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Abstract  

In industrial-scale cultures, non-target microalgae compete with the desired species for nutrients and CO2, 

thus reducing the growth rate of the target species and the quality of the produced biomass. Microalgae 

identification is generally considered a complicated issue although, in the last few years, new molecular 

methods have helped to rectify this problem. Of the different techniques available, DNA barcoding has 

proven very useful in providing rapid, accurate and automatable species identification; in this work, it is used 

to assess the genomic identity of the microalga species Scenedesmus almeriensis, a common strain in 

industrial-scale cultures. Barcode markers rbcL and ITS1-5.8S-ITS2 were sequenced and the obtained 

genomic information was used to design a quantitative PCR assay to precisely quantify the S. almeriensis 

concentration in microalgal cultures of industrial interest. TaqMan chemistry was used to quantify down to 1 

µg/L dry weight of S. almeriensis cells, as well as to detect the presence of other concentrated microalgae 

cultures. A simple direct PCR approach was also investigated to avoid classic DNA extraction and to reduce 

total experiment time to approximately 2 hours. The objective was to design strain-specific tools able to 

confirm and quantify the presence of different strains in any microalgae culture so as to achieve maximal 

productivity and quality of the produced biomass. 
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1. Introduction  

Over recent years, interest in microalgae has increased due to the wide range of biotechnological 

application in which they are involved. Microalgal primary metabolites such as proteins, starch and lipids, 

are greatly valued in the food [1] and feed [2] industries, whilst diverse secondary metabolites are yet to be 

fully exploited [3]. Nonetheless, the human exploitation of microalgae has a long history; for instance, 

Spirulina has been harvested for food by the indigenous peoples of Mexico and Chad since ancient times 

because of its high protein content and excellent nutritive value [4]. Japan also has a long tradition of large-

scale commercial production and consumption of Chlorella species as health food supplements [5] given 

their high content of proteins, carotenoids and vitamins [6]. Nowadays, microalgae are far more widely 

exploited and an extensive range of applications has been developed [7]. Of these, the carotenoid pigment 

astaxanthin, produced in high concentrations from the Haematococcus species, is considered to be one of the 

most valuable algal compounds and is used in many applications in the food, feed, cosmetics and 

pharmaceutical sectors [8]. However, for all commercial applications, the monitoring of contaminant and 

unwanted microalgae in outdoor or non-sterile bioreactors is of great importance [9]. Non-target microalgae 

compete with the desired species for nutrients and CO2 [10], reducing the growth rate of the target alga or 

even predominating within the culture; this consequently lowers overall productivity and biomass quality 

[11].  

Microalgae species have historically been discriminated by their morphological and pigment profiles 

even though  they often display few morphological features that are useful for identification. In such cases, 

molecular methods are far more effective [12]. DNA barcoding in particular has been very useful in 

providing rapid, accurate and automatable species identification using short, standardized gene regions as 

internal species tags [13]. The most promising candidates for green microalgae barcoding are the Internal 

Transcribed Spacers 1 and 2 (ITS1 and ITS2) of the nuclear rDNA and the Ribulose Bisphosphate 

Carboxylase (RuBisCO) large subunit (rbcL) gene [14]. Nonetheless, DNA sequencing of the barcode 

markers is very time consuming and not suitable for the daily monitoring of microalgal cultures. In contrast, 

quantitative real-time PCR meets the necessary requirements and may be considered the best method for the 

molecular quantification of a target microalgae species [12]. The main advantage of using quantitative PCR 
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is that it is highly sensitive, specific, accurate and cost-effective; it can also be applied to a large number of 

experimental samples at the same time [15].  

The objective of this study was to design a simple real-time PCR assay to precisely quantify the 

presence of Scenedesmus almeriensis, a common microalga, at the Almería microalgae facility (Estación 

Experimental Las Palmerillas, Fundación Cajamar) in southern Spain. S. almeriensis was firstly isolated in 

an agricultural greenhouse under high temperature and irradiance conditions [16].  This strain has proven to 

be a common contaminant in industrial-scale cultures of Chlorella, Haematococcus and Spirulina (personal 

communication) due to its high growth rates and ability to flourish under a wide range of culture conditions 

while easily adapting to stressful conditions [17] [18]. 

