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Abstract: New-generation power networks, such as microgrids, are being affected by the proliferation
of nonlinear electronic systems, resulting in harmonic disturbances both in voltage and current that
affect the symmetry of the system. This paper presents a method based on the application of geometric
algebra (GA) to the resolution of power flow in nonsinusoidal single-phase electrical systems for the
correct determination of its components to achieve passive compensation of true quadrature current.
It is demonstrated that traditional techniques based on the concepts of Budeanu, Fryze or IEEE1459
fail to determine the interaction between voltage and current and therefore, are not suitable for being
used as a basis for the compensation of nonactive power components. An example is included that
demonstrates the superiority of GA method and is compared to previous work where GA approaches
and traditional methods have also been used.

Keywords: geometric algebra; nonsinusoidal power; passive compensation; clifford algebra;
circuit systems

1. Introduction

The new power grids are a major step forward for today’s society, as they allow better energy
management and integration with new renewable sources such as solar, wind, etc. [1]. These networks
are made up of a large number of devices based on power electronics. A clear example is seen in
distributed generation systems, intelligent buildings or control systems, where many receivers are
installed such as cycloconverters, speed drives, household appliances, battery power converters,
power inverters and more. Likewise, symmetry is a fundamental concept in art as well as science
and engineering. Although, during the normal operation of the network, the system usually presents
a symmetry in the waveform of voltage and current, all these elements can cause the network to
supply a highly distorted current, so the symmetry is broken. In turn, this current distortion causes
voltage drops in the lines that distort the voltage itself, causing problems to the neighbouring receivers.
It is a situation that feeds back and causes a progressive degradation to the power quality of the
supply [2–4].

There are numerous publications found in the literature specifying the problems caused by the
appearance of harmonics in voltage and current, such as, for example, excessive heating, degradation
of components, faults in protection and measurement equipment or inefficiencies in the transmission
of energy [5–8]. All of the above can be summed up in an abnormal microgrid operation and low
energy efficiency.

Therefore, it is essential to know precisely the electrical energy balances on any power grid or
microgrid in order to be able to make the right decisions. Traditionally, mathematical tools used in
sinusoidal conditions have been based on Steinmetz [9] theory and its decomposition into frequency
components. In these circumstances, the result obtained for the apparent power is

S = P + jQ (1)
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where P is the active power, Q is the reactive power and j is the imaginary unit. For the sinusoidal case,
all the power theories converge because of the implicit symmetry associated to this problem, so there
is no discussion about the matter. This is not the case for nonsinusoidal systems with a high harmonic
content, as in modern microgrids, such as those described in [10–12].

Although there have been major contributions over the last few years [13–16], there are still some
misconceptions that need to be revised [14,17]. The best-known theories, such as Budeanu’s [18] or
Fryze [19], have been criticised and highlighted by several authors, including Czarnecki [17,20–22],
demonstrating inconsistency and errors in nonsinusoidal situations. Recently, Czarnecki’s own theory
has been criticised, finding weak points in the description of the nonactive components of apparent
power [23]. Therefore, it is essential to find a methodology or framework that allows the unification of
the concepts necessary for a correct compensation of the power factor, i.e., how to find the optimal
configuration to demand active power with minimal current from source. In this sense, optimising the
use of passive compensators (with energy storage) and active compensators or filters can be based on
these techniques to achieve better control over the flow of electrical energy between the source and
the load.

On the other hand, geometric algebra or Clifford’s algebra has proven to be a powerful and flexible
tool for representing the flow of energy and power in electrical systems [24,25]. Some researchers
have proposed the use of Clifford’s algebra as a mathematical tool to address the multicomponent
nature of power in nonsinusoidal contexts [26–28]. The concept of nonactive, reactive or distorted
power acquires a meaning that is more in line with its mathematical significance, allowing a better
understanding of the energy balances and verification of the principle of energy conservation. It is
also presented as a natural language to describe the deeper symmetry that underlies mathematical
transformations such as those arising in power networks [29].

