
symmetryS S

Article

Calculating Hausdorff Dimension in Higher
Dimensional Spaces

Manuel Fernández-Martínez 1 , Juan Luis García Guirao 2,* and
Miguel Ángel Sánchez-Granero 3

1 University Centre of Defence at the Spanish Air Force Academy, MDE-UPCT,
30720 Santiago de la Ribera, Murcia, Spain; fmm124@gmail.com

2 Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena,
Hospital de Marina, 30203 Cartagena, Murcia, Spain

3 Departamento de Matemáticas, Universidad de Almería, 04120 La Cañada de San Urbano, Almería, Spain;
misanche@ual.es

* Correspondence: juan.garcia@upct.es

Received: 4 April 2019; Accepted: 17 April 2019; Published: 18 April 2019
����������
�������

Abstract: In this paper, we prove the identity dim H(F) = d · dim H(α
−1(F)), where dim H denotes

Hausdorff dimension, F ⊆ Rd, and α : [0, 1]→ [0, 1]d is a function whose constructive definition is
addressed from the viewpoint of the powerful concept of a fractal structure. Such a result stands
particularly from some other results stated in a more general setting. Thus, Hausdorff dimension of
higher dimensional subsets can be calculated from Hausdorff dimension of 1-dimensional subsets of
[0, 1]. As a consequence, Hausdorff dimension becomes available to deal with the effective calculation
of the fractal dimension in applications by applying a procedure contributed by the authors in
previous works. It is also worth pointing out that our results generalize both Skubalska-Rafajłowicz
and García-Mora-Redtwitz theorems.
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1. Introduction

Fractal dimension is a leading tool to explore fractal patterns on a wide range of scientific contexts
(c.f., e.g., [1–3]). In the mathematical literature, there can be found (at least) a pair of theoretical results
allowing the calculation of the box dimension of Euclidean objects in Rd in terms of the box dimension
of 1-dimensional Euclidean subsets. To attain such results, the concept of a space-filling curve plays
a key role. By a space-filling curve we shall understand a continuous map F from I1 = [0, 1] onto
the d-dimensional unit cube, Id = [0, 1]d. It turns out that a one-to-one correspondence can be stated
among closed real subintervals of the form [k δnd, (1 + k) δnd] for k = 0, 1, . . . , δ−nd − 1, and sub-cubes
F ([k δnd, (1 + k) δnd]) with lengths equal to δn, where δ is a value depending on each space-filling
curve. For instance, δ = 1

2 in both Hilbert’s and Sierpiński’s square-filling curves, and δ = 1
3 in the

case of the Peano’s filling curve. It is worth pointing out that space-filling curves satisfy the two
following properties.

Remark 1. Let F : I1 → Id be a space-filling curve. The two following hold.

1. F is continuous and lies under the Hölder condition, i.e., ‖F (x)−F (y)‖ ≤ κd · |x− y| 1d for all x, y ∈ I1,
where ‖ · ‖ denotes the Euclidean norm (induced in Id), and κd > 0 is a constant which depends on d.

2. F is Lebesgue measure preserving, namely, µd(B) = µ1(F−1(B)) for each Borel subset B of Id, where µd
denotes the Lebesgue measure in Id and F−1(B) = {t ∈ I1 : F (t) ∈ B}.
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As it was stated in ([4], Subsection 3.1), many space-filling curves satisfy (1). On the other hand,
despite F cannot be invertible, it can be still proved that F is a.e. one-to-one (c.f. [5,6]). Following the
above, Skubalska-Rafajłowicz stated the following result in 2005.

Theorem 1 (c.f. Theorem 1 in [4]). Let F be a subset of Id and assume that there exists dim B(F).
Then dim B(Ψ(F)) also exists and it holds that

dim B(F) = d · dim B(Ψ(F)),

where Ψ : Id → I1 is a quasi-inverse (in fact, a right inverse) of F , namely, it satisfies that Ψ(x) ∈ F−1(x),
i.e., F (Ψ(x)) = x for all x ∈ Id.

The applicability of Theorem 1 for fractal dimension calculation purposes depends on
a constructive method to properly define that quasi-inverse Ψ. In other words, for each x ∈ Id,
it has to be (explicitly) specified how to select a pre-image of x. Interestingly, for some Lebesgue
measure preserving space-filling curves (including the Hilbert’s, the Peano’s, and the Sierpiński’s ones),
it holds that F−1({x}) is either a single point or a finite real subset. As such, suitable definitions of Ψ
can be provided in these cases. It is worth noting that whether both properties (1) and (2) stand, then the
quasi-inverse Ψ becomes Lebesgue measure preserving, i.e., µd(Ψ−1(A ∩ Ψ(Id))) = µ1(A ∩ Ψ(Id))

for each Borel subset A of I1. Moreover, since the (Lebesgue) measure of Ψ(B) \ F−1(B) is equal
to zero, then we have µ1(Ψ(B)) = µ1(F−1(B)) = µd(B) for all Borel subsets B of Id. Therefore,
if diam (Ψ(B)) = δ, then diam (B) ≤ δ

1
d .

On the other hand, García et al. recently contributed a theoretical result also allowing the
calculation of the box dimension of d-dimensional Euclidean subsets in terms of an asymptotic
expression involving certain quantities to be calculated from 1-dimensional subsets. To tackle this,
they used the concept of a δ-uniform curve, that may be defined as follows. Let δ > 0. We recall
that a δ-cube in Rd is a set of the form [k1 δ, (1 + k1) δ]× · · · × [kd δ, (1 + kd) δ], where k1, . . . , kd ∈ Z.
LetMδ(Id) denote the class of all δ-cubes in Id. Thus, if N ≥ 1 and δ = 1

N , we shall understand that
γ : I1 → Id is a δ-uniform curve in Id if there exists a δ-cube in Id, a δd-cube in I1, and a one-to-one
correspondence, φ : Mδd(I1) → Mδ(Id), such that γ(J) ⊂ φ(J) for all J ∈ Mδd(I1) (c.f. ([7],
Definition 3.1)). Moreover, let s > 0, F be a subset of Id, and Nδ(F) be the number of δ-cubes in
Id that intersect F. The s-body of F is defined as Fs = {x ∈ Id : ‖x− y‖ ≤ s for some y ∈ F}. Following
the above, their main result is stated next.

Theorem 2 (c.f. Theorem 4.1 in [7]). Let N > 1, δ = 1
N , and γδ : I1 → Id be an injective δ-uniform curve in

Id. Moreover, let F be a (nonempty) subset of Id, and Fs its s-body, where s = δ
√

d. Then the (lower/upper) box
dimension of F can be calculated throughout the next (lower/upper) limit:

dim B(F) = lim
δ→0

logNδd(γ−1
δ (Fs))

− log δ
.

It is worth mentioning that Theorem 2 is supported by the existence of injective δ-uniform curves
in Id as the result below guarantees.

Proposition 1 (c.f. Lemma 3.1 and Corollary 3.1 in [7]). Under the same hypotheses as in Theorem 2,
the two following stand.

1. There exists an injective δ-uniform curve in Id, γδ : I1 → Id.
2. logNδd(γ−1

δ (Fs)) = logNδ(F) + O(1).

From a novel viewpoint, along this article, we shall apply the powerful concept of a fractal structure
in order to extend both Theorems 1 and 2 to the case of Hausdorff dimension. Roughly speaking,
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a fractal structure is a countable family of coverings which throws more accurate approximations to
the irregular nature of a given set as deeper stages within its structure are explored (c.f. Section 2.1 for
a rigorous description). In this paper, we shall contribute the following result in the Euclidean setting.

Theorem 3. There exists a curve α : I1 → Id such that for each subset F of Rd, the two following hold:

1. If there exists dim B(F), then dim B(α
−1(F)) also exists, and dim B(F) = d · dim B(α

−1(F)).
2. dim H(F) = d · dim H(α

−1(F)).