To shorten the experiment time needed for sample analysis, we also investigated the feasibility of a 

direct PCR (or colony PCR) methodology. Direct PCR is a simple method in which a single colony or 

culture sample replaces the template DNA for amplification, requiring no preparation of pure DNA [19]. 

This technique is widely used for bacteria and yeast [20] but because algal cell walls are structurally 

stronger, direct PCR for microalgae is more difficult. Nevertheless, direct PCR for microalgae has been 

reported, initially with Chlamydomonas [21] [22], thanks to its weaker cell wall [23]; subsequently it was 

performed on other microalgae such as Chlorella [24], Scenedesmus [25] and Nannochloropsis [26].   

 

2. Materials and methods 

2.1. Microorganism and culture conditions 

The freshwater microalgae Scenedesmus almeriensis CCAP 276/24 (Chlorophyta) was chosen as the 

model organism for this study because of its ability to grow easily in freshwater cultures. S. almeriensis, 

along with the other microalgal species used in this study, was grown in Arnon medium [27] enriched with 

0.850 g/L NaNO3. Approximately 600 mL of sterile medium was used for each 1 L round flat-bottom flask. 

Filtered air was continuously bubbled through the medium and a 24-hour light cycle was provided by 

fluorescent tubes giving up to 500 µE/m2·s. The cell culture concentration was assessed via dry weight 

determination, with 1-µm pore size paper filters, or by cell counting using a Neubauer chamber. The 

obtained biomass was conserved at -80°C prior to use. 
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2.2. DNA extraction 

To remove the culture medium, 2-10 mL of fresh concentrated culture were centrifuged at 4000 rpm 

for 5 minutes at room temperature. The pellet was resuspended in 1 mL of nuclease-free water and re-

centrifuged under the same conditions. Genomic DNA was extracted from the pelleted microalgae using a 

Soil DNA Isolation Plus Kit (Norgen Biotek Corp.) and other commercial kits (such as the PureLink Plant 

Total DNA Purification Kit by Invitrogen) or by non-commercial methods (CTAB [28]). The total genomic 

DNA extracted was quantified with the Qubit dsDNA HS Assay Kit (Molecular Probes). 

2.3. Sequencing 

The ITS1-5.8S-ITS2 region was amplified through PCR using the primers ITS1 and ITS4 [29], as 

described in Table 1Table 1. The 25 µL PCR reaction mix comprised 12.5 µL of SensiFAST SYBR No-

ROX Kit (Bioline), 5 µL of nuclease-free water, 2.5 µL of each primer (2 µM) and 2.5 µL of genomic DNA 

(10 ng/µL). Amplification was carried out using the MyGo Pro thermocycler (IT-IS Life Science Ltd.) under 

the following conditions: 94°C for 5 min, 45 cycles of 95°C for 30 s, 50°C for 1 min and 72°C for 1 min, 

then a final extension step at 72°C for 7 min and a High Resolution Melting (HRM) analysis. 

To amplify a 1380 nt amplicon of the rbcL marker, two new primers were designed (Table 1Table 1) 

using the NCBI primer-BLAST tool. Suitable conserved regions were identified by aligning different 

Chlorophyta sequences mined from GenBank in order to design primers capable of amplifying the rbcL 

marker in a wide range of microalgae species. The 25 µL PCR reaction mix comprised 12.5 µL of 

SensiFAST SYBR No-ROX Kit, 5 µL of nuclease-free water, 2.5 µL of each primer (2 µM) and 2.5 µL of 

genomic DNA (10 ng/µL). Amplification was carried out with the MyGo Pro thermocycler using a 

touchdown approach, starting from an annealing temperature of 65°C, which was then lowered by 

0.4°C/cycle down to 55°C over the first 25 cycles; the subsequent cycles were then conducted at an 

annealing temperature of 55°C. The temperature conditions used were: 95°C for 5 min, 45 cycles of 95°C for 

30 s, 55-65°C for 1 min and 72°C for 1 min then a final extension step at 72°C for 7 min followed by HRM 

analysis.  
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The PCR products were purified with the PureLink PCR Purification Kit (Invitrogen) and quantified 

with the Qubit dsDNA HS Assay Kit (Molecular Probes). Approximately 10-20 ng of PCR product were 

amplified with the GeneAmp PCR System 9700 (Applied Biosystems) thermocycler using the BigDye 