The concept of multicomponent power within the scope of geometric algebra [30] is used in this
article to demonstrate its feasibility for determining the net power flow in a nonsinusoidal electrical
circuit, the direction and sense of such power, as well as its use for calculating the geometric or net
power factor defined as the ratio between the active power and the norm of the multivector power as
defined in Section 3. This approach allows the designing of simpler and more efficient compensators
than those proposed by Czarnecki [31,32]. In addition, the proposal made in this article improves other
proposals based on GA such as those of Castilla [33]. The main contributions of this work are briefly
presented under the following considerations:

• The use of GA to solve the problem of passive compensation of single-phase nonsinusoidal
circuits.

• Determination and suppression of the current and geometric power in quadrature that make the
power factor maximum.

• Evidence of the disadvantages of traditional compensation methods based on complex numbers
compared to GA.

• Design of simpler and more efficient compensators.
• Comparison with other GA-based methods.

2. Background on Geometric Algebra

Geometric algebra has its origins in the work of Clifford and Grassman in the 19th century.
Unfortunately, it did not have much impact until its recent impulse thanks to Hestenes and others [34–36].
Traditional concepts such as vector, spinor, complex numbers or quaternions are naturally explained as
members of subspaces in GA. It can be easily extended in any number of dimensions, being this one of
its main strengths. Because these are geometric objects, they all have direction, sense and magnitude.
The most basic definitions of certain GA properties are presented below.

Definition 1. A vector is considered to be a segment that has direction and meaning
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Definition 2. The inner product of two vectors a and b corresponds to the traditional concept a · b and the
result is a scalar.

Definition 3. The wedge product of two vectors, a and b, is represented by a ∧ b and defines an area enclosed
by the parallelogram formed by both vectors (see Figure 1). This plane has a direction and a sense, resulting in a
bivector. This product complies with the anti-commutative property, i.e., a ∧ b = −b ∧ a.

Definition 4. A bivector is a novel concept that introduces geometric algebra and does not exist in vectorial
calculus that engineers learn in a degree course. It is the result of the external product of 2 vectors producing
a plane with direction and sense, exactly as a vector would have it. Its value is equal to the area enclosed by
the parallelogram formed by the vectors (see Figure 2). Like vectors, a bivector can be written as the linear
combination of a base of bivectors.

Definition 5. The geometric product is also another major contribution of the GA. It is defined primarily for
vectors, although it can be extended to other objects. For example, given two vectors, a = α1e1 + β1e2 and
b = α2e1 + β2e2, you can define its geometric product ab as

ab = a · b + a ∧ b

that is, the geometric product is a linear combination of the internal and external product. It can be seen how the
result is made up of a scalar and a bivector, resulting in the so-called multivector.

A = ab = 〈A〉0 + 〈A〉2 = (α1α2 + β1β2) + (α1β2 − β1α2)e1e2

〈A〉0 is the scalar part and 〈A〉2 is the bivector.

Figure 1. Wedge product of 2 vectors a and b.

Figure 2. Representation of a bivector a ∧ b.
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3. Power in Geometric Algebra

3.1. Vector Representation in GN Domain

Consider a periodic function in the time domain x(t) that can represent a voltage or current
waveform. A function space can be established where the following norm is defined as

‖x(t)‖ =

√
1
T

∫ T

0
x2(t)dt (2)

The norm is found to be consistent with the definition of the root mean square (RMS) value. Well,
this function can be represented by a linear combination of sine and cosine functions, i.e., a series of
Fourier functions. Let us call these bases ϕi(t), so that

x(t) =
n

∑
i=1

xi ϕi(t) (3)

so that a direct transformation to GN gives

x =
n

∑
i=1

xiei (4)

where ei are the new basis for the geometric space GN . Because the new base is orthonormal,
the following property is fulfilled,

‖x(t)‖ =
√

n

∑
i=1

x2
i = ‖x‖ (5)

Finally, we use the transformation proposed by Castro-Nuñez [25],

ϕc1(t) =
√

2 cos ωt ←→ e1

ϕs1(t) =
√

2 sin ωt ←→ −e2

ϕc2(t) =
√

2 cos 2ωt ←→ e2e3

ϕs2(t) =
√

2 sin 2ωt ←→ e1e3

...

