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Abstract: Inch (Tradescantia zebrina) and spider (Chlorophytum comosum) plants were grown in a growth
chamber for two months in plastic containers to evaluate the effects of different light treatments
(TO Tube luminescent Dunn (TLD) lamps or control), TB (TLD lamps + blue light emitting diodes
(LEDs)), TR (TLD lamps + red LEDs), and TBR (TLD lamps + blue and red LEDs) on biomass,
photosynthesis, and physiological parameters. Total dry weight and water content were evaluated at
the end of the experimental period. After two months, pigment concentrations and the photosynthetic
rate were assessed in both species. The total soluble sugar, starch, and proline concentrations in
the leaf as physiological parameters were studied at the end of the experiment. Both species had
increased root, shoot, and total dry weight under blue LEDs conditions. The chlorophyll concentration
showed a specific response in each species under monochromic or mixed red-blue LEDs. The highest
photosynthetic rate was measured under the addition of mixed red-blue LEDs with TLD lamps. At the
physiological level, each species triggered different responses with respect to total soluble sugars
and the proline concentration in leaves under monochromic or mixed red-blue LEDs. Our study
demonstrated that the addition of blue LEDs is advisable for the production of these ornamental
foliage species.

Keywords: biomass; chlorophyll; fluorescent lamp; light treatments; proline; starch

1. Introduction

Foliage plant production represents an important agricultural industry worldwide with a net
wholesale value of 50 billion € [1,2]. Nowadays, the use of foliage plants for removing indoor air
pollutants in buildings is a fashion trend among consumers since these species are air-filters for volatile
compounds such as benzene [3].
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The production of indoor foliage plants with an additional capacity of pollutant removal is an
added value that should be considered in ornamental horticulture. The choice of species with a
well-known capacity to remove pollutants should be done following the recommendations given
by Cathey and Campbell [4], who established the lighting requirements for indoor foliage plants.
For instance, Chlorophytum comosum is well known to removal volatile compounds such as benzene [5],
and Tradescantia sp. removes formaldehyde [6].

In ornamental indoor horticulture, the use of artificial lighting has been related to the improvement
of the commercial value which depends on the visual quality characterized by different factors such as
stem elongation, compactness, branching, and flowering [7]. Nowadays, light emitting diodes (LEDs)
are the most frequently used lighting sources for plant growth under controlled conditions due to their
durability, long lifetime, high radiant efficiency, and relatively narrow emission spectra [8,9]. Moreover,
LEDs also provide options to select specific wavelengths for a targeted plant response which can be
desirable for the production of indoor ornamental plants [10].

We investigated the responses of two different ornamental foliage plants to different light
treatments. Tradescantia zebrina (inch plant) is an ornamental foliage plant native to eastern Mexico
belonging to the family Commelinaceae. It is prized among interiorscapers for its attractive variegated
foliage and tolerance to a wide range of growing conditions [11]. Chlorophytum comosum (spider plant)
is an evergreen horticultural plant native to southern Africa belonging to the family Asparagaceae.
It is characterized by high biomass production, easy cultivation, intense competitive ability, and wide
geographic distribution [12].

There are several studies focused on the effects of mixed lights of fluorescent lamps and LEDs on
horticultural crops such as radish and spinach [13], as well as ornamental plants such as marigold
and salvia [14]. Nevertheless, there is little information concerning the effects of these mixtures of
lights on our targeted foliage species. Therefore, in this trial, a pot experiment with inch and spider
plants was established in order to determine the effects of different light treatments on their biomass,
photosynthesis, and physiological parameters.

