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Abstract: The raise regression has been proposed as an alternative to ordinary least squares estimation
when a model presents collinearity. In order to analyze whether the problem has been mitigated,
it is necessary to develop measures to detect collinearity after the application of the raise regression.
This paper extends the concept of the variance inflation factor to be applied in a raise regression.
The relevance of this extension is that it can be applied to determine the raising factor which allows
an optimal application of this technique. The mean square error is also calculated since the raise
regression provides a biased estimator. The results are illustrated by two empirical examples where
the application of the raise estimator is compared to the application of the ridge and Lasso estimators
that are commonly applied to estimate models with multicollinearity as an alternative to ordinary
least squares.
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1. Introduction

In the last fifty years, different methods have been developed to avoid the instability of estimates
derived from collinearity (see, for example, Kiers and Smilde [1]). Some of these methods can be
grouped within a general denomination known as penalized regression.

In general terms, the penalized regression parts from the linear model (with p variables and n
observations), Y = Xβ + u, and obtains the regularization of the estimated parameters, minimizing
the following objective function:

(Y− Xβ)t(Y− Xβ) + P(β),

where P(β) is a penalty term that can take different forms. One of the most common penalty terms is
the bridge penalty term ([2,3]) is given by

P(β) = λ
p

∑
j=1

∣∣β j
∣∣α, α > 0,

where λ is a tuning parameter. Note that the ridge ([4]) and the Lasso ([5]) regressions are obtained when
α = 2 and α = 1, respectively. Penalties have also been called soft thresholding ([6,7]).

These methods are applied not only for the treatment of multicollinearity but also for the selection
of variables (see, for example, Dupuis and Victoria-Feser [8], Li and Yang [9] Liu et al. [10], or Uematsu
and Tanaka [11]), which is a crucial issue in many areas of science when the number of variables
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exceeds the sample size. Zou and Hastie [12] proposed elastic net regularization by using the penalty
terms λ1 and λ2 that combine the Lasso and ridge regressions:

P(β) = λ1

p

∑
j=1

∣∣β j
∣∣+ λ2

p

∑
j=1

β2
j .

Thus, the Lasso regression usually selects one of the regressors from among all those that are highly
correlated, while the elastic net regression selects several of them. In the words of Tutz and Ulbricht [13]
“the elastic net catches all the big fish”, meaning that it selects the whole group.

From a different point of view, other authors have also presented different techniques and methods
well suited for dealing with the collinearity problems: continuum regression ([14]), least angle regression
([15]), generalized maximum entropy ([16–18]), the principal component analysis (PCA) regression ([19,20]),
the principal correlation components estimator ([21]), penalized splines ([22]), partial least squares (PLS)
regression ([23,24]), or the surrogate estimator focused on the solution of the normal equations presented
by Jensen and Ramirez [25].

Focusing on collinearity, the ridge regression is one of the more commonly applied methodologies
and it is estimated by the following expression:

β̂(K) =
(
XtX + K · I

)−1 XtY (1)

where I is the identity matrix with adequate dimensions and K is the ridge factor (ordinary least
squares (OLS) estimators are obtained when K = 0). Although ridge regression has been widely
applied, it presents some problems with current practice in the presence of multicollinearity and the
estimators derived from the penalty come into these same problems whenever n > p:

• In relation to the calculation of the variance inflation factors (VIF), measures that quantify the
degree of multicollinearity existing in a model from the coefficient of determination of the
regression between the independent variables (for more details, see Section 2), García et al. [26]
showed that the application of the original data when working with the ridge estimate leads to
non-monotone VIF values by considering the VIF as a function of the penalty term. Logically, the
Lasso and the elastic net regression inherit this property.

• By following Marquardt [27]: “The least squares objective function is mathematically independent
of the scaling of the predictor variables (while the objective function in ridge regression is
mathematically dependent on the scaling of the predictor variables)”. That is to say, the penalized
objective function will bring problems derived from the standardization of the variables. This fact
has to be taken into account both for obtaining the estimators of the regressors and for the
application of measures that detect if the collinearity has been mitigated. Other penalized
regressions (such as Lasso and elastic net regressions) are not scale invariant and hence yield
different results depending on the predictor scaling used.

