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Abstract: In this paper, we describe a theory of a cumulative distribution function on a space with an
order from a probability measure defined in this space. This distribution function plays a similar role
to that played in the classical case. Moreover, we define its pseudo-inverse and study its properties.
Those properties will allow us to generate samples of a distribution and give us the chance to calculate
integrals with respect to the related probability measure.
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1. Introduction

This work collects some results on a theory of a cumulative distribution function on a linearly
ordered topological space (LOTS).

Moreover, we show that this function plays a similar role to the one it plays in the classical case
and study its pseudo-inverse, which allows us to generate samples of the probability measure that we
use to define the distribution function.

The main goal of this paper is to provide a theory of a cumulative distribution function on a space
with a linear order. Furthermore, we show that a cumulative distribution function in this context plays
a similar role to that played by a distribution function in the classical case. Recall that in the classical
case, the cumulative distribution function (in short, cdf) of a real-valued random variable X is the
function defined by FX(x) = P[X ≤ x] and it satisfies the following properties:

1. F is non-decreasing, which means that for each x, y ∈ R with x < y, we have F(x) ≤ F(y).
2. F is right-continuous, which means that F(a) = limx→a+ F(x), for each a ∈ R. Furthermore,

limx→−∞ F(x) = 0 and limx→+∞ F(x) = 1.

Moreover, given a cdf in an ordered space, we define its pseudo-inverse and study its properties.
In the classical case, when a cdf, F, is strictly increasing and continuous it holds that F−1(p) is the
unique real number x, such that F(x) = p, for each p ∈ [0, 1]. In that case, this defines the inverse of
the distribution function.

The inverse is not unique for some distributions (for example in the case where the density
function fX(x) = 0, for each a < x < b, causing FX to be constant). This problem can be solved by
defining, for each p ∈ [0, 1], the pseudo-inverse of the distribution function by F−1(p) = inf{x ∈ R :
F(x) ≥ p}.

The inverse of a cdf let us generate samples of a distribution. Indeed, let X be a random variable
whose distribution can be described by the cdf F. Our goal is to generate values of X according to this
distribution. The inverse transform sampling method is as follows: generate a random number, u,
from the standard uniform distribution in the interval [0, 1] and then consider x = F−1(u).
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Roughly speaking, given a continuous uniform random variable, U, in [0, 1] and a cdf, F,
the random variable X = F−1(U) has distribution F (or, X is distributed F).

For further reference about the pseudo-inverse of F see, for example, [1], Chapter 1.
In [2] (see also [3–5]), it is proved the equivalence between probability measures and fuzzy

intervals in R. Probabilistic metric and normed spaces, which were introduced in [6,7] respectively,
provide a different (more studied) relation between topology and probability measures. For further
reference about this topic see, for example, [8–10].

When we work with probability measures on R, the use of a cdf to fully describe the probability
measure is quite handy: it is easier to describe (or define) a cdf than a probability measure, its
pseudo-inverse can be used to generate samples and it determines the probability measure. Based on
this, it seems interesting to extend the theory of a cdf to a more general setting. Since the main
properties of a cdf are related with order and continuity, a linearly ordered topological space seems to
be the natural place where such a theory could be developed. The main goal of this paper is to provide
a first study of the definition and properties of a cdf in a separable LOTS. Another way to generalize
the concept of distribution function can be found in [11].

Our study begins with the proof of several properties of the order topology in a separable LOTS
by taking advantage of a certain type of sequences in some cases (see Section 2). In Section 3, we define
the cumulative distribution function (cdf) of a probability measure on a separable LOTS and prove
that its properties are quite similar to those which are well-known in the classical case, described in
the previous paragraphs. Furthermore, from a cdf F, we will define F− which plays a similar role to
that played by limx→a− F(x) in the classic theory of distribution functions. We also use F and F− to
get the measure of an interval. On the other hand, Section 4 is dedicated to proving some aspects
related to the discontinuities of a cdf. Section 5 introduces the concept of pseudo-inverse for a cdf
defined on a separable LOTS, which is a measurable function. Finally, Section 6 shows that by using
the pseudo-inverse of a cdf, it is possible to calculate integrals with respect to the initial probability
measure and generate samples of a distribution in case that the separable LOTS is compact.

2. Preliminaries

2.1. Measure Theory

Now we recall some definitions related to measure theory from [12]. Let X be a set, then there are
several classes of sets of X. If R is a non-empty collection of subsets of X, we say that R is a ring if
it is closed under complement and finite union. Furthermore, given Q is a non-empty collection of
subsets of X it is said to be an algebra if it is a ring such that X ∈ Q. Moreover, a non-empty collection
of subsets of X, A, is a σ-algebra if it is closed under complement and countable union and X ∈ A.

For a given topological space, (X, τ), B = σ(τ) is the Borel σ-algebra of the space, i.e., it is the
σ-algebra generated by the open sets of X.

Definition 1 ([12], Section 7). Given a measurable space (Ω,A), a measure µ is a non-negative and σ-additive
set mapping defined on A such that µ(∅) = 0.

A set mapping is said to be σ-additive if µ(
⋃∞

n=1 An) = ∑∞
n=1 µ(An) for each countable collection

{An}∞
n=1 of pairwise disjoint sets in A.

Each measure is monotonous, which means that µ(A) ≤ µ(B), for each A ⊆ B. Moreover, it is
continuous in the next sense: if An → A, then µ(An)→ µ(A). Furthermore, if An is a monotonically
non-decreasing sequence of sets (which means that An ⊆ An+1, for each n ∈ N) then µ(An) →
µ(

⋃
n∈N An). If An is monotonically non-increasing (which means that An+1 ⊆ An, for each n ∈ N),

then µ(An)→ µ(
⋂

n∈N An).
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2.2. Ordered Sets

First we recall the definition of a linear order and a linearly ordered topological space:

Definition 2 ([13], Chapter 1). A partially ordered set (P,≤) (that is, a set P with the binary relation ≤ that
is reflexive, antisymmetric and transitive) is totally ordered if every x, y ∈ P are comparable, i.e., x ≤ y or
y ≤ x. In this case, the order is said to be total or linear.

For further reference about partially ordered sets see, for example, [14].

Definition 3 ([15], Section 1). A linearly ordered topological space (abbreviated LOTS) is a triple (X, τ,≤)
where (X,≤) is a linearly ordered set and where τ is the topology of the order ≤.

The definition of the order topology is the following one:

Definition 4 ([16], Part II, 39). Let X be a set which is linearly ordered by <, we define the order topology τ

on X by taking the sub-basis {{x ∈ X : x < a} : a ∈ X} ∪ {{x ∈ X : x > a} : a ∈ X}.

From a linear order, ≤, in X we define

Definition 5. Let a, b ∈ X with a ≤ b, we define the set ]a, b] = {x ∈ X : a < x ≤ b}. Analogously, we
define ]a, b[, [a, b] and [a, b[. Moreover, (≤ a) is given by (≤ a) = {x ∈ X : x ≤ a}. (< a), (≥ a) and (> a)
are defined similarly.

Notation 1. Let a ∈ X, we will also use ]a, ∞[ and [a, ∞[ to denote (> a) and (≥ a), respectively. Similarly,
]−∞, a[ and ]−∞, a] will also denote (< a) and ≤ a, respectively.

Remark 1. Please note that an open basis of X with respect to τ is given by {]a, b[: a < b, a, b ∈ (X ∪
{−∞, ∞})}.

For our study we need to introduce some terminology.

Definition 6 ([15], Section 1). Let (X,≤) be a linearly ordered set. A subset C ⊆ X is said to be convex in X
if, whenever a, b ∈ C with a ≤ b, then {x ∈ X : a ≤ x ≤ b} is a subset of C.

Proposition 1 ([16], Part II, 39). Any subset A ⊆ X can be uniquely expressed as a union of disjoint,
non-empty, maximal convex sets in A, called convex components.

The definition of interval is the following one:

Definition 7 ([15], Section 1). An interval of X is a convex subset of X with two endpoints in X, which can
belong to the interval or not.

For convention, we will assume that ∞ and −∞ can be the endpoints of intervals.

Definition 8 ([17], Defs 2.16, 2.17). Let P be an ordered set and let A ⊆ P. Then:

1. l is called a lower bound of A if, and only if we have l ≤ a, for each a ∈ A.
2. u is called an upper bound of A if, and only if we have u ≥ a, for each a ∈ A.

Definition 9. Given A ⊆ X, we denote by Al and Au, respectively, the set of lower and upper bounds of A.

