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Abstract: Fire severity is a key factor for management of post-fire vegetation regeneration strategies
because it quantifies the impact of fire, describing the amount of damage. Several indices have
been developed for estimation of fire severity based on terrestrial observation by satellite imagery.
In order to avoid the implicit limitations of this kind of data, this work employed an Unmanned Aerial
Vehicle (UAV) carrying a high-resolution multispectral sensor including green, red, near-infrared,
and red edge bands. Flights were carried out pre- and post-controlled fire in a Mediterranean forest.
The products obtained from the UAV-photogrammetric projects based on the Structure from Motion
(SfM) algorithm were a Digital Surface Model (DSM) and multispectral images orthorectified in both
periods and co-registered in the same absolute coordinate system to find the temporal differences (d)
between pre- and post-fire values of the Excess Green Index (EGI), Normalized Difference Vegetation
Index (NDVI), and Normalized Difference Red Edge (NDRE) index. The differences of indices
(dEGI, dNDVI, and dNDRE) were reclassified into fire severity classes, which were compared
with the reference data identified through the in situ fire damage location and Artificial Neural
Network classification. Applying an error matrix analysis to the three difference of indices, the
overall Kappa accuracies of the severity maps were 0.411, 0.563, and 0.211 and the Cramer’s Value
statistics were 0.411, 0.582, and 0.269 for dEGI, dNDVI, and dNDRE, respectively. The chi-square
test, used to compare the average of each severity class, determined that there were no significant
differences between the three severity maps, with a 95% confidence level. It was concluded that
dNDVI was the index that best estimated the fire severity according to the UAV flight conditions and
sensor specifications.

Keywords: Fire Severity; UAV; Multispectral Imagery

1. Introduction

One of the factors with the most influence on Mediterranean forest ecosystems is wildfires, as they
damage the vegetation layer, modifying the water and sediment patterns and nutrient cycling [1–3].
Fire severity is a key factor for the management of post-fire vegetation regeneration strategies [4,5]
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because it quantifies the impact of fire, describing the amount of damage inside the boundaries of
a wildfire.

In situ evaluations of fire damage need expert intervention and used to be expensive and
time-consuming. As an alternative, several indirect estimations of burn and fire severity have been
developed based on remote sensing imagery. While the concept of burn severity includes both short-
and long-term impacts of fire on an ecological system, fire severity only quantifies the short-term
effects of fire in the immediate post-fire context [6]. The indirect estimation methods can be divided
into three groups: spectral unmixing [7,8], simulation techniques [9] and spectral indices [10,11].

The Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR) are
two fire severity indices that are more frequently used when multispectral imagery is available,
for example, from the Landsat Thematic Mapper or other terrestrial observation satellites [5,12–17].
Both indices indirectly estimate photosynthetic activity through the characteristic difference between
the red and infrared radiance of healthy plants. Specifically, NDVI uses the near-infrared portion
of the electromagnetic spectrum and NBR uses the shortwave-infrared portion; for example, [18]
determined that shortwave-infrared band registered from the WorldView-3 satellite can provide
valuable information for burn severity pattern detection.

Maybe because the red edge band used not to be available in most of the terrestrial observation
satellite sensors, the Normalized Difference Red Edge (NDRE) has not been used as a fire severity
estimator. Nevertheless, the red edge is sensitive to the chlorophyll content in leaves, variability
in leaf area, and soil background effects, which can be useful for fire damage detection. When
multispectral imagery is not available, some indices have been developed based on the characteristic
difference between the green reflectance of vigorous vegetation and the other visible red and blue
wavelengths [11,19].

The short-term effects of fire on vegetation are directly proportional to the increment of
photosynthetic activity. So, fire severity is estimated through the difference (d) between indices
pre- and post-fire.

