Searching and Matching Software Components with
Multiple Interfaces

Luis Iribarne
Dpto. Lenguajes y Computacién. Universidad de Almeria

liribarn@ualm.es

Antonio Vallecillo
Dpto. Lenguajes y Ciencias de la Computacién. Universidad de Malaga

av@lcc.uma.es

Abstract

Currently there is an increasing interest in the use of COTS components for building
software applications. Component search and service matching are two of the issues involved
in this process. Traditional proposals to deal with these problems are based on the simplistic
assumption that components present only one interface with the services they offer, and
that matching is done on a one-to-one basis. This work presents an extension of those
approaches in which components offer several interfaces, and not only their supported services
are contemplated, but also the external services they may require from other components
to operate. In this context, some of the traditional component operators are extended
composition, substitutability, and equivalence— so they can deal with multiple interfaces. In
addition, the problems arising in this new setting are discussed, and some of the possible
solutions presented.

1 Introduction

In the last decade Component-Based Software Engineering is generating tremendous interest
due to the development of plug-and-play reusable software, which has led to the concept of
‘commercial off-the-shelf’ (COTS) components. Although currently more a goal to pursue a
than a reality, this approach moves organizations from application development to application
assembly. Constructing an application now involves the use of prefabricated pieces, perhaps
developed at different times, by different people, and possibly with different uses in mind. The
ultimate goal, once again, is to be able to reduce developing times, costs, and efforts, while
improving the flexibility, reliability, and reusability of the final application due to the (re)use of
software components already tested and validated.

Of course, this approach is challenging some of the current SE methods and tools. For in-
stance, the traditional top-down development method based on successive refinements of the
system requirements until a suitable concrete implementation of the final application’s com-
ponents is reached is no longer valid as such. In CBSE the system designer also has to have
into account the specification of pre-developed COTS components that live in software reposi-
tories, that must be even considered when building the initial system’s requirements in order to
incorporate them into all phases of the development process [9, 11].

In this context, our particular long-term goal is to study the development of applications
from COTS components, right from the specification of the application’s software architecture.
This specification describes the specification of abstract components, that may differ from the
concrete specification of the COTS components residing in a given repository. In the simplest
case each required service is separately specified, and each component implements just one

service. This simple case is the one considered by traditional approaches, and therefore the
search and matching processes of components have been defined on a one-to-one basis [5, 15, 16].
However, this is not the common case in most real applications: in general, COTS components
are coarse-grained components that integrate several services and offer several interfaces. Think
for instance in an Internet navigator or a Word processor: apart from their core services they
also offer many different ones, like web page composition, spell checking, etc.

This paper presents our ongoing work on these issues. Here we will study some of the prob-
lems that appear in this new setting, extending the traditional substitutability and equivalence
operators to components that support multiple interfaces. In addition, we also take into account
the services that components require from other components, not only the supported ones.

This paper is structured in 4 sections, the first one corresponds to this introduction. Section
2 presents our proposal, section 3 shows an example in order to illustrate it, and section 4 draws
some conclusions and discusses future research lines.

2 Managing Components with Multiple Interfaces

In the first place, we need to define what we understand by a software component. Here we
will adopt Clemens Szyperski’s definition: “A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties” [12].

In addition, the “COTS” adjective will refer to a particular kind of component: a commercial
entity (i.e. that can be sold or licensed) that allows for packaging, distribution, storage, retrieval
and customization by users, which is usually coarse-grained, and lives in software repositories.

2.1 Interfaces

Components’ capabilities and usages are specified by means of interfaces. An interface can
be defined as “a service abstraction, that defines the operations that the service supports,
independently from any particular implementation”.

Interfaces can be described using many different notations, depending on the information
that we want to include, and the level of detail of the specification. For instance, the interfaces
of CORBA distributed objects are described using an Interface Description Language (IDL)
which contains syntactic information about the objects’ supported capabilities. Since CORBA
follows an object-oriented model, CORBA interfaces consist of the object public attributes and
methods. COM follows a similar approach, but components may have several interfaces, each
one describing the signature of the supported operations. The new CORBA Component Model
CCM [10] also contemplates that components may describe not only the services they support,
but also the interfaces they require from others components during their execution.