Terminator v.3.1 Cycle Sequencing Kit with the following program: 96°C for 1 min, 25 cycles of 96°C for 

10 s, 50°C for 5 sec and 60°C for 4 min. An additional reverse primer (rbcLR_14) was used to sequence the 

first nucleotides of the rbcL marker (Table 1Table 1). The fluorescently labelled DNA was subsequently 

precipitated by ethanol precipitation [30]. Sequences of both positive and negative strands were determined 

by capillary electrophoresis in the AB 3100 Genetic Analyzer to obtain a minimum 2-fold coverage for each 

sequenced nucleotide. Forward and reverse sequences were aligned and manually edited to generate 

consensus sequences. The new, first-time reported Scenedesmus almeriensis sequences were deposited in 

GenBank under the following accession numbers: MF977406 (ITS1-5.8S-ITS2) and MG257492 (rbcL). 

 

 

 

 

2.4. Real-time PCR assay specifications 

S. almeriensis-specific primers (SalmF and SalmR) and an internal TaqMan FAM-labelled MGB 

probe (SalmProbe) were designed within the internal transcribed spacer region 2 (ITS2) of the previously 

Name Sequence (5' > 3') Ta (°C) Amplicon length Source 

RbcL_13F AATGGCTCCACAAACAGAAAC 50-55 
1380 nt 

This study 

RbcL_8R TCACAAGCAGCAGCTAATTC 50-55 This study 

RbcL_14R ATCAAGACCACCACGTAAACA 50 
 

This study 

ITS1 TCCGTAGGTGAACCTGCGG 50 
≈700 nt 

White et al. 

ITS4 TCCTCCGCTTATTGATATGC 50 White et al. 

SalmF ACCCTCACCCCTCTTTCCTTT 63 
74 nt 

This study 

SalmR TTGGGAAAGCCAGATCCACC 63 This study 

SalmProbe 6FAM-GTTAGCTTCTCAGCTGG 63 
 

This study 

UnivF TTGGAGGGCAAGTCTGGT 63 
83 nt 

Hayden et al. 

UnivR CGAGCTTTTTAACTGCAACAA 63 Hayden et al. 

UnivProbe VIC-CGGTAATTCCAGCTCC 63 
 

This study 

Table 1. List of primers used in this study, including primer sequences, annealing temperatures (Ta), 

amplicon length and primer references. 
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sequenced ribosomal DNA cluster (Table 1Table 1; Figure 1Figure 1). ITS2 sequences of the most similar 

microalgal species were mined from GenBank and aligned in order to design primers and probes for 

maximum differentiation from non-target algae. The probe was designed to have a minimum of two 

mismatches from all the sequences analysed. An additional set of primers (UnivF and UnivR [31]) and a 

VIC-labelled MGB probe (UnivProbe) were used to amplify an 83-nucleotide region of the 18S rDNA, 

which is present in all eukaryotes. The two sets of primers along with the probe can be used in the same well 

for a multiplex assay - the universal set is used as the positive control, while the S. almeriensis set is used to 

quantify the fraction of total DNA belonging to this microalgae species.  

The reactions were performed in a 15 µL reaction mix comprising 1 µL of each of the four primers (3 

µM), 1 µL of each labelled probe (3 µM), 1.5 µL of the sample DNA and 7.5 µL of the SensiFAST Probe 

No-ROX Kit (Bioline). Amplifications were carried out using the MyGo Pro thermocycler (IT-IS Life 

Science Ltd.) under the following conditions: an initial hold step of 95°C for 10 min and 45 PCR cycles of 

95°C for 15 s and 63°C for 1 min. The specificity of the Salm set for the target alga was assessed using a 

variety of different microalgae species (Chlorella vulgaris, Chlorella pyrenoidosa, Parachlorella kessleri, 

Spirulina platensis, Haematococcus rubens, Haematococcus pluvialis, Nannochloropsis oceanica and 

Nannochloropsis gaditana), most of which have important commercial applications, with special attention 

being given to the most genetically similar species in the ITS2 region (Scenedesmus obliquus, Scenedesmus 

bajacalifornicus, Scenedesmus rubescens and Coelastrum proboscideum). The naming of the microalgae 

strains used in this study was genetically confirmed through DNA sequencing of the barcode markers ITS1-

5.8S-ITS2 and rbcL, as described in paragraph 2.3. 