Definition 10 ([17], Def 3.18). Let P be an ordered set and let A ⊆ P. Then:
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1. The point u is called the lowest upper bound or supremum or join of A iff u is the minimum of the set Au.
2. The point u is called the greatest lower bound or infimum or meet of A iff l is the maximum of the set Al .

Proposition 2 ([16], Part II, 39). The order topology on X is compact if, and only if the order is complete, i.e.,
if, and only if, every non-empty subset of X has a greatest lower bound and a least upper bound.

Remark 2. In the rest of the paper, unless otherwise stated, X will be a separable LOTS and a measure in X
will be with respect to the Borel σ-algebra of X.

3. The order in X

In this section, we study some properties (mainly topological) of a separable LOTS.
The definition of the topology τ suggest the next

Definition 11. Let x ∈ X, it is said to be a left-isolated (respectively right-isolated) point if (< x) = ∅
(respectively (> x) = ∅) or there exists z ∈ X such that ]z, x[= ∅ (respectively there exists z ∈ X such that
]x, z[= ∅). Moreover, we will say that x ∈ X is isolated if it is both right and left-isolated.

Lemma 1. Let A, B ⊆ X be such that Al = Bl (respectively Au = Bu). If there exists inf A (respectively
sup A), then there exists inf B (respectively sup B) and inf A = inf B (respectively sup A = sup B).

Proof. Let A, B ⊆ X be such that Al = Bl and suppose that there exists inf A. It holds that x ≤ inf A,
for each x ∈ Al . Now, since Al = Bl , we have that inf A ∈ Al = Bl and x ≤ inf A, for each x ∈ Bl , i.e.,
inf A = inf B.

The case in which Au = Bu and there exists sup A can be proven analogously.

Proposition 3. Let A ⊆ X be a non-empty subset such that it does not have a minimum (respectively a
maximum), then there exists a sequence an ∈ A such that an+1 < an, for each n ∈ N and Al = {an : n ∈ N}l

(respectively an+1 > an, for each n ∈ N and Au = {an : n ∈ N}u).

Proof. Let D be a dense and countable subset of X and consider DA = {d ∈ D : d /∈ Al}. Please note
that the fact that d /∈ Al is equivalent to the existence of a ∈ A such that a < d. Moreover, DA ⊆ D, so
DA is countable, so we can enumerate it as DA = {dn : n ∈ N}. Given d1 ∈ DA, there exists a1 ∈ A
such that a1 < d1. Suppose that an ∈ A is a sequence defined by an < dn and an < an−1, for each
n ∈ N. We define an+1 as follows. Since there does not exists the minimum of A, we can choose a ∈ A
such that a < an. Apart from that, there exists a′ ∈ A such that a′ < dn+1. Hence, if we consider
an+1 = min{a, a′}, then an+1 < an and an+1 < dn+1. Recursively, we have defined a sequence an ∈ A
such that an+1 < an and an < dn, for each n ∈ N.

Now we prove that Al = {an : n ∈ N}l .
⊆) This is obvious.
⊇) Let x ∈ X be such that x ≤ an, for each n ∈ N. Now we prove that x ≤ a, for each a ∈ A.

For that purpose, let a ∈ A. Since there does not exist the minimum of A, there exist a′ ∈ A such that
a′ < a and a′′ ∈ A such that a′′ < a′. Consequently, ]a′′, a[ is a non-empty open set in X with respect
to τ, so we can choose d ∈ D∩]a′′, a[. Hence, d > a′′, which implies that d ∈ DA. It follows that there
exists n0 ∈ N such that d = dn0 . Therefore, x ≤ an0 < dn0 < a, which lets us conclude that x ≤ a.

Convex subsets can be described as countable union of intervals.

Corollary 1. Let A ⊆ X be a convex subset. Then it holds that:

1. If there exist both minimum and maximum of A, then A = [min A, max A].
2. If there does not exist the minimum of A but it does its maximum, then there exists a decreasing sequence

an ∈ A such that A =
⋃

n∈N]an, max A].
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3. If there does not exist the maximum of A but it does its minimum, then there exists an increasing sequence
bn ∈ A such that A =

⋃
n∈N[min A, bn[.

4. If there does not exist the minimum of A nor its maximum, then there exist a decreasing sequence an ∈ A
and an increasing one bn ∈ A such that A =

⋃
n∈N]an, bn[.

Proof.

1. It is clear.
2. Since A is non-empty and there does not exist the minimum of A, by Proposition 3, we can choose

a sequence an ∈ A such that an+1 < an, for each n ∈ N and Al = {an : n ∈ N}l . Now we prove
that A =

⋃
n∈N]an, max A].

⊆) Let x ∈ A. Since A does not have a minimum, then x /∈ Al which implies that x /∈ {an : n ∈
N}l . Then there exists n ∈ N such that an < x. Consequently, x ∈ ⋃

n∈N]an, max A].

⊇) Let x ∈ ⋃
n∈N]an, max A], then there exists n ∈ N, such that an < x ≤ max A. Hence, the fact

that A is convex together with the fact that an ∈ A give us that x ∈ A.
3. It can be proven similarly to the previous item.
4. Since A is non-empty and there does not exist the minimum of A nor its maximum, by

Proposition 3, we can choose two sequences an, bn ∈ A such that an+1 < an and bn+1 > bn, for
each n ∈ N and Al = {an : n ∈ N}l , Bu = {bn : n ∈ N}u. Now we prove that A =

⋃
n∈N]an, bn[.

⊆) Let x ∈ A. Since A does not have a minimum nor a maximum then x /∈ Al and x /∈ Au, which
implies that x /∈ {an : n ∈ N}l and x /∈ {bn : n ∈ N}u, then there exists n1 ∈ N and n2 ∈ N such
that an1 < x < bn2 . If we define n = max{n1, n2}, then it holds that an < x < bn and we conclude
that x ∈ ⋃

n∈N]an, bn[.

⊇) Let x ∈ ⋃
n∈N]an, bn[, then there exists n ∈ N, such that an < x < bn. Hence, the fact that A is

convex together with the fact that an, bn ∈ A give us that x ∈ A.

Similarly, convex open subsets can be described as countable union of open intervals.

Corollary 2. Let A be an open and convex subset of X, then A is the countable union of open intervals.

Proof. We distinguish some cases depending on whether there exist the maximum or the minimum of A:

1. Suppose that there does not exist the maximum of A nor its minimum, then by Corollary 1,
it holds that A can be written as the countable union of open intervals.

2. Suppose that there does not exist the minimum of A but it does its maximum. By the previous
corollary, it holds that A =

⋃
n∈N]an, max A]. Now note that the fact that A is open means that

max A is right-isolated so we can write A =
⋃

n∈N]an, b[, where b is the following point to max A.
Hence, A is the countable union of open intervals.

3. If there exists the minimum of A but not its maximum, we can proceed analogously to claim that
A =

⋃
n∈N]a, bn[ where a is the previous point to min A and bn is an increasing sequence in A.

4. If there exists both minimum and maximum of A, then A =]a, b[ where a is the previous point to
min A and b is the following one to max A.

Next, we prove that a separable LOTS is first countable.

Proposition 4. τ is first countable.

Proof. Since X is separable with respect to the topology τ, there exists a countable dense subset D
of X. Now we prove that given x ∈ X, each of the countable families
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- Bx = {{x}} if x is isolated.
- Bx = {]a, b[: a < x < b, a, b ∈ D}, if x is not left-isolated nor right-isolated.
- Bx = {[x, b[: x < b, b ∈ D} if x is left-isolated but it is not right-isolated.
- Bx = {]a, x] : a < x, a ∈ D} if x is right-isolated but it is not left-isolated.

is a countable neighborhood basis of x with respect to the topology τ. For that purpose, we prove the
next two items:

• Each element of Bx is a neighborhood of x, for each x ∈ X. This is clear if we take into account
that each element in Bx is an open set with respect to the topology τ (see Remark 1). Indeed, if x is
left-isolated then, given B ∈ Bx, we can write B = [x, b[, for some b ∈ D with b > x. Equivalently,
B =]a, b[, where a is the previous point to x according to the order. The other cases are similar.

• For each neighborhood of x, U, there exists B ∈ Bx such that B ⊆ U. Indeed, let U be a
neighborhood of x, then there exists an open set G such that x ∈ G ⊆ U. Since G is open and
B = {]a, b[: a < b} is an open basis, we can consider a, b such that ]a, b[⊆ G and a < x < b. Now
we distinguish some cases depending on whether x is isolated or not:

- Suppose that x is isolated, then there exist y, z ∈ X such that y < x < z and ]y, z[= {x}.
In this case {x} is an element of Bx which is contained in U.

