
VIII Jornadas sobre Programación y Lenguajes

Almendros-Jiménez y Suárez-Cabal Eds.

Gijón, del 8 al 10 de Octubre de 2008

A Framework for
Model Transformation
in Logic Programming

Jesús M. Almendros-Jiménez1,2 Luis Iribarne1,2

Dpto. de Lenguajes y Computación. Universidad de Almeŕıa.

Abstract

In this paper we will present a framework for using logic programming (in particular, Prolog) for specifying
model transformations in the context of UML. Our approach describes how the UML metamodel can be
represented in Prolog, and how model transformations can be expressed by means of Prolog rules. It
uses rules for specifying queries in source models and rules for expressing how to build the target model.
Therefore we can distinguish between a model query language and a transformation language.Our approach
will be applied to a well-known example of model transformation in which an UML class diagram for a
database can be transformed into an UML diagram representing a relational database.

Keywords: Logic programming, Model transformation, UML

1 Introduction

Model transformation [20,11,14,8] is a key tool of the Model-driven development pro-
cess. According to the Model Driven Architecture (MDA) initiative of the Object
Management Group (OMG) [16], model transformation provides developers with
tools for transforming their models. A simple definition of a model transformation
tool is that it is able to mutate one model into another. We can take as an example
of model transformation the code generation from a visual model for representing
the architecture of a software system. For instance, most of UML (Unified Modeling
Language) software development tools are able to generate code from UML class
diagrams. In such a model transformation tool, the source model is the class dia-
gram and the target model is code in a certain programming language. However,
model transformation is a more general technique of transformation of models. In
fact, usually Model-to-model (M2M) and Model-to-Code (M2C) transformations are
considered.

1 The author’s work has been partially supported by the EU (FEDER) and the Spanish MEC under grant
TIN2005-09207-C03-02 and TIN2007-61497, respectively.
2 Email: jalmen@ual.es liribarne@ual.es

mailto:jalmen@ual.es
mailto:liribarne@ual.es
mailto:jalmen@ual.es

30 Almendros-Jiménez, Jesús M. and Iribarne, Luis30 Almendros-Jiménez, Jesús M. and Iribarne, Luis30 Almendros-Jiménez, Jesús M. and Iribarne, Luis

In this context, model transformation needs formal techniques for specifying the
transformation. In particular, in most of cases transformations can be expressed by
means of some kind of rules. The rules have to express how any given model can
be transformed into another one. Let us now focus our attention in UML, which
can be considered the standard of model specification. In the context of UML there
are recent proposals of languages whose aim is the specification of transformations
of UML models. In order to describe transformations such languages have to move
to the UML metamodel [16] in which UML itself is defined by means of UML.
By expressing transformations of the UML metamodel, any UML model can be
transformed into another UML model.

The languages for transforming models range from imperative to declarative
ones, but also there are hybrid proposals. Basically, any transformation language
has to be able to traverse a model, has to define a certain set of rules, and has to
create a new model. In other words, a transformation language should be equipped
with a model query language, a rule-based language, and a model updating/creation
language. The imperative part is usually responsible of the creation of the target
model. The declarative part specifies how to query the source model and how to
match the source model into the target model. Finally, some kind of mechanism
for rule application (i.e. matching, rule ordering and chaining) is assumed, enabling
the generation of new models.

In the context of the MOF (Meta Object Facility) metamodeling architecture, the
QVT (Query-View-Transformation) language [16] has been proposed as standard
for model transformation. QVT is a hybrid proposal involving a graphical syntax
together with an imperative syntax, and the help of OCL (Object Constraint Lan-
guage). However, there are some other proposals of transformation languages. For
instance, the language ATL (ATLAS transformation language) [10] provides declar-
ative and imperative constructs. The declarative part of ATL is based on rules.
Such rules consist of a source pattern matched over source models and of a target
pattern that creates target models for each match. Tefkat [13,12] is a declarative
language whose syntax and execution resemble Prolog (without function symbols),
but allowing the user to assert new elements to the target model. There are also
graph transformation languages. This is the case of VIATRA2 [5], GReAT [1] and
AGG [19], among others. Graph transformation languages describe transformations
by rewriting graphs. Usually, these languages consist in rules whose match with a
graph provides a transformation on the graph, in particular, deleting and adding
new elements to the graph. RubyTL [18] is an object-oriented language with hybrid
nature. It provides declarative and imperative constructs to define transformations.
The rules of RubyTL can express mappings from source models into target models
in which a filter can be added to select certain elements of the source model. The
MT model transformation language [21] is also a case of hybrid language in which
declarative patterns are combined with imperative code.

