluation and Discussions

This section is organized in three parts. The first part describes the steps taken to develop the
best CNN-based shrub detector. For this, we used GoogLeNet and improved its baseline detection
results by applying transfer-learning (fine-tuning) and data-augmentation under the sliding window
approach. Then we further improved the detection by using a more powerful Network, ResNet,
combined with a custom detection proposal technique.

The second part describes the steps taken to develop the best OBIA-based classification of
Ziziphus lotus shrubs. For this, we compared three classification algorithms: KNN, RF and SVM. To
ensure a fair comparison with CNNs, we re-utilized the segmentation and classification ruleset from
test-zone-1 in test-zone-2, and the same threshold filtering used in the detection proposal for CNNs.

The third part provides a comparison between GoogLeNet with detection proposals, ResNet
with detection proposals, OBIA-KNN, OBIA-RF, and OBIA-SVM. For the evaluation and comparison
of accuracies, we used three metrics, precision (also called positive predictive value, i.e., how many
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detected Ziziphus lotus are true), recall (also known as sensitivity, i.e., how many actual Ziziphus lotus
were detected), and F1 measure, which evaluates the balance between precision and recall. Where

precision =
True Positives

True Positives + False Positives
,

recall =
True Positives

True Positives + False Negatives
,

and
F1 measure = 2× precision× recall

precision + recall

5.1. Finding the Best CNN-Based Detector

For the experiments with GoogLeNet and ResNet-based models, we have used the open source
software library Tensorflow ([18]). For training CNNs, the image patches are resized from 80× 80-pixels
to 299× 299 by GoogLeNet and to 224× 224 by ResNet. Such rescaling is due to the fact that the
architecture of all the layers of GoogLeNet and ResNet are adapted according to these input sizes,
independently from the original resolution of the input images.

5.1.1. CNN Training With Fine-Tuning and Data-Augumentation

To improve the accuracy and reduce overfitting we (i) used fine-tuning by initializing the evaluated
models with the pre-trained weights of ImageNet, and (ii) applied data augmentation techniques to
increase the size of the dataset from 100 to 6000 images. In particular, for data-augmentation we applied:

• Random scale: increases the scale of the image by a factor picked randomly in [1 to 10%]
• Random crop: crops the image edges by a margin in [0 to 10%]
• Flip horizontally: randomly mirrors the image from left to right.
• Random brightness: multiplies the brightness of the image by a factor picked randomly in [0, 10].

To show the impact of data-augmentation on the performance of the detection, we analyzed
the results of the GoogleNet-based classifier combined with the sliding window technique with and
without data-augmentation. The results are summarized in the two first rows of Table 2. As we can
observe, using only fine-tuning, the GoogLeNet-based model reached relatively good performance
(77.64% precision, 89.18% recall and 83.01% F1). Adding data-augmentation further increased the
performance (90.28% precision, 87.83% recall and 89.04% F1). This performance comparison was
performed under the sliding-window detection approach (see next section).

5.1.2. Detection Using GoogLeNet Under the Sliding Window Approach

This section evaluates the performance of the CNN-based classifier under the sliding window
approach. To assess the ability of CNNs model to detect Ziziphus lotus shrubs in Google Earth images,
we applied the trained CNN classifiers across the entire scene of test-zone-1 by using the sliding
window technique. Since the diameter of the smallest Ziziphus lotus individual georeferenced in the
field was 4.6 m (38 0.12-m-pixels) and the largest individual in the region had a diameter of 47 m
(385 0.12-m-pixels), we evaluated a range of window sizes from 38× 38 to 385× 385 pixels and a
horizontal and vertical sliding step of about 70% the size of the sliding window, e.g., 27× 27 pixels for
the 38× 38 sliding window, and 269× 269 pixels for 385× 385 sliding window.
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Table 2. GoogLeNet(with and without data-augmentation) and ResNet-detection results for
Ziziphus lotus shrubs mapping in Test-zone-1, under the sliding window approach and using a
detection-proposals approach. Accuracies are expressed in terms of true positives (TP), false positives
(FP), false negatives (FN), precision, recall, and F1 measure. The highest accuracies are highlighted
in bold.