ϕcn(t) =
√

2 cos nωt←→
n+1∧∧∧
i=2

ei

ϕsn(t) =
√

2 sin nωt ←→
n+1∧∧∧
i=1
i 6=2

ei

(6)

where
∧∧∧

ei represents the product of n vectors. This way, we can transform any waveform x(t) to the
geometric domain GN .

3.2. Multivector Power

Several authors [14,17,30] have already shown that the traditional expression for apparent power
(accepted by the IEEE1459 standard or Budeanu and Fryze’s proposals) is incorrect, because it does not
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comply with the principle of energy conservation and does not have a true physical correspondence
with power flows. For example,

S2 = P2 + Q2 + D2 or S2 = P2
1 + Q2

1 + D2
I + D2

V + S2
H (7)

are expressions frequently used that violate the principle of energy conservation, so they should
not be used on a regular basis, especially in nonsinusoidal scenarios as they lead to errors in the
achieved results.

The addition of the concept of multivector power, geometric apparent power or net apparent
power M (as labeled by Castro-Núñez), opens a door for attempting to solve the aforementioned
problems. This concept is totally different form the traditional definition of the nonsinusoidal apparent
power S, i.e., in general, ‖M‖ 6= S, so ‖M‖ cannot be called apparent power. From a mathematical
point of view, the expressions are simple and elegant. From a physical point of view, each term takes
on a real meaning in the flow of energy between the load and the source. The geometric apparent
power is defined as the geometric product between voltage and current:

M = ui = u · i + u ∧ i (8)

which will generally result in a scalar and a bivector for the sinusoidal case.

M = 〈M〉0︸ ︷︷ ︸
scalar

+ 〈M〉2︸ ︷︷ ︸
bivector

(9)

In fact, if we consider a sinusoidal voltage applied to a linear load, we obtain a sinusoidal current,

u(t) = A cos(ωt + ϕ)⇒ u = α1e1 + α2e2 (10)

i(t) = B cos(ωt + δ)⇒ i = β1e1 + β2e2 (11)

The apparent geometric power is then

M = ui = (α1e1 + α2e2)(β1e1 + β2e2)

= (α1β1 + α2β2)︸ ︷︷ ︸
scalar

+ (α1β2 − α2β1)e1e2︸ ︷︷ ︸
bivector

If we generalize for a nonsinusoidal voltage,

u(t) =
n

∑
i=1

ui(t) = D1 cos(ωt) + E1 sin(ωt)+

+
d

∑
h=2

Dh cos(hωt) +
k

∑
h=2

Eh sin(hωt)

(12)

we can obtain the voltage transferred to the geometric domain GN .

u = D1e1 − E1e2 +
d

∑
h=2

[
Dh

h+1∧
i=2

ei

]
+

k

∑
h=2

Eh

h+1∧
i=1,i 6=2

ei

 (13)

As Castro-Nunez [37] establishes that the geometric admittance is Y = Gh + Bhe1e2, applying
the principle of superposition yield each of the harmonic currents as ih = (Gh + Bhe1e2)uh. Clearly,
the total current i is the sum of all harmonic currents

i =
n

∑
h=1

ih (14)
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This current can be decomposed into in-phase and quadrature components with voltage.

i = i|| + i⊥ = ig + ib (15)

where

ig = G1D1e1 − G1E1e2 +
d

∑
h=2

[
GhDh

h+1∧
i=2

ei

]
+

+
k

∑
h=2

GhEh

h+1∧
i=1,i 6=2

ei

 (16)

ib = −B1E1e1 − B1D1e2 +
d

∑
h=2

BhDh

h+1∧
i=1,i 6=2

ei

−
−

k

∑
h=2

[
BhEh

h+1∧
i=2

ei

] (17)

Finally, the apparent multivector geometric power M can be obtained as the product between u
and i,