In this paper we will present a framework for using logic programming (in par-
ticular, Prolog) for specifying model transformations in the context of UML. Our
approach describes how the UML metamodel can be represented in Prolog, and
how model transformations can be expressed by means of Prolog rules. It uses rules
for specifying queries in source models and rules for expressing how to build the

VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 31VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 31VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 31

target model. Therefore we can distinguish between a model query language and
a transformation language. Our approach will be applied to a well-known example
of model transformation in which an UML class diagram for a database can be
transformed into an UML diagram representing a relational database.

The motivation of our approach is the use of a well-known programming language
for expressing model transformations. A Prolog programmer will be able to write
his/her own transformations. He/she only needs to know how Prolog stores the
UML metamodel and he/she can run transformations with the support of a Prolog
tool. With respect to how to integrate UML with a Prolog tool, UML models can be
exported in most of UML tools in the so-called XMI (XML Metadata Interchange)
[16] a dialect of XML. Therefore a Prolog tool should be able to import XMI, more
concretely XML (most of Prolog tools have a XML library), and it should be able
to export XML (and therefore XMI). When importing a XMI document, a Prolog
program can generate a Prolog representation of the UML model to be transformed.
The Prolog rules representing the model transformation will generate the Prolog
representation of a new UML model, which is exported to a XMI document to be
loaded from an UML tool. Therefore the loading and creation/update of models can
be considered as separate tasks, in which a separate Prolog program is responsible
for loading of XMI documents and the generation of facts, and another Prolog
program is responsible of the execution of the Prolog rules and generation of new
facts for creating/updating a XMI document.

Our approach contributes to the framework of model transformation with declar-
ative languages. Declarative languages have been already used in this context in
some works. One of the most relevant is [9], which describes the attempts to use sev-
eral technologies for model transformation including logic programming. In partic-
ular, they use as examples the Mercury and F-Logic logic languages. The language
Tefkat [13,12] is a declarative language whose syntax resembles a logic language
with some differences (for instance, it uses forall construct for traversing models).
The work of [22] is also a contribution to the research line by using inductive logic
programming for deriving rules for model transformation.

Some declarative languages have been also used in the context of UML. The
language Maude [6] has been used in several works for UML model and metamodel
representation. This is the case of [4] in which structural and behavioural dia-
grams are integrated by means of Maude, and in [17] in which UML models and
metamodels are formalized.

The structure of the paper is as follows. Section 2 presents the UML metamodel.
Section 3 introduces the model transformation of UML models. Section 4 describes
the approach of model transformation with logic programming. Finally, Section 5
concludes and presents future work.

2 UML Metamodel

The question now is how to describe model transformations. Fortunately, UML
models, that is, instances of UML diagrams, can be mapped into instances of the
so-called UML metamodel. The UML metamodel is a (UML) representation of

32 Almendros-Jiménez, Jesús M. and Iribarne, Luis32 Almendros-Jiménez, Jesús M. and Iribarne, Luis32 Almendros-Jiménez, Jesús M. and Iribarne, Luis

Metamodel

 name : String
Type

 name : String
Parameter

 name : String
 type : String
 isComposite : Boolean = false
 isUnique : Boolean = true
 lower : Integer[0..1] = 1
 upper : Boolean[0..1] = 1