Standard curves (SC) were assembled for both the Salm (Figure 4Figure 3 and Figure 4) and Univ 

(data not shown) sets through linear regressions of 10-fold dilution series ranging from 10 to 10-5 ng/µL 

[DNA] or from 1 to 10-4 g/L [cells] according to the method used to obtain the DNA (paragraphs 2.2 and 

2.5). Four replicates for each concentration were amplified to obtain reliable threshold cycle (Ct) values; the 

average value was used to create the curve. Standard deviation (SD) of the four measurements was also 

calculated and reported in the figures. Both standard curves and relative methods to obtain DNA were 

laboratory tested using known concentrations of S. almeriensis cells (ranging from 1 µg/L to 1 g/L) diluted in 

microalgal cultures of commercial interest with concentrations ranging from 1 to 2 g/L dry weight. For each 
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assay the percentage error was calculated using the following formula: (
|𝑆𝐶 𝑣𝑎𝑙𝑢𝑒−𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒|

|𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒|
) 𝑥100; where 

the SC value was obtained using the standard curve equation and the exact value was calculated knowing the 

applied dilution of a culture whose concentration was determined by dry weight.  

 

 

Figure 1. Relative locations of primers and fluorogenic probes within the nuclear ribosomal DNA region 

(not to scale). Primers are indicated with single-headed arrows and probes with double-headed bars. ITS: 

internal transcribed spacer.  

 

 

2.5. Direct PCR 

A simple method was developed to break down the S. almeriensis cells and rapidly perform the real-

time PCR assays, avoiding DNA extraction. The FastPrep-24 instrument (MP Biomedicals) and Lysing 

Matrix B 2-mL tubes (MP Biomedicals) were used as described in Figure 2Figure 2. The first steps were 

intended to remove the culture medium; subsequently the sample was vortexed and centrifuged to separate 

the suspended DNA from the matrix particles and the cellular residuals. After this short procedure, 1.5 µL of 

supernatant was immediately used for a real-time assay, as described in paragraph 2.4. Different vortex 

protocols (6 m/s for 40 or 120 sec) and matrix types (B and C) were tested: Lysing Matrix B contained 0.1 

mm silica beads, while Lysing Matrix C contained 1 mm silica beads. To assess the method’s validity, real-

time PCR assays were carried out to compare the DNA results obtained from classic DNA extraction, as 
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described in paragraph 2.2, and the supernatant obtained from this method, using the same culture but from 

the different matrices and vortex protocols tested.  

Direct PCR assays were also performed on other microalgal strains belonging to the genera Chlorella, 

Haematococcus, Scenedesmus and Nannochloropsis. Using the VIC-fluorescence signal of the control 

UnivProbe, it was possible to estimate whether cell rupture occurred or not.  

 

Figure 2. Experimental procedure for medium removal and subsequent cell rupture by means of strong 

vortexing. The use of nuclease-free water is recommended.  

3. Results and discussion 

3.1. Barcode marker sequencing 

The ITS1-5.8S-ITS2 and rbcL barcode markers were successfully sequenced, assembled and uploaded 

onto the GenBank database (MF977406 and MG257492). The obtained 655-nt and 1312-nt sequences were 

compared with the other sequences in GenBank using the BLAST tool and the closest species were identified 

as Scenedesmus obliquus and Scenedesmus bajacalifornicus. Comparisons were made with S. obliquus 
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complete genomes FNXT01000001–FNXT01001368 [32] and NEDT01000001–NEDT01002707 [33] 

finding only 93% sequence similarity for both markers. Moreover, sequence similarity with S. 

bajacalifornicus was 97% for the ITS1-5.8S-ITS2 marker and 93% for the rbcL marker. Overall, these data 

demonstrate Scenedesmus almeriensis diversity between algal sequences present in the GenBank database, 

confirming the previous identification conducted by Sánchez et all [16].  