• Some of the properties of the OLS estimator that are deduced from the normal equations are
not verified by the ridge estimator and, among others, the estimated values for the endogenous
variable are not orthogonal to the residuals. As a result, the following decomposition is verified

n

∑
i=1

(Yi − Ȳ)2
=

n

∑
i=1

(Ŷi(K)− Ȳ)2
+

n

∑
i=1

ei(K)
2 + 2

n

∑
i=1

(Ŷi(K)− Ȳ) · ei(K).

When the OLS estimators are obtained (K = 0), the third term is null. However, this term is
not null when K is not zero. Consequently, the relationship TSS(K) = ESS(K) + RSS(K) is not
satisfied in ridge regression, and the definition of the coefficient of determination may not be
suitable. This fact not only limits the analysis of the goodness of fit but also affects the global
significance since the critical coefficient of determination is also questioned. Rodríguez et al. [28]
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showed that the estimators obtained from the penalties mentioned above inherit the problem of
the ridge regression in relation to the goodness of fit.

In order to overcome these problems, this paper is focused on the raise regression (García et al. [29]
and Salmerón et al. [30]) based on the treatment of collinearity from a geometrical point of view. It consists
in separating the independent variables by using the residuals (weighted by the raising factor) of the
auxiliary regression traditionally used to obtain the VIF. Salmerón et al. [30] showed that the raise regression
presents better conditions than ridge regression and, more recently, García et al. [31] showed, among other
questions, that the ridge regression is a particular case of the raise regression.

This paper presents the extension of the VIF to the raise regression showing that, although
García et al. [31] showed that the application of the raise regression guarantees a diminishing of the VIF,
it is not guaranteed that its value is lower the threshold traditionally established as troubling. Thus, it will
be concluded that an unique application of the raise regression does not guarantee the mitigation of the
multicollinearity. Consequently, this extension complements the results presented by García et al. [31]
and determines, on the one hand, whether it is necessary to apply a successive raise regression (see
García et al. [31] for more details) and, on the other hand, the most adequate variable for raising and the
most optimal value for the raising factor in order to guarantee the mitigation of the multicollinearity.

On the other hand, the transformation of variables is common when strong collinearity exists
in a linear model. The transformation to unit length (see Belsley et al. [32]) or standardization
(see Marquardt [27]) is typical. Although the VIF is invariant to these transformations when it is
calculated after estimation by OLS (see García et al. [26]), it is not guaranteed either in the case of the
raise regression or in ridge regression as showed by García et al. [26]. The analysis of this fact is one of
the goals of this paper.

Finally, since the raise estimator is biased, it is interesting to calculate its mean square error (MSE).
It is studied whether the MSE of the raise regression is less than the one obtained by OLS. In this
case, this study could be used to select an adequate raising factor similar to what is proposed by
Hoerl et al. [33] in the case of the ridge regression. Note that estimators with MSE less than the one
from OLS estimators are traditionally preferred (see, for example, Stein [34], James and Stein [35],
Hoerl and Kennard [4], Ohtani [36], or Hubert et al. [37]). In addition, this measure allows us to
conclude whether the raise regression is preferable, in terms of MSE, to other alternative techniques.

The structure of the paper is as follows: Section 2 briefly describes the VIF and the raise
regression, and Section 3 extends the VIF to this methodology. Some desirable properties of the
VIF are analyzed, and its asymptotic behavior is studied. It is also concluded that the VIF is invariant
to data transformation. Section 4 calculates the MSE of the raise estimator, showing that there is a
minimum value that is less than the MSE of the OLS estimator. Section 5 illustrates the contribution
of this paper with two numerical examples. Finally, Section 6 summarizes the main conclusions of
this paper.