Property

Extension

 name : String
Association

 name : String
Class

 name : String
Operation

 name : String
Stereotype

extension

class

*0..1

paramoperation

navigableOwnedEnd

association

1

1 stereotype

extension

*

0..1 ownedAttribute

class

*

1

*

0..1 ownedOperation

class

2..*
0..1memberEnd

association

**

typeoperation

type

Fig. 1. UML metamodel for the UML class diagram

Model A

DB_CoursesDB_Students

 id_course : int
 title : String
 credits : float

Course id_student : int
 name : String
 old : int

Student

 id_course id_course id_student id_student

*

1

the_courses

**
register

is registered

*

1

the_students

Fig. 2. Example of UML class diagram

the UML elements. As an example, the UML metamodel in Figure 1 3 represents
the elements of the UML class diagram of Figure 2. In such UML metamodel,
the elements to be included in an UML class diagram are specified by means of an
UML class diagram itself 4 . For instance, a class can include a name and attributes,
represented by the role ownedAttribute, which belongs to the class Property. A class
can also include operations, represented by the role ownedOperation, which can have
typed parameters and a type (the returned type from the operation). Finally, a
class can be linked to extensions which are stereotypes. Stereotypes can represent
particular cases of classes like interfaces, tables, etc. Some of the properties of a
class can represent the membership of the class to an association (represented by
the role memberEnd). The role navigableownedEnd specifies which of the classes
involved in an association are navigable. Each property is described by means of the
name, the type, whether it is composite or not (whose value is true for compositions),
whether it is unique or not (for keys), and the lower and upper bound of the number
of elements of the associations (’0..*’, ’1..*’,’1..3’, etc). Therefore, basically, the
UML metamodel defines the required (the lower bound of the multiplicity is 1)
and optional elements (the lower bound of the multiplicity is 0) of an UML class
diagram.

3 This is a simplified version of the UML metamodel of [15].
4 In fact, all the UML elements are described in the UML metamodel by means of an UML class diagram.

VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 33VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 33VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 33

For instance, the UML class diagram of the Figure 2 conforms to the UML meta-
model in Figure 1, given that the elements included in such UML class diagram are
classes (DB Students, DB Courses, Student and Course) including attributes (for in-
stance, Student includes id student, name and old) and there are three associations.
The associations have the roles the students, the courses, register and is registered
which are properties of the corresponding classes in the UML metamodel. In the
association between Student and Course there are two external keys (i.e. id student
and id course) taken from DB Students and DB Courses containers. The associa-
tion between DB students and Student is a navigable composed association. The
same can be said for the association between DB courses and Course. Stereotypes
have not been used in this UML class diagram, and the same can be said for oper-
ations.

Metamodel object A

navigableOwnedEnd
class

ownedAttribute
class

ownedAttribute

memberEnd

associationclass
class

memberEnd memberEnd

associationassociation

navigableOwnedEndmemberEnd

association

memberEnd

association
navigableOwnedEnd

ownedAttribute

ownedAttributeownedAttribute

ownedAttribute

ownedAttributeownedAttributeownedAttributeownedAttributeownedAttributeownedAttribute
class class

name = "credits"
type = "Float"
isUnique = false

 : Property

name = "title"
type = "String"
isUnique = false

 : Property

name = "id_course"
type = "Int"
isUnique = true

 : Property

name = "Course"

 : Class

name = "DB_Courses"

 : Class

isComposite = true
lower = 1
upper = 1

 : Property

name = "the_courses"
lower = 1
upper = *

 : Property

 : Association

name = "old"
type = "Int"
isUnique = false

 : Property

name = "name"
type = "String"
isUnique = false

 : Property

name = "id_student"
type = "Int"
isUnique = true

 : Property

name = "is_registered"
lower = 1
upper = *

 : Property

name = "register"
lower = 1
upper = *

 : Property

name = "Student"

 : Class
 : Association

name = DB_Students

 : Class

isComposite = true
lower = 1
upper = 1

 : Property

name = "the_students"
lower = 1
upper = *

 : Property

: Association

class

Fig. 3. Object Diagram of the Example

Now, we will show how the UML class diagram of the Figure 2, can be rep-
resented by means of an UML object diagram which is an instance of the UML
metamodel of the Figure 1. It can be seen in Figure 3. From top to bottom,
we can see how by means of objects, the associations with roles the students and
the courses, and the association with roles is registered and register are represented
as links to the corresponding classes. In the bottom of the Figure 3, each class
Student and Course is linked to properties representing the associated attributes.
Finally, the role navigableOwnedEnd specifies that the courses, the students and
register are navigable.