As such, Theorem 3 gives the equality (up to a factor, namely, the embedding dimension) between
the box dimension of a d-dimensional subset F and the box dimension of its pre-image, α−1(F) ⊆ R.
Interestingly, such a theorem also allows calculating Hausdorff dimension of d-dimensional Euclidean
subsets in terms of Hausdorff dimension of their 1-dimensional pre-images via α. It is worth pointing
out that Section 6 provides an approach allowing the construction of that map α : I1 → Id (as well as
appropriate fractal structures) to effectively calculate the fractal dimension by means of Theorem 24.
It is also worth noting that Theorem 3 stands as a consequence of some other results proved in more
general settings (c.f. Section 4).

More generally, let X, Y be a pair of sets. The main goal in this paper is to calculate the
(more awkward) fractal dimension of objects contained in Y in terms of the (easier to be calculated)
fractal dimension of subsets of X through an appropriate function α : X → Y. In other words, we shall
guarantee the existence of a map α : X → Y satisfying some desirable properties allowing to achieve the
identity dim (F) = d · dim (α−1(F)), where F ⊆ Y, α−1(F) ⊆ X, and dim refers to fractal dimensions
I, II, III, IV, and V (introduced in previous works by the authors, c.f. [8–10]), as well as the classical
fractal dimensions, namely, both box and Hausdorff dimensions. The nature of both spaces X and Y
will be unveiled along each section in this paper. Interestingly, our results could be further applied
to calculate the fractal dimension in non-Euclidean contexts including the domain of words (c.f. [11])
and metric spaces such as the space of functions or the hyperspace of Y (namely, the set containing all
the closed or compact subsets of Y) to list a few. For X we can use [0, 1], where calculations are easier,
but also other spaces like the Cantor set {0, 1}N which is also a place where the calculations are easy.

The calculation of the box dimension of Euclidean subsets could be carried out easily in the setting
of lower dimensional spaces. However, the complexity of the underlying calculations grows as the
Euclidean dimension increases (c.f. ([4], Introduction)). On the other hand, in ([12], Section 3.1) it was
contributed a novel algorithm allowing the calculation of the Hausdorff dimension of real subsets.
At a first glance, such a procedure could be further extended to allow the calculation of the Hausdorff
dimension of subsets of higher dimensional Euclidean spaces. In this paper, though, we shall contribute
some theoretical results that will allow the calculation of the Hausdorff dimension of subsets of Rd in
terms of the Hausdorff dimension of subsets of R. This fact could be understood as an advantage of
that approach, since this way calculations in Rd are avoided. In addition, the robustness is guaranteed
in regards to the training of such a procedure, since the SVM has to be trained by real subsets instead
of subsets of Rd. In this way, it is not needed to train a SVM for each Euclidean dimension.

The structure of this article is as follows. Firstly, Section 2 contains the basics on the fractal
dimension models for a fractal structure that will support the main results to appear in upcoming
sections. Section 3 is especially relevant since it provides the main requirements to be satisfied in
most of the theoretical results contributed throughout this paper (c.f. Main Hypotheses 1). It is worth
mentioning that such conditions are satisfied, in particular, by the natural fractal structure on each
Euclidean subset (c.f. Definition 1). Section 3.1 contains several results allowing the calculation of the
box type dimensions (namely, fractal dimensions I, II, III, and standard box dimension, as well) for
a map α : X → Y and generic spaces X and Y, each of them endowed with a fractal structure satisfying
some conditions. Similarly, in Section 3.2, we explain how to deal with the calculation of Hausdorff
type dimensions (i.e., fractal dimensions IV, V, and classical Hausdorff dimension). As a consequence of
them, in Section 4 we shall prove some results for both the box and Hausdorff dimensions. In addition,
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we would like to highlight Theorem 3 as a more operational version of both Theorems 19 and 21 in
the Euclidean setting (c.f. Section 5). That result becomes especially appropriate to tackle applications
of fractal dimension in higher dimensional Euclidean spaces and lies in line with both Theorems 1
and 2 (with regard to the box dimension). In Section 6, we explore a constructive approach to define
an appropriate function α : X → Y satisfying all the required conditions. For illustration purposes,
we include some applications of that result to iteratively construct both the Hilbert’s square-filling
curve as well as a curve filling the whole Sierpiński triangle. Finally, Section 7 synthesises the main
conclusions in this article.

2. Key Concepts and Starting Results

2.1. Fractal Structures

Fractal structures were first sketched by Bandt and Retta in [13] and formally defined
afterwards by Arenas and Sánchez-Granero in [14] to characterize non-Archimedean quasi-metrization.
By a covering of a nonempty set X, we shall understand a family Γ of subsets of X such that
X = ∪{A : A ∈ Γ}. Let Γ1 and Γ2 be two coverings of X. The notation Γ2 ≺ Γ1 means that Γ2 is
a refinement of Γ1, i.e., for all A ∈ Γ2, there exists B ∈ Γ1 such that A ⊆ B. In addition, by Γ2 ≺≺ Γ1,
we shall understand both that Γ2 ≺ Γ1 and also that B = ∪{A ∈ Γ2 : A ⊆ B} for all B ∈ Γ1. Thus,
a fractal structure on X is a countable family of coverings Γ = {Γn}n∈N such that Γn+1 ≺≺ Γn. The pair
(X, Γ) is called a GF-space and covering Γn is named level n of Γ. Along the sequel, we shall allow
that a set could appear twice or more in any level of a fractal structure. Let x ∈ X and Γ be a fractal
structure on X. Then we can define the star at x in level n ∈ N as St(x, Γn) = ∪{A ∈ Γn : x ∈ A}. Next,
we shall describe the concept of natural fractal structure on any Euclidean space that will play a key
role throughout this article.

Definition 1 (c.f. Definition 3.1 in [9]). The natural fractal structure on the Euclidean space Rd is given by
the countable family of coverings Γ = {Γn : n ∈ N} with levels defined as

Γn =

{[
k1

2n ,
1 + k1

2n

]
× · · · ×

[
kd
2n ,

1 + kd
2n

]
: k1, . . . , kd ∈ Z

}
.

As such, the natural fractal structure on Rd is just a tiling consisting of 1
2n -cubes on Rd. Notice also

that natural fractal structures may be induced on Euclidean subsets of Rd. For instance, the natural
fractal structure on [0, 1] ⊂ R is the countable family of coverings Γ with levels given by Γn =

{[ k
2n , 1+k

2n ] : k = 0, 1, . . . , 2n − 1} for all n ∈ N.

2.2. Fractal Dimensions for Fractal Structures

The fractal dimension models for a fractal structure involved in this paper, namely, fractal
dimensions I, II, III, IV, and V, were introduced previously by the authors (c.f. [8–10]) and proved
to generalize both box and Hausdorff dimensions in the Euclidean setting (c.f. ([9], Theorem 3.5,
Theorem 4.7), ([8], Theorem 4.15), ([10], Theorem 3.13)) through their natural fractal structures (c.f. ([9],
Definition 3.1)). Thus, they become ideal candidates to explore the fractal nature of subsets. Next,
we recall the definitions of all the box type dimensions that appeared throughout this article.

Definition 2 (box type dimensions). Let F be a subset of X.

1. ([15]) If X = Rd, then the (lower/upper) box dimension of F is defined through the (lower/upper) limit

dim B(F) = lim
δ→0

logNδ(F)
− log δ

,

whereNδ(F) can be calculated as the number of δ-cubes that intersect F (among other equivalent quantities).
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2. (c.f. Definition 3.3 in [9]) Let Γ be a fractal structure on X. We shall denoteAn(F) = {A ∈ Γn : A∩ F 6=
∅} and Nn(F) = Card (An(F)), as well. The (lower/upper) fractal dimension I of F is given by the next
(lower/upper) limit:

dim 1
Γ(F) = lim

n→∞

logNn(F)
n log 2

.

3. Let Γ be a fractal structure on a metric space (X, ρ).

(a) (c.f. Definition 4.2 in [9]) Let us denote diam (F, Γn) = sup{diam (A) : A ∈ An(F)},
where diam (A) = sup{ρ(x, y) : x, y ∈ A}, as usual. The (lower/upper) fractal dimension
II of F is defined as

dim 2
Γ(F) = lim

n→∞

logNn(F)
− log diam (F, Γn)

.