Notice however that all this information remains at the syntactic level, that is, interfaces
describe just the names of the methods, and the types of their arguments and return values. This
information has proved to be insufficient for developing applications in open systems [14, 16]. In
general, three main levels of component interoperability can be distinguished: the signature level,
based just on the syntactic information of the components’ supported and required services; the
protocol level goes one step further, describing also the partial order in which components expect
their methods to be called, and the order in which they invoke other components’ methods;
finally, the semantic level describe the “meaning” of operations and their expected behavior [13].

Of course, the notation used for describing components’ interfaces will depend on the level
we want to cover, and will also influence the sort of results that can be obtained when reasoning
about the application’s properties right from the specifications of the components’ interfaces.

Current approaches at the signature level use IDLs for describing interfaces, which guarantee
interoperability at this level among heterogeneous components, written in different languages,
that use different object models, and that may be living in different machines, and using different
execution environments. The IDLs defined by CORBA, COM and CCM are example of those.

At the protocol level most of the current approaches enrich the IDL description of the com-
ponents interfaces with information about protocol interactions, using many different notations:
finite-state machines [14], Petri nets [2], temporal logic [6, 7], or the m-calculus [3]. At this level
the interfaces that a component offers or require from another are referred to as roles.

Finally, interfaces at the semantic level usually describe the operational semantics of compo-
nents. Formal notations used range from Larch, with pre/post-conditions and invariants [4, 16],
to algebraic equations [5], or the refinement calculus [8].

2.2 Interface Operators

Independently from the notation used, or the level of interoperability being dealt with, there are
some commons operations that are of special interest when building applications from reusable
components.

The first one is called substitutability, and refers to the ability of a component to replace
another so that clients of the first one remain unaware of the change. This defines a partial order
between components and is usually noted by “C”. With it, if we have a correct application, C
is one of its constituent components, and C' E D, we could replace C' with D in the application
knowing that the application would continue working without problems.

At the signature level this operator just needs that supported methods of C' are also sup-
ported by D. In case we also want to take into account the required operations, we would need
to ask D not to use any external method not used by C. At the semantic level this operator is
known as behavioral subtyping [1].

Based on operator “C” (independently from the level it is defined) we can define an equiv-
alence relation between interfaces, and say that two interfaces Ry and Ry are equivalent (noted
by R1 = RQ) iff Cl E CQ and CQ E Cl.

A third operator defines when two components are compatible for interoperation (and is
noted by 22). At the signature level this means that all exchanged messages are understood by
each other, at the protocol level that their protocols match in each role they share [14, 3], and
at the semantic level that invoked operations have the same meaning in the calling and in the
called component.

Those operators are so important because they are the ones that service traders and brokers
need to use in order to search for components in software repositories, from the abstract spec-
ifications of the components defined in the software architecture of an application. They are
needed to guarantee that the composed application will respect the specification of the target
application, and to prove the correctness of the final application.

So far those operators have been defined for components offering just one interface with their
supported methods, and the search and matching processes of components have been based on
them. Now we plan to extend them to components with multiple interfaces, both with the
supported and required methods. This will allow us to define more realistic component search
and matching processes. Therefore we define:

Definition 1 A COTS component C will be determined by two sets of interfaces C = {R, R},
the first one with the interfaces of the component’s supported operations R = {R1,..., Ry}, and
the second one with the component’s required operations R = {R1,..., Rm}.

For simplicity we will write C.R and C.R to refer to the two sets of interfaces of a given com-
ponent C'. On the other hand, components need to compose in order to build other components

and new applications:

Definition 2 (Component composition) Given two components C; = {R1,R1} and Cy =
{R2,Ra}, its composition Cy | Cy is a new component C3 = {R3,R3}, such that

RgZ{R1UR2 WRINRe =02 R3=R1URy — {R1 URy}

undefined iff R1 NRqy #

This operation is commutative and associative. We have defined it as a partial operation
in order to avoid the conflicts that appear in an application in which two of its components
offer the same service, i.e. service overlaps. This is for instance what happens in our PC when
we install and activate two e-mail clients. In order to compose components in the presence of
service overlaps we need a new operation for hiding services (eg. using wrappers):