M = ui = Mg + Mb =

P︷ ︸︸ ︷
〈Mg〉0 +

CNd︷ ︸︸ ︷
n+1

∑
i=1
〈Mg〉i︸ ︷︷ ︸

Mg

+

+ CNr(ps) + CNr(hi)︸ ︷︷ ︸
Mb=CNr

(18)

where

Mg is the in phase geometric apparent power

Mb is the cuadrature geometric apparent power

P is the active power

CNd is the degraded power

CNr is the geometric reactive power

CNr(ps) is the geometric reactive power due to voltage and current phase shift

CNr(hi) is the geometric reactive power due to voltage and current cross products

Based on the above definitions, the net or geometric power factor can be defined as

p f =
P
‖M‖ =

〈M〉0√
〈M† M〉0

(19)

4. Power Factor Compensation Using Multivector Apparent Power

Once the effectiveness of the geometric power has been induced to represent the mathematical
and physical energy flows, it is time to analyse how it is possible to propose compensation schemes
that increase the power factor of the facilities in a microgrid.
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To improve the power factor, it is necessary to eliminate any current that is not in phase with the
voltage. This strategy implies that the load-compensating combination is seen as a pure resistance by
the source. An example of a compensator can be seen in Figure 3, which shows the load admittance
Yload as well as the compensator admittance Ycp. The values of these admittances in the geometric
domain are

Yload =
1

Zload
=

1

R +
(

1
ωC −ωL

)
e12

=
R

R2 +
(

1
ωC −ωL

)2 +

+
ωL− 1

ωC

R2 +
(

1
ωC −ωL

)2 e12 = Gl + Ble12

Ycp =

(
1

ωC
−ωL

)
e12 = Bcpe12

(20)

−

+
u(t)

i

Yload

il

Ycp

icp

Figure 3. Circuit compensation proposal.

If we apply the voltage given by (13), the current flowing through the compensator will be

icp = −Bcp1E1e1 − Bcp1D1e2 +
d

∑
h=2

BcphDh

h+1∧
i=1,i 6=2

ei

−
−

k

∑
h=2

[
BcphEh

h+1∧
i=2

ei

] (21)

Therefore, it is pretty obvious that Bcp = −Bload to fully compensate the reactive term. In this case,
the total current i is reduced to ig as ib + icp is equal to 0 after applying Kirchhoff laws.

5. Application to Real Circuits

To demonstrate the robustness of geometric algebra in the resolution of nonsinusoidal electrical
circuits and to verify that it is a useful and valid method, the circuit shown in Figure 4, already exposed
in [33], will be solved. This theoretical circuit represents a hypothetical electrical circuit in a modern
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microgrid building, where the application of a nonsinusoidal voltage to a linear load results in the
circulation of a nonsinusoidal current. The power involved has several components, although it will
be shown how the traditional approach to power factor improvement is not very successful. Note that
the proposal made in this paper also improves the one made by [33], going from a compensated power
factor of 0.63 to a higher one of 0.83.

Let the nonsinusoidal voltage, u(t), be

u(t) = 200
√

2(sin ωt + sin(3ωt)) (22)

−

+
u(t)

i R = 1Ω

i

L =
3
4

H

C =
4

15
F

Figure 4. Building equivalent circuit.

The geometric impedance z will have two different values, one for each voltage harmonic.
According to the authors of (20), the geometric impedance is defined as

zh = R +

(
1

hωC
− hωL

)
e12 (23)

where zh is the value of the impedance for the harmonic of order h. Applying the above expression for
each harmonic present, we obtain z1 = 1 + 3e12 y z3 = 1− e12.