Detection Model TP FP FN Precision Recall F1

GoogLeNet (test-zone-1)
65 12 9 77.64% 89.18% 83.01%+fine-tuning

under sliding window

GoogLeNet (test-zone-1)

65 7 9 90.28% 87.83% 89.04%+fine-tuning
+augmentation
under sliding window

GoogLeNet (test-zone-1)

69 1 5 98.57% 93.24% 95.83%+fine-tuning
+augmentation
under detection proposals

ResNet (test-zone-1)

69 0 5 100.00% 93.24% 96.50%+fine-tuning
+augmentation
under detection proposals

The performance of the GoogLeNet-based detector on the 1900× 1900 pixels image corresponding
to test-zone-1 is shown in Table 3 and the corresponding heatmap to each window size are illustrated
in Figure 4. The best performance, highest recall and F1-measure and high precision, were obtained for
a window size of 64× 64 pixels. The time needed to perform the detection process using this window
size was 291 min. This represents the execution time that would be required for Ziziphus lotus shrub
detection on any new input image of the same dimensions, which is very time consuming to be used in
larger regions or across the entire range distribution of the species along the Mediterranean region. To
reduce the execution time, we next applied the detection-proposal pre-processing technique to reduce
the number of candidate regions.

Table 3. CNN-detection results in Test-zone-1 at different sliding window sizes. Accuracies are
expressed in terms of true positives (TP), false positives (FP), and false negatives (FN), precision, recall,
F1-measure, and execution time of the detection process.

Win. Size Total # of TP FP FN Precis. Recall F1- Time
(Pixels) Win. (%) (%) Meas. (%) (min)

385×385 196 31 18 41 63.27 43.06 51.24 6.0
194×194 961 34 7 38 82.93 47.22 60.18 29.4
129×129 2209 42 6 30 87.50 58.33 70.00 67.6
97× 97 4096 59 6 13 90.77 81.94 86.13 125.4
77×77 5929 59 5 13 92.19 81.94 86.76 181.5
64×64 9506 65 7 7 90.28 90.28 90.28 291.0
55×55 13,340 65 12 7 84.42 90.28 87.25 408.4
48×48 17,292 68 16 4 80.95 94.44 87.18 529.3
42×42 22,200 70 17 2 80.46 97.22 88.05 679.6
38× 38 27,888 71 39 1 64.55 98.61 78.02 853.7
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Figure 4. Maps showing the probability of Ziziphus lotus presence according to the CNN-classifier
trained with fine-tuning and data-augmentation and applied on different sliding-window sizes from
38× 38 to 385× 385 pixels in Test-zone-1. The first and third columns show the heatmaps of the
probability of Ziziphus lotus presence, and the second and fourth columns show the corresponding
binary maps after applying a threshold of probability greater than 50%. The white polygons correspond
to the ground-truth perimeter of each individual georeferenced in the field with a differential GPS.

5.1.3. Detection Using GoogLeNet and ResNet under a Detection Proposals Approach

This section evaluates the performance of GoogLeNet- and ResNet-based classifiers under the
detection-proposal pre-processing technique. To optimize the CNN-detection accuracy and execution
time, we analyzed several pre-processing techniques to generate better and faster candidate regions
than with the sliding window approach. The selection of the set of pre-processing techniques that
provides the best results depends on the nature of the problem and the object of interest. From the
multiple techniques explored, the ones that improved the performance of the CNN detectors in this
work were: (i) Eliminating the background using a threshold based on the high albedo (light color)
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of the bare soil. The used detection proposals technique is illustrated in Figure 5. For this, we first
converted the RGB image to gray scale and then created a binary mask-band to select only those
pixels darker than 100 over 256 digital levels of gray, which was the average level of gray of the field
georeferenced point of bare soil in the training-zone. (ii) Applying an edge-detection method to the
previously created mask-band to select only clusters of pixels with an area greater than 180 pixels
(21.6 m2), which approximately was the size of the smallest Ziziphus lotus individual georeferenced in
the training-zone. After applying this detection proposals technique, the number of candidate image
patches to pass to the CNN detectors was 78 for test-zone-1 and 53 for test-zone-2, which significantly
decreased the detection computing time.

