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Abstract: Management and control operations are crucial for preventing forest fires, especially in
Mediterranean forest areas with dry climatic periods. One of them is prescribed fires, in which
the biomass fuel present in the controlled plot area must be accurately estimated. The most used
methods for estimating biomass are time-consuming and demand too much manpower. Unmanned
aerial vehicles (UAVs) carrying multispectral sensors can be used to carry out accurate indirect
measurements of terrain and vegetation morphology and their radiometric characteristics. Based
on the UAV-photogrammetric project products, four estimators of phytovolume were compared
in a Mediterranean forest area, all obtained using the difference between a digital surface model
(DSM) and a digital terrain model (DTM). The DSM was derived from a UAV-photogrammetric
project based on the structure from a motion algorithm. Four different methods for obtaining a DTM
were used based on an unclassified dense point cloud produced through a UAV-photogrammetric
project (FFU), an unsupervised classified dense point cloud (FFC), a multispectral vegetation index
(FMI), and a cloth simulation filter (FCS). Qualitative and quantitative comparisons determined the
ability of the phytovolume estimators for vegetation detection and occupied volume. The results
show that there are no significant differences in surface vegetation detection between all the pairwise
possible comparisons of the four estimators at a 95% confidence level, but FMI presented the best
kappa value (0.678) in an error matrix analysis with reference data obtained from photointerpretation
and supervised classification. Concerning the accuracy of phytovolume estimation, only FFU and
FFC presented differences higher than two standard deviations in a pairwise comparison, and FMI
presented the best RMSE (12.3 m) when the estimators were compared to 768 observed data points
grouped in four 500 m2 sample plots. The FMI was the best phytovolume estimator of the four
compared for low vegetation height in a Mediterranean forest. The use of FMI based on UAV data
provides accurate phytovolume estimations that can be applied on several environment management
activities, including wildfire prevention. Multitemporal phytovolume estimations based on FMI
could help to model the forest resources evolution in a very realistic way.
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1. Introduction

Controlling and managing above-ground vegetation has crucial importance in studies related to
reducing carbon emissions [1] or associated with deforestation and forest degradation [2]. Both effects
are increased by wildland fires and progressive abandonment of farming lands [3,4]. Biomass is a key
structural variable in all the studies about ecosystem dynamics, biodiversity, and sustainability [3,5,6].
For example, maps of forest fuel were obtained by [7], and the spatiotemporal evolution of the risk of
forest fire using landsat satellite imagery was studied by [8]. The dynamics of the biomass structure
were analysed by [9] and related to different stages of flammability.

According to [4,10], the importance of shrublands in the Mediterranean ecosystem is very high
due to their significance in the forest dynamic and the large swathe of territory occupied, but most of
the studies carried out in the literature are about the biomass of tree species [11–13]. Biomass estimation
in a forest environment can be undertaken in a direct way by harvesting and weighing sampled plant
material [14] or indirectly by measuring morphological variables and applying mathematical models.
The first method generates more accurate estimations but is more time-consuming, while the second is
indicated for multitemporal studies. A mixed model consists of harvesting a sample of plant material
and calibrating the mathematical model using the collected data [4,9].

Phytovolume is the volume under vegetal canopy, while biomass represents the weight of the aerial
part of the vegetation. The relationship between biomass and phytovolume using apparent density was
applied by [15] for indirect estimation of biomass, demonstrating that phytovolume is a good estimator
of biomass with regression coefficients of up to 90%. Species were characterised by their apparent
density and biomass ratio, which were modelled through regressions between phytovolume and
biomass. In another study, model regressions were characterised between biomass and phytovolume
for 16 Mediterranean shrub species divided into five density classes [16]. Phytovolume was used
by [17] for demonstrating significant differences between two management systems, grazing and
not-grazing, with respect to the flammability of forest resources.

Instead of harvested plant material, aerial data have been widely used for indirect measurement in
the literature, including optical, SAR, LiDAR, and unmanned aerial vehicle (UAV) data-based methods
with the empirical radiative transfer model, machine learning algorithms, and artificial intelligence.