Definition 3 (Hiding) If C; is a component C; = {R1,R1} and R is a set of interfaces, we
define a hiding operation “~7” as: C; — {R} = {R1 — R, R1}

When composing components to build applications, we may also find that some of the services
required by any of the components are missing in order to make the application work (i.e. service
gaps). Hence we need to talk about “closures”:

Definition 4 (Closure) Let Cy, Cs, ..., Cp be a set of components, and A = Cy | Co | ... | Cy
a new component obtained by composition. We shall say that A is closed iff U C;.R c U C;.R.

The following definitions will help us simplify the notation for relating interfaces, using
traditional set notation:

Definition 5 (Interface Inclusion) We shall say that Ry = {R},...,R{} C Ry = {R}, ..., RL}
if there exists a subset T C Ro with #(Z) = s such that for all R € Ry there exists one interface
R' € T with RC R'.

Please note that in this definition operator “C” stands for the substitutability operator
among simple interfaces, no matter the interoperability level it refers to (signatures, protocols or
semantics). This operator overloading will be used throughout the paper, allowing the extension
of the substitutability operator at all levels. The only difference will occur when considering
its complexity: the operator for simple interfaces has a O(1) complexity at the signature level,
while it’s exponential at the other two levels (cf. [3, 4]).

Definition 6 (Interface Intersection) Interface intersection can be defined in the natural
way, modulo interface equivalence: Ri = {R1}, ..., R{}NRo = {R3, ..., RS} is the set of interfaces
R = {R',---,R"} such that for all R* € R there ezists one interface R| € Ry and another
interface RS € Ry for which R* = R} and R' = R}.

Now we are in a position to extend the traditional substitutability operator to deal with
components offering (and requiring) several interfaces:

Definition 7 (Component Substitutability) Let C; = {R1, R} and Cy = {R2, R2} be two
components. We shall say that Ci can be replaced (or substituted) by Ca, and note by Cy; C Cy,
iﬁ(Cl.’Rl C CQ.RQ) A (Cl.Rl D) CQ.RQ)

With this operator we can naturally extend the equivalence relation between components:

Definition 8 (Equivalence) Two components C, and Cy are said to be equivalent (C; = Cy)
if they are mutually replaceable: Cy C Ca A Co C (Y.

2.3 Composing Components with Multiple Interfaces

Once all the concepts that define our working context have been defined, let us go back to the
original problem: how to build applications from COTS components right from the specification
of software architecture of the application.

In this setting, we need to confront the abstract specifications of the application’s constituent
components as described in the application’s architecture A, with the concrete specifications of
the components that reside on a software repository B. Our main goal here is the definition of
a set of software components from the repository that offer the services defined by application
A. We shall call configuration to each one of those possible sets, imposing two conditions to any
configuration S: (1) the services offered by the components of S must coincide with the services
offered by application A (i.e. no service gaps), and (2) two components of the configuration will
never provide a common service (i.e. no service overlaps).

In order to produce valid configurations for a given application A, defined by a set of ‘ab-
stract’ components {A;, Ag,---, Ap}, we have defined a three-step process: (1) candidates selec-
tion, (2) configurations generation, and (3) closure of configurations.

2.3.1 Selection of Candidate Components

The first step consists of selecting from the repository B those components {By,- -, By} that
may potentially participate in application A because they offer at least one of the services
offered by the application. Therefore, we will concentrate just on the services supported by
A, without considering its required services. Thus, we can consider A as a single component
A=A1|Ay|---| Ap, and then we can talk about the set of interfaces A.R and A.R.

With this we can define the set of candidate components for application A with regard to
repository B as: Cg(A) ={B € B| A’ RN B.R # @}, i.e. those components in B that offer any
service that A also offers.

In order to build this set we need to go through the repository only once, and decide for each
of its elements whether it is a candidate or not. Hence, the complexity of this phase is O(m),

with m = #(B).