3 Model Transformation

As an example of model transformation we will consider how an UML class diagram
is transformed into a new UML class diagram. The source model (Model of type A)
represents a description in UML of a database (Figure 2). The target model (Model
of type B) is an UML representation of a relational (tables, rows and columns)
database (Figure 4).

34 Almendros-Jiménez, Jesús M. and Iribarne, Luis34 Almendros-Jiménez, Jesús M. and Iribarne, Luis34 Almendros-Jiménez, Jesús M. and Iribarne, Luis

Model B

 type : Int

<<column>>
id_student

 type : Int

<<column>>
id_course

 type : Int

<<column>>
 id_course

 type : Int

<<column>>
 id_student

 type : Float

<<column>>
credits

 type : String

<<column>>
title

 type : String

<<column>>
old

 type : String

<<column>>
name

<<row>>
 Course

<<row>>
 Student

<<table>>
register

<<table>>
the_students

<<table>>
the_courses

<<row>>
 Course

11

*line

1 1

1

1

1

1

** lineline

key
col

col

keykey

col

key col

Fig. 4. Relational modeling of the Example

In the relational modeling of the example there are three tables. There are
two tables called the students and the courses including each one three columns
grouped into rows. The table of the students includes for each student the associated
attributes in Figure 2. The same can be said for the table the courses. Moreover,
there is an additional table called register with two columns which represents the
pairs id student, id course for each element of the association of Figure 2. Given that
the association between Student and Course is navigable from Student to Course,
it is supposed that a table of pairs is generated from such association to represent
the assignments of students to courses, using the role name of the association end,
that is, register, for naming the cited table. Some of the columns play the role
of (external) keys of tables which is represented by means of the role key in the
associations of Figure 4. This is the case of id student and id course.

According to the UML metamodel of Figure 1, the UML model of Figure 4 can
be represented as in Figure 5. Tables and columns can be represented by means of
extensions of classes with the stereotype <<table>> and <<column>>. For this
reason, the classes representing the tables the students, the courses and register are
linked to extensions which are stereotyped as “table”. The same can be said for
the classes representing the rows: Student and Course, and the columns: id course,
id student, old, name, etc. The other elements, that is, line, key and col roles, and
attributes “type” are represented as properties and associations.

4 Logic Programming for Model Transformation

The steps to be followed for using logic programming for model transformation are
two. The first step consists in the use of Prolog facts for representing the UML
metamodel and, in particular, how to instantiate the Prolog facts to represent an
UML metamodel object diagram associated to an UML model. The second step
consists in the use of Prolog rules for representing a model transformation.

4.1 Representing the UML metamodel in Logic Programming

We will represent the UML metamodel by means of Prolog facts. For in-
stance, the UML metamodel of Figure 1 can be represented as follows:

VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 35VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 35VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 35

Metamodel object B

name = "line"
lower = 1
upper = *

 : Property

ownatt

ownatt

ownatt

ownatt

ownatt

ext ext

ownatt

class

class

class

class

class

class

class

class

mEnd
assocassoc

assocassoc

assoc

assoc assoc

assoc

assoc assoc

assocassoc

assocassoc

assocassoc

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd

mEnd mEnd

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

ownatt

class

class

class

class

class

class

class

class

class

class

class

class

class

class

class

class

class

class

class classclass

class

class

class class

class
class

assoc assoc

assoc assoc

mEndmEnd

mEndmEnd

mEndmEnd

assoc assoc

ownatt

ownatt

ownatt

class

class

class

class

class

ext

class

stereo

ext

stereo

ext

stereo
ext

name = "line"
lower = 1
upper = *

 : Property

isComposite = true
lower = 1
upper = 1

 : Property

 : Association

isComposite = true
lower = 1
upper = 1

 : Property

 : Association

name = "line"
lower = 1
upper = *

 : Property

isComposite = true
lower = 1
upper = 1

 : Property

 : Association

name = "row"

 : Stereotype

 : Extension

name = "col"
lower = 1
upper = 1

 : Property

name = "col"
lower = 1
upper = 1

 : Property

name = "col"
lower = 1
upper = 1

 : Property

name = "col"
lower = 1
upper = 1

 : Property

name = "Course"