(b) (c.f. Definition 4.2 in [8]) Let s > 0, assume that diam (F, Γn)→ 0, and define

Hs
n,3(F) = inf

{
∑ diam (Ai)

s : {Ai}i∈I ∈ An,3(F)
}

,

where An,3(F) = {Al(F) : l ≥ n}. Further, let Hs
k(F) = limn→∞Hs

n,k(F). The fractal
dimension III of F is the (unique) critical point satisfying that

dim 3
Γ(F) = sup{s ≥ 0 : Hs

3(F) = ∞} = inf{s ≥ 0 : Hs
3(F) = 0}.

Let (X, ρ) be a metric space, δ > 0, and F be a subset of X. By a δ-cover of F, we shall understand
a countable family of subsets of X, {Ui}i∈I , with diam (Ui) ≤ δ for all i ∈ I and such that F ⊆ ∪i∈IUi.
Next, we provide the definitions for all Hausdorff type definitions involved in this paper.

Definition 3 (Hausdorff type dimensions). Let (X, ρ) be a metric space, s > 0, and F be a subset of X.

1. ([16]) Let Cδ(F) denote the class of all δ-covers of F, define

Hs
δ(F) = inf

{
∑
i∈I

diam (Ui)
s : {Ui}i∈I ∈ Cδ(F)

}
,

and let the s-dimensional Hausdorff measure of F be given by

Hs
H(F) = lim

δ→0
Hs

δ(F).

Hausdorff dimension of F is the (unique) critical point satisfying that

dim H(F) = sup{s ≥ 0 : Hs
H(F) = ∞} = inf{s ≥ 0 : Hs

H(F) = 0}.

2. Let Γ be a fractal structure on a metric space (X, ρ), assume that diam (F, Γn) → 0, and define
(c.f. Definition 3.2 in [10])

(a)
Hs

n,4(F) = inf
{
∑ diam (Ai)

s : {Ai}i∈I ∈ An,4(F)
}

,

where An,4(F) = {{Ai}i∈I : Ai ∈ ∪l≥nΓl , F ⊆ ∪i∈I Ai, Card (I) < ∞}, and Hs
4(F) =

limn→∞Hs
n,4(F). The fractal dimension IV of F is the (unique) critical point satisfying that

dim 4
Γ(F) = sup{s ≥ 0 : Hs

4(F) = ∞} = inf{s ≥ 0 : Hs
4(F) = 0}.

(b)
Hs

n,5(F) = inf
{
∑ diam (Ai)

s : {Ai}i∈I ∈ An,5(F)
}

,
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where An,5(F) = {{Ai}i∈I : Ai ∈ ∪l≥nΓl , F ⊆ ∪i∈I Ai}, and Hs
5(F) = limn→∞Hs

n,5(F).
The fractal dimension V of F is the (unique) critical point satisfying that

dim 5
Γ(F) = sup{s ≥ 0 : Hs

5(F) = ∞} = inf{s ≥ 0 : Hs
5(F) = 0}.

It is worth pointing out that fractal dimensions III, IV, and V always exist since the sequences
{Hs

n,k(F)}n∈N are monotonic in n ∈ N for k = 3, 4, 5.

2.3. Connections among Fractal Dimensions

Next, we collect some theoretical links among the box (resp., Hausdorff) dimension and the fractal
dimension models for a fractal structure introduced in previous Section 2.2. The following result
stands in the Euclidean setting.

Theorem 4. Let Γ be the natural fractal structure induced on F ⊆ Rd. The following statements hold.

1. (c.f. [9], Theorem 3.5) dim B(F) = dim 1
Γ(F).

2. (c.f. [9], Theorem 4.7) dim B(F) = dim 2
Γ(F).

3. (c.f. [8], Theorem 4.15) dim B(F) = dim 3
Γ(F).

4. (c.f. [10], Theorem 3.12) dim H(F) = dim 4
Γ(F) for each compact subset F of Rd.

5. (c.f. [10], Theorem 3.10) dim H(F) = dim 5
Γ(F).

It is also worth pointing out that under the κ-condition for a fractal structure we recall next,
the box dimension equals both fractal dimensions II and III on a generic GF-space.

Definition 4. Let Γ be a fractal structure on X. We say that Γ lies under the κ-condition if there exists a natural
number κ such that for all n ∈ N, every subset A of X with diam (A) ≤ diam (Γn) intersects at most to κ

elements in Γn.

Theorem 5 (c.f. [9], Theorem 4.13 (1)). Assume that Γ satisfies the κ-condition. If diam (F, Γn) → 0 and
there exists dim B(F), then dim B(F) = dim 2

Γ(F).

Theorem 6 (c.f. [8], Theorem 4.17). Assume that Γ is under the κ-condition. If diam (A) = diam (F, Γn)

for all A ∈ An(F), then dim B(F) = dim 3
Γ(F).

3. Calculating the Fractal Dimension in Higher Dimensional Spaces

First, we would like to point out that all the results contributed throughout this section stand
in the setting of metric spaces, whereas the results provided in both [4,7] hold for Euclidean subsets
regarding the box dimension.

Let X and Y denote metric spaces. The following hypothesis will be required in most of the
theoretical results contributed hereafter.

Main Hypotheses 1. Let α : X → Y be a function between a pair of GF-spaces, (X, Γ) and (Y, ∆),
with ∆ = α(Γ). Assume, in addition, that there exists a pair of real numbers, d and c 6= 0, such that the
following identity stands for each A ∈ Γn and all n ∈ N:

diam (α(A))d = c · diam (A). (1)

3.1. Calculating the Box Type Dimensions in Higher Dimensional Spaces

Lemma 1. Let F ⊆ Y, n ∈ N, and A ∈ Γn. Then

A ∩ α−1(F) 6= ∅⇔ α(A) ∩ F 6= ∅.
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Proof. Next, we shall prove both implications.

(⇒) Let x ∈ A ∩ α−1(F). Thus, α(x) ∈ α(A) as well as α(x) ∈ F. Hence, α(x) ∈ α(A) ∩ F,
so α(A) ∩ F 6= ∅.

(⇐) Let y ∈ α(A) ∩ F. Since y ∈ α(A), then there exists a ∈ A such that y = α(a). In addition,
it holds that a ∈ α−1(F) since y = α(a) ∈ F. Hence, a ∈ A ∩ α−1(F), so A ∩ α−1(F) 6= ∅.

Let us consider the next two families of elements in levels n of both Γ and ∆:

AΓn(α
−1(F)) = {A ∈ Γn : A ∩ α−1(F) 6= ∅}
A∆n(F) = {B ∈ ∆n : B ∩ F 6= ∅}.

Additionally, we shall denoteNΓn(α
−1(F)) = Card (AΓn(α

−1(F))) andN∆n(F) = Card (A∆n(F)),
as well. It is worth pointing out that Lemma 1 yields the next result.

Proposition 2. Let α : X → Y be a function between a pair of GF-spaces, (X, Γ) and (Y, ∆), with ∆ = α(Γ),
and F ⊆ Y. Then for each n ∈ N, it holds that

NΓn(α
−1(F)) = N∆n(F).

As a consequence from Proposition 2, the calculation of the fractal dimension I of F ⊆ Y can
be dealt with in terms of the fractal dimension I of its pre-image α−1(F) ⊆ X via α as the following
result highlights.

Theorem 7. Let α : X → Y be a function between a pair of GF-spaces, (X, Γ) and (Y, ∆), with ∆ = α(Γ),
and F ⊆ Y. Then the (lower/upper) fractal dimension I of F (calculated with respect to ∆) equals the
(lower/upper) fractal dimension I of α−1(F) (calculated with respect to Γ). In particular, if dim 1

∆(F) exists,
then dim 1

Γ(α
−1(F)) also exists (and reciprocally), and it holds that

dim 1
∆(F) = dim 1

Γ(α
−1(F)).