Figure 5. The used detection proposals technique consisted of, first, converting the three band image
into one gray-scale band image (PAN), second, converting the gray-scale image into a binary image
based on a 100 over 256 digital value threshold, and third, detecting Ziziphus lotus shrubs only in pixels
with a digital value greater than 100. The 78 candidate patches identified in Test-zone-1 are labeled
with red contour in the right panel (the 53 candidates in Test-zone-2 are not shown.)

The results of GoogLeNet- and ResNet-based detection model using the aforementioned proposal
method, considering fine-tuning and data-augmentation on test-zone-1 are summarized in the last two
rows of Table 2. ResNet-based classifier combined with the detection proposals technique together
with fine-tuning and data-augmentation achieved the best performance. It further improved the
precision and F1 of GoogLeNet-detector under the same conditions.

5.2. Finding the Best OBIA-Detector

For the experiments with the OBIA methods, we used the privative eCognition software ([6]).
To determine the best segmentation, we iteratively tried all the possible combinations between the
three customizable parameters: scale, ranging in [80, 160] at intervals of 5, shape and compactness,
ranging in [0.1, 0.9] at intervals of 0.1. The best segmentation parameters were: scale = 110, shape
= 0.3, compactness = 0.8. To obtain the best detection results using OBIA-method, we considered
three classifiers, KNN, RF and SVM. The best classification configuration for KNN, RF and SVM,
i.e., brightness, red band, green band, blue band and gray level co-occurrence matrix (GLCM mean)
features, was determined using the Separability and Threshold tool [55]. An exhaustive search of
the best configuration implied the evaluation of 1296 combinations, each segmentation test took 18
s, and each classification test took around 10 s. The whole optimization and detection process using
OBIA took around 10 h for Test-zone-1. Normally, OBIA requires the user to provide training points
of each input class located within the scene (test zone) we want to classify. However, to ensure a
fair comparison with CNNs, we re-utilized the OBIA segmentation and classification configuration
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“learned” from test-zone-1 into test-zone-2. The results of OBIA-based detection using KNN, RF and
SVM are summarized in Table 4. The best results were obtained with the SVM method.

Table 4. A comparison between the best CNN-detector, ResNet-detector and OBIA, on test-zone-2,
in terms of true positives (TP), false positives (FP), false negatives (FN), precision , recall and
F1_measure. The highest values are highlighted in bold.

Detection Model TP FP FN Precision Recall F1

ResNet-based classifier (test-zone-1)

69 0 5 100.00% 93.24% 96.50%+fine-tuning
+augmentation
under detection proposals

OBIA-KNN (test-zone-1) 66 9 8 88.00% 89.18% 88.59%
OBIA-Random Forest (test-zone-1) 67 6 7 91.78% 90.54% 91.15 %
OBIA-SVM (test-zone-1) 72 9 2 88.88% 97.29% 92.90%

ResNet-based classifier (test-zone-2)

38 3 2 92.68% 95.00% 93.38%+fine-tuning
+augmentation
under detection proposals

OBIA-KNN (test-zone-2) 21 4 19 84.00% 52.50% 64.61%
OBIA-Random Forest (test-zone-2) 27 6 13 81.81% 67.5% 73.97%
OBIA-SVM (test-zone-2) 29 6 11 82.85% 72.50% 77.33%