Artificial neural network (ANN) models incorporating radar data performed better in estimating
phytomass than ANN models, using only optical vegetation indices with r-squared values of 0.79
and 0.6, respectively [18]. Other studies centred on multispectral satellite imagery were carried out
by [19], who used height and diameter data and a classification of cover fraction based on Quickbird
and Landsat imagery for mapping fuel type. A comparison of eight spectral indices of vegetation
based on MODIS imagery for fire prediction purposes was undertaken by [20].

LiDAR point cloud information and multispectral imagery were combined to obtain fuel maps
with up to 85.43% global agreement, using object-based image analysis (OBIA) [7]. The height of the
canopy was measured with LiDAR and hyperspectral sensors by [15] for adjusting regressions to
biomass. The same source of data was used by [6] for obtaining biomass and stress maps. A complete
review of the accuracies obtained in biomass estimations based on LiDAR data by different authors
can be read in [3].

Biomass was monitored by [21] using P-band SAR with multitemporal observations, concluding
that P-bands are the most suited frequency for above-ground biomass of boreal forests; multitemporal
satellite imagery and SAR data were combined by [22] for above-ground biomass estimation reaching
an adjusted R2 of 0.43 and RMSE of around 70 Mg/ha; and above-ground biomass was estimated
by [23,24] from UAV data at a different scale levels, obtaining correlations of r2 = 0.67, RMSE = 344 g/m2

and r2 = 0.98, RMSE = 91.48 g/m2, respectively.
Phytovolume can be obtained by taking the difference between the digital surface model (DSM),

which involves the canopy and base soil between vegetation clusters, and the digital terrain model
(DTM), which covers the terrain surface without vegetation [25].
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The Mediterranean shrubland has low-lying vegetation with a relatively high fractional vegetation
cover (FVC) [5,17]. These characteristics compromise the phytovolume modelling for two main
reasons: The point clouds obtained from photogrammetric methods, radar, or LiDAR, have a low
density of points located at the bare soil, and the radiometric methods based on multispectral imagery
classification tend to underestimate the phytovolume due to the difficulty of dead vegetation detection.

With the recent development of civilian use of UAVs, a large variety of sensors with the capacity
for close-range sensing has been applied in environmental engineering in general and for monitoring
specific ecosystem variables [26–28]. Digital cameras operating in the visible spectrum are used for
UAV-photogrammetric projects combined with the structure from motion (SfM) [29] and multi-view
stereopsis (MVS) [30] techniques, producing very high-resolution orthoimages, DSMs, DTMs, and very
dense point clouds of the terrain [31,32]. Most of the indices designed for remote sensing based on
satellite imagery can be applied or adapted to multispectral sensors mounted on UAVs.

Due to the low altitude of flights and the high resolution of the sensors carried by UAVs,
the accuracies of photogrammetric products can reach 0.053 m, 0.070 m, and 0.061 m in the X, Y, and Z
directions, respectively, even in environs with extreme topography [33]. These accuracy levels make it
possible to evaluate phytovolume at a local scale and to calibrate satellite data based on a regional
scale. In this way, biomass estimation becomes more efficient, even in inaccessible mountain areas.

Furthermore, the spatiotemporal monitoring of phytovolume can be undertaken when UAVs
operate in autonomous navigation mode with programmed flight routes, thanks to the control devices
based on the global navigation satellite system (GNSS). Unlike in satellite imagery, the temporal
resolution of UAV imagery is controlled by the user, so flights can be programmed to register a dramatic
change of phytovolume, e.g., pre- and post-fire [27].

This work aimed to evaluate the ability of four phytovolume estimation methods, all obtained
using the difference between DSM and DTM, based on very high-resolution spatial imagery collected
by a multispectral sensor onboard a UAV. If phytovolume could be accurately estimated based on
UAV-photogrammetry and multispectral imagery, then a new indirect method for indirect biomass
estimation could be developed, characterising the apparent density of the predominant vegetation.

The DSM was obtained from the UAV-photogrammetric process, while the four DTMs were
calculated following the most common methods in bibliography about multispectral imagery, that is,
interpolation of unclassified dense point cloud produced through a UAV-photogrammetric project and
interpolation of unsupervised classified dense point cloud based on a multispectral vegetation index
and using a cloth simulation filter.