2. Materials and Methods

2.1. Plant Material and Pre-Cultivation

Rooted inch and spider cuttings (plants) were obtained from plants growing in a multitunnel
greenhouse at Almería (lat. 36◦49′ N, long. 2◦24′ W) and were transplanted into 2.0 L polyethylene
pots containing a mixture of sphagnum peat-moss, vegetable compost, and perlite (Natura Universal
substrate, Projar, Valencia, Spain). The cuttings of each species were rooted under tunnel propagation
for one month (from January to February) with the following microclimatic conditions: ranges of
temperatures from 25 to 30 ºC and relative humidity higher than 90% monitored continuously with
a data logger (HOBO model H 08-004-02, Onset Computer Corp., Bourne, MA) under a natural
photoperiod (11/13 h light/dark). Both species were watered every two days during the rooting period
with a 60% Steiner nutrient solution. Then, rooted cuttings (plants) were scheduled for follow-up in a
growth chamber of l.5 × 2.5 × 2.5 = 9.38 m3 divided into four compartments (2.16 m3) with a black
polyethylene film to prevent interference between neighboring light treatments. Each compartment
was assigned to each light treatment during the entire experiment (two months). In each compartment,
there were four blocks with six plants per block and species that were randomly positioned. The rooted
cuttings of inch plants had an average dry weight of 1.34 g, and spider plants of 0.28 g on the day of
transfer to the growth chamber. The growth chamber was set at a constant (day/night) temperature
of 25 ◦C and a relative humidity of 55% to minimize any potentially confounding effect of a diurnal
temperature difference or relative humidity on extension growth. To further minimize any edge or
position effects within each treatment, the pots were separated with covers and rearranged every other
day. During the experimental period, both species were watered manually every day with a Steiner
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nutrient solution in order to avoid any water or nutrient limitation. The plants were grown under a
12/12 h light/dark photoperiod according to the light requirement of these species [15].

2.2. Experimental Set-Up and Light Quality Treatments

The experiment consisted of four light treatments: TO (Tube luminescent Dunn (TLD) lamps)
(control treatment) (fluorescent TLD 18W (4 light Philips TCS097 × 2 lamps, Philips Lighting Spain,
Madrid, Spain) with a power of 144 W), TB (TLD lamps + blue LEDs) (fluorescent TLD 18W (4 light
Philips TCS097 × 2 lamps, Philips Lighting Spain, Madrid, Spain) and 4 lines of ALUM 40*25 blue
LEDs × 9 W with console DN-RGB FIBER LIGHT, Modular Signs, Murcia, Spain) with a total power
of 180 W, TR (TLD lamps + red LEDs) (fluorescent TLD 18W (4 light Philips TCS097 × 2 lamps,
Philips Lighting Spain, Madrid, Spain) and 4 lines of ALUM 40*25 red LEDs × 9 W with console
DN-RGB FIBER LIGHT, Modular Signs, Murcia, Spain) with a total power of 180 W, and TBR (TLD
lamps + blue and red LEDs) (fluorescent TLD 18W (4 light Philips TCS097 × 2 lamps, Philips Lighting
Spain, Madrid, Spain) and 2 lines of ALUM 40*25 red LEDs × 9 W and 2 lines of ALUM 40*25 blue
LEDs × 9 W with console DN-RGB FIBER LIGHT, Modular Signs, Murcia, Spain) with a total power of
180 W. The spectral distribution scans were recorded at 400–1100 nm with 1-nm steps of the different
light treatments with a calibrated spectroradiometer (LI-COR 1800, Lincoln, Ne, USA) at the canopy
level. With these measurements, agronomic characterization of each light treatment was assessed
following the methodology established by Baille et al. [16]. The experimental design consisted of four
light treatments, four random blocks, and six plants (one plant per pot) per block giving a total of
96 plants per species plus border plants per experiment. The selection of these light treatments was
done following the recommendations given by local ornamental growers.

2.3. Biomass Parameters

At the end of the experimental period, six plants per species and treatment were harvested,
the substrate was gently washed from the roots, and the root surface was dried with blotting paper.
The plants were divided into roots (R) and shoots (S), and the respective fresh weights (FW) were
measured. Roots and shoots were then oven-dried at 60 ◦C until they reached a constant weight to
provide the respective dry weights (DW). The fresh and dry weights of roots and shoots were used to
calculate the water content (WC—g water per g fresh weight) of each organ as indicated by Ben Amor
et al. [17].

2.4. Photosynthetic Parameters

To determine the concentrations of pigments (chlorophylls and carotenoids) in leaves, six plants of
each species were randomly selected per treatment at harvest. Extraction of chlorophyll a and b (Chl a
and Chl b) and carotenoids was performed by submerging 0.2 g of fresh leaves in methanol (10 mL) in
the dark at room temperature (15 ◦C) for 24 h. The supernatant was removed, and the photosynthetic
pigment concentrations were determined colorimetrically at their respective wavelengths using a
Shimadzu ultraviolet-1201 spectrophotometer (Shimadzu Scientific Instruments, Columbia, MD):
Chl a (λ = 666 nm), Chl b (λ = 653 nm), and carotenoids (λ = 470 nm) following the methodology
of Wellburn [18]. Pigment concentrations were expressed as mg·g−1 FW. The leaf photosynthetic
rate of each species was measured at the end of the experiment under the compartments used to
assess the different light treatments using a leaf portable chamber photosynthesis meter (LC Pro,
ADC Bioscientific, Hoddesdon, UK) (leaf temperature 25 ◦C, RH of 55%, PPFD corresponding to the
photosynthetically active radiation (PAR) in each case (107.49, 113.33, 111.64, and 117.17 b for T0, TB,
TR, and TBR; respectively) and ambient CO2 concentration). The values presented are the mean of
10 measurements and are expressed as µmol CO2·m−2

·s−1.