5.3. CNN-Detector Versus OBIA-Detector

We tested the CNN-detector on two images with different radiometric and environmental
characteristics, test-zone-1 (SE Spain) and test-zone-2 (Cyprus), captured by different satellites.
The performance results of ResNet-model and OBIA-method in test-zone-1 (SE Spain) and test-zone-2
(Cyprus) are summarized in Table 4. As we can observe from this table, CNN-based detection
model achieved significantly better detection results than OBIA on both test zones. On test-zone-1,
CNN achieved higher precision, 100.00% versus 88.88%, and F1-measure, 96.50% versus 92.90%,
though slightly lower recall, 93.24% versus 97.29%, than OBIA. More noticeable, on test-zone-2,
CNN achieved significantly better precision 92.68% versus 82.85%, recall 95.00% versus 72.50%, and
F1-measure 93.38% versus 77.33% than OBIA.

The shrub detection maps of CNN and OBIA, on test-zone-1, are shown in Figure 6(a) and (b),
and on test-zone-2 are shown in Figure 6c,d. In general, both OBIA and CNN successfully detected the
majority of shrubs in test-zone-1 and test-zone-2. In test-zone-1, from 74 true shrubs, OBIA detected
72 true positives while CNN detected 69 true positives. However, OBIA produced 9 false positives
whereas CNN did not produce any false positive. More importantly, in test-zone-2, from 40 true shrubs,
OBIA detected 29 true positives while CNN detected 38 true positives. In addition, OBIA produced 6
FP while CNN produced only 3 FP.
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(a) (b)

(c) (d)

Figure 6. Shrub detection maps obtained with OBIA-based model in test-zone-1 (a) and test-zone-2
(c) and CNN-based model in test-zone-1 (b) and test-zone-2 (d). The symbols (+), (-) and (Fn) stand for
true positive, false positive, and false negative, respectively. The values on the top of the bounding
boxes in (2) and (4) show the probabilities, calculated by ResNet-detector, of having a Ziziphus lotus
shrub. (a) OBIA detection on test-zone-1; (b) CNN detection on test-zone-1; (c) OBIA detection on
test-zone-2; (d) CNN detection on test-zone-2.

Despite such good results, both OBIA and CNN produced under-segmentations, i.e., duplicated
detections. In test-zone-1, both methods produced 3 under-segmentations. In test-zone-2, OBIA and
CNN produced 1 and 0 under-segmentations, respectively. The under-segmented shrub individuals by
OBIA had areas larger than 140 m2 while the under-segmented shrub individuals by CNNs had areas
between 68 m2 and 326 m2. This under-segmentation occurred mainly in test-zone1 and it was due to
the highly heterogeneous shape and texture of some shrubs that are over-simplified in the segmentation
step in OBIA and in the detection proposals step in CNNs when it converts RGB to black and white.
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Such anomalous heterogeneity of test-zone-1 could be explained by the bad physiological status of
the Ziziphus lotus shrubs due to marine intrusion and increase in defoliators [19,56]. In test-zone-2,
neither OBIA nor CNN produced under-segmentation probably due to their better physiological status
and more homogenous shape and texture than in test-zone-1.

A closer look at the shrubs classified as false negatives(FN) (2 FN by OBIA and 5 FN by CNNs in
zone-test-1 in Figure 6) showed that those shrub individuals were in a bad health status with large
extension of bare sand in their interior and with lower intensity of green color, which made them
to be more easily confused with the “bare soil and sparse vegetation” class. In test-zone-2, OBIA
produced 11 FN while CNN only 2 FN. One possible explanation could be the low transferability
of the OBIA method, since it requires not only similar image characteristics between the learning
and testing zones, but also similar characteristics of the target objects (e.g., similar shape and size).
The Z. lotus individuals of the training zone were larger (minimum size of 46 m2) than the individuals
of test-zone-2 (minimum size of 20 m2), which probably biased the learning on size of the OBIA-based
model. Subsequently, this bias could have caused the OBIA-based model to commit more false
negatives on smaller individuals in the test zone 2. On the contrary, CNNs are more robust to
this problem and are highly transferable. Another possible explanation could be that OBIA is more
sensitive to the radiometric difference between test-zone-1 and test-zone-2. In test-zone-2, the RGB
bands were captured by Pléiades-1A satellite at a multispectral Ground Sample Distance (GSD) of
2 m. However, in test-zone-1, the RGB bands were captured by WorldView-2 at a slightly coarser
multispectral GSD of 1.84 m. In both cases, RGB images were pansharpened to 0.5 m. Despite the
coarser GSD of Pléiades-1A, its radiometric quality is very homogeneous, with low noise level and no
saturation effects, which would compensate the small difference in GSD [57].