- Suppose that x is not left-isolated nor right-isolated. Since ]a, x[ and ]x, b[ are both open in τ

and D is dense in τ, we can choose c ∈]a, x[∩D and d ∈]x, b[∩D. Furthermore, it holds that
x ∈]c, d[⊆]a, b[⊆ G ⊆ U, which finishes the proof.

- Suppose that x is left-isolated but it is not right-isolated. Then there exists y ∈ X such that
]y, x[= ∅ and ]x, z[ 6= ∅ for each z > x. Since ]x, b[ is open in τ and D is dense in τ, we can
choose d ∈]x, b[∩D. Furthermore, it holds that x ∈ [x, d[⊆]a, b[⊆ G ⊆ U.

- Suppose that x is not left-isolated but it is right-isolated. Then there exists z ∈ X such that
]y, x[ 6= ∅ and ]x, z[= ∅, for each y < x. Since ]a, x[ is a neighborhood in τ and D is dense in
τ, we can choose c ∈]a, x[∩D. Furthermore, it holds that x ∈]c, x] ⊆]a, b[⊆ G ⊆ U.

We can choose a countable neighborhood basis of each point such that its elements are ordered,
as next remark shows:

Remark 3. Let x ∈ X, then there exists a countable neighborhood basis of x, B′x = {]a′n, b′n[: a′n < x < b′n; n ∈ N}
such that an is a non-decreasing sequence and bn a non-increasing one.

Proof. Indeed, since τ is first countable, there exists a countable basis of each point. According to the
previous proposition, in case that x is not left-isolated nor right-isolated, we have that Bx = {]a1, b1[:
a1 < x < b1; a1, b1 ∈ D} is a countable basis of x. Since D is a dense subset in τ and ]x, b1[ and ]a1, x[
are non-empty open sets in τ, there exists da1 ∈ D∩]a1, x[ and db1 ∈]x, b1[∩D. Now define a2 = da1

and b2 = db1 . Moreover, there exists da2 ∈ D∩]a2, x[ and db2 ∈ D∩]x, b2[. Now we define a3 = da2 and
b3 = db2 . Recursively we have that B′x = {]an, bn[: an < x < bn; n ∈ N, an, bn ∈ D} where an = dan−1

and bn = dbn−1 . It is clear that Bx is a neighborhood basis of x. Moreover, given n ∈ N it holds that
]an+1, bn+1[⊆]an, bn[ by the definition of a′n and b′n. We can proceed analogously to get basis for the
right-isolated or left-isolated points. Moreover, note that if x is isolated, the basis given in the previous
proposition satisfies the condition given in this remark.

There exists an equivalence between the property of second countable for τ and the countability
of the set of isolated points.

Proposition 5. Let X be a LOTS. X is second countable with respect to the topology τ if, and only if X is
separable and the set of right-isolated or left-isolated points is countable.
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Proof. Let us define C1 and C2 to be, respectively, the set of left-isolated points and the set of
right-isolated points.

⇐) Let D be a countable dense subset of X. Moreover, suppose that C1 and C2 are
countable subsets. Consider the family B = {{x} : x ∈ C1 ∩ C2} ∪ {]a, x] : a < x, x ∈ C2, a ∈
D} ∪ {[x, b[: x < b, x ∈ C1, b ∈ D} ∪ {]a, b[: a < b, a, b ∈ D} and note that it is an open basis of X with
respect to τ. Furthermore, the countability of the set of right-isolated and left-isolated points gives us
that B is countable. Hence τ is second countable.

⇒) Suppose that X is second countable with respect to τ, then there exists a countable open basis,
B = {Un : n ∈ N}. Since second countable spaces are separable, we only must prove that C1 and C2

are countable subsets, which gives us that C1 ∪ C2 is also countable.

• C1 is countable: let x ∈ C1 and b1 > x with b1 ∈ D. Since B is an open basis and [x, b1[ is an open
set containing x, there exists nx ∈ N such that x ∈ Unx ⊆ [x, b1[. Now let y ∈ C1 with y 6= x and
b2 ∈ D with y < b2, then there exists ny ∈ N such that y ∈ Uny ⊆ [y, b2[ for b2 > y. Consequently,
f : C1 → N given by f (x) = nx is an injective function, which proves the countability of C1.

• The countability of C2 can be proved similarly to the countability of C1.

Now we define the concept of right convergent and left convergent sequence.

Definition 12. Let x ∈ X and ν be a topology defined on X. We say that a sequence xn ∈ X is right
ν-convergent (respectively left ν-convergent) to x if xn

ν→ x and xn ≥ x (respectively xn ≤ x), for each n ∈ N.

Now we define the concept of monotonically right convergent and monotonically left
convergent sequence.

Definition 13. Let x ∈ X and ν be a topology defined on X. We say that a sequence xn ∈ X is monotonically
right ν-convergent (respectively monotonically left ν-convergent) to x if xn

ν→ x and x < xn+1 < xn

(respectively xn < xn+1 < x), for each n ∈ N.

Proposition 6. Let x ∈ X. Then x is not left-isolated (respectively right-isolated) if, and only if there exists a
monotonically left τ-convergent (respectively monotonically right τ-convergent) to x sequence.

Proof. ⇒) Let x be a non-left-isolated point, then x 6= min X. Since τ is first countable (by Proposition 4),
we can consider a countable neighborhood basis of x, Bx = {]an, bn[: n ∈ N}. Now let a, b ∈ X be such
that a < x < b, then there exists n1 ∈ N such that a ≤ an1 < x due to the fact that Bx is a neighborhood
basis of x. Since x is not left-isolated, we can choose z1 ∈]an1 , x[. Now we can consider n2 ∈ N such
that z1 ≤ an2 < x due to the fact that Bx is a neighborhood basis of x. Recursively, we can construct a
subsequence of an, aσ(n), such that aσ(n) < aσ(n+1) < x and aσ(n) → x, i.e., aσ(n) is a monotonically left
τ-convergent sequence to x.

The proof is analogous in case that x is not right-isolated.
⇐) Let x ∈ X and suppose that it is a left-isolated point. If x = min X the proof is easy.

Suppose that x 6= min X, then there exists z ∈ X such that ]z, x[= ∅. Suppose that there exists a
monotonically left τ-convergent sequence to x, xn, then it holds that there exists n0 ∈ N such that
xn > z, for each n ≥ n0. Moreover, since xn < x, we have that xn ∈]z, x[= ∅, which is a contradiction.
Hence, x is not left-isolated.

The case in which there exists a monotonically right τ-convergent sequence to x can be
proven analogously.

Lemma 2.

1. If an is a monotonically left τ-convergent sequence to a, then ∪(< an) = (< a) = ∪(≤ an).
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2. If an is a monotonically right τ-convergent sequence to a, then ∩(< an) = (≤ a) = ∩(≤ an).

Proof.

1. Next we prove both equalities:

• ∪(< an) = (< a). On the one hand, since an < a, we have that (< an) ⊆ (< a). Therefore,
∪(< an) ⊆ (< a).

On the other hand, let x < a. Since an
τ→ a and an < a, there exists n ∈ N such that

x < an < a and, hence, x ∈ ∪(< an).
• ∪(< an) = ∪(≤ an). On the one hand, let x ∈ ∪(< an), then there exists n ∈ N such that

x ∈ (< an). It is clear that x ∈ (≤ an) and, hence, x ∈ ∪(≤ an).

On the other hand, let x ∈ ∪(≤ an), then there exists n ∈ N such that x ∈ (≤ an). Since
an < a and an

τ→ a, it holds that there exists m > n such that an < am < a, The fact that
x ∈ (≤ an) gives us that x ∈ (< am). We conclude that x ∈ ∪(< an).

2. Next we prove both equalities:

On the one hand, let x ≤ an, for each n ∈ N and suppose that x > a, then there exists m ∈ N such
that a < am < x, which is a contradiction with the fact that x ≤ an, for each n ∈ N. Hence, x ≤ a
and ∩(≤ an) ⊆ (≤ a).

Moreover, since a < an for each n ∈ N, we have that (≤ a) ⊆ (< an). Therefore (≤ a) ⊆ ∩(< an).

Furthermore, it is clear that (< an) ⊆ (≤ an), so we conclude that ∩(< an) ⊆ ∩(≤ an) and we
finish the proof.

Proposition 7. Each connected set in τ is convex.