3.2. Extraction methods 

Scenedesmus almeriensis DNA extraction was performed with different commercial kits (Soil DNA 

Isolation Plus Kit by Norgen Biotek, PureLink Plant Total DNA Purification Kit by Invitrogen) and non-

commercial methods (CTAB) [28] obtaining similar yields (data not shown). From these, the Soil DNA 

Isolation Plus Kit was selected and used routinely, starting always from a 2-mL culture sample with a 

concentration ranging from 0.5 to 2 g/L dry weight. With this set-up we were able to maintain a constant 

DNA extraction efficiency (43.2 ng DNA/mg of sample), avoiding column saturation and improving 

reproducibility. 

Nevertheless, complete DNA extraction is a very time-consuming step in sample analysis. To solve 

this problem, a rapid method was developed to disrupt S. almeriensis cells by strong vortexing and to 

perform direct PCR assays directly on the lysate supernatant (Figure 2Figure 2). The best conditions to 

efficiently break down the microalga cells were obtained with Lysing Matrix B and a vortex protocol of: 40 s 

vortexing at 6 m/s, 40 s rest followed by another 40 s vortexing at 6 m/s. However, similar results were 

obtained from both matrices and the vortexing protocols tested; such as in qPCR, where a maximal 1.7-

threshold cycle (Ct) difference was observed between the direct PCR samples and the average Ct of the 

control samples treated with classic DNA extraction.  

 Under these conditions it was possible to efficiently break down a number of S. almeriensis cells, 

ranging from 30 to 3·107 (from 1 µg/L to 1 g/L) in a 2-mL culture, proving its ability to work at a wide range 

of concentrations, a mandatory requirement when working with unknown samples. This approach enables us 

to save approximately two hours of total experiment time while maintaining the same PCR assay sensibility 

and precision as that obtained from samples processed by classic DNA extraction. Furthermore, the proposed 

disruption methodology has shown itself able to efficiently break down not only S. almeriensis cells, but also 
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a wide range of other species belonging to the genera Chlorella, Haematococcus, Nannochloropsis and 

Scenedesmus. Compared to the other direct PCR methods previously reported, our approach excels from its 

versatility with regard to the number and species of cells as well as its rapidity and simplicity - it does not 

need a long incubation period or extraction buffers - thus demonstrating its suitability for this and further 

applications.  

Real-time PCR assay 

For both methodologies obtaining template DNA, the Salm set was able to correctly quantify S. 

almeriensis concentrations as low as 1 µg/L (dry weight) in a 2-mL concentrated culture (1-2 g/L dry 

weight) of another microalga. A 1 µg/L concentration of S. almeriensis corresponds to approximately 1.7·10-

6 ng/µL extracted genomic DNA or 15 cells/mL in the direct PCR assay; this equates to less than one cell per 

PCR reaction as only a fraction of the total sample is used for the assay. The ability in detecting one cell or 

less is due to the presence of multiple copies of the ribosomal genes in these organisms; comparable results 

have been observed in similar works [34] [35].  

The specificity of the Salm set for target species was also checked but no amplification was observed 

in any of the non-target microalgae tested, especially in the closest relatives, so the chances of a false-

positive identification of another species are remote using this method. All the algae checked were 

previously submitted for sequencing to confirm correct identification. The obtained ITS2 sequences were 

aligned in order to establish the similarity to S. almeriensis in the region where the probe was designed. 

SalmProbe demonstrated itself to be species-specific for the target alga as well as having only two 

mismatches, as was the case with Coelastrum proboscideum (data not shown). In contrast, the Univ set 

amplified all the algae tested, including the Cyanobacteria Spirulina, without interfering with S. almeriensis 

detection, confirming its suitability as a positive control.  

Standard curves were assembled for both the Salm (Figure 4Figure 3; Figure 4) and Univ (data not 

shown) sets through linear regressions of 10-fold dilution series. Subsequently, cell density could be 

calculated by comparing Ct values from an unknown sample with the standard curve. However, experiments 

have shown that the standard curve obtained with the Univ set using S. almeriensis DNA cannot be used to 

reliably quantify the total eukaryote genomes in a multi-species sample, probably because of the different 
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repetition number of the 18S gene in the different species [36]. Therefore, this set will only be used as a PCR 

positive control and to approximately estimate algal concentration, with no precise quantification or ratio 

with the S. almeriensis concentration. Moreover, it provides a control that ensures the nucleic acid extraction 

or the vortexing protocol have worked successful.  