Overall, accuracy results were slightly better for test-zone-1 than for test-zone-2. In addition to
the effect of the spatial resolution commented above, in test-zone-1 Ziziphus lotus does not coexist
with similar shrubs in terms of size, phenology, shape and color. However, in test-zone-2 some trees
do coexist, whose presence may affect the detection accuracies. In those cases, the learning of the
CNN-model can be improved by using more spectral bands or temporal information, e.g., including
Near Infrared, Digital Surface Model (DSM) or the seasonal NDVI dynamics [51,58].

Deep CNNs learnt and performed better on higher resolution images. This also occurs when
the image spatial resolution is artificially increased by rendering, as occurs in Google Earth images.
Indeed, to explore the effect of the Google Earth rendering on the CNNs performance, we analyzed
a representative set of images at the native satellite spatial resolution, 0.5 m (zoom = 19), and with
the downscaled resolution available in Google Earth at 0.12 m (zoom = 21). We found that CNNs
performed better (accuracy of 97.73± 0.51) on the downscaled images with 0.12m per pixels than on
the native resolution ones (accuracy of 95.23± 0.32) with 0.5m per pixel. This also implies that, if CNNs
are trained on high-resolution images, they will progressively lose performance on low-resolution
images since the shape and color maybe deteriorated.

In terms of user productivity, the training of ResNet-classifier was performed only once and
took 8 min 22 s on a laptop with Intel(R) Core(TM) i5 CPU running at 2.40 GHz and 4 GB RAM.
In the test phase, also called deployment phase, executing ResNet-classifier together with the
detection proposals technique on the same laptop for test-zone-1 and test-zone-2 took 58.48 and
26.4 s, respectively. Whereas, finding the best configuration for OBIA on each test-zone took 10 h
on the same laptop. Applying the obtained CNN-detector to any new image of similar sizes will
take seconds; however, applying OBIA to a new image will take several hours. This execution can
be partially reduced by using semi-automatic tools to estimate scale parameters ESP v.2 [59].
In summary, our results show that the user becomes more productive with CNNs than with OBIA and
reaching higher accuracies.
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6. Conclusions

In this work, we explored, analyzed and compared two detection methodologies for shrub
mapping, the OBIA-based approach and the CNNs-based approach. We used a challenging case study,
mapping Ziziphus lotus, the dominant shrub in a habitat of priority conservation interest in Europe.

Our experiments demonstrated that the ResNet-based classifier with transfer learning from
ImageNet and data augmentation, together with a specific detection-proposal pre-processing technique
provided better results than the state-of-the-art OBIA-based methods. In addition, an important
advantage of the CNN-based detector is that it required less human supervision than OBIA, can be
trained using a relatively small number of samples, and can be easily transferable to other regions
or scenes with different characteristics, e.g., color, extent, light, background, or size and shape of
the target objects. The lack of direct transferability was an important limitation of OBIA methods
since, once calibrated for one image, the OBIA settings are not directly portable to other images
(e.g., to different areas, extensions, radiometric calibrations, background color, spatial and spectral
resolutions, or different sizes or shapes of the target objects).

A natural conclusion of this work is that including CNN-models as classifiers in OBIA software,
e.g., a ResNet-classifier in eCognition, could make the users take advantage from the benefits of both
methods, e.g., OBIA segmentation to quantify areas and CNNs for detection and classification.