Following the development of different sensors carried by satellites and some other aerial platforms
in the last years, fire and burn severity estimations have been carried out. In [20] the authors combined
hyperspectral images from the MODIS satellite with field data to provide reliable estimates of fire
severity levels of damage. Both Aerial Laser Scanners and Terrestrial Laser Scanners were applied
by [21] to map the estimated severity and by [22] to monitor changes in a forest produced by a prescribed
fire, respectively. The potential of radar imagery from the ALOS satellite for mapping burned areas
was studied by [23]. Fire and carbon emissions were estimated by [24] using satellite-based vegetation
optical depth with passive microwave satellite observations. The spatial and temporal distribution of
surface temperature after fire and the severity were evaluated by [14] using thermal imagery from the
Landsat satellite.

Recently, Unmanned Aerial Vehicles (UAVs) have enabled the use of a large variety of sensors
with the capacity for close range sensing and are applied in environmental engineering in general
and for monitoring ecosystem responses to wildfire in particular [25]. Digital cameras operating in
the visible spectrum are used for UAV-photogrammetric projects combined with the Structure from
Motion (SfM) [26] and multi-view stereopsis (MSV) [27] techniques, producing very high-resolution
orthoimages and Digital Elevation Models (DEMs) as well as very dense point clouds of the
terrain [28,29]. When the UAV sensor includes multispectral images, all the indices designed for
satellite imagery can be applied or adapted to UAV applications.

Due to the low altitude of flights and high resolution of the sensors carried by UAVs, the accuracies
of photogrammetric products can reach 0.053 m, 0.070 m, and 0.061 m in the X, Y, and Z directions,
respectively, even in environs with extreme topography [30]. These accuracy levels make it possible to
evaluate severity at a local scale and to calibrate satellite data based on a regional scale, for example [31],
to correlate two fire severity indices obtained from a RGB sensor mounted on a UAV with two other
classic indices obtained from a Landsat satellite, obtaining R2 up to 0.81.
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Furthermore, the facility of UAVs for flight based on the Global Navigation Satellite System
(GNSS) is applied for autonomous navigation and flight route programming, which is very convenient
for multitemporal monitoring of fire impacts on ecosystems and their regeneration. Unlike in satellite
imagery, the temporal resolution of UAV imagery is controlled by the user, so flights can be programmed
post-fire or even at the same time as the fire is occurring.

Despite all the technical characteristics and potential for fire severity classification, as far as we
know, UAV imagery has only been applied for validation of fire severity indices based on remote
sensing [32] and for obtaining fire severity maps based on the visible spectrum [19].

The aim of this work was to evaluate the utility of fire severity multispectral indices based on
very high-resolution spatial imagery for classification of relative fire severity.

2. Materials and Methods

In this paper, the Excess Green Index (EGI) index in the domain of the visible spectrum and
the NDVI and Normalized Difference Red Edge (NDRE) indices in the domain of the multispectral
spectrum were applied to fire severity mapping based on UAV photogrammetric products and
evaluated. The input data included multispectral imagery with visible, red edge, and near-infrared
bands and in situ data evaluated before and after the prescribed fire, taking into account that there
are no precedents in the use of NDRE as a fire severity index. Both flights were carried out pre- and
post-prescribed fires in a Mediterranean shrubland located on the northern face of the Sierra de los
Filabres, belonging to the siliceous territory of the Nevado-Filábride complex, in the Almeria province
of southern Spain.

The differences between pre- and post-fire indices were reclassified into fire severity classes which
were compared, for the purpose of the evaluation indices, with the reference data of fire severity.
This reference map was obtained using in situ sampled data of fire damages as training information
for Object-Based Image Analysis (OBIA) and then this segmentation was applied to supervised
severity classification.

2.1. Study Area

The experimental plot was located on the northern face of the Sierra de los Filabres, with geographic
coordinates of 37◦18’35.30”N, 2◦36’9.67”W (Figure 1), in the Alcóntar municipality, in the province of
Almería (Spain), belonging to the Béticas Mountain range [33]. The forest is 5.5 km and 3.5 km from
the Special Conservation Areas of Calares de Sierra de Baza and Sierra de Baza, respectively, which are
included in the European Natura 2000 Protected Areas Network [34].