 : Class

name = "type"

 : Property

name = "type"

 : Property

name = "key"
lower = 1
upper = 1

 : Property : Association

isComposite = true
lower = 1
upper = 1

 : Property

 : Association

isComposite = true
lower = 1
upper = 1

 : Property

name = "type"

 : Property

name = "type"

 : Property

 : Association

isComposite = true
lower = 1
upper = 1

 : Property

name = "key"
lower = 1
upper = 1

 : Property : Association

isComposite = true
lower = 1
upper = 1

 : Property

name = "Student"

 : Class

name = "type"

 : Property

name = "type"

 : Property

 : Association

isComposite = true
lower = 1
upper = 1

 : Property

 : Association

isComposite = true
lower = 1
upper = 1

 : Property

name = "id_course"

 : Class

name = "credits"

 : Class

name = "title"

 : Class

name = "id_student"

 : Class

name = "name"

 : Class

name = "Course"

 : Class

name = "type"

 : Property

name = "type"

 : Property

name = "id_student"

 : Class

name = "key"
lower = 1
upper = 1

 : Property : Association

isComposite = true
lower = 1
upper = 1

 : Property

name = "id_course"

 : Class

name = "key"
lower = 1
upper = 1

 : Property : Association

isComposite = true
lower = 1
upper = 1

 : Property

name = "old"

 : Class

name = "column"

 : Stereotype

 : Extension

name = "the_Courses"

 : Class

name = "the_Students"

 : Class

name = "register"

 : Class

name = "table"

 : Stereotype : Extension

Fig. 5. Object Diagram of the Relational Modeling of the Example

class(Name,Id class).

extension(Id extension).

stereotype(Name,Id stereotype).

property(Name,Type,IsComposite,IsUnique,Lower,Upper,Id property).

association(Name,Id association).

associationEnds(ownedAttribute,Id class,Id property).

associationEnds(extension,Id class,Id extension).

associationEnds(stereotype,Id extension,Id stereotype).

associationEnds(memberEnd,Id association,Id property).

associationEnds(navigableOwnedEnd,Id association,Id property).

...

where each element of the metamodel is represented by means of a fact. In partic-
ular, each class is represented by means of a fact of the form class(Name,Id class)
where Name represents the attribute “name” of each class, and Id class represents
an identifier for each object of type class. This identifier has to be added to the Pro-
log representation in order to be able to distinguish each object of the type class. We
will assume that the identifier in the case of classes is the name itself. Extensions,
stereotypes, associations and properties are also represented by means of facts in-
cluding the attributes as parameters of the predicates, adding also an identifier for
each object. The associations in the metamodel: ownedAttribute,class,extension,
etc, are also represented by means of facts called associationEnds in which the
first parameter indicates the role of the association, and they have two additional
parameters representing (the identifiers of) each pair of objects belonging to the
association.

This UML metamodel representation can be instantiated by means of an

36 Almendros-Jiménez, Jesús M. and Iribarne, Luis36 Almendros-Jiménez, Jesús M. and Iribarne, Luis36 Almendros-Jiménez, Jesús M. and Iribarne, Luis

UML metamodel object diagram. For instance, the UML metamodel object
diagram of Figure 3 can be represented by means of Prolog facts as follows:

class(’DB Students’,’DB Students’).

class(’DB Courses’,’DB Courses’).

class(’Student’,’Student’).

class(’Course’,’Course’).

The above facts represent each class of the model of Figure 2 by means of a fact.
Properties and classes are identified by means of their names. Associations are
identified by means of a composed name built from the identifiers of the associ-
ated classes. For instance, the association between DB Students and Student is
identified by means of DB Students-Student. Therefore, we have three (navigable)
associations:
association(’’,’DB Students-Student’). association(’’,’DB Courses-Course’).

association(’’,’Student-Course’).