2. Materials and Methods

In the four methods compared in this paper, the DSM was derived from a UAV-photogrammetric
project based on the SfM algorithm, and the four DTMs were based on the unclassified dense point
cloud produced by a UAV-photogrammetric project (FFU), an unsupervised classified dense point
cloud (FFC) [34], a multispectral vegetation index (FMI), and a cloth simulation filter (FCS) [35].

The input data for obtaining the four phytovolume maps included multispectral imagery with
visible red edge, and near-infrared bands obtained from a UAV-photogrammetric flight and in situ
sample data collected at the same time as the UAV flight. The flight was carried out in a Mediterranean
shrubland located on the northern face of the Sierra de los Filabres, belonging to the siliceous territory
of the Nevado–Filábride complex in the Almeria province of southern Spain.

The differences between the DTM obtained from the UAV-photogrammetric project and the four
DTMs obtained from different criteria were expressed in terms of phytovolume maps and compared to
find statistical differences between them. Qualitative and quantitative comparisons determined the
ability of the four models to detect vegetation and to measure the apparent volume occupied by the
vegetation groups. The corresponding four comparisons with in situ sample data determined the best
estimator of phytovolume.
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2.1. Study Area

The experimental plot was located on the northern face of the Sierra de los Filabres with
geographic coordinates 37◦18’35.30”N, 2◦36’9.67”W (European Terrestrial Reference System 1989,
ETRS89) (Figure 1) in the Alcóntar municipality in the province of Almería (Spain), belonging to the
Béticas mountain range [36]. The forest is 5.5 km and 3.5 km from the Special Areas of Conservation of
Calares de Sierra de Baza and Sierra de Baza, respectively, which are included in the European Natura
2000 Protected Areas Network [37].
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Figure 1. Location and landscape of the study area in Sierra de los Filabres, Almería province,
southern Spain.

The climate in Sierra de los Filabres is classified as semi-arid Mediterranean with a short, warm,
arid summer and a long, cold, dry winter. The annual average temperature is 13.9 ◦C, and the annual
average precipitation is 444 mm. Precipitation is scarce and irregular, and pluriannual droughts are
relatively frequent and intense.

The potential vegetation includes mid-mountain basophil holm oaks. Shrubs in regressive phase
abound due to anthropogenic action on the territory, which is now abandoned, including old rain-fed
crops, mining, and recent reforestation. The two most frequent species are gorse (Genista scorpius) and
esparto grass (Macrochloa tenacissima), although some others appear in minor proportion, like Bupleurum
falcatum, Helianthemum nummularium, Astragalus propinquus, and Retama sphaerocarpa L.

According to the Environmental Information Network of Andalusia (REDIAM) [33], soils in the
study area are classified as eutric cambisols, eutric regosols, and chromic luvisols with lithosols.

The total surface of the study area was 3.41 ha with an average elevation of 1288.46 m above sea
level, ranging from 1233 m to 1240 m, and the average slope was 41.51%.

2.2. Unmanned Aerial Vehicle and Sensor

The UAV-photogrammetric flight was carried out on 17 December 2018, on a sunny day (Figure 2).
The UAV used in this work was equipped with a Parrot Sequoia multispectral camera [38]

mounted on a motion-compensated three-axis gimbal, and the chosen platform was a rotatory wing
DJI Matrice 600 Pro UAV with six rotors (Figure 3).

The Parrot Sequoia camera collects multispectral imagery that includes the green, red, red-edge,
and near-infrared wavelengths through four 1.2-megapixel (1280 × 960) sensors (Figure 3). The focal
length of the four lenses is fixed at 4 mm, and horizontal and vertical FOVs of 61.9 and 48.5, respectively.
When the flight height above ground level is 56 m, the average ground sample distance (GSD) is
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3 cm. The camera also collects Red, Green and Blue (RGB) imagery with an integrated high-resolution
16-megapixel (4608 × 3456) sensor that reaches a 1.5 cm GSD at a 56 m flight height.
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Figure 3. Unmanned Aerial Vehicle (UAV) system: (a) DJI Matrice 600 Pro with a Parrot Sequoia
multispectral camera onboard and D-RTK navigation antennas; (b) base station of the D-RTK Global
Navigation Satellite System (GNSS) positioning and navigation device; (c) multi-spectral Sequoia cam
with a sunshine sensor.
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Light conditions in the same spectral bands as the multispectral sensor are captured by an
irradiance sensor to collect irradiance during flight operations and correct possible fluctuations,
calculating the absolute reflectance in post-processing.