The total surface of the study area was 12.42 ha, divided into two zones of 3.41 and 5.61 ha, and
numbered 1 and 2 respectively, where two practices were combined: prescribed fire and directed
grazing after fire. Zones 1 and 2, shaded in Figure 2, were burned on 18 December 2018, and after that,
zone 2 was managed through grazing practice in order to test whether the natural regeneration process
of shrubs after fire is slowed by the cattle action. Fire severity maps were necessary to characterize the
initial fire damage at the beginning of the regeneration process. Average elevation of the study area
was 1288.46 m over the sea level ranging from 1233 to 1240 m and average slope was 41.51%.

The climate in Sierra de los Filabres is classified as semiarid Mediterranean with a short, warm,
arid summer and long, cold, dry winter. The annual average temperature is 13.9 ◦C and the annual
average precipitation is 444 mm. Precipitation is scarce and irregular; pluriannual droughts are
relatively frequent and intense.

The potential vegetation includes mid-mountain basophil holm oaks. Shrubs in regressive phase
abound, as a consequence of anthropogenic action on the territory which is now abandoned, including
old rain-fed crops, mining, and recent reforestation. The two most frequent species are gorse (Genista
scorpius) and esparto grass (Macrochloa tenacissima).

According to the Environmental Information Network of Andalusia (REDIAM) [35], soils in the
study area are classified as eutric cambisols, eutric regosols, and chromic luvisols with lithosols.
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Figure 1. Location and landscape of the study area during the prescribed fire, in Sierra de los Filabres,
Almería province, southern Spain.
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2.2. Unmanned Aerial Vehicle and Sensor

The images used in this work were taken from a rotatory wing DJI Matrice 600 Pro UAV with
six rotors. The UAV was equipped with a Parrot Sequoia multispectral camera [36] mounted on a
motion-compensated three-axis gimbal (Figure 3).
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Figure 3. Unmanned Aerial Vehicle (UAV) system: (a) DJI Matrice 600 Pro with a Parrot Sequoia
multispectral camera onboard and D-RTK navigation antenna; (b) Base station of the D-RTK Global
Navigation Satellite System (GNSS) positioning and navigation device.

The Parrot Sequoia camera (Figure 4) has four sensors with a resolution of 1.2 megapixels
(1280 × 960) that collects multispectral imagery, employing global shutter in the green, red, red-edge
and near-infrared wavelengths. The four lenses have a fixed focal length of 4 mm and horizontal
and vertical FOV of 61.9 and 48.5 respectively. The Average Ground Sample Distance (GSD) was
7.22 cm, corresponding to a flight height of 56 m. Furthermore, the camera includes an integrated
high-resolution RGB sensor of 16 megapixels (4608 × 3456), rolling shutter, and a minimum GSD of
1.5 cm at a flight height of 56 m, which are useful for the UAV photogrammetric process.
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Figure 4. Multi-spectral Sequoia cam (left) and sunshine sensor (right).

One of the most interesting characteristics of this multispectral camera is that it is equipped with
an irradiance sensor to record light conditions in the same spectral bands as the multispectral sensor
and at the same time as the flights. Thanks to this device, light changes throughout the time of flight
can be compensated by calculating the absolute reflectance during post-processing.

The navigation and positioning system of the UAV was based on GNSS with a triple-redundant
antenna system in addition to a differential real time kinematic (d-RTK) device, composed of a double
antenna onboard the UAV and base station that emits real-time corrections to the onboard system.
Using dynamic differential technology, the horizontal and vertical positioning accuracies that can be
achieved are 1 cm + 1 ppm and 2 cm + 1 ppm, respectively, while the orientation accuracy is 1.3 degrees.
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2.3. Flight Route Planning

When the topography is mountainous and the height of flight is low, changes of scale between
images and even within an image can be problematic for photogrammetric process. This is a typical
problem with UAV-photogrammetric flights that can be solved by planning flight routes that are
composed of equidistant waypoints over the terrain.

Both pre-fire and post-fire flights were planned with one unique design (Figure 5), following the
flight route equidistant criteria with an altitude over ground level (AGL) of 56.2 m using UgCS 3.0
PRO software [37]. The reference DSM was previously obtained from a low-resolution prospective
UAV-photogrammetric flight.
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Figure 5. Flight route planned for both pre- and post-fire photogrammetric flights. All the waypoints
have the same altitude over ground level (AGL) of 56.2 m.