Interestingly, a first connection between the box dimension of F ⊆ Y and the fractal dimension I
of its pre-image via α, α−1(F) ⊆ X, can be stated in the Euclidean setting.

Theorem 8. Let F ⊆ [0, 1]d, ∆ the natural fractal structure on F, and α : X → [0, 1]d a function between
the GF-spaces (X, Γ) and ([0, 1]d, ∆), where ∆ = α(Γ). Then the (lower/upper) box dimension of F equals the
(lower/upper) fractal dimension I of α−1(F) (calculated with respect to Γ). In particular, if dim B(F) exists,
then dim 1

Γ(α
−1(F)) also exists (and reciprocally), and it holds that

dim B(F) = dim 1
Γ(α
−1(F)).

Proof. First, we have dim B(F) = dim 1
∆(F), since ∆ is the natural fractal structure on F ⊆ [0, 1]d

(c.f. Theorem 4 (1)). Thus, just apply Theorem 7 to get the result.

Similarly to Theorem 7, the following result stands for fractal dimension II.

Theorem 9. Let F ⊆ Y. Under Main Hypotheses 1, it holds that the (lower/upper) fractal dimension II of F
(calculated with respect to ∆) equals the (lower/upper) fractal dimension II of α−1(F) (calculated with respect to
Γ) multiplied by d. In particular, if dim 2

∆(F) exists, then dim 2
Γ(α

1(F)) also exists (and reciprocally), and it
holds that

dim 2
∆(F) = d · dim 2

Γ(α
−1(F)).
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Proof. First of all, for all A ∈ Γn, it holds that c · diam (A) = diam (α(A))d for some c 6= 0 and d ∈ R
(c.f. Equation (1)). Hence,

c · diam (α−1(F), Γn) = c · sup{diam (A) : A ∈ Γn, A ∩ α−1(F) 6= ∅}
= sup{diam (α(A))d : α(A) ∈ ∆n, α(A) ∩ F 6= ∅}
= diam (F, ∆n)

d for all n ∈ N.

Thus, it holds that

diam (α−1(F), Γn) =
1
c
· diam (F, ∆n)

d for all n ∈ N. (2)

Accordingly,

lim
n→∞

logNΓn(α
−1(F))

− log diam (α−1(F), Γn)
= lim

n→∞

logN∆n(F)
− log 1

c diam (F, ∆n)d

=
1
d
· lim

n→∞

logN∆n(F)
− log diam (F, ∆n)

,

where lim refers to the corresponding lower/upper limit. Notice also that both Equation (2) and
Proposition 2 have been applied to deal with the second equality.

Additionally, the following result for fractal dimension II stands similarly to Theorem 8.

Theorem 10. Let F ⊆ [0, 1]d, ∆ the natural fractal structure on F, and α : X → [0, 1]d a function between the
GF-spaces (X, Γ) and ([0, 1]d, ∆), where ∆ = α(Γ). Under Main Hypotheses 1, the (lower/upper) box dimension
of F equals the (lower/upper) fractal dimension II of α−1(F) (calculated with respect to Γ). In particular,
if dim B(F) exists, then dim 2

Γ(α
−1(F)) also exists (and reciprocally), and it holds that

dim B(F) = d · dim 2
Γ(α
−1(F)).

Proof. The result follows immediately since

dim B(F) = dim 2
∆(F) = d · dim 2

Γ(α
−1(F)),

where the first identity holds since ∆ is the natural fractal structure on F (c.f. Theorem 4 (2)) and the
second equality stands by previous Theorem 9.

According to the previous result, the box dimension of F ⊆ [0, 1]d may be calculated by the fractal
dimension II of α−1(F) ⊆ [0, 1] (calculated with respect to Γ). As such, the following result stands in
the Euclidean setting as a consequence of Theorem 10.

Theorem 11. Let F ⊆ [0, 1]d and α : [0, 1] → [0, 1]d be a function between the GF-spaces ([0, 1], Γ), where
Γn = {[k · 2−nd, (1 + k) · 2−nd] : k = 0, 1, . . . , 2nd − 1} are the levels of Γ, and ([0, 1]d, ∆), where ∆ is the
natural fractal structure on [0, 1]d and such that α(Γ) = ∆. It holds that the (lower/upper) box dimension of F
equals the (lower/upper) box dimension of α−1(F). In particular, if dim B(F) exists, then dim B(α

−1(F)) also
exists (and reciprocally), and it holds that

dim B(F) = d · dim B(α
−1(F)).

Proof. Note that Main Hypotheses 1 is satisfied since α(Γ) = ∆ and diam (A) = 2−nd and
diam (α(A)) = 2−n ·

√
d for all A ∈ Γn and n ∈ N. In fact, we can take c = dd/2 with d being
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the embedding dimension. Hence, we have dim B(F) = d · dim 2
Γ(α
−1(F)) for all F ⊆ [0, 1]d due to

Theorem 10. In addition, it is worth pointing out that

• Γ satisfies the κ-condition for κ = 3.
• diam (F, Γn)→ 0 since diam (A) = 2−nd for all A ∈ Γn and n ∈ N.

Hence, Theorem 5 gives dim 2
Γ(α
−1(F)) = dim B(α

−1(F)).

The next step is to prove a similar result to both Theorems 7 and 9 for fractal dimension III. Firstly,
we have the following

Proposition 3. Under Main Hypotheses 1, the next identity stands:

Hs
3(α
−1(F)) =

1
cs · H

ds
3 (F) for all s ≥ 0. (3)

Proof. The Main Hypotheses 1 give that diam (α(A))d = c · diam (A) for some d and c 6= 0. Thus,

diam (A)s =
1
cs · diam (α(A))ds. (4)

Hence, for all s ≥ 0, we have

∑{diam (A)s : A ∈ Γn, A ∩ α−1(F) 6= ∅} =
1
cs ·∑{diam (α(A))ds : A ∈ Γn, α(A) ∩ F 6= ∅},

where the equality is due to Equation (4) and also by applying Lemma 1. ThereforeHs
n,3(α

−1(F)) =
1
cs · Hds

n,3(F). The result follows by letting n→ ∞.

Hence, we have the expected

Theorem 12. Let F ⊆ Y. Under Main Hypotheses 1, it holds that

dim 3
∆(F) = d · dim 3

Γ(α
−1(F)).

Proof. Firstly, by Equation (3), it holds that

Hs
3(α
−1(F)) =

1
cs · H

ds
3 (F) for all s ≥ 0.

Thus,Hs
3(α
−1(F)) = 0 impliesHds

3 (F) = 0. Therefore, s ≥ 1
d · dim 3

∆(F) for all s ≥ dim 3
Γ(α
−1(F)).

In particular, we have

dim 3
Γ(α
−1(F)) ≥ 1

d
· dim 3

∆(F). (5)

Conversely,Hds
3 (F) = 0 leads toHs

3(α
−1(F)) = 0, also by Equation (3). Thus, s ≥ dim 3

Γ(α
−1(F))

for all s ≥ 1
d · dim 3

∆(F). Hence,

1
d
· dim 3

∆(F) ≥ dim 3
Γ(α
−1(F)). (6)

The result follows due to both Equations (5) and (6).

The following result regarding fractal dimension III stands similarly to Theorem 10.
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Theorem 13. Let F ⊆ [0, 1]d, ∆ be the natural fractal structure on [0, 1]d, and α : X → [0, 1]d a function
between the GF-spaces (X, Γ) and ([0, 1]d, ∆) with ∆ = α(Γ). Under Main Hypotheses 1, if dim B(F) exists,
it holds that

dim B(F) = d · dim 3
Γ(α
−1(F)).

Proof. In fact, we have dim B(F) = dim 3
∆(F) since ∆ is the natural fractal structure on F

(c.f. Theorem 4.3). Finally, Theorem 12 gives the result.

It is worth mentioning that Theorem 13 implies that the box dimension of F ⊆ [0, 1]d can be
calculated throughout the fractal dimension III of α−1(F) ⊆ [0, 1] (calculated with respect to Γ).