The PCR reaction efficiency (E) was estimated from the standard curve slope (m) obtained for the 

Salm set using the two DNA preparation methods, employing the formula E = 10(-1/m) -1. A 100% reaction 

efficiency (-3.31 slope) was obtained using the classic DNA extraction method, and an 89% efficiency (-3.62 

slope) using the direct PCR method. The lower efficiency for the direct PCR assay was probably due to 

inhibitor molecules that remained in the PCR mix during the reaction [37]; however, these did not affect the 

linearity of the standard curve in the selected range, making this method suitable for microalgae 

quantification.  

Both standard curves (Figure 4Figure 3 and Figure 4), and the relative methods for obtaining DNA, 

were laboratory tested in order to assess the precision of the measurements. For both, the real-time PCR 

assay was shown to be species-specific and sufficiently precise to identify the correct order of magnitude for 

the S. almeriensis concentration, with an average percentage error of 122% for DNA extraction and 68% for 

the direct PCR approach, and with the maximum error detected at the lowest concentrations (1 µg/L). This 

magnitude of error is compatible with the intended applications of this methodology; nonetheless, direct PCR 

gave a percentage error significantly lower than that observed with DNA extraction. This observation can be 

explained by the direct PCR’s simpler experimental protocol and thus the fewer calculations that need to be 

carried out - this lead to a lower probability of making errors and to a more precise result. 
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Figure 43. Standard curve obtained assessing threshold cycles with the Salm probe at different DNA 

concentrations, ranging from 10 to 10-5 ng/µL. DNA was obtained via classic DNA extraction. Data shown. 

Figure 34. Standard curve obtained assessing threshold cycles with the Salm probe at different 

concentrations of Scenedesmus almeriensis cells, ranging from 1 to 10-4 g/L. DNA was obtained via 

vortexing, as explained in paragraph 2.5. Data shown as mean +/-SD, n=4. Linear regression and curve 

slope is also reported. 
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as mean +/-SD, n=4. Linear regression and curve slope is also reported. 

4. Conclusions 

Traditionally, microalgae species are recognized by morphological discrimination under an optical 

microscope. However, microalgae often display very few morphological features that can be used for 

identification, leading to uncertainty regarding the true identity of the routinely used microalgae species. 

Furthermore, when it comes to identifying small concentrations of contaminant microalgae in a concentrated 

culture of another alga, the task is even harder and more labour intensive [38]. The applied qPCR assay not 

only allows us to identify the presence of Scenedesmus almeriensis cells in any microalgal culture but also 

enables us to precisely quantify the population via a species-specific TaqMan probe. This outcome is almost 

unobtainable with other techniques. Among the possible alternatives, flow cytometry is a powerful method 

for counting cells [39]; nevertheless, when it comes to restricting the analysis to a single species mixed with 

many others, the task is hard to accomplish. In contrast, our technique has the advantage of simultaneously 

identifying and quantifying just the target species, even when its presence is minimal within the algal 

sample.   

The methodology was initially developed using classic nucleic acid extraction but because of the time-

consuming protocols of the commercially available kits, we set about optimizing a direct PCR approach 

based on strong vortexing and which had minimal experimental steps. This approach demonstrated how it 

provided the same sensitivity as classic DNA extraction but was more precise, cheaper and less time-

consuming, given that the total experiment can be performed in approximately two hours. Furthermore, the 

proposed methodology is highly versatile and can be easily applied to virtually any microalgae species, even 

to new or non-identified species - this is because the nucleic acid sequence used to design primers and probes 

is obtained directly from the algae of interest, without the necessity of knowing its correct binomial name. At 

the same time, the sequencing of barcode markers like ITS and rbcL enables to check the GenBank for 

similar sequences and to precisely identify the alga at genomic level, without any need of trained staff or 

taxonomists able to identify the species with traditional morphological discrimination.  
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The broad applicability of the proposed methodology promises to considerably expand our 

understanding of microalgal occurrence in economically important microalgal cultures and to support the 

achievement of maximal productivity and quality in the biomass produced.  
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