Now, attributes are represented by means of properties in the meta-
model, therefore in Prolog they can be represented as follows:
property(’id student’,’String’,false,true,’1’,’1’,’id student’).

property(’name’,’String’,false,false,’1’,’1’,’name’).

property(’old’,’Integer’,false,false,’1’,’1’,’old’).

where each attribute is identified by means of its name itself.
Now, each attribute has to be associated to each class as follows:
associationEnds(ownedAttribute,’Student’,’id student’).

associationEnds(ownedAttribute,’Student’,’name’).

associationEnds(ownedAttribute,’Student’,’old’).

representing the association ownedAttribute between classes and proper-
ties. In addition, the roles have to be represented in Prolog as follows:
property(’’,null,true,false,’1’,’1’,’Student-DB Student’).

property(’the students’,null,false,false,’0’,’*’,’DB Student-Student’).

Each role is identified by means of the pairs of identifiers of the association ends.
Now, each member of each association has to be annotated by means of a Prolog
fact:
associationEnds(memberEnd,’DB Students-Student’,’DB Students-Student’).

associationEnds(memberEnd,’DB Students-Student’,’Student-DB Student’).

Finally, the navigability has to be also represented in Prolog as follows:
associationEnds(navigableownedEnd,’DB Students-Student’,’DB Students-Student’).

4.2 Rules for Model Transformation

Now, we will show how to define Prolog rules for transforming the UML model
of Figure 2 into the UML model of Figure 4. In particular, our transformation
technique takes the facts representing the model of Figure 2, obtaining a set of
facts representing the model of Figure 4. The transformation rules work on the
representation of the UML metamodel by means of facts. In general, and as already
mentioned, the rules can be classified into model query rules and transformation
rules. The first kind queries the Prolog representation of the source model and
defines new elements of the new diagram. The second kind translates the new
elements to the same kind of representation of the source model, in order to obtain
the target model.

4.2.1 Model Query Language
The model query rules define the new elements of the target model. For instance,
in the running example, they can be defined as follows:

VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 37VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 37VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 37

table(Name,Id table):-property(Name, , , , ,’*’,Id table),

associationEnds(navigableownedEnd, ,Id table).

row(Name,Id table,Id row):-class(Name,Id row),property(Name, , , , ,’*’,Id table),

associationEnds(navigableownedEnd,Id table,Id row).

column(Id column,Id row,Id column):-row(,Id row),

associationEnds(ownedAttribute,Id row,Id column).

The first rule specifies the names and identifiers of the tables. Tables are navigable
properties of the source model whose multiplicity is unbounded (in the example,
the students, the courses and register). The second rule specifies the name and
identifier of each row, together with the identifier of the table to which it belongs.
In the running example, the rows are Student and Course, the first belonging to
the students, and the second belonging to register and the courses. Finally, the third
rule specifies the name and identifier of each column, together with the identifier of
the row to which it belongs. In the running example, for instance, id student, name
and old belongs to the Student row. Now, the attributes of the model of Figure 4
can be specified by means of the following rules:
attribute(’type’,Type,Id class,Id attribute):-property(,Type, , , , ,Id attribute),

column(, ,Id class),associationEnds(ownedAttribute,Id class,Id attribute).

The attributes of the model of Figure 4 have the form ”type:Type” for each “Type”
of an attribute of a column. Now, the associations of the model of Figure 4 can be
specified as follows:
associationlink(’line’,Id table,Id row,’1’,’1’,’0’,’*’):-table(,Id table),

row(,Id table,Id row).

associationlink(’key’,Id row,Id column,’1’,’1’,’1’,1):-column(,Id row,Id column),

property(, , ,true,’1’,’1’,Id column).

associationlink(’col’,Id row,Id column,’1’,’1’,’1’,1):-column(,Id row,Id column),

property(, , ,false,’1’,’1’,Id column).

The association roles are line, key and col. The first association represents the link
between tables and rows. The second association represents the link between the
row and the column in the case of keys (i.e. isUnique is equal to true). Finally, the
third association represents the link between the row and the column in the case of
non keys.

4.2.2 Transformation Language
The second kind of rules, the transformation rules, translate the new elements,
defined by means of the model query language into the same kind of representation
as the source model.