3.2. Calculating Hausdorff Type Dimensions in Higher Dimensional Spaces

Similarly to Lemma 1, the next implication stands.

Lemma 2. Let {Ai}i∈I be a collection of elements of Γ, and F ⊆ Y. Then

α−1(F) ⊆ ∪i∈I Ai ⇒ F ⊆ ∪i∈Iα(Ai).

Proof. If x ∈ F, then let y ∈ α−1(x) be such that x = α(y). Since y ∈ α−1(F) ⊆ ∪i∈I Ai, then there
exists j ∈ I such that y ∈ Aj. Hence, x = α(y) ∈ α(Aj) : j ∈ I, so x ∈ ∪i∈Iα(Ai).

Proposition 4. Under Main Hypotheses 1, the next inequality holds:

1
cs · H

ds
5 (F) ≤ Hs

5(α
−1(F)) for all s ≥ 0. (7)

Proof. Let s ≥ 0 and n ∈ N. First, it holds that diam (A)s = 1
cs · diam (α(A))ds for each A in some

level ≥ n of Γ (c.f. Equation (1)). Hence,

Hs
n,5(α

−1(F)) = inf

{
∑
i∈I

diam (Ai)
s : Ai ∈ Γm : m ≥ n, α−1(F) ⊆ ∪i∈I Ai

}

≥ 1
cs · inf

{
∑
i∈I

diam (α(Ai))
ds : Ai ∈ Γm, m ≥ n, F ⊆ ∪i∈Iα(Ai)

}

=
1
cs · H

ds
n,5(F).

It is worth mentioning that Lemma 2 has been applied in the inequality above. Letting n→ ∞,
the result follows.

Theorem 14. Under Main Hypotheses 1, it holds that

dim 5
∆(F) ≤ d · dim 5

Γ(α
−1(F)).

Proof. Notice that Hds
5 (F) = 0 for all s ≥ 0 such that Hs

5(α
−1(F)) = 0 (c.f. Equation (7)). Thus,

s ≥ 1
d · dim 5

∆(F) for all s > dim 5
Γ(α
−1(F)). It follows that dim 5

∆(F) ≤ d · dim 5
Γ(α
−1(F)).

However, a reciprocal for Theorem 14 becomes more awkward. To tackle this, let us introduce the
following concept.

Definition 5. Let Γ be a fractal structure on X. We shall understand that Γ satisfies the finitely splitting
property if there exists κ′ ∈ N such that Card ({A ∈ Γn+1 : A ⊆ B}) ≤ κ′ for all B ∈ Γn and all n ∈ N.
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Proposition 5. Let F ⊆ Y and s ≥ 0. Assume that ∆ is finitely splitting and satisfies the κ-condition.
Under Main Hypotheses 1, it holds thatHds

5 (F) = 0 implies thatHs
5(α
−1(F)) = 0.

Proof. Let s ≥ 0 be such that Hds
5 (F) = 0. By Main Hypothesis 1, there exists c 6= 0 and d ∈ R such

that diam (α(A))d = c · diam (A) for all A ∈ Γn and all n ∈ N. Moreover, let ε > 0 and ε′ = cs · ε,
as well. First, sinceHds

5 (F) = limn→∞Hds
n,5(F) = 0, then there exists n0 ∈ N such thatHds

n,5(F) < γ for

all n ≥ n0, where γ = ε′
κ·κ′ with κ and κ′ being the constants provided by both the κ-condition and the

finitely splitting property that stand for ∆. Let n ≥ n0. Since

Hds
n,5(F) = inf

{
∑
i∈I

diam (Ai)
ds : {Ai}i∈I ∈ A5

∆n
(F)

}
, where

A5
∆n
(F) = {{Ai}i∈I : for all i ∈ I, there exists m ≥ n : Ai ∈ ∆m,

F ⊆ ∪i∈I Ai},

then there exists {Ai}i∈I satisfying the three following:

1. F ⊆ ∪i∈I Ai.
2. For all i ∈ I, there exists m ≥ n such that Ai ∈ ∆m with diam (Ai) ≤ diam (∆m) ≤

diam (∆n0), and
3. ∑i∈I diam (Ai)

ds < γ.

In addition, for all i ∈ I, let ni ∈ N be such that

diam (∆ni ) ≤ diam (Ai) < diam (∆ni−1). (8)

By both (2) and Equation (8), it holds that diam (∆ni ) ≤ diam (Ai) ≤ diam (∆n0). Thus, ni ≥ n0

for all i ∈ I. Next, we shall define an appropriate covering for the elements in {Ai}i∈I . Let

A = ∪i∈IAi, where

Ai = {C ∈ ∆ni : C ∩ Ai 6= ∅} for all i ∈ I.

It is worth pointing out that St(Ai, ∆ni ) = ∪{C ∈ ∆ni : C ∩ Ai 6= ∅} = ∪{C : C ∈ Ai}. The four
following hold:

1. A is a covering of F. In fact, F ⊆ ∪i∈I Ai ⊆ ∪i∈I ∪C∈Ai C = ∪C∈AC, where the first inclusion is
due to (1) and the second one stands since Ai ⊆ ∪{C : C ∈ Ai} for each Ai ∈ {Ai}i∈I .

2. ∑A∈A diam (A)ds < ε′. Indeed, observe that

∑
A∈A

diam (A)ds = ∑
i∈I

∑
A∈Ai

diam (A)ds ≤∑
i∈I

∑
A∈Ai

diam (∆ni )
ds

≤∑
i∈I

κ · κ′ · diam (∆ni )
ds ≤ κ · κ′∑

i∈I
diam (Ai)

ds

< κ · κ′ · γ = ε′,

where the first inequality holds since diam (A) ≤ diam (∆ni ) for all A ∈ Ai. It is worth
mentioning that the second inequality stands by applying both the κ-condition and the finitely
splitting property. In fact, for all i ∈ I, it holds that diam (Ai) < diam (∆ni−1) (c.f. Equation (8)),
so Ai intersects to ≤ κ elements in ∆ni−1 by the κ-condition. Hence, Ai intersects to ≤ κ · κ′
elements in ∆ni since ∆ is finitely splitting. Thus, Card (Ai) ≤ κ · κ′. Equation (8) also yields the
third inequality. Notice also that (3) has been applied to deal with the last one.
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3. For all C ∈ A, there exists ni ≥ n0 such that C ∈ ∆ni . Thus, we can write C = α(C′) for some
C′ ∈ Γni . By Main Hypotheses 1, there exist c 6= 0 and d ∈ R such that diam (C)d = c · diam (C′)
for all C ∈ A. Thus, we have

∑
C′∈A′

diam (C′)s =
1
cs ∑

C∈A
diam (C)ds <

ε′

cs = ε,

where A′ = ∪i∈IA′i and A′i = {C′ ∈ Γni : α(C′) ∈ Ai} for all i ∈ I. It is worth noting that (2) has
been applied in the inequality above.

4. α−1(F) ⊆ ∪C′∈A′C′. Let x ∈ α−1(F). We shall prove that there exists C′ ∈ A′ such that x ∈ C′.
First, we have α(x) ∈ F. Since F ⊆ ∪i∈I Ai by (1), then α(x) ∈ Ai for some i ∈ I. On the other
hand, let C′ ∈ Γni be such that x ∈ C′. Then C′ ∈ A′i, if and only if, α(C′) ∈ Ai. In this way,
observe that α(C′) ∈ ∆ni with ni ≥ n0 since C′ ∈ Γni . Next, we verify that α(C′) ∩ Ai 6= ∅.
Indeed, α(x) ∈ α(C′) since x ∈ C′. Thus, α(x) ∈ α(C′) ∩ Ai, so α(C′) ∩ Ai 6= ∅. Therefore,
α(C′) ∈ Ai and hence, C′ ∈ A′i. Accordingly, x ∈ C′ ∈ A′i ⊆ A′.

The previous calculations allow justifying that for all ε > 0, there exists n0 ∈ N such that
Hs

n,5(α
−1(F)) < ε for all n ≥ n0. Equivalently,Hs

5(α
−1(F)) = 0.