Proof. Let A ⊆ X be a connected set. Suppose that A is not convex, which means that there exist
a, b ∈ A with a < b such that there exists x ∈ X \ A with a < x < b. Please note that (< x) and (> x)
are both open sets in τ, which implies that U = (< x) ∩ A and V = (> x) ∩ A are both open in A with
the topology induced by τ in A. Please note that U, V 6= ∅ since a ∈ U, b ∈ V and U ∪V = A which
implies that A is not connected. Hence A is convex.

4. Defining the Distribution Function

The definition of the cumulative distribution function of a measure defined on the Borel σ-algebra
of X is the next one:

Definition 14. The cumulative distribution function (in short, cdf) of a probability measure µ is a function
F : X → [0, 1] defined by F(x) = µ(≤ x).

Lemma 3. Let τ′ be a first countable topology on X such that τ ⊆ τ′. Let f : X → [0, 1] be a monotonically
non-decreasing function and x ∈ X and suppose that f (xn)→ f (x) for each monotonically right τ′-convergent
(respectively monotonically left τ′-convergent) sequence to x, then f is right τ′-continuous (respectively f is left
τ′-continuous).

Proof. Let x ∈ X and xn
τ′→ x be a right τ′-convergent sequence. If (xn) is eventually constant (there

exists k ∈ N such that xn = x for each n ≥ k), the proof is easy. Otherwise, using that τ ⊆ τ′, we can
recursively define a decreasing subsequence xσ(n) of xn, such that x < xσ(n+1) < xσ(n), for each n ∈ N.

It follows that xσ(n) is monotonically right τ′-convergent to x and, hence, by hypothesis,
f (xσ(n))→ f (x).
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Given k ∈ N, we have that x < xσ(k). Since τ ⊆ τ′ it follows that xn
τ→ x which gives us that there

exists n0 ∈ N, such that x ≤ xn < xσ(k), for each n ≥ n0.
Now, the monotonicity of f gives us that f (x) ≤ f (xn) ≤ f (xσ(k)), for each n ≥ n0. We conclude

that f (xn)→ f (x) and, hence, f is right τ′-continuous.
We can proceed analogously to show that f is left τ′-continuous when xn is left τ′-convergent

to x.

Corollary 3. Let τ′ be a first countable topology on X and f : X → [0, 1] a function. If f is right and left
τ′-continuous, then f is τ′-continuous.

Proof. Let x ∈ X and xn
τ′→ x. Let σ1, σ2 : N→ N be two increasing functions such that xσ1(n) ≥ x and

xσ2(n) ≤ x with σ1(N) ∪ σ2(N) = N. If either σ1(N) or σ2(N) is finite then the proof is easy. Otherwise,
(xσ1(n)) is a right subsequence of (xn) and (xσ2(n)) is a left subsequence of (xn). By hypothesis, it holds
that f (xσ1(n))→ f (x) and f (xσ2(n))→ f (x). It easily follows that f (xn)→ f (x), which means that f
is continuous with respect to the topology τ′.

Remark 4. Please note that Lemma 3 and Corollary 3 can be both applied to topology τ.

Corollary 4. Let τ′ be a first countable topology on X with τ ⊆ τ′ and let f : X → [0, 1] be a monotonically
non-decreasing function. Suppose that f (xn) → f (x) for each monotonically right τ′-convergent sequence
to x and each monotonically left τ′-convergent sequence, xn, to x, then f is continuous (with respect to the
topology τ′).

Proof. It follows from Lemma 3 and Corollary 3.

Proposition 8. Let F be a cdf. Then:

1. F is monotonically non-decreasing.
2. F is right τ-continuous.
3. If there does not exist min X, then inf F(X) = 0.
4. sup F(X) = 1.

Proof.

1. This is obvious if we take into account the monotonicity of µ that follows from the fact that µ is
a measure.

2. For the purpose of proving that F is right τ-continuous, let xn be a monotonically right
τ-convergent sequence to x. Let us see that F(xn)→ F(x).

First, note that the fact that xn is a monotonically right τ-convergent sequence to x implies, by
Lemma 2, that

⋂
n(≤ xn) = (≤ x). Moreover, (≤ xn) is a monotonically non-increasing sequence

so (≤ xn) →
⋂

n(≤ xn) = (≤ x). Thus, from the continuity of the measure µ, it follows that
µ(≤ xn)→ µ(≤ x), i.e., F(xn)→ F(x). Therefore, by Lemma 3 and Remark 4, we have that F is
right τ-continuous.

3. Suppose that there does not exist min X. By Proposition 3, we can consider a sequence xn in X
such that xn+1 < xn, for each n ∈ N and {xn : n ∈ N}l = Xl = ∅. Then we have

⋂
(≤ xn) = ∅.

Now, note that (≤ xn) is a monotonically non-increasing sequence, which implies that (≤ xn)→⋂
(≤ xn) = ∅. By the continuity of the measure µ it holds that µ(≤ xn) = F(xn) → µ(∅) = 0.

Hence inf{F(xn) : n ∈ N} = 0. Finally, if we join the previous equality with the fact that
0 ≤ inf F(X) ≤ inf{F(xn) : n ∈ N}, we conclude that inf F(X) = 0.

4. We distinguish two cases depending on whether there exists the maximum of X or not:

(a) Suppose that there exists max X. In this case, sup F(X) = F(max X) = µ(X) = 1.
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(b) Suppose that there does not exist max X. By Proposition 3, we can consider a sequence
xn in X such that xn+1 > xn, for each n ∈ N and {xn : n ∈ N}u = Xu = ∅. Then we have⋃
(≤ xn) = X. Now, note that (≤ xn) is a monotonically non-decreasing sequence, which

implies that (≤ xn) →
⋃
(≤ xn) = X. By the continuity of the measure µ it holds that

µ(≤ xn) = F(xn) → µ(X) = 1. Hence sup{F(xn) : n ∈ N} = 1. Finally, if we join the
previous equality with the fact that sup{F(xn) : n ∈ N} ≤ sup F(X) ≤ 1, we conclude
that sup F(X) = 1.

The previous proposition makes us wonder the next:

Question 1. Let F : X → [0, 1] be a function satisfying the properties collected in Proposition 8, does there
exist a probability measure µ on X such that its cdf, Fµ, is F?

According to the previous results we can conclude that:

Corollary 5. Let F be a cdf and x ∈ X. Then F is τ-continuous at x if, and only if F is left τ-continuous at x.

Proposition 9. Let x ∈ X and f be a monotonically non-decreasing function. If x is left-isolated (respectively
right-isolated), then f is left τ′-continuous (respectively right τ′-continuous) where τ′ is a first countable
topology such that τ ⊆ τ′.

Proof. Let x ∈ X and suppose that it is left-isolated. The case in which x = min X is obvious.
Suppose that x 6= min X, then there exists z ∈ X such that ]z, x[= ∅. Hence (> z) is open in τ and,
consequently, a neighborhood of x. Let xn be a left τ′-convergent sequence to x, then it is also left
τ-convergent to x. Hence, there exists n0 ∈ N such that xn ∈ (> z), for each n ≥ n0. Since xn ≤ x, we
have that xn = x, for each n ≥ n0. Consequently, f (xn)→ f (x) and f is left τ′-continuous.

The case in which x is right-isolated can proved analogously.

Corollary 6. Let µ be a probability measure on X and F its cdf. Let x ∈ X. If x is left-isolated, then F is
τ-continuous at x.

Proof. It immediately follows from Proposition 9, Corollary 5 and Proposition 8.

Definition 15. Let µ be a probability measure on X and F its cdf. We define F− : X → [0, 1], by F−(x) =
µ(< x), for each x ∈ X.

Please note that F− is monotonically non-decreasing by the monotonicity of the measure.
Next we introduce two results which relate F− with F.

Proposition 10. Let µ be a probability measure on X and F its cdf. Then sup F(< x) = F−(x), for each
x ∈ X with x 6= min X.

Proof. ≥) Let x ∈ X with x 6= min X. We distinguish two cases depending on whether x is left-isolated
or not:

1. Suppose that x is not left-isolated, then by Proposition 6, there exists a monotonically left
τ-convergent sequence, an, to x. This implies that (≤ an) → ∪(≤ an). Moreover, Lemma 2
gives us that ∪(≤ an) = (< x) = ∪(< an). Hence, (≤ an) → (< x) and, consequently,
F(an) → µ(< x). Now, since an < x, F(an) ≤ sup F(< x). If we take limits, we have that
µ(< x) = F−(x) ≤ sup F(< x).