2. Preliminaries

2.1. Variance Inflation Factor

The following model for p independent variables and n observations is considered:

Y = β1 + β2X2 + · · ·+ βiXi + · · ·+ βpXp + u = Xβ + u, (2)

where Y is a vector n × 1 that contains the observations of the dependent variable, X =

[1 X2 . . . Xi . . . Xp] (with 1 being a vector of ones with dimension n× 1) is a matrix with order n× p that
contains (by columns) the observations of the independent variables, β is a vector p× 1 that contains
the coefficients of the independent variables, and u is a vector n × 1 that represents the random
disturbance that is supposed to be spherical (E[u] = 0 and Var(u) = σ2I, where 0 is a vector with
zeros with dimension n× 1 and I the identity matrix with adequate dimensions, in this case p× p).
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Given the model in Equation (2), the variance inflation factor (VIF) is obtained as follows:

VIF(k) =
1

1− R2
k

, k = 2, . . . , p, (3)

where R2
k is the coefficient of determination of the regression of the variable Xk as a function of the rest

of the independent variables of the model in Equation (2):

Xk = α1 + α2X2 + · · ·+ αk−1Xk−1 + αk+1Xk+1 + · · ·+ αpXp + v = X−kα + v, (4)

where X−k corresponds to the matrix X after the elimination of the column k (variable Xk).
If the variable Xk has no linear relationship (i.e., is orthogonal) with the rest of the independent

variables, the coefficient of determination will be zero (R2
k = 0) and the VIF(k) = 1. As the linear

relationship increases, the coefficient of determination (R2
k) and consequently VIF(k) will also increase.

Thus, the higher the VIF associated with the variable Xk, the greater the linear relationship between
this variable and the rest of the independent variables in the model in Equation (2). It is considered
that the collinearity is troubling for values of VIF higher than 10. Note that the VIF ignores the role
of the constant term (see, for example, Salmerón et al. [38] or Salmerón et al. [39]), and consequently,
this extension will be useful when the multicollinearity is essential; that is to say, when there is a
linear relationship between at least two independent variables of the model of regression without
considering the constant term (see, for example, Marquandt and Snee [40] for the definitions of essential
and nonessential multicollinearity).

2.2. Raise Regression

Raise regression, presented by García et al. [29] and more developed further by
Salmerón et al. [30], uses the residuals of the model in Equation (4), ek, to raise the variable k as
X̃k = Xk + λek with λ ≥ 0 (called the raising factor) and to verify that et

kX−k = 0, where 0 is a vector
of zeros with adequate dimensions. In that case, the raise regression consists in the estimation by OLS
of the following model:

Y = β1(λ) + β2(λ)X2 + · · ·+ βk(λ)X̃k + · · ·+ βp(λ)Xp + ũ = X̃β(λ) + ũ, (5)

where X̃ = [1 X2 . . . X̃k . . . Xp] = [X−k X̃k]. García et al. [29] showed (Theorem 3.3) that this
technique does not alter the global characteristics of the initial model. That is to say, the models
in Equations (2) and (5) have the same coefficient of determination and experimental statistics for the
global significance test.

Figure 1 illustrates the raise regression for two independent variables being geometrically
separated by using the residuals weighted by the raising factor λ. Thus, the selection of an adequate
value for λ is essential, analogously to what occurs with the ridge factor K. A preliminary proposal
about how to select the raising factor in a model with two independent standardized variables can
be found in García et al. [41]. Other recently published papers introduce and highlight the various
advantages of raise estimators for statistical analysis: Salmerón et al. [30] presented the raise regression
for p = 3 standardized variables and showed that it presents better properties than the ridge regression
and that the individual inference of the raised variable is not altered, García et al. [31] showed that it
is guaranteed that all the VIFs associated with the model in Equation (5) diminish but that it is not
possible to quantify the decrease, García and Ramírez [42] presented the successive raise regression,
and García et al. [31] showed, among other questions, that ridge regression is a particular case of
raise regression.
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Figure 1. Representation of the raise method.

The following section presents the extension of the VIF to be applied after the estimation by raise
regression since it will be interesting whether, after the raising of one independent variable, the VIF
falls below 10. It will be also analyzed when a successive raise regression can be recommendable
(see García and Ramírez [42]).