UAV positioning is based on a differential real-time kinematic (d-RTK) device composed of a
double antenna onboard the UAV, a base station that emits real-time corrections from land, and a
GNSS triple-redundant antenna system. The horizontal and vertical positioning accuracies that can be
achieved are 1 cm + 1 ppm and 2 cm + 1 ppm, respectively, and 1.3 degrees in orientation.

2.3. Flight Route Planning

Scale heterogeneity is one of the most important problems to solve in photogrammetry, especially
when the flight altitude is low and the terrain to model is steep. In UAV-photogrammetry, the flight
routes can be planned to maintain a constant distance over the terrain.

In this work, UgCS 3.0 PRO software [39] was applied for designing a flight route with a constant
56.2 m altitude above ground level (AGL) (Figure 4), based on a prospective low-resolution DSM
previously processed with a UAV general flight.
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Figure 4. Flight planning with waypoints at the same 56.2 m altitude above ground level (AGL).

A total of 1220 visible and multispectral images were acquired during the flight carried out with
longitudinal and transversal overlaps of 70% and 55%, respectively, and a 23 min total flight time at
4 m/s. At the time of flights, the sun elevation ranged from 23.71◦ to 29.33◦.

2.4. Survey Campaign

All the products obtained from the photogrammetric project, including DSM, DTM, and point cloud,
must be referenced to the same coordinate system to be processed. The imagery co-registration and
georeferencing was undertaken based on the ETRS89 coordinates of ten ground control points (GCPs)
that were scattered on the study area following the recommendations of [32,40]. The three-dimensional
(3D) coordinates of GCPs were measured with a very accurate device composed of a receptor Trimble
R6 working in the post-processed kinematic (PPK) mode and a wayside base station (Figure 5).

The post-processing of the measured coordinates of GCPs was undertaken by Trimble Real-Time
eXtended (RTX) correction services [41]. This high-accuracy global GNSS technology combines
real-time data with positioning and compression algorithms that can reach a horizontal accuracy of up
to 2 cm.

Horizontal coordinates were referenced to the official reference system in Spain, UTM 30 N
(ETRS89), and elevations were referenced to MSL using the EGM08 geoid model.
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2.5. Photogrammetric Algorithm

The UAV-photogrammetric project was undertaken with Pix4Dmapper Pro [42] software using the
input data from Sequoia, including three visible channels with 1.2 megapixels and four multispectral
channels with 16 megapixels. Some of the most efficient photogrammetric algorithms in the UAV
context involving RGB and multispectral imagery are SfM and MVS [29,30]. Pix4Dmapper Pro [42]
software implements these algorithms, and it was used in this work for image calibration, bundle
adjustment, point cloud densification, DSM and DTM interpolation, and image orthorectification.

Blurred images were removed from the data set, and the EXIF data from all the images,
which included the internal calibration parameters and coordinates of the principal points, were loaded
before the calibration process. The radial and decentring distortion coefficients, focal length,
and principal point coordinates were calibrated by iterative approximations for each of the sensors
included in the camera.

Once the image calibration processes were completed, the iterative process of bundle adjustment
was based on sets of tie points automatically identified by autocorrelation in the overlapped areas of
the images. The number of overlapping images in all the locations of the study area must be enough to
ensure the accuracy of the process.

The absolute geolocation of the photogrammetric block through the manual identification of the
GCP coordinates in the images made it possible for all the photogrammetric products to have the same
reference, including DSM, DTM, an RGB orthoimage and monochromatic reflectance orthorectified
images, corresponding to each of the four channels.