2. Suppose that x is left-isolated, then there exists z ∈ X such that z < x and ]z, x[= ∅, which implies
that F(z) ≤ sup F(< x). Moreover, note that (< x) = (≤ z) which means that µ(< x) = F(z).
We conclude that µ(< x) = F−(x) ≤ sup F(< x).



Mathematics 2019, 7, 864 11 of 21

≤) Let y ∈ X with y < x, then F(y) ≤ µ(< x) and hence sup F(< x) ≤ µ(< x) = F−(x).

We can recover the cdf F from F−.

Proposition 11. Let F be a cdf, then F(x) = inf F−(> x), for each x ∈ X with x 6= max X.

Proof. ≤) Let x ∈ X with x 6= max X and y ∈ X be such that y > x, then µ(< y) ≥ µ(≤ x), i.e.,
F(x) ≤ F−(y), which gives us that F(x) ≤ inf F−(> x).

≥) Let x ∈ X with x 6= max X. We distinguish two cases depending on whether x is right-isolated
or not.

1. Suppose that x is right-isolated, then there exists z ∈ X such that z > x and ]x, z[= ∅, which
implies that inf F−(> x) ≤ F−(z). Moreover, note that (> x) = (≥ z) which means that
µ(> x) = µ(≥ z) or, equivalently, µ(≤ x) = µ(< z). Hence, F(x) = F−(z). We conclude that
inf F−(> x) ≤ F(x).

2. Suppose that x is not right-isolated, then by Proposition 6, there exists a monotonically right
τ-convergent sequence, an, to x. Since F is right τ-continuous, we have that F(an)→ F(x). Now,
the fact that an > x gives us that inf F−(> x) ≤ F−(an) ≤ F(an). Finally, if we take limits, we
have that inf F−(> x) ≤ F(x).

Lemma 4. Let µ be a probability measure on X and F its cdf. Given x ∈ X, it holds that F(x) = F−(x) +
µ({x}).

Proof. Indeed, given x ∈ X, by the definition of cdf, we have that F(x) = µ(≤ x). Now, since µ is
σ-additive, F(x) = µ(< x) + µ({x}). We conclude that F(x) = F−(x) + µ({x}).

A cdf let us calculate the measure of ]a, b] for each a ≤ b according to the next proposition and
Lemma 4.

Proposition 12. Let µ be a probability measure on X and F its cdf, then µ(]a, b]) = F(b)− F(a) for each
a, b ∈ X with a < b.

Proof. Please note that we can write (≤ b) = (≤ a)∪]a, b]. Now, since µ is a measure (and hence
σ-additive) it holds that µ(≤ b) = µ(≤ a) + µ(]a, b]), i.e., µ(]a, b]) = F(b)− F(a).

Corollary 7. Let µ be a probability measure on X and F its cdf, then:

1. µ([a, b]) = F(b)− F−(a).
2. µ(]a, b[) = F−(b)− F(a).
3. µ([a, b[) = F−(b)− F−(a).

Proof. The proof is immediate if we take into account the previous proposition and Lemma 4.

Proposition 13. Let µ be a probability measure on X and F its cdf. Let x ∈ X and xn be a monotonically left
τ-convergent sequence to x then F(xn)→ F−(x).

Proof. Let x ∈ X and xn be a monotonically left τ-convergent sequence to x. Lemma 2 gives us
that

⋃
n(≤ xn) = (< x). Please note that (≤ xn) is a monotonically non-decreasing sequence,

which means that (≤ xn) →
⋃

n(≤ xn) = (< x). Finally, by the continuity of µ it follows that
µ(≤ xn)→ µ(< x) = F−(x), i.e., F(xn)→ F−(x).

Next we collect the properties of F−:
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Proposition 14. Let µ be a probability measure on X and F its cdf, then:

1. F− is monotonically non-decreasing.
2. F− is left τ-continuous.
3. inf F−(X) = 0.
4. If there does not exist the maximum of X, then sup F−(X) = 1. Otherwise, F−(max X) = 1 −

µ({max X}).

Proof.

1. This is obvious if we take into account the monotonicity of µ that follows from the fact that it is
a measure.

2. Let xn be a monotonically left τ-convergent sequence to x, then by Proposition 13, it holds that
F(xn)→ F−(x). Since xn is monotonically left τ-convergent, it holds that xn < xn+1 < x, so the
fact that F− is monotonically non-decreasing implies that F(xn) ≤ F−(xn+1) ≤ F−(x). By taking
limits, we conclude that F−(xn)→ F−(x), and by Lemma 3 and Remark 4, F− is left τ-continuous.

3. By Proposition 3, we can consider a sequence xn in X such that xn+1 < xn, for each n ∈ N and
{xn : n ∈ N}l = Xl = ∅. Then we have

⋂
(< xn) = ∅. Now, note that (< xn) is a monotonically

non-increasing sequence, which implies that (< xn) →
⋂
(< xn) = ∅. By the continuity of the

measure µ it holds that µ(< xn) = F−(xn)→ µ(∅) = 0. Hence inf{F−(xn) : n ∈ N} = 0. Finally,
if we join the previous equality with the fact that 0 ≤ inf F−(X) ≤ inf{F−(xn) : n ∈ N}, we
conclude that inf F−(X) = 0.

4. We distinguish two cases depending on whether there exists the maximum of X or not:

(a) Suppose that there does not exist max X. By Proposition 3, there exists a sequence xn in
X such that xn+1 > xn, for each n ∈ N and {xn : n ∈ N}u = Xu = ∅. Then we have⋃
(< xn) = X. Now, note that (< xn) is a monotonically non-decreasing sequence, which

implies that (< xn) →
⋃
(< xn) = X. By the continuity of the measure µ it holds that

µ(< xn) = F−(xn) → µ(X) = 1. Hence sup{F−(xn) : n ∈ N} = 1. Finally, if we join the
previous equality with the fact that sup{F−(xn) : n ∈ N} ≤ sup F−(X) ≤ 1, we conclude
that sup F−(X) = 1.

(b) Now suppose that there exists max X, then Lemma 4 let us claim that F−(max X) =

F(max X)− µ({max X}) = 1− µ({max X}).

Thus, the item is proved.

5. Discontinuities of a cdf

In this section, we prove some results which are analogous to those proven in Chapter 1 of [18]
and which are related to the discontinuities of a cdf.

First, we give a sufficient condition to ensure that a cdf is continuous at a point.

Proposition 15. Let x ∈ X, µ be a probability measure on X and F its cdf. If µ({x}) = 0 then F is
τ-continuous at x.

Proof. Let xn be a monotonically left τ-convergent sequence to x, then by Proposition 13, it holds that
F(xn) → F−(x). By Lemma 4, it holds that F(x) = F−(x), so F(xn) → F(x), and by Lemma 3 and
Remark 4, F is left τ-continuous. Finally, by Corollary 5, F is τ-continuous.

Next we introduce a lemma that will be crucial to show that the set of discontinuity points of a
cdf is at most countable.
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Lemma 5. Let µ be a probability measure on X and F its cdf. Then {x ∈ X : µ({x}) > 0} is countable.

Proof. For every integer N, the number of points satisfying µ({x}) > 1
N is, at most, N. Hence, there

are no more than a countable number of points with positive measure.

Next we collect two properties of a cdf Fµ.

Proposition 16. Let µ be a probability measure on X, then

1. Fµ is determined by a dense set, D, in X (with respect to the topology τ) in its points with null measure,
that is, if for each x ∈ D it holds that Fµ(x) = Fδ(x), then Fµ(x) = Fδ(x), for each x ∈ X with
µ({x}) = 0 and δ({x}) = 0, where Fδ is the cdf of a probability measure, δ, on X.

2. The set of discontinuity points of Fµ with respect to the topology τ is countable.

Proof.

1. Let x ∈ X with µ({x}) = 0 and δ({x}) = 0. We distinguish two cases:

• Suppose that x is left-isolated and right-isolated, then there exist y, z ∈ X such that ]y, z[=
{x}, which implies that x ∈ D due to the fact that D is dense. Consequently, Fµ(x) = Fδ(x).

• x is not left-isolated or it is not right-isolated. If x is not left-isolated, by Proposition 6,

there exists a sequence xn
τ→ x such that xn < xn+1 < x. Now, since D is dense, it follows

that there exists dn ∈ D such that xn < dn < xn+1 and hence dn < dn+1, for each n ∈ N.
Hence, dn → x in τ. By hypothesis, we have that Fµ(dn) = Fδ(dn). By Proposition 13,
Fµ(dn) → Fµ−(x). However, Fµ−(x) = Fµ(x) since µ({x}) = 0 by Lemma 4. Analogously,
Fδ(dn)→ Fδ(x). Consequently, Fµ(x) = Fδ(x).