At the AGL of 56.2 m, the GSD of the multispectral imagery can reach up to 3 cm. A total of 5475
images were acquired in each of the flights carried out on 17 and 18 December 2018, with longitudinal
and transversal overlaps of 70% and 55% respectively and total time of flight of 38 min at UAV speed
of 4 m/s. At the time of flights, the sun elevation was from 29.33◦ to 23.71◦.

2.4. Survey Campaign

Time series imagery has to be referred to the same coordinate system to be processed. Prior to the
pre- and post-fire image acquisition, 10 ground control points (GCPs) were scattered on the study area
for georeferencing and co-registration following the conclusions of [29,38]. In a survey campaign, 3D
coordinates of GCPs were measured with a highly accurate GNSS receptor Trimble R6 working in
post-processed kinematic mode (PPK) (Figure 6), with the base station at a fixed point on the studied
surface terrain.
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materializing the ground control points (GCPs).

The post-processing was carried out through Trimble Real Time eXtended (RTX) correction
services [39], a high-accuracy global GNSS correction technology that combines real-time data with
positioning and compression algorithms. For RTX post-processed measurements, these dual-frequency
geodetic instruments have a manufacturer’s stated horizontal accuracy specification of up to 2 cm.

Horizontal coordinates were referred to the official reference system in Spain, UTM 30 N (European
Terrestrial Reference System 1989, ETRS89), and elevations were referred to MSL using the EGM08
geoid model.

2.5. Photogrammetric Algorithm

The photogrammetric pre- and post-fire projects were processed using Pix4Dmapper Pro version
3.1.23 [40], a software application based on the SfM and MVS algorithms [26,27] which allows a
significant reduction in the computing time required for most of the processes involved in UAV
multispectral photogrammetric projects.

After previous quality checking of the imagery acquired by the sensor in a complete flight mission,
the internal calibration parameters and coordinates of the image principal points of all the images
were loaded from the EXIF data and considered as initial data for the iterative process of block
adjustment. Sets of tie points in the overlapped areas of the images were automatically identified by
autocorrelation algorithms. It was checked that the number of overlapping images computed for each
pixel of the resulting orthomosaic was sufficient to match a large number of tie points throughout
the study area. The bundle block adjustment process depends directly on the number of 2D and 3D
keypoint observations.

The internal camera parameters, including the radial and decentring distortion coefficients, focal
length, and principal point coordinates, were optimized by an iterative field camera calibration process
for each of the four sensors included in the multispectral camera.

Manual identification of the GCP coordinates in the images made it possible to assign the absolute
geolocation of the photogrammetric block.

Finally, some products were obtained from the photogrammetric projects based on the triangular
irregular network (TIN) resulting from the densified terrain point cloud. These are the Digital
Elevation Model (DEM), an RGB orthoimage, and monochromatic reflectance orthorectified images
corresponding to each of the four channels.
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2.6. Reference Data Map

The evaluation of fire severity indices was carried out using statistical tests that compare the
level of matching between classes of damage estimated from the indices with the reference data
map. According to several authors e.g. [15,19,20], in situ evaluation of the vegetation affected
by fire is time-consuming, expensive, and sometimes unfeasible because of accessibility problems
regarding forest locations [17]. Nevertheless, [32] advised about the potential of RGB UAV imagery for
photointerpretation of fire severity.

In this work, the fire severity was checked in situ in 42 sample plots of 1 m2 distributed in the study
area. This information was georeferenced and used to generate training sites based on the previous
segmentation of the multispectral reflectance. OBIA was applied by [41] for modelling aboveground
forest biomass.

Once a training site map was obtained, the well-known supervised classification algorithm
Artificial Neural Network [42,43] was used to delineate a reference data map.

2.7. Fire Severity Indices

According to [19], the EGI index is the fire severity index belonging to the visible spectrum
domain which best separates three classes of severity maximizing the spectral contrast between pre-
and post-fire UAV imagery by accentuating the differences between the green reflectance peak and the
reflectance of blue and red.