Finally, the proposed CNN-based approach is based on open-source software and uses easily
available Google Earth images (subject to Terms of Service), which can have huge implications for
land-cover mapping and derived applications. Our CNN-based approach could be systematized and
reproduced for a wide variety of detection problems. For instance, this model could be extended to a
larger number of classes of shrub and tree species by including more spectral or temporal information.
In any case, our CNN-based approach could support the detection and monitoring of trees and
arborescent shrubs in general, which has a huge relevance for biodiversity conservation and for
reducing uncertainties in carbon accounting worldwide ([60,61]). The presence of scattered trees have
been recently highlighted as keystone structures capable of maintaining high levels of biodiversity and
ecosystem services provision in open areas ([62]). Global initiatives could greatly benefit from CNNs,
such as those recently implemented by the United Nations Food and Agricultural Organization ([60])
to estimate the overall extension of forests in drylands biomes, where they used the collaborative
work of hundreds of people that visually explored hundreds of VHR images available from Google
Earth to detect the presence of forests in drylands. The uncertainties in such initiatives ([61,63,64]
could be decreased following our approach to build a CNN-based tree mapper). CNN-based tree and
shrub detectors could serve to produce global characterizations of ecosystem structure and population
abundance as part of the satellite remote sensing essential biodiversity variables initiative ([65]).
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59. Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation
on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127.

60. Bastin, J.; Berrahmouni, N.; Grainger, A.; Maniatis, D.; Mollicone, D.; Moore, R.; Patriarca, C.; Picard, N.;
Sparrow, B.; Abraham, E.; et al. The extent of forest in dryland biomes. Science 2017, 356, 635–638.

61. Schepaschenko, D.; Fritz, S.; See, L.; Bayas, J.C.L.; Lesiv, M.; Kraxner, F.; Obersteiner, M. Comment on
“The extent of forest in dryland biomes”. Science 2017, 358, eaao0166.

62. Prevedello, J.A.; Almeida-Gomes, M.; Lindenmayer, D. The importance of scattered trees for biodiversity
conservation: A global meta-analysis. J. Appl. Ecol. 2017, in press, doi:10.1111/1365-2664.12943.

63. Griffith, D.M.; Lehmann, C.E.; Strömberg, C.A.; Parr, C.L.; Pennington, R.T.; Sankaran, M.; Ratnam, J.;
Still, C.J.; Powell, R.L.; Hanan, N.P.; et al. Comment on “The extent of forest in dryland biomes”. Science
2017, 358, eaao1309.

http://www.life-rizoelia.eu
http://www.life-rizoelia.eu


Remote Sens. 2017, 9, 1220 22 of 22

64. de la Cruz, M.; Quintana-Ascencio, P.F.; Cayuela, L.; Espinosa, C.I.; Escudero, A. Comment on “The extent
of forest in dryland biomes”. Science 2017, 358, eaao0369.

65. Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Lucas, R.;
Schaepman, M.E.; Wang, T.; O’Connor, B.; et al. Framing the concept of satellite remote sensing essential
biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Land Cover Mapping
	OBIA-Based Detection

	CNN-Based Detection for Shrub Mapping
	Training Phase: CNN-Classifier With Fine-Tuning and Data Augmentation
	Detection Phase

	Study Areas and Datasets Construction
	Study Areas
	Datasets Construction
	Satellite-Derived Orthoimages from Google EarthTM
	Dataset for Training OBIA and for Ground Truthing
	Training Dataset for the CNN-Classifier


	Experimental Evaluation and Discussions
	Finding the Best CNN-Based Detector
	CNN Training With Fine-Tuning and Data-Augumentation
	Detection Using GoogLeNet Under the Sliding Window Approach
	Detection Using GoogLeNet and ResNet under a Detection Proposals Approach

	Finding the Best OBIA-Detector
	CNN-Detector Versus OBIA-Detector

	Conclusions
	References