The case in which x is not right-isolated can be proved analogously.

2. Let x ∈ X. By Proposition 15, we know that the fact that Fµ is not continuous at x means that
µ({x}) > 0. Since, by previous lemma, we have that {x ∈ X : µ({x}) > 0} is countable, we
conclude that the set of discontinuity points is at most countable too.

6. The Inverse of a cdf

In this section, we see how to define the pseudo-inverse of a cdf F defined on X and we gather
some properties which relate this function to both F and F−. Its properties are similar to those which
characterizes the pseudo-inverse in the classical case (see, for example, [1], Th. 1.2.5). Moreover, we
see that it is measurable.

Now, we recall the definition of this function in the classical case (see Section 1) to give a similar
one in the context of a linearly ordered topological space. However, there exists a problem when
we mention the infimum of a set, since there is no guarantee that every set has infimum. Indeed, it
is possible to extend the cdf to the Dedekind–MacNeille completion so that the pseudo-inverse is
naturally defined from [0, 1] to the Dedekind–MacNeille completion as it can be seen in [19]. Hence,
in this work, we restrict that definition to those points which let us talk about the infimum of a set as
next definition shows.

Definition 16. Let F be a cdf. We define the pseudo-inverse of F as G : [0, 1]→ X given by G(x) = inf{y ∈
X : F(y) ≥ x} for each x ∈ [0, 1] such that there exists the infimum of {y ∈ X : F(y) ≥ x}.

According to the previous definition, it is clear that

Proposition 17. G is monotonically non-decreasing.
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Proof. Let x, y ∈ [0, 1] with x < y. Please note that {z ∈ X : F(z) ≥ y} ⊆ {z ∈ X : F(z) ≥ x} and it
follows that inf{z ∈ X : F(z) ≥ x} ≤ inf{z ∈ X : F(z) ≥ y}, i.e., G(x) ≤ G(y), which means that G is
monotonically non-decreasing.

Lemma 6. Let a = inf{an : n ∈ N} (respectively a = sup{an : n ∈ N}) where an is a sequence such that
an+1 < an (respectively an+1 > an), for each n ∈ N. Then an

τ→ a.

Proof. Let an be a sequence in X such that an+1 < an, for each n ∈ N and suppose that there exists
a = inf{an : n ∈ N}. Let b, c ∈ X ∪ {−∞, ∞} be such that b < a < c. Suppose that an ≥ c, for each
n ∈ N, then inf{an : n ∈ N} ≥ c > a, a contradiction with the fact that a = inf{an : n ∈ N}. Hence,
there exists n0 ∈ N such that an0 < c. Furthermore, an < c, for each n ≥ n0 since an+1 < an, for each
n ∈ N. Consequently, an

τ→ a.
The case in which a = sup{an : n ∈ N} and an+1 > an can be proven analogously.

Hereinafter, when we apply G to a point, we assume that G is defined in that point.

Proposition 18. Let F be a cdf. Then:

1. G(F(x)) ≤ x, for each x ∈ X.
2. F(G(r)) ≥ r, for each r ∈ [0, 1].

Proof.

1. Indeed, x ∈ {z ∈ X : F(z) ≥ F(x)}, and hence inf{z ∈ X : F(z) ≥ F(x)} ≤ x, which is equivalent
to G(F(x)) ≤ x. This proves the first item.

2. Now let y = G(r) = inf{z ∈ X : F(z) ≥ r}. If y = min{z ∈ X : F(z) ≥ r}, it is clear that
F(y) ≥ r. Suppose that y 6= min{z ∈ X : F(z) ≥ r}, then by Proposition 3 there exists a sequence
yn ∈ {z ∈ X : F(z) ≥ r} such that yn+1 < yn and {yn : n ∈ N}l = {z ∈ X : F(z) ≥ r}l .
Furthermore, by Lemma 1, it holds that y = inf{yn : n ∈ N}. Hence, Lemma 6 let us claim
that yn

τ→ y. Consequently, the right τ-continuity of F gives us that F(yn) → F(y). Moreover,
F(yn) ≥ r since yn ∈ {z ∈ X : F(z) ≥ r}. If we join this fact with the fact that F(yn)→ F(y), we
conclude that F(y) ≥ r. This proves the second item.

We get, as an immediate corollary, that

Corollary 8. G(r) ≤ x if, and only if r ≤ F(x), for each x ∈ X and each r ∈ [0, 1].

Next result collects some properties of G which arise from some relationships between F and F−
and some conditions on them.

Proposition 19. Let F be a cdf and let x ∈ X and r ∈ [0, 1]. Then:

1. F(x) < r if, and only if G(r) > x.
2. If F−(x) < r, then x ≤ G(r).
3. If F−(x) < r ≤ F(x), then G is defined in r and G(r) = x.
4. If r < F−(x), then G(r) < x.
5. If r = F−(x), then G(r) ≤ x.

Proof.

1. Please note that it is an immediate consequence of Corollary 8.
2. Suppose that G(r) < x, then µ(< x) ≥ µ(≤ G(r)) or, equivalently, F−(x) ≥ F(G(r)) ≥ r, i.e.,

F−(x) ≥ r.
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3. Let x ∈ X and r ∈ [0, 1] be such that F−(x) < r ≤ F(x). First, note that if y < x, then
F(y) ≤ sup F(< x) = F−(x) < r and hence x = inf{y ∈ X : F(y) ≥ r}. It follows that G is
defined in r and x = G(r).

4. Let x ∈ X and r ∈ [0, 1]. Suppose that r < F−(x). Since F−(x) = sup F(< x), there exists
y < x such that r < F(y) ≤ F−(x). Since F(y) > r, then y ≥ inf{z ∈ X : F(z) ≥ r} = G(r).
We conclude that G(r) < x.

5. Suppose that r = F−(x). The fact that F−(x) ≤ F(x), for each x ∈ X gives us that F(x) ≥ r, which
is equivalent, by Corollary 8, to G(r) ≤ x.

We prove another property of G.

Proposition 20. G is left τ-continuous.

Proof. Let (rn) be a sequence in [0, 1[ which is left convergent to r ∈ [0, 1[ with rn 6= r. Since rn ≤ r,
by the monotonicity of G (see Proposition 17) we have that G(rn) ≤ G(r). Now we prove that
G(r) = sup{G(rn) : n ∈ N}. For this purpose, let x ∈ {G(rn) : n ∈ N}u and suppose that x < G(r).
By Proposition 19, it holds that F(x) < r, so there exists n ∈ N such that F(x) < rn. On the other hand,
since x ∈ {G(rn) : n ∈ N}u then G(rn) ≤ x, for each n ∈ N. By the monotonicity of F we have that
F(G(rn)) ≤ F(x) and, hence, by Proposition 18, rn ≤ F(x) since F(G(rn)) ≥ rn. If we join this fact
with the fact that F(x) < rn, for some n ∈ N, we conclude that rn < rn, a contradiction.

It follows, by Lemma 6, that (G(rn)) τ-converges to G(r).

Next proposition collects some properties of F and F− which arise from considering some
conditions on G.

Proposition 21. Let F be a cdf and let x ∈ X and r ∈ [0, 1]. Then:

1. G(r) > x if, and only if F(x) < r.
2. If G(r) = x, then F−(x) ≤ r ≤ F(x).
3. If G(r) < x, then r ≤ F−(x).

Proof.

1. Please note that this item is the same as the first item of Proposition 19.
2. Suppose that G(r) = x and that r > F(x), by item 1 it follows that G(r) > x, which is a

contradiction with the fact that G(r) = x.

Now suppose that r < F−(x), then item 4 of Proposition 19 gives us that G(r) < x, which is a
contradiction with the fact that G(r) = x.

We conclude that F−(x) ≤ r ≤ F(x).
3. It is equivalent to Proposition 19.

Some consequences that arise from the previous propositions are collected next.

Corollary 9. Let F be a cdf and r ∈ [0, 1]. Then:

1. F−(G(r)) ≤ r ≤ F(G(r)).
2. If F(G(r)) > r, then µ({G(r)}) > 0.



Mathematics 2019, 7, 864 16 of 21

Proof.

1. Let r ∈ [0, 1]. On the one hand, suppose that F−(G(r)) > r, then, by item 4 of Proposition 19, it
holds that G(r) < G(r), which is a contradiction. Hence, F−(G(r)) ≤ r.