Theorem 15. Let F ⊆ Y and s ≥ 0. Assume that ∆ is finitely splitting and satisfies the κ-condition. Under
Main Hypotheses 1, it holds that

d · dim 5
Γ(α
−1(F)) ≤ dim 5

∆(F).

Proof. In fact, by Proposition 5, it holds that Hds
5 (F) = 0 implies Hs

5(α
−1(F)) = 0. Thus, for all

s > 1
d · dim 5

∆(F), we have s ≥ dim 5
Γ(α
−1(F)), and hence the desired equality stands.

The next key result holds as a consequence of previous Theorems 14 and 15.

Theorem 16. Let F ⊆ Y. Assume that ∆ is finitely splitting and satisfies the κ-condition. Under Main
Hypotheses 1, we have

dim 5
∆(F) = d · dim 5

Γ(α
−1(F)).

Without too much effort, both Propositions 4 and 5 as well as Theorems 14–16 can be proved
to stand for fractal dimension IV under the same hypotheses. Thus, we also have the next result for
that fractal dimension, which only involves finite coverings and becomes especially appropriate for
empirical applications.

Theorem 17. Let F ⊆ Y. Assume that ∆ is finitely splitting and satisfies the κ-condition. Under Main
Hypotheses 1, it holds that

dim 4
∆(F) = d · dim 4

Γ(α
−1(F)).

The following result regarding fractal dimension IV stands similarly to Theorem 13.

Theorem 18. Let F be a compact subset of [0, 1]d, ∆ be the natural fractal structure on [0, 1]d, and α : X →
[0, 1]d a function between the GF-spaces (X, Γ) and ([0, 1]d, ∆) with ∆ = α(Γ). Under Main Hypotheses 1,
Hausdorff dimension of F equals the fractal dimension IV of α−1(F) multiplied by the embedding dimension,
d, i.e.,

dim H(F) = d · dim 4
Γ(α
−1(F)).

Proof. In fact, it is worth noting that

dim H(F) = dim 4
∆(F) = d · dim 4

Γ(α
−1(F)),
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where the first equality stands by Theorem 4 (4) since ∆ is the natural fractal structure on F and the
last identity is due to Theorem 17.

Accordingly, the previous result guarantees that Hausdorff dimension of each compact subset F
of [0, 1]d can be calculated in terms of the fractal dimension IV of α−1(F) ⊆ [0, 1]. Thus, the Algorithm
provided in [12] may be applied with this aim.

4. Calculating Both the Box and Hausdorff Dimensions in Higher Dimensional Spaces

The next remark becomes useful for upcoming purposes.

Remark 2. Let F ⊆ Y and n ∈ N. Under Main Hypotheses 1, it holds that

diam (α−1(F), Γn)→ 0⇔ diam (F, ∆n)→ 0.

Proof.

(⇒) Let ε > 0. Then there exists n0 ∈ N such that diam (α−1(F), Γn) < γ for all n ≥ n0 with
γ = εd

c . Thus, diam (A) < γ for all A ∈ Γn with A ∩ α−1(F) 6= ∅ and n ≥ n0. Hence, Main

Hypotheses 1 imply that diam (α(A)) < (c · γ) 1
d = ε for all A ∈ Γn with A ∩ α−1(F) 6= ∅ and

n ≥ n0. Accordingly, Lemma 1 leads to diam (α(A)) < ε for all A ∈ Γn with α(A) ∩ F 6= ∅ and
n ≥ n0, so diam (F, ∆n)→ 0.

(⇐) Let ε > 0. Then there exists n0 ∈ N such that diam (α(A)) < γ for all A ∈ Γn with α(A)∩ F 6= ∅
and n ≥ n0, where γ = (c · ε) 1

d . Since diam (α(A)) = (c · diam (A))
1
d < γ for all A ∈ Γn and

n ∈ N by Main Hypotheses 1, then we can affirm that diam (A) < ε for all A ∈ Γn with
α(A) ∩ F 6= ∅. By Lemma 1 we have that diam (A) < ε for all A ∈ Γn with A ∩ α−1(F) 6= ∅
and n ≥ n0, so diam (α−1(F), Γn)→ 0.

It is worth pointing out that both results ([7], Theorem 4.1) and ([4], Theorem 1) allow the
calculation of the box dimension of a given subset F in terms of the box dimension of a lower
dimensional set connected with F via either a δ-uniform curve or a quasi-inverse function, respectively.
However, both of them stand for Euclidean subsets. Next, we provide a similar result in a more
general setting.

Theorem 19. Assume that Main Hypotheses 1 are satisfied, let F ⊆ Y, and assume that diam (F, ∆n) → 0.
If both fractal structures Γ and ∆ lie under the κ-condition, then the (lower/upper) box dimension of F equals the
(lower/upper) box dimension of α−1(F) multiplied by d. In particular, if dim B(F) exists, then dim B(α

−1(F))
also exists (and reciprocally), and it holds that

dim B(F) = d · dim B(α
−1(F)).

Proof. In fact, the following chain of identities holds for lower/upper dimensions:

dim B(F) = dim 2
∆(F) = d · dim 2

Γ(α
−1(F)) = d · dim B(α

−1(F)),

where the first and the last equalities hold by both Theorem 5 and Remark 2, and the second one is
due to Theorem 9.

The next remark regarding the existence of the box dimension of α−1(F) (resp., of F) should
be highlighted.

Remark 3. It is worth pointing out that, under the hypotheses of Theorem 19, dim B(F) exists, if and only if,
dim B(α

−1(F)) exists.
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The next step is to prove a similar result to Theorem 19 for Hausdorff dimension. To deal with,
first we provide the following

Proposition 6. Let Γ be a finitely splitting fractal structure on X satisfying the κ-condition with diam (Γn)→
0, and F be a subset of X such thatHs

H(F) = 0. ThenHs
5(F) = 0.

Proof. Let ε > 0 and s ≥ 0 be such thatHs
H(F) = 0. SinceHs

H(F) = limδ→0Hs
δ(F) = supδ>0Hs

δ(F) =
0, then there exists δ0 > 0 such that Hs

δ(F) < γ for all δ < δ0, where γ = ε
κ·κ′ with κ and κ′ being the

constants provided by both the κ-condition and the finitely splitting property, resp., that stand for Γ.
In addition, let n0 ∈ N be such that diam (Γn0) < δ0. Thus, Hs

diam (Γn0 )
(F) < γ. Hence, there exists

a family of subsets {Bi}i∈I satisfying that

1. F ⊆ ∪i∈I Bi.
2. diam (Bi) ≤ diam (Γn0) for all i ∈ I.
3. ∑i∈I diam (Bi)

s < γ.

For each i ∈ I, let ni ∈ N be such that

diam (Γni ) ≤ diam (Bi) < diam (Γni−1). (9)

Moreover, for each Bi ∈ {Bi}i∈I , we shall define a covering by elements in level ni of Γ. In fact,
let Ai = {A ∈ Γni : A ∩ Bi 6= ∅} for all i ∈ I and A = ∪i∈IAi, as well. Accordingly, the five
following hold:

1. St(Bi, Γni ) = ∪{A ∈ Γni : A ∩ Bi 6= ∅} = ∪{A : A ∈ Ai} for all i ∈ I.
2. ni ≥ n0 for all i ∈ I. In fact, notice that diam (Γni ) ≤ diam (Bi) ≤ diam (Γn0) for all i ∈ I,

where the first inequality stands by Equation (9) and the second one is due to (2).
3. A covers F. Indeed, F ⊆ ∪i∈I Bi ⊆ ∪i∈I ∪A∈Ai A = ∪A∈∪i∈IAi A = ∪A∈AA.
4. For all A ∈ A, there exists i ∈ I such that A ∈ Ai, namely, A ∈ Γni with ni ≥ n0 (and A∩ Bi 6= ∅).
5. ∑A∈A diam (A)s < ε. In fact,

∑
A∈A

diam (A)s = ∑
i∈I

∑
A∈Ai

diam (A)s ≤∑
i∈I

∑
A∈Ai

diam (Γni )
s

≤∑
i∈I

κ · κ′ · diam (Γni )
s ≤ κ · κ′ ∑

i∈I
diam (Bi)

s

< κ · κ′ · γ = ε,

where the first inequality stands since diam (A) ≤ diam (Γni ) for all A ∈ Ai. Moreover,
the second inequality above holds since Card (Ai) ≤ κ · κ′ for all i ∈ I. In fact, Γ lies under
the κ-condition, so the number of elements in Γni−1 that are intersected by each Bi is ≤ κ with
diam (Bi) < diam (Γni−1) (c.f. Equation (9)). Therefore, Bi intersects to ≤ κ · κ′ elements in Γni by
additionally applying the finitely splitting property, also standing for Γ. The third one follows
since diam (Γni ) ≤ diam (Bi) for all i ∈ I (c.f. Equation (9)). Finally, we have applied (3) to deal
with the last inequality.