EGI = 2×Green−Red− Blue (1)

NDVI is the most frequently used index for fire severity estimation, classically based on
multispectral satellite imagery. It represents the directly proportional relationship between vegetal
health and the difference between reflectance in the near-infrared (NIR) and red bands due to the
characteristic property of the chlorophyll of differential absorbance in both wavelengths.

NDVI =
NIR−Red
NIR + Red

(2)

The NDRE index is similar to NDVI, but red is substituted by red-edge (RE). In practice, NDRE
can correct two inconveniences that can occur with NDVI [44]. The first is related to the fact that red is
absorbed strongly by the top of the vegetal canopy so that lower levels of the canopy do not contribute
much to the NDVI values. The second is that in certain states of vegetation, the high chlorophyll content
saturates the maximum NDVI value, losing the capacity to represent variability in the vegetation state.
The RE is not as strongly absorbed by the top of the canopy and can reduce both effects.

NDRE =
NIR−RE
NIR + RE

(3)

Once the three indices were calculated with pre- and post-fire imagery, the differences (d) between
the two epochs were calculated. The resulting dEGI, dNDVI, and dNDRE values were reclassified
in four classes including unburned, low, medium, and high severity using statistically established
umbral values.

2.8. Chi-Squared Test and Confusion Matrices

The quality of estimation offered by the three indices was established by means of two statistical
analyses that evaluate the statistical significance of differences in classification accuracy [45]. A confusion
matrix was generated for dEGI, dNDVI, and dNDRE as the predicted classes versus the reference data
map as the actual classes. The accuracy of cross-tabulations, expressed by the overall accuracy and
kappa coefficient of agreement, were evaluated.

Secondly, the statistical significance of the difference between indices was determined by the
McNemar chi-squared test with the proportion of correct allocations.
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All procedures after the UAV photogrammetric projects, involving imagery pretreatment,
calculation of fire severity indices, OBIA classification of reference data, and calibration and validation
assessments, were carried out with the TerrSet Geospatial and Modeling System software version
18.31 [46].

The data processing is summarized in the flowchart shown in Figure 7.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 
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3. Results

3.1. UAV Photogrammetric Products

Both pre- and post-fire flights were processed independently by the same method. Input data
included the three visible channels with 1.2 megapixels and four multispectral channels with 16
megapixels, all of them from Sequoia, and both mixture projects were carried out with Pix4Dmapper
Pro software. Both projects processed close to 1825 visible images, about 98% of which were calibrated
in five blocks and 3650 multispectral images, 95% of them calibrated, covering an area of 33.66 ha. In the
bundle block adjustment assessment, a median of 61,300 keypoints per image were identified in the case
of visible imagery and 10,000 keypoints were identified per multispectral image. In order to address
the photogrammetric projects more efficiently, products obtained from visible and multispectral images
had 7.22 and 3 cm of GSD respectively and were georeferenced with an RMS error of 4 cm.

The image positions were distributed along 22 flight paths with a frequency shutter speed sufficient
to obtain an overlapped mosaic in which every pixel of the final products would be registered in at
least five images.

Based on the laboratory calibration of the internal optical parameters by the manufacturer, a field
calibration was carried out for each of the multispectral and visible sensors, including the distortion
parameters, focal length, centre, and size of the sensors. Regarding the internal co-registration of the
multispectral images, all four model cameras were referred to a unique reference through a median of
5320 matches between each pair of channels.
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Once the photogrammetric blocks had been adjusted, they were referenced to the official coordinate
system UTM zone 30, northern hemisphere, and elevations referred to MSL with the EGM08 geoid
model through the base coordinates obtained from RTX post-processing with accuracies of 1.8, 3.4, and
1.1 cm in the X, Y, and Z coordinates respectively.