On the other hand, the inequality r ≤ F(G(r)) is clear if we take into account Proposition 18.
2. By Lemma 4 F(x) = F−(x) + µ({x}), for each x ∈ X, so we have that F(G(r)) = F−(G(r)) +

µ({G(r)}). If F(G(r)) > r, it holds that F−(G(r)) + µ({G(r)}) > r. Moreover, if we join this fact
with the previous item, we conclude that µ({G(r)}) > 0.

Corollary 10. Let r ∈ [0, 1]. If µ({G(r)}) = 0, then F(G(r)) = r.

Now, we introduce some results to characterize the injectivity of G and F.

Proposition 22. µ({x}) = 0, for each x ∈ X if, and only if G is injective.

Proof. ⇒) It immediately follows from the second item of Proposition 21. Indeed, this proposition
gives us that if G(r) = x, then F−(x) ≤ r ≤ F(x). Suppose that there exists r, s ∈ X such that r 6= s with
G(r) = G(s) = x, then F−(G(r)) ≤ r ≤ F(G(r)) and F−(G(r)) ≤ s ≤ F(G(r)). Since µ({G(r)}) = 0,
it holds that F−(G(r)) = F(G(r)) = r = s, and hence G is injective.

⇐) Suppose that there exists x ∈ X such that µ({x}) > 0, then F−(x) < F(x). Now let r ∈ [0, 1] be
such that F−(x) < r < F(x). By Proposition 19 we have that G is defined in r and G(r) = G(F(x)) = x,
for each r ∈]F−(x), F(x)[, which is a contradiction with the fact that G is injective.

Proposition 23. Let F be a cdf, then F is injective if, and only if µ(]a, b]) > 0, for each a < b.

Proof. Let a, b ∈ X be such that a < b. Please note that by Proposition 12, µ(]a, b]) = 0 is equivalent to
F(b)− F(a) = 0, i.e., F(b) = F(a) if, and only if F is not injective.

And we get, as immediate corollary, the next one:

Corollary 11. Let F be a cdf of a probability measure µ, and let A ⊆ [0, 1] be the subset of points where G
is defined. The following statements are equivalent:

1. F ◦ G(r) = r for each r ∈ A, F(X) ⊆ A and G ◦ F(x) = x for each x ∈ X.
2. F is injective and F(X) = A.
3. G : A→ X is bijective.
4. µ(]a, b]) > 0, for each a < b and µ({a}) = 0, for each a ∈ X.

Proof. First, we prove the following
Claim. If F is injective, then F(X) ⊆ A and G(F(x)) = x for each x ∈ X.
Suppose that there exists x ∈ X such that G is not defined in F(x), i.e., there does not exists the

infimum of {y ∈ X : F(y) ≥ F(x)}. It follows that x is not the infimum of the latter set, so there exists
y < x with F(y) ≥ F(x). By monotonicity of F it follows that F(y) = F(x), and since F is injective
y = x, a contradiction. We conclude that F(X) ⊆ A.

Finally, let x ∈ X, then F(x) ∈ A and G(F(x)) = inf{y ∈ X : F(y) ≥ F(x)}. On the other hand, if
y < x then F(y) ≤ F(x), and since F is injective F(y) < F(x). Therefore G(F(x)) = x.

(1) =⇒ (2). Since F(X) ⊆ A and G(F(x)) = x for each x ∈ X, it follows that F is injective. Now,
we prove that A ⊆ F(X). Indeed, let r ∈ A, then F(G(r)) = r, so r ∈ F(X).

(1) =⇒ (3). Since G(F(x)) = x for each x ∈ X, it follows that G is surjective. Since F(G(r)) = r
for each r ∈ A, it follows that G is injective.
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(1) =⇒ (4). Since (1) implies (2) and (3), we have that F and G are both injective, so (4) follows
from Propositions 22 and 23.

(2) =⇒ (1). Let r ∈ A. Since F(X) = A and F is injective, there is only one x ∈ X such that
F(x) = r. It follows by definition of G that G(r) = x and hence F(G(r)) = F(x) = r. By the claim we
have the rest of item (1).

(3) =⇒ (1). Let r ∈ A, then F(G(r)) ≥ r by Proposition 18. Suppose that F(G(r)) > r. It easily
follows that ]r, F(G(r))[⊆ A and G(]r, F(G(r))[) = G(r), but this is a contradiction, since G is injective.
We conclude that F(G(r)) = r.

Now, let x ∈ X. Since G is bijective, there exists r ∈ A such that x = G(r). It follows that
F(x) = F(G(r)) = r and hence F(x) ∈ A. Therefore F(X) ⊆ A.

Finally, let x ∈ X, then F(x) ∈ A and G(F(x)) = inf{y ∈ X : F(y) ≥ F(x)}. Suppose that
there exists y < x such that F(y) ≥ F(x). By monotonicity of F it follows that F(y) = F(x). Since G
is bijective, there exists r, s ∈ [0, 1] such that G(r) = y and G(s) = x. Please note that r < s by
monotonicity of G. It follows that r = F(G(r)) = F(y) = F(x) = F(G(s)) = s, a contradiction. We
conclude that x = inf{y ∈ X : F(y) ≥ F(x)} = G(F(x)).

(4) =⇒ (1). By Corollary 10 it follows that F(G(r)) = r for each r ∈ A. By Proposition 23, F is
injective and by the claim it follows that F(X) ⊆ A and G(F(x)) = x for each x ∈ X.

Proposition 24. Let a, b ∈ X be such that a < b, then G−1(]a, b[) =]F(a), F−(b)| ∩ A, where | means ] or [
and A is the subset of [0, 1] where G is defined.

Proof. First, we show that G−1(]a, b[) ⊆]F(a), F−(b)] ∩ A. For that purpose, let r ∈ G−1(]a, b[) and
suppose that r /∈]F(a), F−(b)], then it can happen:

• r ≤ F(a) which implies, by Corollary 8, that G(r) ≤ a which is a contradiction with the fact that
r ∈ G−1(]a, b[).

• r > F−(b) which gives us, by Proposition 19, that b ≤ G(r) which implies that r /∈ G−1(]a, b[)
since b /∈]a, b[, a contradiction.

Now we prove that ]F(a), F−(b)[∩A ⊆ G−1(]a, b[). For that purpose, let r ∈]F(a), F−(b)[ where G
is defined, and suppose that r /∈ G−1(]a, b[), then it can happen:

• G(r) ≤ a which implies, by Corollary 8, that r ≤ F(a), a contradiction with the fact that r > F(a).
• G(r) ≥ b which gives us, by Proposition 19, that r ≥ F−(b), a contradiction with the fact that

r < F−(b).

We conclude that r ∈ G−1(]a, b[).

According to Proposition 24, it is clear the next

Corollary 12. Suppose that G is defined on [0, 1]. Let a, b ∈ X be such that a < b. Then G−1(]a, b[) ∈
σ([0, 1]), where σ([0, 1]) denotes de Borel σ-algebra with respect to the Euclidean topology.

Proof. Since G−1(]a, b[) =]F(a), F−(b)|, it is an open set or the intersection of an open and a closed set.
Consequently, G−1(]a, b[) ∈ σ([0, 1]).

Proposition 25. Each open set in τ is the countable union of open intervals.

Proof. Let G ⊆ X be an open set in τ. If G = ∅, the result is clear since it can be written as G =]a, a[.
Now suppose that G is non-empty, then G =

⋃
i∈I Gi, where Gi is a convex component of G for each

i ∈ I (see Proposition 1). Now we prove that Gi is open for each i ∈ I. Let i ∈ I and x ∈ Gi. Since G
is an open set and {]a, b[: a, b ∈ X, a < b} is an open basis of X with respect to τ there exist a, b ∈ X
such that x ∈]a, b[⊆ G. Please note that Gi∪]a, b[ is a convex set contained in G, which implies that
Gi∪]a, b[= Gi since Gi is a convex component of G. Consequently, ]a, b[⊆ Gi, which means that Gi is
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an open set. Now, let D be a countable dense subset of X, then we can choose di ∈ D ∩ Gi for each
i ∈ I which gives us the countability of I, since the family {Gi : i ∈ I} is pairwise disjoint.

Since Gi is convex and open, by Corollary 2, Gi can be expressed as a countable union of open
intervals. Thus, G is the countable union of open intervals.

Next result will be essential to show that G is measurable with respect to the Borel σ-algebra.

Theorem 1 ([20], Th. 1.7.2). Let (Ω,A) and (Ω′,A′) be measurable spaces; further let B′ be a generator of
A′. A mapping T : Ω→ Ω′ is measurable if, and only if T−1(A′) ∈ A, for each A′ ∈ B′.