Taking into account the proposed transformation into (6), the voltage becomes

u = −200e2︸ ︷︷ ︸
〈u〉1

+ 200e134︸ ︷︷ ︸
〈u〉3

(24)
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Applying the generalized Ohm law

i = z−1u = z−1
1 〈u〉1 + z−1

3 〈u〉3
= (1 + 3e12)

−1(−200e2) + (1− e12)
−1(200e134)

= −20e2 + 100e134︸ ︷︷ ︸
ig

+ 60e1 − 100e234︸ ︷︷ ︸
ib

(25)

The total current value is ‖i‖ = 154.91A. The current obtained has two clearly differentiated
components, ig which is the component in phase with the voltage and ib which is the component in
quadrature. As a matter of fact

ig · ib = 0 (26)

which proves that both are orthogonal. The power balance can be obtained by using Equations (8)
and (9):

M = ui = 103

24 + 16e1234︸ ︷︷ ︸
Mg

+ 32e12 + 32e34︸ ︷︷ ︸
Mb

 (27)

The analysis of the multivector apparent power M results in Table 1. It shows the active power P,
degradation power CNd and reactive power CNr. This power clearly differs from that obtained by
Budeanu or that obtained by the authors of [33]. A comparison of these theories is also shown in
Table 2.

Table 1. Power multivector decomposition.

Description Value

P 24,000 W
‖CNd‖ 16,000 VA
‖CNr‖ 45,254 VA

Table 2. Power before compensation.

Description Budeanu Castilla Castro-Núñez

Active Power 24,000 24,000 24,000
Reactive Power 8000 8000 45,254
Distortion/Degraded Power 35,780 35,780 16,000
Apparent/Geometric Power 43,820 43,820 53,666
Power factor 0.55 0.55 0.44

It is interesting to note how the multivector power presented here has a very similar
correspondence with the power in the time domain. Indeed, if we take into account that the voltage
and current are (see Figure 5)

u(t) =
√

2 [200 sin(ωt) + 200 sin(3ωt)]

i(t) =
√

2[60 cos(ωt) + 20 sin(ωt) + 100 sin(3ωt)−
− 100 cos(3ωt)]

(28)

we can make the product and get the time domain power p(t)
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p(t) = u(t) · i(t) = 2 [200 sin ωt + 200 sin 3ωt] · [60 cos ωt+

+ 20 sin ωt + 100 sin 3ωt− 100 cos 3ωt] =

= 2[4000 sin2 ωt + 20000 sin2 3ωt + 20000 sin ωt sin 3ωt+

+ 4000 sin 3ωt sin ωt + 12000 sin ωt cos ωt−
− 20000 sin ωt cos 3ωt + 12000 sin 3ωt cos ωt

− 20000 sin 3ωt cos 3ωt]

(29)

so we can rearrange as

P = 4000 sin2 ωt + 20000 sin2 3ω

CNd = 20000 sin ωt sin 3ωt︸ ︷︷ ︸
e1234

+4000 sin 3ωt sin ωt︸ ︷︷ ︸
−e1234

CNr(ps) = 12000 sin ωt cos ωt︸ ︷︷ ︸
e12

− 20000 sin 3ωt cos 3ωt︸ ︷︷ ︸
−e12

CNr(hi) = −20000 sin ωt cos 3ωt︸ ︷︷ ︸
−e34

+ 12000 sin 3ωt cos ωt︸ ︷︷ ︸
e34

(30)

P → 24000 W
CNd → 16000 VA
CNr(ps) → 32000 VA
CNr(hi) → 32000 VA

(31)

achieving the same results as in (27).

Figure 5. Nonsinusoidal voltage and current waveforms.

All the power theories agree on finding the active power, P, but this is not the case for the
rest of the other concepts. Both Budeanu and Castilla [33] obtain a lower reactive and apparent
power, as well as a higher distortion (degraded) power. The power factor obtained by Budeanu and
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Castilla is also higher, giving the impression that the system is not really as degraded as it really is.
As Castro-Núñez demonstrates, the other theories fail to consider the interaction between harmonics
of different frequencies, and are therefore unable to fully capture the physical sense of energy flows.

This is clearly evident when trying to design a compensator that improves the power factor as
much as possible. According to Castilla, this compensator is achieved by installing a capacitor in
parallel with the load of a value of C = 0.12F, resulting in a new power factor of 0.63. Well, if we apply
our theory, we can achieve a much better power factor by simply addressing the need for reactive
current ib, according to Equations (15) and (17). See Figure 6 for the placement of the compensator in
parallel with the load.

−

+
v(t)

i R = 1Ω

il

L =
3
4

H

C =
4

15
F

Ycp

icp

+

Figure 6. Building equivalent circuit with compensator.