2.3.2 Generating Configurations

The second phase is to build a set S of all possible configurations with the candidate components.
The basic idea is to build all combinations of candidate components (hiding the possible service
overlaps), and select those combinations Sol = {S,---,5} such that AR = Sol.R (hence
guaranteing no service gaps).

A backtracking algorithm to do that is shown in figure 1. It produces, from the candidates set
Cp(A) ={C, -+, Ck}, and from the application A considered as one component, a set S of valid
configurations. For this algorithm, the initial invocation is & = &; Sol = &; configs(1, Sol,S).

As we can see, the algorithm explores all possibilities, building a final set with all valid
configurations (line 8). Each individual configuration is generated by trying all candidates,
incorporating those that offer services in A not yet considered (line 6). For the way the algorithm
works, no service gaps or overlaps may happen, hence producing only valid configurations. The
order of complexity of this algorithm is O(2¥), with & the number of candidate components, i.e.

k= #(Cs(A)).
2.3.3 Closing configurations

Once all configurations have been generated, we need to close them in order to get complete
applications. The process of closing a given configuration can be carried out by applying any of

1 function configs(i, Sol,S)

2 /* 1 < i <k is the level, Sol the configuration being built */
3 if i <k then

4 // case 1: try to include C; or part of it in Sol

5 if C;’RN Sol.R # @ then // C; or part of it can be included
6 Sol := Sol U{C; — {Sol. RN C;.R}};

7 if AR C Sol.R then // if Sol is a valid configuration...
8 S:=8U{Sol} // ..weinclude it in S

9 else // but if still we have service gaps...

10 configs(i+ 1,S0l) // ..keep on searching

11 endif;

12 Sol := Sol — {C; — {Sol. RN C;. R}}

13 endif;

14 // case 2: try a configuration without C;

15 configs(i+ 1, Sol)

16 endif

17 endfunction

Figure 1: Algorithm for generating valid configurations.

the existing algorithms for calculating the transitive closure of a set (i.e. a configuration) with
regard to another bigger set (in this case the repository B), and goes beyond the scope of this

paper.

2.4 Further considerations about the configurations

Once we count with a process that produces a set of valid configurations that can implement
the services described in an application’s software architecture, there are some issues that may
need to be stressed.

2.4.1 Metrics for configurations

The process shown here builds a set of valid configurations so that the system designer can
choose the one that fits better his/her requirements. A good idea could be assigning (somehow)
weights to configurations that help the user to finally select one. Those weights could include
many different factors, from commercial issues (component prices or availability), to complexity
(number of supported and required interfaces), etc.

Defining weights would also allow an additional benefit: we could change the algorithm into
a ‘branch and bound’ one and use upper bounds to prune many of the options in the exploration
tree, hence notably improving the execution time of the algorithm.

2.4.2 Matching the application’s internal structure

Configurations have been built from the existing candidate components in the repository, but
without having into account the application’s internal structure, as defined by its software archi-
tecture. By structure we mean the divisions of the applications services in abstract components:
A=1{A,---,A,}. But thisissue can also be contemplated in our proposal. It is simply the case
of discarding those configurations with components that crosscut the boundaries established by
the architecture. This can be defined as follows:

Definition 9 Let A = {Ay,---,An} be an application, and S = {S1,---,Sm} a valid config-
uration for A, i.e. a set of components from the repository that offer the same services as A
offers, and with no service overlaps. We shall say that S respects A’s internal structure iff

Vie {l’m},V] € {1n} e S, RN A]‘.R + 0= (SZ C Aj) V (Aj C SZ)

This definition forces components of S either to ‘contain’ or to ‘be contained’ in the compo-
nents of A, but respecting their ‘boundaries’.

3 An Example Application

In this section we will present an example to illustrate the concepts introduced in this paper. It
consists of a simple desktop application F, with some basic components:

E = {Calculator (CAL), Calendar (CIO), Agenda (AG), Meeting Scheduler (MS)}

Calendario Calculadora
(CIO) (CAL)

i bRao z LRen

ﬁRus ?RAG ?RMS

Agenda Meeting Scheduler
(AG) MS)

Figure 2: The architecture of example application E.