The new classes (facts called class2) can be obtained from tables, rows and
columns. In addition, a new stereotype is added to each class which is an extension
to the class according to the UML metamodel. Extensions are identified by means
of the name of the table (i.e. the name of the class) 5 . Stereotypes are identified
by means of the name of the stereotype. New associations between the classes and
the extensions, and between the extensions and the stereotypes are added:
class2(Name,Id table):-table(Name,Id table). extension2(Id table):-table(,Id table).

stereotype2(’table’,’table’).

associationEnds2(extension,Id table,

Id table):-table(,Id table).

associationEnds2(stereotype,Id table,

’table’):-table(,Id table).

Now, new properties are added, including attribute and association roles as follows:

5 In the running example, each class has at least one extension.

38 Almendros-Jiménez, Jesús M. and Iribarne, Luis38 Almendros-Jiménez, Jesús M. and Iribarne, Luis38 Almendros-Jiménez, Jesús M. and Iribarne, Luis

property2(Name,Type,false,false,’1’,’1’,Id attribute):-attribute(Name,Type, ,Id attribute).

property2(Name,null,false,false,Lower2,Upper2,Id association):-

associationlink(Name, ,Id link1,Id link2, , ,Lower2,Upper2),

atom concat(Id link2,’-’,Aux),atom concat(Aux,Id link1,Id association).

Rules for linking attributes to classes, and rules for specifying associations can be
defined as follows:
associationEnds2(ownedAttribute,Id class,Id attribute):-attribute(, ,Id class,Id attribute).

association2(Id association):- associationlink(, ,Id link1,Id link2, , , ,),

atom concat(Id link1,’-’,Aux),atom concat(Aux,Id link2,Id association).

Associations are identified by concatenating the name of the associated classes.
Finally, membership to associations and navigability (in the running example all
associations are navigable) can be specified as follows:
associationEnds2(memberEnd,Id association,Id link1):-associationlink(, ,Id link1,Id link2, ,

, ,),atom concat(Id link1,’-’,Aux),atom concat(Aux,Id link2,Id association).

associationEnds2(navigableOwnedEnd,Id association,Id link):-

associationEnds2(memberEnd,Id association,Id link).

4.2.3 Loading and Creation/Update of Models
In order to use the previous rules for obtaining new facts representing the object
diagram of the Figure 5, a Prolog interpreter can be used. However, the interpreter
has to be modified as follows. Prolog can be used for computing new facts from a
set of rules by implementing a bottom-up interpreter (see for instance [7]).

Alternatively, each predicate of the metamodel (class,stereotype, property, etc)
can be called as goal (with variables) and each computed answer represents a fact 6 .
In the running example, we would obtain the following set of facts, among others,
for the case of the first table:

class2(’the students’,’the students’). class2(’Student’,’Student’).

extension2(’the students’). extension2(’Student’).

stereotype2(’table’,’table’). stereotype2(’row’,’row’).

associationEnds2(stereotype,’the students’,’table’).

associationEnds2(extension,’the students’,’the students’).

associations2(’the students-Student’).

associationEnds2(memberEnd,’the students-Student’,’the students’).

associationEnds2(navigableOwnedEnd,’the students-Student’,’Student’).

property2(’line’,null,false,false,’0’,’*’,’Student-the students’).

property2(’type’,’int’,false,false,’1’,’1’,’id student’).

5 Conclusions and Future Work

We have studied how to use logic programming for model transformation in the
context of UML. We have described how to apply our proposed technique to trans-
form an UML class diagram representing a database into an UML representation
of a relational database. We will study several extensions of our work in the future.
Firstly, we are interested in the implementation of the proposed technique: loading
of XMI documents into facts, execution of rules for generating new facts, exporting
of new facts into XMI documents. In addition, we will study how to use logic pro-
gramming for model transformation of other kinds of UML diagrams. In particular,
we are interested in the use of our approach for generating user interfaces from use
case and state diagrams. We have provided the basis for such model transformation

6 The predicate assert available in most Prolog implementations can be used for automating the process.

VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 39VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 39VIII Jornadas sobre Programación y Lenguajes, PROLE 2008 39

in previous works [3,2]. Finally, we believe that the integration of UML models and
logic programming can lead to the development of a logic based tool for verification
and validation of UML models and transformations.