2.6. Phytovolume Reference Data

According to some authors, e.g., [4,5,43], in situ measurement of phytovolume is time-consuming
and can even be unaffordable when the forest study area is inaccessible. In this study, reference data
were obtained through a systematic sample that combined the well-known dry-weight rank and
comparative yield methods. The evaluation of the four phytovolume estimators was carried out using
statistical tests that compared the level of matching with the reference data.

The dry-weight rank method [44] consists of ranking the species that contribute the most weight
in all quadrats of each parcel. The result provides an estimation of the relative contribution of various
species to the total biomass of a site expressed in percentage values. In each sampled quadrat,
the first, second, third, and fourth most abundant species are determined, and ranks from one to
four are assigned respectively. Once the sample is finished, the total of ranks per species is averaged,
and the percentage of each species in the total biomass is obtained. By applying the apparent density
obtained from the harvested quadrats in each parcel, combined with the comparative yield method [45],
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phytovolume was deduced from total biomass and compared to the phytovolume estimation obtained
by the four compared methods.

In this work, four circular parcels with a surface of 500 m2 were distributed throughout the study
area to characterise the species distribution (Figure 2). Inside each of the parcels, ranks from one to
four were established in 48 equidistant quadrats in the four cardinal directions, which implied a total
of 768 sample points.

Furthermore, one 1 m2 parcel belonging to each of the four ranks was harvested, dried, and weighed
in the laboratory for biomass–rank relationship calibration. The apparent density of each rank was
calculated for biomass-to-phytovolume transformation.

2.7. Methods to Obtain DTMs

The estimates of phytovolume were obtained by taking the difference between the DSM produced
by the UAV-photogrammetric project and four DTMs obtained in different ways. The DSM was
regularly interpolated from the dense point cloud and represented the evolving surface to canopy
and bare soil. If the points located at the canopy are excluded from the dense point cloud, the resting
points can be considered located at bare soil and thus belong to the DTM that is finally interpolated.
Three of the methods to obtain DTMs come from three different ways to separate the points of the
cloud belonging to canopy and soil.

The point cloud produced by the photogrammetric project involves the vegetation masses and bare
soil. In the phytovolume based on unclassified dense point cloud produced through the FFU method,
the bare soil points are separated by attending exclusively to morphological criteria. A morphological
analysis over the interpolated TIN from the point cloud was undertaken, detecting break lines where the
gradient of the orientation of faces changed abruptly. All the points located between two consecutive
break lines of relative minimum elevation are classified as soil. The interpolation of the obtained soil
point cloud delivered the DTM, called FFU DTM in this case.

In the phytovolume based on the classified dense point cloud (FFC) method, semantic classes are
detected by applying the unsupervised classification methods described by [34] to the dense point
cloud produced by UAV-photogrammetry. The classification is based on off-the-shelf machine learning
and takes into account not only geometric features, but also the reflectance behaviour of the individual
pixels. The point cloud classified as soil was interpolated obtaining the FFC DTM.

In the phytovolume based on the FMI method, extracting the vegetation point from the dense
point cloud is undertaken using just radiometric criteria. The near-infrared (NIR) and red bands are
used to calculate the well-known normalised vegetation index (NDVI). Using the NIR and red channels
as input data, the NDVI was obtained using Equation (1), which represents the directly proportional
relationship between photosynthetic activity of the plants and the difference between reflectance in
the NIR and red bands due to the characteristic chlorophyll property of differential absorbance in
both wavelengths.

NDVI =
NIR−Red
NIR + Red

(1)

To detect vegetation pixels in the study area, a sample of non-vegetation areas was statistically
characterised. The sample size was close to 10% of the non-vegetation pixels of the study area.
The maximum NDVI of the sample was used as a threshold to reclassify the NDVI map as vegetation.
This process delivered a binary map containing vegetation and soil points, which was used to mask
the vegetation points. Once the soil points were extracted, the FMI DTM was interpolated.