The results include a dense point cloud covering the surface, the DSM, and visible and multispectral
orthoimagery. The point clouds were composed of 76.97 million 3D points, which implies an average
density of 43.97 points/m3, irregularly distributed (Figure 8).
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Applying the Inverse Distance Weighting method, both DSMs were obtained from their respective
point clouds. The last step in the photogrammetric process was to orthorectify all the visible and
multispectral pre- and post-fire images using their respective DSMs with their original pixel size
(Figure 9).Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 

 

  
(a) (b) 

  

(c) (d) 

 
 

Figure 9. (a) Green, (b) red, (c) red edge, and (d) NIR orthoimages corresponding to reflectance post-307 
fire imagery, represented in quantitative scale. 308 

All the pre- and post-fire images were co-registered and resampled to a common GSD of 5 cm 309 
to carry out multitemporal operations, obtaining the fire severity estimator indices and the fire 310 
severity reference data with TerrSet software. 311 

3.2. Fire Severity Reference Data 312 

The three steps involved in the OBIA classification procedure that produced the fire severity 313 
reference data were segmentation of the study area into homogenous spectral similarity units, 314 
training, and classification. 315 

The segmentation procedure creates an image of segments that have spectral similarity across 316 
the space and multispectral bands. Firstly, an image of variance of each of the bands was calculated 317 
as an estimator of variability. In these images, each pixel represents the variance of a 3 × 3 pixel 318 
window centred on it. An averaged variance image was obtained by weighted averaging of all 319 
variance images. The same weight was considered for all the bands. In the second step, the variance 320 
image was used as a DEM in a watershed delineation, labelling every catchment independently. 321 
Finally, a generalization process was applied to merge those neighbouring catchments that fulfilled 322 
two conditions: the similarity must be high and the difference between the mean and standard 323 
deviation of the catchments must be less than a preset threshold that controls the generalization level. 324 

Typically, the segmentation data input includes multispectral bands, but taking into account 325 
that fire effects are related to modification between pre- and post-fire DSMs, the input data set was 326 
integrated by green, red, and red edge bands corresponding to the post-fire orthoimagery and d-327 
DSM, each of them weighted by 0.2. 328 

In order to obtain a training image, 42 samples of 1 m2 each were recorded in situ and 329 
georeferenced and the fire severity level was measured as low, medium, or high class. This 330 
classification was assigned to the segments with the same position as the in situ samples, obtaining a 331 
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All the pre- and post-fire images were co-registered and resampled to a common GSD of 5 cm to
carry out multitemporal operations, obtaining the fire severity estimator indices and the fire severity
reference data with TerrSet software.

3.2. Fire Severity Reference Data

The three steps involved in the OBIA classification procedure that produced the fire severity
reference data were segmentation of the study area into homogenous spectral similarity units, training,
and classification.

The segmentation procedure creates an image of segments that have spectral similarity across
the space and multispectral bands. Firstly, an image of variance of each of the bands was calculated
as an estimator of variability. In these images, each pixel represents the variance of a 3 × 3 pixel
window centred on it. An averaged variance image was obtained by weighted averaging of all variance
images. The same weight was considered for all the bands. In the second step, the variance image
was used as a DEM in a watershed delineation, labelling every catchment independently. Finally,
a generalization process was applied to merge those neighbouring catchments that fulfilled two
conditions: the similarity must be high and the difference between the mean and standard deviation of
the catchments must be less than a preset threshold that controls the generalization level.
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Typically, the segmentation data input includes multispectral bands, but taking into account
that fire effects are related to modification between pre- and post-fire DSMs, the input data set was
integrated by green, red, and red edge bands corresponding to the post-fire orthoimagery and d-DSM,
each of them weighted by 0.2.

In order to obtain a training image, 42 samples of 1 m2 each were recorded in situ and georeferenced
and the fire severity level was measured as low, medium, or high class. This classification was assigned
to the segments with the same position as the in situ samples, obtaining a training image. Spectral
signatures extracted from the training sites showed that a higher severity level more closely matched
the typical signature of bare soil (Figure 10), while low severity maintained a high difference between
the NIR and red bands of typical healthy vegetation.
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Figure 10. Averaged reflectance of three fire severity levels (low, medium and high) obtained from
training sites for multispectral dimension.

A separability analysis was carried out over all possible pairwise combinations of the three
spectral signatures, obtaining the Transformed Divergence as a separability measure [47] (Table 1).
The average separability over all pairwise combinations of signatures was 1237.44 using a scale factor
of 2000.