Accordingly, the calculations above allow justifying that for all ε > 0, there exists n0 ∈ N such
thatHs

n,5(F) < ε for all n ≥ n0, namely,Hs
5(F) = 0.

Theorem 20. Let Γ be a finitely splitting fractal structure on X satisfying the κ-condition with diam (Γn)→ 0.
Then dim H(F) = dim 5

Γ(F).

Proof. First, it is clear that dim H(F) ≤ dim 5
Γ(F) since An,5(F) ⊆ Cδ(F) for all F ⊆ X and n ∈ N.

In fact, each covering in the family An,5(F) becomes a δ-cover for an appropriate δ > 0. Conversely,
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let s ≥ 0. Since Γ is finitely splitting and lies under the κ-condition, thenHs
H(F) = 0 impliesHs

5(F) = 0
for all subset F of X (c.f. Proposition 6). Thus, s ≥ dim 5

Γ(F) for all s ≥ dim H(F) and in particular,
dim H(F) ≥ dim 5

Γ(F).

Theorem 21. Assume that both fractal structures Γ and ∆ are finitely splitting and lie under the κ-condition
with diam (Γn)→ 0. Under Main Hypotheses 1, it holds that dim H(F) = d · dim H(α

−1(F)).

Proof. The following chain of identities holds:

dim H(F) = dim 5
∆(F) = d · dim 5

Γ(α
−1(F)) = d · dim H(α

−1(F)),

where both the first and the last equalities stand by Theorem 20 and the second identity is due to
Theorem 16.

It is worth mentioning that Theorem 21 could also be proved for compact subsets in terms of
fractal dimension IV. In fact, it is clear that both Proposition 6 and Theorem 20 also stand regarding the
fractal dimension IV of each compact subset. Next, we highlight the last result.

Theorem 22. Let Γ be a finitely splitting fractal structure on X satisfying the κ-condition with diam (Γn)→ 0.
Then dim H(F) = dim 4

Γ(F) for all compact subsets F of X.

5. Results in the Euclidean Setting

In this section, we shall pose more operational versions for both Theorems 19 and 21 in the
Euclidean setting to tackle applications of fractal dimension in higher dimensional spaces. The proof
regarding the next theorem follows immediately by applying those results.

Theorem 23. Let α : X → Y be a function between a pair of GF-spaces, (X, Γ) and (Y, ∆), where X = [0, 1]
and Y = [0, 1]d, with ∆ = α(Γ). Assume that both fractal structures Γ and ∆ lie under the κ-condition and
suppose that there exist real numbers c 6= 0 and d for which the next identity stands for all A ∈ Γn and all
n ∈ N (c.f. Main Hypotheses 1):

diam (α(A))d = c · diam (A).

Suppose also that diam (Γn)→ 0. The two following hold for all F ⊆ [0, 1]d:

1.
dim B(F) = d · dim B(α

−1(F)).

2. In addition, if both Γ and ∆ are finitely splitting, then

dim H(F) = d · dim H(α
−1(F)).

Remark 4. As a consequence from Theorem 23 (i), the (lower/upper) box dimension of F ⊆ [0, 1]d can be
calculated throughout the following (lower/upper) limit:

dim B(F) = d · lim
δ→0

logNδ(α
−1(F))

− log δ
,

where Nδ(α
−1(F)) can be calculated as the number of δ = 2−n-cubes that intersect α−1(F) (among other

equivalent quantities, c.f. ([17], Equivalent Definitions 2.1)).

The next remark highlights why it could be assumed, without loss of generality, that F is contained
in [0, 1]d for box/Hausdorff dimension calculation purposes.
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Remark 5. Let F be a bounded subset of Rd. Since the box/Hausdorff dimension is invariant by bi-Lipschitz
transformations (c.f. ([17], Corollary 2.4 (b)/Section 3.2)), an appropriate similarity f : Rd → Rd may be
applied to F so that f (F) ⊆ [0, 1]d with dim (F) = dim ( f (F)), where dim refers to box/Hausdorff dimension.

Interestingly, it holds that a natural choice for both fractal structures Γ and ∆ may be carried out
so that they satisfy both the κ-condition and the finitely splitting property. As such, Theorem 23 can be
applied to calculate the box/Hausdorff dimension of a subset F of [0, 1]d.

Remark 6. Notice that Theorem 23 can be applied in the setting of both GF-spaces (Y = [0, 1]d, ∆) and
(X = [0, 1], Γ), where ∆ can be chosen to be the natural fractal structure on [0, 1]d, i.e., ∆ = {∆n : n ∈ N} with
levels given by ∆n = {[ k1

2n , 1+k1
2n ]× . . .× [ kd

2n , 1+kd
2n ] : k1, . . . , kd = 0, 1, . . . , 2n − 1} and Γ = {Γn : n ∈ N}

with Γn = {[ k
2nd , 1+k

2nd ] : k = 0, 1, . . . , 2nd − 1} for all n ∈ N. Thus, ∆ satisfies both the κ-condition for κ = 3d

and the finitely splitting property for κ′ = 2d. In addition, it holds that Γ also lies under both the κ-condition
(for κ = 3) and the finitely splitting property (for κ′ = 2d), as well. Observe that level n of each fractal structure
contains 2nd elements. Regarding Main Hypotheses 1, it is worth noting that for such fractal structures there
exist d and c 6= 0 such that diam (α(A))d = c · diam (A) for all A ∈ Γn and all n ∈ N. In fact, just observe
that diam (A) = 2−nd for each A ∈ Γn. In addition, it holds that diam (α(A)) = 2−n

√
d. Thus, for k = d

d
2 ,

where d is the embedding dimension, we have (
√

d
2n )d = k · ( 1

2d )
n for all n ∈ N.

Following the constructive approach theoretically described in the upcoming Theorem 24, a function
α : X → Y can be constructed so that ∆ = α(Γ), and hence, it holds that dim (F) = d · dim (α−1(F)) for all
F ⊆ Y, where dim refers to box/Hausdorff dimension.

6. How to Construct α

Throughout this paper, we have been focused on calculating the fractal dimension of a subset
F ⊆ Y in terms of the fractal dimension of its pre-image α−1(F) ⊆ X via a function α : X → Y with
∆ = α(Γ) (c.f. Theorems 7, 9, 12, 16, 17, 19, 21, and 23). In this section, we state a powerful result
(c.f. Theorem 24) allowing the explicit construction of such a function. To deal with this, first let us
recall the concepts of Cantor complete fractal structure and starbase fractal structure, as well.

First, it is worth mentioning that a sequence {An : n ∈ N} is decreasing provided that An+1 ⊆ An

for all n ∈ N.

Definition 6 ([18], Definition 3.1.1). Let Γ = {Γn : n ∈ N} be a fractal structure on X. We shall understand
that Γ is Cantor complete if for each decreasing sequence {An : n ∈ N} with An ∈ Γn, it holds that
∩n∈NAn 6= ∅.

The concept of a starbase fractal structure also plays a key role in dealing with the construction of
such a function α.

Definition 7 ([19], Section 2.2). Let Γ be a fractal structure on X. We say that Γ is starbase if St(x, Γ) =

{St(x, Γn) : n ∈ N} is a neighborhood base of x for all x ∈ X.