The fourth method for phytovolume estimation (FCS) is based on the cloth simulation filter for
separate ground and non-ground points. This filter was originally designed by [35] to extract ground
points in discrete return LiDAR point clouds. It consists of a mathematic algorithm that inverts the
DSM, and a rigid cloth covering the inverted surface is assimilated to the inverted DTM. Due to the
cloth’s rigidity, it evolves to ground points, producing the FCS DTM.
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According to the recommendations of [40], the DTMs were interpolated by the inverse distance
weighting method in the four cases with a power of two, searching kernels of 5 × 5 pixels and 2 cm
pixel size.

2.8. Chi-Squared Test and Confusion Matrices

The accuracy of the vegetation detection is a prerequisite for reaching a good phytovolume
estimate. Qualitative and quantitative comparisons [46] determined the ability of the phytovolume
estimators for vegetation detection and occupied volume, respectively.

The difference between DSM and each of the four DTMs must be close to zero in areas occupied
by bare soil. Indirectly, vegetation masses are morphologically defined by all the grouped pixels with a
certain height.

Once vegetation maps were obtained from four DTMs, two quantitative analyses were undertaken.
First, the chi-squared test was applied to all the possible pairwise comparisons of vegetation areas
obtained from phytovolume estimators to detect significant differences between them for vegetation
area detection. Then, the four vegetation maps were compared to a vegetation map obtained by
photointerpretation of the georeferenced RGB orthoimage using error matrix analysis to determine the
accuracy of cross-tabulations expressed by the overall accuracy and kappa coefficient of agreement.
The photointerpretation was completed by digitizing vegetated and non-vegetated areas observed in
the orthoimage, after using a non-supervised classification process to assess the two most frequent
classes in the study area.

For the quantitative analysis to determine the phytovolume estimation ability, first, classified
standardised difference images between all the possible pairwise estimators were obtained with z-scores
divided into six classes. With these studies, the significant differences in phytovolume estimation were
determined. Second, the error of each of phytovolume estimation was calculated, comparing the in
situ observed phytovolume in sample quadrats to the phytovolume estimated at the same locations in
terms of root-mean-square error (RMSE).

The flowchart shown in Figure 6 summarises the methodology applied in this work.
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2.9. UAV-Photogrammetric Products

A total of 242 visible images, about 99% of which were calibrated, and 968 multispectral images,
97% of which were calibrated, were processed. In the bundle adjustment process, a median of 76,600 key
points per image were identified in the visible images dataset, and close to 53,530 keypoints were
identified per multispectral image. All the visible and multispectral orthoimages produced were
resampled to a GSD of 2 cm and georeferenced with an RMS error of 1.9 cm.

The shutter speed was constant and sufficient to reach a transversal and longitudinal overlap of
70% and 55%, respectively, distributed in 11 flight paths. Thus, all the pixels belonging to the study
area were registered in at least five images.

Visible and multispectral sensors were post-calibrated based on the previous internal calibration
by the manufacturer, including the distortion parameters, focal length, centre, and size of the sensors.
For co-registration of the multispectral images, the camera models of the four channels were referenced
to a unique reference using a median of 5089 matches between each pair of channels.

The photogrammetric project was referenced to the official coordinate system in Spain (ETRS89),
UTM zone 30, northern hemisphere, using elevations with respect to MSL. The geoid model was
EGM08, and the accuracies obtained from RTX post-processing were 1.8, 3.4, and 1.1 cm in the X, Y,
and Z coordinates, respectively.

The first partial result obtained from the photogrammetric project was a dense point cloud
(Figure 7) composed of 25.13 million 3D points irregularly distributed, which implies an average
density of 352.57 points/m3.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 19 
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Figure 7. Perspective view of the dense point cloud, centred in the study area and represented as an
RGB composite.

By connecting all the points of the cloud, a TIN was generated by Poisson surface reconstruction [47],
which considers all the points at once, thus reducing data noise. The resulting TIN was composed of
12.7 million vertices and 25.3 million facets.

The DSM was obtained by applying an inverse distance weighting method to interpolate a regular
2 cm matrix that evolves to canopy and bare soil. Two filters were applied to remove noise and smooth
the surface [34,42].
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With this information, the RGB orthoimage and four orthoimages in reflectance units corresponding
to the multispectral channels were orthorectified (Figure 8). All these products were georeferenced
and saved in GeoTIFF format.
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Figure 8. (a) Green, (b) red, (c) red edge, and (d) near-infrared (NIR) orthoimages corresponding to
reflectance, represented in an eight-bits quantitative scale.