Agronomy 2020, 10, 284 4 of 10

2.5. Physiological Parameters

To determine the concentrations of total soluble sugars (TSS), starch, and proline in leaves,
six plants of each species were randomly selected per treatment at harvest. The free proline, TSS,
and starch were determined in an alcoholic extract (supernatant). The free proline concentration was
determined by the ninhydrin reagent method. Free proline concentration was expressed as µg·g−1 FW.
The total soluble sugar concentration was determined by the anthrone reagent method. The starch
concentration was determined using the oven-dried residue from the total soluble sugar determination.
The total soluble sugar and starch concentrations were expressed as mg glucose equivalent·g−1 FW [19].

2.6. Statistical Analysis

The experiment had a completely randomized block design, and the values obtained for each
plant and each variable were considered independent replicates. The data were analyzed through
one-way analysis of variance (ANOVA) and least significant difference (LSD) tests (p < 0.05) in order to
assess the differences between treatments. All statistical analyses were done with Statgraphic Plus for
Windows (version 5.1; Statpoint Technologies, Warrenton, VA).

3. Results

3.1. Spectral Distribution

To evaluate the effectiveness of different light regimes, we used the spectral distribution
highlighting the different peaks found and compared the integrated photon flux of each agronomic
region of interest and its ratios. The spectral distribution of the different light treatments showed
common peaks at 404, 436, 486, 544, 580, 612, and 704 nm (Figure 1). The agronomic characterization of
light treatments (Table 1) showed different trends according to the spectral region studied. The values
of PAR were slightly higher under the LED-supplemented conditions. The TBR treatment had the
highest values of PAR and total radiation. The TB and TBR treatments had the highest value in the blue
(B) region. Similarly, TR and TBR had the highest value in the red (R) region. All treatments presented
the same values of far red radiation (FR) and near infrared radiation (NIR). As far as the ratios was
concerned, there were no differences in the ratio PAR:TOTAL between light treatments, i.e., all light
treatments had the same light efficiency for agricultural production. The TB treatment had the highest
value for the ratio B:R, and TBR had the highest PAR:NIR value. Therefore, the TBR treatment should
cause less damage to the foliage due to the high temperature. The ratio B:FR had the highest values in
TB and TBR, whereas the ratio R:FR had the highest values in TR and TBR.

Table 1. Agronomic characterization of light treatments (TO (TLD lamps), TB (TLD lamps + blue LEDs),
TR (TLD lamps + red LEDs), and TBR (TLD lamps + blue and red LEDs)).

Spectral Region (nm)
Photon Flux (µmol m−2 s−1)

T0 TB TR TBR

UV (300–400) 0.82 0.86 0.86 0.86
B (400–500) 27.88 33.45 27.88 33.27
R (600–700) 39.99 39.99 44.10 43.96

FR (700–800) 2.51 2.51 2.51 2.51
PAR (400–700) 107.49 113.33 111.64 117.17
NIR (700–1100) 3.84 3.84 3.84 3.84

TOTAL (300–1100) 111.92 117.81 116.12 121.61
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Table 1. Cont.

Spectral Region (nm)
Photon Flux (µmol m−2 s−1)

T0 TB TR TBR

PAR:TOTAL 0.96 0.96 0.96 0.96
PAR:NIR 27.94 29.37 28.97 30.43

B:R 0.70 0.84 0.63 0.76
B:FR 11.08 13.28 11.08 13.23
R:FR 15.89 15.86 17.52 17.47

UV = ultraviolet, B = blue, G = green, R = red, FR = far red, PAR = photosynthetically active radiation, NIR = near
infrared radiation.
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Figure 1. Spectral distribution of the different light treatments with the highlighted peaks presented by
the treatments. TO (TLD lamps), TB (TLD lamps + blue LEDs), TR (TLD lamps + red LEDs), and TBR

(TLD lamps + blue and red LEDs).