Figure 2 shows the application’s architecture, by means of component decomposition and the
interconnections among those components. Black circles represent supported interfaces, while
white circles represent required ones. Arrows represent invocations. In addition, users may
interact with each of those components through their supported interfaces too. The definition
of those components using our notation is described in table 1, left column.

Let’s try to use our process now, starting from the selection of the candidate components
from a given software repository. The first thing to do is to consider the application £ as a
single component, obtaining E.R = {R¢i0, Rcar, Rac, Riis, Rus}, ER = {}.

With those services we can go through the components in the repository, selecting those that
offer at least one of the services that E supports. A possible result of this match is shown in
the right column of table 1. In this example, six components have been found as candidates.
Please notice that candidate component Cg requires an external service defined by interface Rp.
In case this component is included in a configuration, we would need to close it first in order to
produce a working application. The third step of our process would take care of this, closing
the configurations with regard to repository B.

Table 2 shows the behavior of algorithm configs() for the example. In this case the algo-
rithm generates 26 = 64 combinations, since the number of candidates was 6. In the table, the
first column is the sequential number of the combination, columns 2-7 show the service provided
by each component, and column 8 contains the configuration produced (if any).

Please note how the algorithm tries to include the services not previously included, until all
the services in the application are covered, or the candidate list is empty. If a combination does
not cover all the application’s services, it is discarded (eg. combinations 3, 4, 63 and 64).

E Architecture Cg(E): Set of candidate components

(Abstract specifications) (Concrete specifications)
CIO ={Rcro} C1 ={Rcio}
CAL = {Rcar} Co = {RcaL}

AG ={Rac,Buis, Rear, Reio} | O3 ={Rac, Rcio, Reant
MS = {Rus, Rac, Rcar, Rcro} | Oy ={Rps} B

Cs = {Rus, Rac, Rcio}
Co = {Rcar, Rris, Rp}

Table 1: Abstract component specifications, vs. concrete candidate component specifications.

C1 CQ 03 C4 05 CG Conﬁguracién
1| Reoro | Reat Ruc Rrrs Rys - C1, C2, C3—{Rcro}, Cs, Cs—{Rac}
2 | Recro | Roar Rag Rris Rys - Same as above
3 | Rcro | Reatr Rac Rrrs - - @ - Rys missing (gap)
4 | Rcro | Reatr Ruc Rrrs - - @ - Rys missing (gap)
5 | Reoro | Roar Rac - Rus Rear C1, C2, C3—{Rcro}, Cs{Rac}, Ce—{Rcar}
6 Rcro Reoar Raq - Rys - - Rrs missing (gap)
9 | Bcro | Rear - Bris | Bus,Rac - Cy, Cz, Cy, C5
13 | Rcro | Rear - - Rys, Rac Rris C1,C2,C5,C6—{RcaL}
17 | Rcio - Ruc Rrrs Rys Rear C1,C3—{Rcro}, Cs—{Rac}, Cs
21 | Rcro - Rac - Rus Rear, Rris | Ci,Cs—{Rcio}, Ca, Cs5—{Rac}, Ce—{Rris}
25 | Rcro - - Rrris | Bus,Rac Rear C1, C4, Cs, Ce—{Rr1s}
29 | Rcio - - - Ruys,Bac | RoarsRris | C1,C5, Ce
33 - Rcar | Rcro,Bac | Rris Rys - C2, C3,C4, Cs—{Rac}
37 - Rcar | Rcro,Rac - Rys Rris C2, C3,C5—{Rag}, Ce—{Roar}
49 - - Rcro,Bac | RLis Rys Rear Cs, Cs,Cs—{Rac}, Ce—{Rris}
53 - - Rcro, Rac - Rus Reoar,Rris | Cs, Cs—{Rag}, Ce
63 - - - - - Rcar,Rris | 9 - Rero, Rag, Rus missing (gap)
64 - - - - - - @ — All services missing (gap)

Table 2: Result of the configs() algorithm for the example application.

For this example 12 configurations are found, three of them closed (1, 9 and 33), and 4 of
them that respect the internal architecture of the application (1, 5, 13 and 21). From here, it is
a decision of the system’s designer which configuration to use.