The main result in this section is stated next.

Theorem 24 ([20], Theorem 3.6). Let Γ = {Γn : n ∈ N} be a starbase fractal structure on a metric space X
and ∆ = {∆n : n ∈ N} be a Cantor complete starbase fractal structure on a complete metric space Y. Moreover,
let {αn : n ∈ N} be a family of functions, where each αn : Γn → ∆n satisfies the two following:

(i) if A ∩ B 6= ∅ with A, B ∈ Γn for some n ∈ N, then αn(A) ∩ αn(B) 6= ∅.
(ii) If A ⊆ B with A ∈ Γn+1 and B ∈ Γn for some n ∈ N, then αn+1(A) ⊆ αn(B).

Then there exists a unique continuous function α : X → Y such that α(A) ⊆ αn(A) for all A ∈ Γn and
all n ∈ N. Additionally, if Γ is Cantor complete and each αn also satisfies the two following:
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(iii) αn is onto.
(iv) αn(A) = ∪{αn+1(B) : B ∈ Γn+1, B ⊆ A} for all A ∈ Γn,

then α is onto and α(A) = αn(A) for all A ∈ Γn and all n ∈ N.

To properly construct a function α : X → Y according to Theorem 24, we can proceed as follows.
First, for each x ∈ X, there exists a decreasing sequence {An : n ∈ N} such that An ∈ Γn for all n ∈ N
with x ∈ ∩n∈NAn. Thus, {αn(An) : n ∈ N} is also decreasing with αn(An) ∈ ∆n for all n ∈ N. Further,
it holds that ∩nαn(An) is a single point since ∆ is starbase and Cantor complete. Therefore, we shall
define f (x) = ∩n∈Nαn(An).

Next, we illustrate how Theorem 24 allows the construction of functions for Theorem 23
application purposes. In this way, let us show how the classical Hilbert’s square-filling curve can be
iteratively described by levels.

Example 1 (c.f. Example 1 in [20]). Let (Y, ∆) be a GF-space with Y = [0, 1] × [0, 1] and ∆ being the
natural fractal structure on [0, 1] × [0, 1] as a Euclidean subset, i.e., ∆ = {∆n : n ∈ N}, where ∆n ={
[ k1

2n , 1+k1
2n ]× [ k2

2n , 1+k2
2n ] : k1, k2 = 0, 1, . . . , 2n − 1

}
for each n ∈ N. In addition, let (X, Γ) be another

GF-space where X = [0, 1] and Γ = {Γn : n ∈ N} with Γn =
{
[ k

22n , 1+k
22n ] : k = 0, 1, . . . , 22n − 1

}
. It is worth

pointing out that each level n of Γ (resp., of ∆) contains 22n elements. Next, we explain how to construct a function
α : X → Y such that ∆ = α(Γ). To deal with this, we shall define the image of each element in level n of Γ through
a function αn : Γn → ∆n. For instance, let α([0, 1

4 ]) = [0, 1
2 ]

2, α([ 1
4 , 1

2 ]) = [ 1
2 , 1]× [0, 1

2 ], α([ 1
2 , 3

4 ]) = [ 1
2 , 1]2,

and α([ 3
4 , 1]) = [0, 1

2 ]× [ 1
2 , 1], as well (c.f. Figure 1). Thus, the whole level ∆1 = α(Γ1) = {α(A) : A ∈ Γ1}

has been defined. It is worth mentioning that this approach provides additional information regarding α as deeper
levels of both Γ and ∆ are reached via αn under the two following conditions (c.f. Theorem 24):

(i) if A ∩ B 6= ∅ with A, B ∈ Γn for some n ∈ N, then αn(A) ∩ αn(B) 6= ∅.
(ii) If A ⊆ B with A ∈ Γn+1 and B ∈ Γn for some n ∈ N, then αn+1(A) ⊆ αn(B).

For instance, if A ∈ Γn, then we can calculate its image via αn, αn(A). Going beyond, let B ∈ Γn+1 be so
that B ⊆ A. Then αn+1(B) ⊆ αn(A) refines the definition of αn(A), and so on. This allows us to think of the
Hilbert’s curve as the limit of the maps αn (c.f. Figure 2). This example illustrates how Theorem 24 allows the
construction of (continuous) functions and in particular, space-filling curves.

It is worth mentioning that Theorem 24 also allows the construction of maps filling a whole
attractor. For instance, in ([20], Example 4), we generated a curve crossing once each element of
the natural fractal structure of the Sierpiński gasket can be naturally endowed with as a self-similar
set (c.f. Figure 3). In this case, level n of the fractal structure on [0, 1] consists of intervals whose
lengths are equal to 1

3n , whereas level n of the fractal structure on the Sierpiński gasket consists of
equilateral triangles of diameters equal to 1

2n . Notice that Main Hypotheses 1 are satisfied with c = 1
and d =

log 3
log 2 , the fractal dimension of the Sierpiński gasket. Observe also that the fractal structures

involved are finitely splitting, satisfy the κ-condition, and the diameters of their levels go to zero.
As such, Theorem 21 can be applied. Hence, for each subset F of the Sierpiński gasket, it holds that
dim H(F) = log 3

log 2 · dim H(α
−1(F)).
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Figure 1. The two plots above arrange how each element in level n of Γ can be sent to some element in
level n of ∆ via αn for n = 2, 3.

Figure 2. First three levels in the construction of the Hilbert’s curve according to Theorem 24
(c.f. ([20], Figure 2)).

Figure 3. First two levels in the construction of a curve filling the whole Sierpiński gasket
(c.f. ([20], Figure 4)).

7. Conclusions

Two key results, both of them collected in Theorem 23, are proved in this article to calculate the
fractal dimensions of higher dimensional spaces in the Euclidean setting. The concept of a fractal
structure plays a key role in both of them (c.f. Section 2.1). Our first theorem allows calculating the
box dimension of each subset F of [0, 1]d in terms of the box dimension of its preimage by a function
α : [0, 1] → [0, 1]d. More specifically, we show that dim B(F) = d · dim B(α

−1(F)) whenever such
dimensions exist. To achieve that identity, we endow [0, 1] with a fractal structure, Γ, and [0, 1]d with
another fractal structure, ∆, satisfying that ∆ = α(Γ). Additionally, we require both fractal structures
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lying under the κ-condition (c.f. Definition 4) and satisfying Main Hypotheses 1. It is worth mentioning
that such a result stands in line with both ([4], Theorem 1) and ([7], Theorem 4.1). However, in [4]
Skubalska-Rafajłowicz considers α = Ψ−1 with Ψ being a quasi-inverse and describes some curves that
may play the role of that Φ. They include the Lebesgue measure preserving space-filling curves due
to Hilbert, Peano, and Sierpiński. The method due to García-Mora-Redtwitz depends on an injective
δ-uniform curve in [0, 1]d whose existence is guaranteed by both Lemma 3.1 and Corollary 3.1 in [7].
On the other hand, in Theorem 24 we provide a constructive approach to generate such a curve α. Going
beyond, if both fractal structures Γ and ∆ are finitely splitting (c.f. Definition 5), then we also have
dim H(F) = d · dim H(α

−1(F)) (c.f. Theorem 23 (2)). Such a result is interesting in itself since it enables
Hausdorff dimension to be used in computational applications involving fractal dimension. To deal
with this, the algorithm contributed in ([12], Section 3.1) becomes the key to estimating Hausdorff
dimension in 1-dimensional subsets.

Although Theorem 23 contains the most applicable results, we would like to highlight that our
theorems are also valid in a more general setting (c.f. Sections 3 and 4). Moreover, it is worth pointing
out that in Section 6, we show how to calculate the fractal dimension of a subset of the Sierpiński
gasket from the fractal dimension of a real subset. In that case, though, notice that d equals the fractal
dimension of the Sierpiński gasket, thus it is not an integer. As such, our approaches also allow the
calculation of the fractal dimension in higher non-integer dimensional spaces.
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