Since G−1(]a, b[) ∈ σ([0, 1]), for each a, b ∈ X with a < b and by taking into account Proposition 25,
we conclude that

Corollary 13. Suppose that G is defined on [0, 1]. Then G is measurable with respect to the Borel σ-algebras.

Proof. To show that G is measurable we just have to use Corollary 12, Theorem 1 and the fact that
each open set in τ can be written as countable union of open intervals (see Proposition 25).

7. Generating Samples

Lemma 7. The family A = {⋃n
i=1 |ai, bi| : a1 ≤ b1 < a2 ≤ b2 < . . . < an ≤ bn, a1 ∈ X ∪ {−∞}, bn ∈

X ∪ {∞}} is an algebra and the σ-algebra generated by it is the Borel σ-algebra.

Proof. Now we prove that A is an algebra.

1. A ∪ B ∈ A, for each A, B ∈ A. Indeed, this is true because the union of two intervals consists of
two disjoint intervals in case A ∩ B = ∅ or it is a new interval otherwise.

2. A ∩ B ∈ A, for each A, B ∈ A. Indeed, this is true because the intersection of two intervals is ∅ or
a new interval. Hence, A ∩ B is finite union of disjoint intervals, which means that A ∩ B ∈ A.

3. X\A ∈ A, for each A ∈ A. Indeed, this is true due to the fact that X\A =]−∞, a1| ∪ |b1, a2| ∪
. . . ∪ |bn−1, an| ∪ |bn, ∞[∈ A.

Please note that each element in A belongs to (X, τ). Indeed, this is true due to the fact that given
A ∈ A, it consists of the finite union of open intervals, semi-open intervals (which are the intersection
of an open and a closed set) or closed intervals (which are closed). Hence, S is contained in the Borel
σ-algebra of (X, τ), where S = σ(A). Finally, if G is an open set in (X, τ), by Proposition 25, it can be
written as the countable union of open intervals. Thus, G can be written as the countable union of
elements in A, which means that G ∈ S. In conclusion, S is the Borel σ-algebra of (X, τ).

Now, we want to prove the uniqueness of the measure with respect to its cdf.
First, we recall from [12] a theorem about the uniqueness of a measure. As a consequence of the

next theorem we have that two measures that coincide in an algebra also coincide in its generated
σ-algebra.

Theorem 2 ([12], Chapter III, Th. A). If µ is a σ-finite measure on a ring R, then there is a unique measure µ

on the σ-ring S(R) such that for E in R, µ(E) = µ(E); the measure µ is σ-finite.

Proposition 26. Let Fµ and Fδ be the CDFs of the measures µ and δ satisfying Fµ = Fδ, then µ = δ on the
Borel σ-algebra of (X, τ).

Proof. Let a, b ∈ X be such that a ≤ b, then a cdf let us determine the measure of the set |a, b|. Indeed,
we distinguish four cases depending on whether a and b belongs to |a, b| or not.

1. µ(]a, b]) = Fµ(b)− Fµ(a) = Fδ(b)− Fδ(a) = δ(]a, b]).
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2. µ([a, b]) = Fµ(b)− Fµ−(a) = Fµ(b)− sup Fµ(< a) = Fδ(b)− sup Fδ(< a) = Fδ(b)− Fδ−(a) =

δ([a, b]), where we have taken into account that F−(x) = sup F(< x), for each x ∈ X (see
Proposition 10).

3. µ(]a, b[) = Fµ−(b)− Fµ(a) = sup Fµ(< b)− Fµ(a) = sup Fδ(< b)− Fδ(a) = Fδ−(b)− Fδ(a) =

δ(]a, b[).
4. µ([a, b[) = Fµ−(b) − Fµ−(a) = sup Fµ(< b) − sup Fµ(< a) = sup Fδ(< b) − sup Fδ(< a) =

Fδ−(b)− Fδ−(a) = δ([a, b[).

Since µ(|a, b|) = δ(|a, b|), for each a, b ∈ X with a ≤ b, it follows that µ(A) = δ(A), for each
A ∈ A, due to the σ-additivity of µ and δ as measures. Since µ = δ on A, we conclude that µ = δ on
σ(A), i.e., they coincide on the Borel σ-algebra of (X, τ) by the previous results.

Theorem 3 ([21], Th A. 81). A measurable function f from one measure space (S1,A1, µ1) to a measurable
space (S2,A2), f : S1 → S2, induces a measure on the range S2. For each, A ∈ A2, define µ2(A) =

µ1( f−1(A)). Integrals with respect to µ2 can be written as integrals with respect to µ1 in the following way if
g : S2 → R is integrable, then, ∫

g(y)dµ2(y) =
∫

g( f (x))dµ1(x).

Proposition 27. Let µ be a probability measure and suppose that G is defined on [0, 1]. Then µ(A) =

l(G−1(A)) for each A ∈ σ([0, 1]), where l is the Lebesgue measure and σ([0, 1]) is the Borel σ-algebra of [0, 1].

Proof. By Proposition 24, we have that G−1(]a, b[) = ]F(a), F−(b)|, for each a, b ∈ X with a < b.
Moreover, by Corollary 7, it holds that µ(]a, b[) = F−(b)− F(a). It follows that l(G−1(]a, b[)) =

µ(]a, b[) for each a, b ∈ X with a < b.
Now let µ2 be the measure defined by µ2(A) = l(G−1(A)), for each A ∈ σ([0, 1]). Indeed, µ2 is a

measure by Theorem 3 and Corollary 13. Please note that the fact that µ(]a, b[) = µ2(]a, b[), for each
a, b ∈ X with a < b, implies that µ = µ2 on the algebra A. Therefore µ and µ2 coincides in an algebra
which generates σ([0, 1]), so they are equal in σ([0, 1]) (see for example Theorem 2).

Consequently, we can write µ(A) = l(G−1(A)) for each A ∈ σ([0, 1]).

Finally, by taking into account the previous results, we can generate samples with respect to the
probability measure µ by following the classical procedure (see Section 1). In our case we will have to
use G to do it.

Remark 5. Suppose that G is defined on [0, 1]. We can also calculate integrals with respect to µ by using
Theorem 3, so for g : X → R, ∫

g(x)dµ(x) =
∫

g(G(t))dt

Remark 6. Suppose that X is compact, then every subset of X has both infimum and supremum (see Proposition 2)
and hence G is defined in each point of [0, 1]. Therefore, in this case, we can generate samples with respect to a
distribution based on a measure µ.

Remark 7. Please note that the classical theory for the distribution function is a particular case of the one we
have developed for a separable LOTS.

8. Conclusions

This paper proposes a theory of distribution functions on linearly ordered topological spaces.
Indeed, the classical theory, which is well-known in case we define a probability measure on R, is a
particular case of the one described in this work. The developed theory is similar to the one known
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in several aspects. For example, a cumulative distribution function on a LOTS, X, is non-decreasing,
right-continuous (with respect to the order topology) and sup F(X) = 1 (see Proposition 8). However,
the fact that inf F(X) = 0 can only be ensured in case there does not exist the minimum of X.

It is also worthy to be highlighted the fact that the measure of each point being 0 is not equivalent
to the continuity of the cdf, as it happens in the classical case (see Proposition 15). Furthermore, a step
cdf can be continuous, while it cannot happen in the classical case.

From F, it is possible to define a function, that we call F− (see Definition 15), that plays a similar
role to that played by the limit limx→a− F(x) in the classical case (see Proposition 4). Indeed, both F
and F− let us calculate the measure of each interval of X (see Proposition 12 and Corollary 7).

Apart from that, we define the pseudo-inverse of a cdf as the infimum of a certain set. However,
there is no guarantee that the infimum of each subset exists. That is the reason we restrict the definition
to those points such that the infimum in the definition makes sense (see Definition 16), which always
happens, for example, when we work with a compact LOTS. To overcome this problem, a further
research line is to extend the cdf to the Dedekind–MacNeille completion where is does make sense to
define pseudo-inverse without that problem (see [19]). Finally, we have shown that the pseudo-inverse
of a cdf let us calculate integrals with respect to the probability measure we use to define the cdf
(see Remark 5) and, also, let us generate samples of a distribution given by the probability measure
by following the classical procedure (see Section 1) when we work in a compact separable LOTS
(see Remark 6).

Please note that one of the main properties of a cdf is that it fully determines its probability
measure, so a very interesting research line is to look for conditions to get this result in this new context.
Indeed, in [22], the authors will give conditions to ensure that a cdf and its probability measure are
univocally determined in a LOTS.
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