It is important to observe that the process described here has been defined for complete
applications. However, it could also be used for some parts of an application, too. In this way
we could allow the designer to decide which parts of the whole application he wants to implement
with COTS components from the repository, and which parts not, applying the process only to
the selected parts.

4 Conclusions and future work

This is part of an ongoing work that tries to build applications using COTS components, from
the specification of the application’s software architecture. This paper presents two main con-
tributions. First, it extends traditional interface operators to the case in which components
support more that one interface, and that also specify the interfaces required from other com-
ponents to work. Those operators are the ones that service traders can use for searching and
matching components in software repositories. In addition, we have been very careful with those
extensions so they can extend the traditional interoperability operators no matter the level they

refer to (signatures, protocols, or semantics). Our second contribution is an algorithm for pro-
ducing configurations based on the previous operators, ie. collection of COTS components from
a repository that fulfill the application’s requirements, and that do not have either service gaps
or service overlaps.

There is still a lot of work ahead. First, we want to use formal notations for describing
the applications’ software architecture, using ADLs like Darwin, Rapide, or LEDA. We also
want to enrich current IDLs to cope with protocols or semantic information compatible with the
ADLs used. And once we have compatible notations for describing the abstract and the concrete
specification of components, we plan to extend current repositories and service traders so they
can make effective use of all this information. Finally, we also plan to define some metrics and
heuristics for configurations, which can help systems designers in their decision processes when
building applications from existing COTS components.

References
[1] P. America. Designing an object-oriented programming language with behavioral subtyping. In
Foundations of Object-Oriented Languages, pages 60-90. LNCS 489, Springer Verlag, 1991.

[2] R. Bastide, O. Sy, and P. Palanque. Formal specification and prototyping of CORBA systems. In
Proceedings of ECOOP’99, number 1628 in LNCS, pages 474-494. Springer-Verlag, 1999.

[3] C. Canal, L. Fuentes, J. M. Troya, and A. Vallecillo. Extending CORBA interfaces with 7-calculus
for protocol compatibility. In Proc. of TOOLS’33, France, June 2000. IEEE Computer Society Press.

[4] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification inheritance. In
Proceedings of the 18th International Conference on Software Engineering (ICSE-18), pages 258267,
Berlin, Germany, 1996. IEEE Press.

[5] J. Goguen, D. Nguyen, J. Meseguer, Lugi, D. Zhang, and V. Berzins. Software component search.
Journal of Systems integration, 6:93—134, September 1996.

[6] J. Han. Semantic and usage packaging for software components. In A. Vallecillo, J. Herndndez, and
J. M. Troya, editors, Proc. of the ECOOP’99 Workshop on Object Interoperability (WOI’99), pages
25-34, June 1999.

[7] D. Lea. Interface-based protocol specification of open systems using PSL. In Proc. of ECOOP’95,
number 1241 in LNCS. Springer-Verlag, 1995.

[8] A. Mikhajlova. Ensuring Correctness of Object and Component Systems. PhD thesis, Abo Akademi
University, October 1999.

[9] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and research directions. IEEE Trans. on
Software engineering, 21(6):528-562, June 1995.

10] Object Management Group. The CORBA Component Model, June 1999. http://www.omg.org.

12] C. Szyperski. Component Software. Addison-Wesley, 1998.

13] A. Vallecillo, J. Herndndez, and J. M. Troya, editors. Proc. of the ECOOP’99 Workshop on Object
Interoperability, June 1999.

[
[11] S. Robertson and J. Robertson. Mastering the Requirement Process. Addison-Wesley, 1999.
[
[

[14] D. M. Yellin and R. E. Strom. Protocol specifications and components adaptors. ACM Trans. on
Programming Languages and Systems, 19(2):292-333, March 1997.

[15] A. M. Zaremski and J. M. Wing. Signature matching: A tool for using software libraries. ACM
Trans. on Software Engineering and Methodology, 4(2):146-170, April 1995.

[16] A. M. Zaremski and J. M. Wing. Specification matching of software components. ACM Trans. on
Software Engineering and Methodology, 6(4):333-369, October 1997.