References

[1] A. Agrawal. Graph rewriting and transformation (GReAT): a solution for the model integrated
computing (MIC) bottleneck. Automated Software Engineering, 2003. Proceedings. 18th IEEE
International Conference on, pages 364–368, 6-10 Oct. 2003.

[2] J. M. Almendros-Jiménez and L. Iribarne. Designing GUI Components for UML Use Cases. In
12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’05), pages 210–217. IEEE Computer Society Press, 2005.

[3] J. M. Almendros-Jiménez and L. Iribarne. An Extension of UML for the Modeling of WIMP User
Interfaces. Journal of Visual Languages and Computing, Elsevier, in press, 2008.

[4] N. Aoumeur and G. Saake. Integrating and Rapid-Prototyping UML Structural and Behavioural
Diagrams Using Rewriting Logic. In Procs. of CAiSE, pages 296–310. LNCS 2348, Springer, 2002.

[5] A. Balogh and D. Varró. The Model Transformation Language of the VIATRA2 Framework. Science
of Programming, 68(3):187–207, October 2007.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer, and
Carolyn Talcott. The Maude 2.0 System. In Robert Nieuwenhuis, editor, Rewriting Techniques and
Applications (RTA 2003), number 2706 in Lecture Notes in Computer Science, pages 76–87. Springer-
Verlag, June 2003.

[7] Michael Codish. Efficient goal directed bottom-up evaluation of logic programs. J. Log. Program.,
38(3):355–370, 1999.

[8] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Approaches. In
OOPSLA03 Workshop on Generative Techniques in the Context of Model-Driven Architecture, 2003.

[9] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The Missing Link of
MDA. In ICGT ’02: Proceedings of the First International Conference on Graph Transformation,
pages 90–105, London, UK, 2002. LNCS 2505, Springer.

[10] F. Jouault and I. Kurtev. On the architectural alignment of ATL and QVT. In SAC ’06: Proceedings
of the 2006 ACM Symposium on Applied Computing, pages 1188–1195, New York, NY, USA, 2006.
ACM.

[11] Frédéric Jouault and Ivan Kurtev. On the interoperability of model-to-model transformation languages.
Sci. Comput. Program., 68(3):114–137, 2007.

[12] M. Lawley and J. Steel. Practical Declarative Model Transformation with Tefkat. In MoDELS Satellite
Events, pages 139–150. LNCS 3844, Springer, 2006.

[13] Michael Lawley and Kerry Raymond. Implementing a practical declarative logic-based model
transformation engine. In SAC ’07: Proceedings of the 2007 ACM Symposium on Applied Computing,
pages 971–977, New York, NY, USA, 2007. ACM.

[14] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electr. Notes Theor. Comput.
Sci., 152:125–142, 2006.

[15] OMG. Unified Modeling Language Specification, version 2.0. Technical report, Object Management
Group, 2005.

[16] OMG. Object Management Group. Technical report, www.omg.org, 2008.

[17] J. R. Romero, J. E. Rivera, F. Durán, and A. Vallecillo. Formal and tool support for model driven
engineering with Maude. Journal of Object Technology, 6(9):187–207, October 2007.

[18] J. Sánchez-Cuadrado, J. Garćıa-Molina, and M. Menárguez-Tortosa. RubyTL: A Practical, Extensible
Transformation Language. In Procs of Model Driven Architecture - Foundations and Applications,
pages 158–172. LNCS 4066, Springer, 2006.

[19] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In AGTIVE, pages 446–453, 2003.

[20] Laurence Tratt. Model transformations and tool integration. Software and System Modeling, 4(2):112–
122, 2005.

[21] Laurence Tratt. The MT model transformation language. In SAC ’06: Proceedings of the 2006 ACM
Symposium on Applied Computing, pages 1296–1303, New York, NY, USA, 2006. ACM.

[22] D. Varró and Z. Balogh. Automating model transformation by example using inductive logic
programming. In SAC ’07: Proceedings of the 2007 ACM Symposium on Applied Computing, pages
978–984, New York, NY, USA, 2007. ACM.

www.omg.org

	Introduction
	UML Metamodel
	Model Transformation
	Logic Programming for Model Transformation
	Representing the UML metamodel in Logic Programming
	Rules for Model Transformation

	Conclusions and Future Work
	References