3. Results

3.1. Phytovolume Estimation

The FFU and FFC DTMs were interpolated in a regular matrix of 10 cm pixels. When the FMI
method was applied, the maximum NDVI in the sample soil area was 0.35. This value was used
as a threshold to reclassify the NDVI map as vegetation for pixels with NDVI higher than 0.35 and
non-vegetation otherwise (Figure 9). Interpolation of the soil point cloud produced the FMI DTM,
resampled with pixels of 2 cm.
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Figure 9. (a) Detail of the RGB orthoimage composition; (b) non-vegetation points detected by masking
the dense point cloud with a threshold NDVI map.

The set parameters that controlled the extract ground points process by the FCS method were
the 0.4 m cloth resolution or cloth grid size, the maximum number of 500 terrain simulations, and the
0.1 m threshold for classification. The classification threshold refers to a threshold to classify the point
clouds into ground and non-ground parts based on the distances between points and the simulated
terrain. Close to 41.4% of the points were classified as ground points.

In the four described cases, the difference between DSM and DTMs provided raster maps where
each pixel represents the height of the vegetation. By multiplying these values by the surface associated
with a 2 cm2 pixel, four raster maps representing phytovolume estimators were obtained (Figure 10).

3.2. Qualitative and Quantitative Analysis

Two types of result analyses were carried out: Qualitative, to determine the ability of the estimators
for detecting vegetation areas, and quantitative, to evaluate the estimation of phytovolume accuracy.
The qualitative analysis involved three steps. The first was extracting vegetation groups from the four
estimators and reclassifying the difference maps between DSM and the four DTMs. Values close to
zero were considered soil; up to 1.5 m, shrubs; and more than 1.5 m, trees (Figure 11).
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Second, the statistical significance of the difference between vegetation masses detected was
determined using the McNemar chi-squared test with the proportion of joining classes. Tests showed
evidence of differences between all the possible pairwise comparisons of vegetation detected with 95%
confidence, except between FFU and FMI.

Third, the four vegetation areas detected were compared to observed classes, delineated by
photointerpretation. The similarity between reference data and each of the estimators was evaluated
through the corresponding cross-tabulation of confusion matrices, shown by Table 1. Table 2 shows
the resulting kappa and Cramer’s statistics [46,48].

Table 1. Cross-tabulation of confusion matrices corresponding to vegetation areas detected from four
estimators and reference data.

FFU estimator

Vegetation Non-vegetation

Vegetation 571884 24329 596213
Non-vegetation 91475 164812 256287

663359 189141 852500
FFC estimator

Vegetation Non-vegetation

Vegetation 561655 34558 596213
Non-vegetation 111953 144334 256287

673608 178892 852500
FMI estimator

Vegetation Non-vegetation

Vegetation 570672 25541 596213
Non-vegetation 82654 173633 256287

653326 199174 852500
FCS estimator

Vegetation Non-vegetation

Vegetation 568288 27925 596213
Non-vegetation 134578 121709 256287

702866 149634 852500

Table 2. Kappa/Cramer’s V of cross-tabulation combinations of vegetation areas detected and reference
data confusion matrices.

FFU FFC FMI FCS

Vegetation masses reference data 0.651/0.655 0.553/0.487 0.678/0.669 0.486/0.384

A higher similarity with the reference data was presented by FMI and FFU, while FFC and FCS did
not reach levels that could be considered similar to the reference, due to Cramer’s values decreasing
below 0.6.

Some studies were carried out regarding the quantitative analysis to establish the ability for
phytovolume estimation. First, all the pairwise comparisons between the phytovolume estimators,
as defined in Figure 10, were considered, and the six possible differences between them were calculated.
A sample of 2860 data points was extracted from each of the differences, verifying that the distribution
was normal with the Kolmogorov–Smirnov test [46,48] at 95% confidence. To quantify the differences
between estimator pairs, a classified standardised difference image was created for each pair difference,
with z-scores divided into six classes of variance (Figure 12).
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Considering those zones with a z-score higher than two variances to be significant changes,
not one of the possible comparisons presented significant differences except those between FFU and
FFC, in which 11.12% of the study area showed a z-score higher than two variances.