3.2. Biomass Parameters

Throughout the experiment, there were no mortalities or any visual damage evident on the plants
in response to the different light treatments. In both species, root, stem, and total dry weights had
the highest value under TB. The water content in the roots and shoots remained unchanged in both
species under different light treatments (Table 2).

3.3. Photosynthetic Parameters

Chlorophyll a concentrations of inch and spider plant leaves in all treatments were higher than
the respective chl b concentrations. In inch plants, the highest chl a and a+b concentration was found
in plants grown under TB whereas the control treatment (T0) had the highest chl b concentration.
In spider plants, the highest chl a and a+b concentration was found in plants grown under the control
treatment whereas growth under TBR resulted in the highest chl b concentration. No significant
differences were observed in the carotenoid concentration regardless of the light treatment in both
species. The photosynthetic rate had the highest value in plants of both species grown under TBR

(Table 3).
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Table 2. Effects of different light treatments (TO, TB, TR and TBR) on the root (RDW), shoot (SDW),
and total plant dry weight (TDW), as well as the water content in roots (WCr) and shoots (WCs) in inch
(I) and spider plants (S) at the end of the experiment (2 months). Values with the same letters are not
significantly different at p < 0.05 (ANOVA and LSD test). ns: not significant. Data are the means ±
standard deviation of six plants per treatment.

Treatments RDW (g) SDW (g) TDW (g) WCr (-) WCs (-)

I TO 0.13 ± 0.01 b 3.08 ± 0.25 b 3.21 ± 0.20 b 3.45 ± 0.25 a 4.05 ± 0.36 a
TB 0.19 ± 0.02 a 3.93 ± 0.34 a 4.10 ± 0.35 a 3.39 ± 0.23 a 4.07 ± 0.37 a
TR 0.14 ± 0.01 b 2.93 ± 0.21 b 3.08 ± 0.22 b 3.61 ± 0.26 a 3.95 ± 0.33 a
TBR 0.10 ± 0.01 c 3.05 ± 0.28 b 3.16 ± 0.27 b 3.59 ± 0.25 a 3.99 ± 0.33 a

S TO 0.18 ± 0.02 b 0.88 ± 0.08 b 1.06 ± 0.10 b 6.49 ± 0.51 a 2.85 ± 0.26 a
TB 0.25 ± 0.02 a 1.33 ± 0.13 a 1.58 ± 0.15 a 6.56 ± 0.53 a 2.89 ± 0.27 a
TR 0.15 ± 0.02 b 0.90 ± 0.08 b 1.08 ± 0.11 b 6.41 ± 0.54 a 2.91 ± 0.26 a
TBR 0.10 ± 0.01 c 0.71 ± 0.07 c 0.81 ± 0.08 c 6.59 ± 0.55 a 2.96 ± 0.24 a

Table 3. Effects of different light treatments (TO, TB, TR and TBR) on pigment concentrations and the
photosynthetic rate (Pr) of inch (I) and spider plants (S) at the end of the experiment (2 months). Values
with the same letters are not significantly different at p < 0.05 (ANOVA and LSD test). ns: not significant.
Data are the means ± standard deviation of six plants per treatment.

Treatments
Chl a Chl b Chl (a+b) Car Pr

(mg g−1 FW) (mg g−1 FW) (mg g−1 FW) (mg g−1 FW) µmol CO2·m−2·s−1

I TO 0.22 ± 0.02 c 0.08 ± 0.01 a 0.31 ± 0.03 b 0.016 ± 0.002 a 0.31 ± 0.03 b
TB 0.39 ± 0.03 a 0.02 ± 0.01 b 0.42 ± 0.03 a 0.015 ± 0.002 a 0.25 ± 0.02 c
TR 0.30 ± 0.03 b 0.03 ± 0.01 b 0.32 ± 0.03 b 0.016 ± 0.002 a 0.31 ± 0.03 b
TBR 0.32 ± 0.03 b 0.03 ± 0.01 b 0.34 ± 0.03 b 0.017 ± 0.003 a 0.52 ± 0.05 a

S TO 0.44 ± 0.04 a 0.02 ± 0.01 c 0.47 ± 0.04 a 0.019 ± 0.002 a 0.31 ± 0.03 c
TB 0.32 ± 0.03 b 0.05 ± 0.01 b 0.37 ± 0.04 b 0.020 ± 0.002 a 0.23 ± 0.02 d
TR 0.28 ± 0.03 b 0.06 ± 0.01 b 0.34 ± 0.03 b 0.020 ± 0.002 a 0.46 ± 0.05 b
TBR 0.15 ± 0.02 c 0.11 ± 0.01 a 0.26 ± 0.02 c 0.020 ± 0.002 a 0.89 ± 0.08 a

3.4. Physiological Parameters

In inch plants, the highest concentration of total soluble sugars and proline in leaves was found
in plants grown under TBR and TB, respectively. In spider plants, the control treatment (T0) had the
highest value of leaf total soluble sugars whereas the highest leaf proline concentration was found in
plants grown under TBR. There were no significant differences in starch concentration at the end of
the experiment in inch plants but in spider plants, the highest concentration was found under TBR

(Table 4).