We use Equation (21) to find the proper admittance of the compensator.

icp = −ib (32)

so
− 200Bcp1e1 − 200Bcp3e234 = −60e1 + 100e234 (33)

Solving the above equation yields Bcp1 = 0.3 and Bcp3 = −0.5. Obviously, it is not possible to
effectively compensate by means of a single element, as proposed in [33]. A parallel LC compensator
(Other circuits may be compensated with a serial model) is therefore proposed to be installed, which
will result in

− 200

(
1−ω2LcpCcp

ωLcp

)
e1 = −60e1 (34)

− 200

(
1− 9ω2LcpCcp

3ωLcp

)
e234 = 100e234 (35)
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Solving the previous system yields

Lcp =
40
21

= 1.90 Ccp =
9

40
= 0.22

For these compensator values, the new total current value becomes

iscp = −20e2 + 100e134 (36)

where ‖iscp‖ = 101.98A which is significantly lower than the initial 154.91A. The time domain
representation of compensated current is

iscp(t) =
√

2[20 sin ωt + 100 sin 3ωt] (37)

Comparing (37) with (28) give us an idea about the current reduction thanks to the compensator.
If we calculate the reactive power as in (29) and (30), the new result is

p(t) = u(t) · i(t) = 2 [200 sin ωt + 200 sin 3ωt] ·
[+20 sin ωt + 100 sin 3ωt] = 2[4000 sin2 ωt+

+ 20000 sin2 3ωt + 20000 sin ωt sin 3ωt+

+ 4000 sin 3ωt sin ωt]

(38)

which can be arranged as

P = 4000 sin2 ωt + 20000 sin2 3ω

CNd = 20000 sin ωt sin 3ωt︸ ︷︷ ︸
e1234

+4000 sin 3ωt sin ωt︸ ︷︷ ︸
−e1234

(39)

Equations (38) and (39) clearly state that all of the reactive power has been corrected through
the new compensator. Furthermore, the principle of conservation of energy has been fulfilled as
demonstrated in both in time and geometric domain.

Table 3 shows a summary of the compensation status. It can be seen that all the reactive current
coming from the source has been suppressed, resulting in a significant reduction in geometric apparent
power (from 53,666 VA to 28,844 VA). Naturally, the power factor increases considerably to 0.83,
far exceeding the compensation obtained by the Budeanu or Castilla methods, in which only the
placement of a capacitor in parallel with the load is considered.

Table 3. Power after LC compensation.

Description Budeanu Castilla Castro-Núñez

Active Power 24,000 24,000 24,000
Reactive Power 11,000 11,000 0
Distortion/Degraded Power 27,530 27,530 16,000
Apparent/Geometric Power 38,200 38,200 28,844
Power factor 0.63 0.63 0.83

6. Conclusions

This work deepens the new advances in nonsinusoidal power theory thanks to geometric algebra.
Due to the large deployment of electronic loads in today’s microgrid, it is increasingly common to
find a more distorted supply and with high harmonic content. This situation generates noise and
harmonic pollution, degrading the power supply of the existing electrical receivers on the microgrid.
In this work, a detailed study of new mathematical techniques applied to the analysis of nonsinusoidal
cases is carried out, and a compensation method based on the use of geometric algebra is proposed.
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Thanks to this technique, it is possible to reduce the geometric reactive power component, something
that other traditional methods such as Budeanu or Fryze cannot do. It is also demonstrated that
the technique proposed by Castro-Nuñez is far superior to the one proposed by Castilla, as it is
able to better identify the power flows due to crossed voltage and current products (CNd and CNr),
which allowed identifying those components of the current not in phase with the voltage, and thus
suppressing them with the appropriate compensator. The main contribution of this work is in the
application of geometric algebra to the resolution of power flows in nonsinusoidal electrical systems
so that their direction and sense can be correctly determined when considering compensation models.
This approach opens up new perspectives in the field of nonsinusoidal systems optimisation, as well as
a proper and adequate definition of indices associated with power quality.
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