Table 1. Transformed Divergence between all pairwise combinations of spectral signatures.

High Medium Low

High - 868.76 1612.71
Medium - 930.85

Low -
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The classification process was carried out by a multi-layer perceptron neural network classifier,
using a back-propagation algorithm [47,48]. The training assessment used spectral signatures
characterized in the training image in an iterative process with an initial dynamic learning rate
of 0.01, a momentum factor of 0.5, and a sigmoid constant of 1. After almost 10,000 iterations the
training RMS was 0.039 and the testing RMS was 0.040. The artificial neural network was composed of
one input layer with four neurons, corresponding to the multispectral bands, one single hidden layer
of five neurons, and one output layer with three neurons corresponding to the three severity classes.
Once the artificial neural network was trained, a pixel-based classification was obtained. In order to
avoid the difficulties associated with the typical dispersion of pixel-based classification, generalization
was carried out, resulting in an object-based classification using a majority rule classifier based on the
majority class within a segment (Figure 11).

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 18 

 

 

(a) 

 
 

 
(b) 

Figure 11. Fire severity reference data: (a) pixel-based classification obtained from artificial neural 353 
network; (b) object-based classification by generalization of pixel-based classification through 354 
majority rule. 355 

3.3. Fire Severity Indexes 356 

The three selected indices were calculated with pre- and post-fire imagery (Figure 12). The 357 
resulting EGI image is in the range of –63 to 154 radiance units. Instead, both NDVI and NDVI are in 358 
the dimensionless range from –1 to 1. In all cases, higher values of the indices indicate greater vegetal 359 
vigour. 360 

 
 

 

(a)  (d) 

 
 

 

(b)  (e) 

 
 

 

(c)  (f) 

Figure 11. Fire severity reference data: (a) pixel-based classification obtained from artificial neural
network; (b) object-based classification by generalization of pixel-based classification through
majority rule.

3.3. Fire Severity Indexes

The three selected indices were calculated with pre- and post-fire imagery (Figure 12). The resulting
EGI image is in the range of −63 to 154 radiance units. Instead, both NDVI and NDVI are in the
dimensionless range from−1 to 1. In all cases, higher values of the indices indicate greater vegetal vigour.

The difference between pre- and post-fire index images is related to the loss of vegetation vigour
caused by the effects of fire. The values of the three difference of indices were reclassified as high,
medium, and low severity using threshold values that separate three classes with the same proportion
of fire severity reference data. The resulting pixel-based classifications corresponding to each of the
difference of indices were generalized to object-based by the majority rule classification, using the same
segments which were obtained in the reference data classification process (Figure 13).
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Figure 12. (a) Excess Green Index (EGI), (b) Normalized Difference Vegetation Index (NDVI), and (c)
NDRE images corresponding to pre-fire imagery; (d) EGI, (e) NDVI, and (f) Normalized Difference
Red Edge (NDRE) images corresponding to post-fire imagery. The same quantitative legend ranging
from −1 to 1 has been used for NDVIs and NDREs while a different quantitative legend was applied
for EGIs.
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4. Discussion

Many authors [29,30,38] recognize that changes in scale in UAV photogrammetric imagery are a
very important source of error in the products, especially for terrain with strong topography. In the
case of this work, the difference in altitudes in the study area was 114.5 m, with an average slope
of 69.20 degrees with a standard deviation of 145.31 degrees. In these conditions, a prospective
low-resolution DSM was obtained prior to pre- and post-fire data collection. The flight routes were
planned with a constant height of flight with respect to the prospective DSM. With this practice,
errors associated with scale variation in the input images were reduced, incrementing significantly the
geometric accuracy of the orthoimages.