Table 4. Effects of light treatments (TO, TB, TR and TBR) on physiological parameters in inch (I)
and spider plants (S) at the end of the experiment (2 months). Values with the same letters are not
significantly different at p < 0.05 (ANOVA and LSD test). ns: not significant. Data are the means ±
standard deviation of six plants per treatment.

Treatments
TSS Starch Proline

mg glucose·g−1 FW mg glucose·g−1 FW µg proline·g−1 FW

I TO 3.27 ± 0.31 b 0.028 ± 0.002 a 26.23 ± 2.56 b
TB 2.41 ± 0.21 c 0.027 ± 0.02 a 41.72 ± 4.06 a
TR 2.51 ± 0.22 c 0.028 ± 0.02 a 26.30 ± 2.61 b
TBR 4.91 ± 0.45 a 0.027 ± 0.03 a 25.93 ± 2.13 b
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Table 4. Cont.

Treatments
TSS Starch Proline

mg glucose·g−1 FW mg glucose·g−1 FW µg proline·g−1 FW

S TO 20.15 ± 1.91 a 0.049 ± 0.004 b 44.41 ± 4.24 d
TB 15.31 ± 1.33 b 0.051 ± 0.005 b 58.00 ± 5.16 c
TR 15.42 ± 1.53 b 0.050 ± 0.005 b 77.72 ± 7.19 b
TBR 15.58 ± 1.63 b 0.062 ± 0.005 a 103.05 ± 9.74 a

4. Discussion

The monochromic or mixed red-blue LEDs had different effects on the biomass and biochemical
parameters according to the species. After 60 days of exposure, inch and spider plants had the highest
root dry weight under the addition of blue LEDs. These results may be related to the fact that under
blue light conditions, there is a higher generation of auxins by plants, which improves root growth
as reported by Horwitz [20]. In addition, these findings indicate that blue light signals perceived
aboveground directly contribute to the regulation of growth and development of roots through the
internal light-conducting system from stem to roots as reported by Sun et al. [21]. Nevertheless,
the results obtained in this experiment for both species were not in line with the results obtained
by Randall and Lopez [22], who carried out an experiment with ornamental plants such as vinca,
impatiens, and geraniums under varying proportions (%) of red:blue light (from 87:13 to 70:30),
resulting in a decrease in root dry weight.

The lack of variation in the root dry weight in both species in our experiment under red light
conditions was in line with the results obtained by Randall and Lopez [23], who reported that
snapdragon, Madagascar periwinkle, zonal geranium, and French marigold plants did not show
significant changes in root dry weight under red light conditions compared to the control treatment.

The incorporation of blue LEDs increased the shoot and total dry weights in both species compared
to plants grown under only TLD lamps. Contradictory and variable results can be found in the literature
concerning the effects of blue light on the biomass in different species. For instance, different researchers
have reported an increase in dry weight under blue light conditions in crops such as spinach [24].
Nevertheless, other researchers have reported a reduction in dry weight under blue light in other crops
such as red leaf lettuce [25] and Chrysanthemum morifolium [26]. The results obtained in our experiment
suggest a strong morphogenetic effect since the addition of blue LEDs to TLD lamps in both species
resulted in the production of plants that were more saleable mainly due to the increase in biomass.

In our experiment, the water content in the shoots and roots of both species was not affected
by the addition of red, blue or the mixed red and blue LEDs to the control treatment. These results
disagree with those reported by Almansa et al. [27], who noted that the addition of red and blue LEDs
to fluorescent lamps resulted in a decrease in the water content of tomato seedlings. It is possible that
if the experiment was extended for a longer period (>60 days), the water content will probably have
been affected.