However, a qualitative comparison of the four phytovolume estimators with the in situ observed
phytovolume reference in 768 sample data points was undertaken. The RMSE obtained were 12.3 m,
17.6 m, 66.3 m, and 78.2 m for FMI, FFU, FFC, and FCS, respectively. These ranks suggest that the
characteristic radiometric behaviour of the pixels belonging to the canopy is the most efficient tool for
separating bare soil and vegetation points and hence generate an accurate DTM.

4. Discussion

The order of magnitude of the global agreement obtained in this work was the same as in
previous studies based on biomass estimations using LiDAR remote sensing [3]. Some authors, like [7],
determined a global agreement of 76% to 85% when using fused satellite images with LiDAR for
fuel-type detection. Logistic regression coefficients close to 70% for modelling fire danger based on
satellite imagery were found by [20]. With similar material used in the present work, several fire
severity indices were evaluated by [27] based on UAV data with a kappa of 0.536.

From a practical point of view, FFU and FFC obtain the DTMs from the photogrammetric project.
However, while FFU does not need postprocessing, a dense point cloud classification process must
be carried out in FFC. In order to automate the classification, an unsupervised algorithm based
on the frequency of each class was applied, and five target classes were established. On the other
hand, morphological analysis of the DSM for extracting DTMs in the cases of FFU and FFC is highly
influenced by the scale factor, which has been described as a frequent source of error.

The main advantage of FMI comes from the vegetation index chosen, which is able to accurately
detect vegetated areas. However, the need of near infrared information limits the use of UAV on-board
cameras working on the visible spectrum. Furthermore, dead vegetation tends to be excluded from
phytovolume estimation, although this effect was not significant in this work.

One of the main practical difficulties of FCS is setting the correct parameters of the mathematical
model in each type of terrain. Results of FCS mainly depend on a threshold value to classify the point
clouds into ground and non-ground parts, based on the distances between points and the simulated
terrain. In future works, a sensibility analysis could establish the threshold value with better results,
and supervised classifications could be applied to adapt the phytovolume estimation to each case of
study. Particularly, pixel-based classification by Neural Network and Object Based Image Analysis
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could separate vegetated and non-vegetation areas with higher accuracy, and even recognition of
individual species.

Using radar and satellite data, regression coefficients between 0.6 and 0.9 for biomass modelling
were reported by [18], and fuel-type maps from satellite data with an overall accuracy of 74% were
calculated by [19]. The novelty of the indirect estimations obtained in this study is related to the UAV
data characteristics: High efficiency and flexibility to adapt the accuracy in each case. Compared to
LiDAR, the volume of UAV data is lower. The manpower needed to obtain phytovolume estimation
based on UAV data is lower than that of the manual sample, and UAV allows for work in forests with
limited accessibility at a reasonable cost.

5. Conclusions

According to the obtained results in the Mediterranean forest in this work, FMI was the best
phytovolume estimator, showing the lowest RMSE calculated with the in situ reference data observed
at 768 sample sites grouped in four parcels of 500 m2.

The FMI model was the best for detecting vegetated areas, showing statistically significant
differences, with respect to the other estimators at a confidence level of 95%.

Estimating the surface occupied by shrubs obtained from FFU, FFC and FCS were compared
with FMI, concluding that FMI–FFU comparison presents the best similarity among all the possible
pairwise comparisons.

In absolute terms, FMI is the method that best estimates the surface occupied by vegetation
compared to the vegetation surface observed by photointerpretation and supervised classification.

In relative terms and considering all the possible pairwise comparisons of phytovolume estimation,
differences between them are lower than two variances, except between FFU and FFC.

The use of FMI based on UAV data provides accurate phytovolume estimations that can be
applied to several environment management activities, including wildfire prevention. Multitemporal
phytovolume estimations could help to model the evolution of forest resources in a very realistic way.
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