Regarding the radiometic resolution of the orthoimages, [19] concluded that it was necessary
to transform the recorded digital levels of raw images into reflectance units in order to carry out
multitemporal comparisons. In this work, radiometric correction was applied using the irradiance
models based on the differences between camera images and the sun sensor registers of the camera.
The result was that some variations of light conditions during the flights and between flights were
normalized, transforming the digital numbers into irradiance in the pixels of all the orthoimages.
Nevertheless, [19] advised that there is a loss of accuracy in such photogrammetric flights carried
out with many projected shadows. Figure 8 shows that pre- and post-fire imagery presented small
shadows projected by small vegetation. Furthermore, post-fire imagery presented a large shadow
produced by the surrounding topographic morphology. None of these shadows were related to a
loss of accuracy of the fire severity estimators, maybe because of the very light conditions in both
photogrammetric flights.

The accuracy of the survey campaign for georeferencing and co-registering of the orthoimages is
critical for obtaining good results. Some authors [29,30,38] consider differential GNSS systems working
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in RTK mode to be appropriate for this purpose. In this work, this kind of device was used, and a
post-processing RTX was carried out with an RMS of the same order of magnitude as in previous works.

Transformed Divergence is the most commonly used separability measure. A common rule of
thumb when using a constant multiplier of 2000 is to use a value of 1600 as the threshold. For example,
values of 1600 or more represent signatures with good separability. See the reference to Richards (1993)
in Note 6 below for more detail.

Neural network classification based on OBIA for delineating the shape of severity classes was
demonstrated to be an objective way to establish the reference data based on in situ sample evaluations,
as recognized by [25,32]. In order to separate pixels or segments belonging to one or another severity
class, a threshold value has to be previously established. In most of the previous works, the classes
were photointerpreted, and in some works, the classes were validated with in situ information.
In this work, a neural network algorithm established those thresholds based on an objective statistical
characterization of the classes, and were validated with photointerpretation and the reference data
collected in situ. Furthermore, a separability study of the classes was carried out to detect possible
confusions a priori, which allowed the application of an iterative process to refine the class delineation.
According to [47], values of Transformed Divergence higher than 1600 indicate signatures with good
separability. According to the results listed in Table 1, the medium class has more likelihood of
confusion with other classes, especially the high class. A suggested future line of research is to
apply the Random Forest algorithm [41] to classify the reference data with the aim of minimizing the
confusion between classes.

Although NDRE is in general indicated for vegetation masses in a disperse or low-vigour state,
due to the tendency of NDVI to become saturated, McNemar chi-squared tests showed no evidence of
differences between all the possible pairwise comparisons of fire severity indices with 95% confidence.
This fact could be explained by the high density of shrubs present in the study area.

The similarity between reference data and the three fire severity indices was evaluated through the
corresponding cross-tabulation of confusion matrices. Table 2 shows the results of these comparisons
based on the Kappa and Cramer’s Value statistics [45,49].

Table 2. Kappa/Cramer’s V of cross-tabulation combinations of fire severity indices and reference data
confusion matrices.

d-EGI d-NDVI d-NDRE

Severity fire Reference data 0.441/0.411 0.536/0.582 0.211/0.269

The order of magnitude of the Kappa statistic is similar that those obtained by [19], which tested
only indices based on the visible spectrum. They show Kappa values of 0.37, 0.31 and 0.06 for three
indexes obtained from the visible spectrum (EGI, EGIR and MEGI respectively). They concluded
that image differencing using RGB UAV imagery is able to classify fire severity at a local scale
(10,000 m2–1 km2) with satisfactory accuracies. The resulting Kappa value of 0.536, associate to d-NDVI
index, improves those obtained by [19] likely because the use of multispectral bands instead of visible,
and the classification algorithms applied.

5. Conclusions

Regarding the d-EGI, d-NDVI, and d-NDRE comparison, no significant differences were obtained
between their classes but the similarity between d-NDVI and the reference data was higher. Therefore,
d-NDVI is the best estimator of fire severity obtained from multispectral UAV-imagery flying
at a constant height close to 55 m above the terrain of a forest environ with high slopes and
Mediterranean vegetation.

Very high-resolution multispectral UAV imagery was demonstrated to be adequate for satisfactory
estimation of fire severity based on the analysis of pre- and post-fire images, at a local scale up to 15 ha.
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The artificial neural network algorithm based on OBIA segmentation was an objective method
of characterizing the fire severity reference data according to the measurements collected in situ and
validated with orthoimagery photointerpretation.
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