As far as pigment concentration was concerned, there were different trends between the species.
For instance, inch plants had the highest concentrations of Chl a and Chl (a+b) under blue light
conditions, whereas spider plants had the highest values of Chl a and Chl (a+b) in the control treatment
without the addition of any type of LED. It is worth mentioning that a high chlorophyll concentration
in plants, which causes a dark green coloration of leaves, is a desirable feature, especially in ornamental
plants [28]. In the case of inch plants, the highest concentrations of Chl a and Chl (a+b) under blue LED
light may be the result of the positive and synchronized influence of blue light on both nuclear and
plastid genomes and could have played a vital role in the formation of chlorophyll and chloroplast
development as reported by Akoyunoglou and Anni [29]. Similar results have been reported by
other researchers for other crops such as grapes [30] and chrysanthemum [31]. The increase in the
chlorophyll concentration under blue light conditions may be also ascribed to the enhancement of the
5-aminolevulinic acid synthesizing activity, which in turn mediates the biosynthesis of tetrapyrroles
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such as chlorophylls, as reported by Kamiya et al. [32]. With respect to spider plants, the decrease in
pigment concentrations in our experiment under monochromic or mixed red-blue LEDs may suggest
chlorophyll degradation under changes in irradiance wavelengths as reported by Taiz and Zeiger [33].

In our experiment, the addition of blue, red or mixed red and blue LEDs to TLD lamps did not
affect the carotenoid concentration compared to the plants grown under only TLD lamps, for both
species. These results suggest that the carotenoid concentration did not appear to be influenced by
the wavelengths in the light environment, coinciding with the results reported by Zheng and Van
Labeke [7], who noted that carotenoid concentrations in cabbage tree and weeping fig did not vary
under different light treatments.

The highest photosynthetic rate reported in both species in our experiment under the combination
of blue and red LEDs is in line with the results reported by different researchers for other ornamental
species such as Withania somnifera [34], Rosa sp. [35], and Petunia x hybrida [36] grown under a
combination of red and blue lights. These results can be related to the fact that plants grown under
mixed red and blue LEDs absorb the most efficient wavelengths for photosynthesis [37] since the peaks
of B and R LEDs coincide with the peaks of the relative quantum efficiency curve [38].

Light quality may regulate carbohydrate metabolism of plants as well as being involved in other
physiological processes [39]. In our present study, we investigated the effect of spectral quality of
different LEDs on the total soluble sugar, starch, and proline concentrations in the leaves of two indoor
foliage plants. In inch plants, the highest leaf total soluble sugar concentration under mixed red-blue
LEDs may be ascribed to the high photosynthetic rate and the compactness of plants due to the ratios
R/FR and B/R already explained agreeing with the results reported by Almansa et al. [40]. In the case
of spider plants, the lower values of the leaf total soluble sugar concentration under monochromic
or mixed red-blue LEDs may be attributed to an accumulation of starch [33]. With respect to starch
concentration, the highest concentration reported under mixed red-blue LEDs was related to the high
photosynthetic rate. These results are similar to those obtained by Heo et al. [41] in an experiment
carried out with different species of bedding plants such as floss flower, Mexican marigold, and scarlet
sage under different light treatments. They reported that all the species studied were sensitive to the
different mixtures of radiation, and the accumulation of starch in leaves increased under blue and
red-light conditions.

Similar to the leaf total soluble sugar concentration, the leaf proline concentration showed a
differential response in both species according to the type of LED. For example, the addition of blue
LEDs to TLD lamps resulted in the highest leaf proline concentration in inch plants whereas in spider
plants, the highest leaf proline concentration was found under the combination of red and blue LEDs
with TLD lamps. There are few reports concerning the effects of light quality on the leaf proline
concentration. The result of this experiment showed that the increase in the leaf proline concentration
in inch plants under the addition of blue LEDs was in line with the results obtained by Zheng and
Van Labeke [42] for chrysanthemum plants.

5. Conclusions

The addition of monochromic or mixed red-blue LEDs triggered different responses in each
species. At the end of the experimental period, the highest root, shoot, and total dry weights were
found in both species grown under the blue LEDs with TLD lamps. There were different responses
at the photosynthetic and physiological levels in both species under the different light regimes.
Under mixed-red blue conditions, there was a higher accumulation of carbohydrates as total soluble
sugars in inch plants and as starch in spider plants. These results suggest the importance of studying
the effects of different light conditions to establish the light requirements of these two foliage species in
indoor environments. The addition of blue LEDs to TLD lamps improved the biomass of both species,
resulting in more saleable plants to growers and gardeners.
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