3. VIF in Raise Regression

To calculate the VIF in the raise regression, two cases have to be differentiated depending on the
dependent variable, Xk, of the auxiliary regression:

1. If it is the raised variable, X̃i with i = 2, . . . , p, the coefficient of determination, R2
i (λ), of the

following auxiliary regression has to be calculated:

X̃i = α1(λ) + α2(λ)X2 + · · ·+ αi−1(λ)Xi−1 + αi+1(λ)Xi+1 + · · ·+ αp(λ)Xp + ṽ
= X−iα(λ) + ṽ.

(6)

2. If it is not the raised variable, Xj with j = 2, . . . , p being j 6= i, the coefficient of determination,
R2

j (λ), of the following auxiliary regression has to be calculated:

Xj = α1(λ) + α2(λ)X2 + · · ·+ αi(λ)X̃i + · · ·+ αj−1(λ)Xj−1 + αj+1(λ)Xj+1

+ · · ·+ αp(λ)Xp + ṽ

=
(

X−i,−j X̃i

)( α−i,−j(λ)

αi(λ)

)
+ ṽ,

(7)

where X−i,−j corresponding to the matrix X after the elimination of columns i and j (variables Xi
and Xj). The same notation is used for α−i,−j(λ).

Once these coefficients of determination are obtained (as indicated in the following subsections),
the VIF of the raise regression will be given by the following:

VIF(k, λ) =
1

1− R2
k(λ)

, k = 2, . . . , p. (8)

3.1. VIF Associated with Raise Variable

In this case, for i = 2, . . . , p, the coefficient of determination of the regression in Equation (6) is
given by

R2
i (λ) = 1− (1+2λ+λ2)RSS−i

i
TSS−i

i +(λ2+2λ)RSS−i
i

=
ESS−i

i
TSS−i

i +(λ2+2λ)RSS−i
i

=
R2

i
1+(λ2+2λ)(1−R2

i )
,

(9)
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since:

TSS−i
i (λ) = X̃t

i X̃i − n · X̃
2
i = Xt

i Xi + (λ2 + 2λ)et
i ei − n · X2

i

= TSS−i
i + (λ2 + 2λ)RSS−i

i ,

RSS−i
i (λ) = X̃t

i X̃i − α̂(λ)tXt
−iX̃i = Xt

i Xi + (λ2 + 2λ)et
i ei − α̂tXt

−iXi

= (λ2 + 2λ + 1)RSS−i
i ,

where TSS−i
i , ESS−i

i and RSS−i
i are the total sum of squares, explained sum of squares, and residual

sum of squares of the model in Equation (4). Note that it has been taken into account that

X̃t
i X̃i = (Xi + λei)

t (Xi + λei) = Xt
i Xi + (λ2 + 2λ)et

i ei,

since et
i Xi = et

i ei = RSS−i
i and

α̂(λ) =
(
Xt
−iX−i

)−1 Xt
−iX̃i = α̂,

due to Xt
−iX̃i = Xt

−iXi.
Indeed, from Equation (9), it is evident that

1. R2
i (λ) decreases as λ increases.

2. lim
λ→+∞

R2
i (λ) = 0.

3. R2
i (λ) is continuous in zero; that is to say, R2

i (0) = R2
i .

Finally, from properties 1) and 3), it is deduced that R2
i (λ) ≤ R2

i for all λ.

3.2. VIF Associated with Non-Raised Variables

In this case, for j = 2, . . . , p, with j 6= i, the coefficient of determination of regression in Equation (7)
is given by

R2
j (λ) = 1−

RSS−j
j (λ)

TSS−j
j (λ)

= 1
TSS−j

j

(
TSS−j

j − RSS−i,−j
j +

RSS−i,−j
i ·

(
RSS−i,−j

j −RSS−j
j

)
RSS−i,−j

i +(λ2+2λ)·RSS−i
i

)
,

(10)

Taking into account that X̃t
i Xj = (Xi + λei)

tXj = Xt
i Xj since et

i Xj = 0, it is verified that

TSS−j
j (λ) = Xt

jXj − n · X2
j = TSS−j

j ,
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and, from Appendices A and B,

RSS−j
j (λ) = Xt

jXj − α̂(λ)t

(
Xt
−i,−jXj

X̃t
i Xj

)
= Xt

jXj − α̂−i,−j(λ)
tXt
−i,−jXj − α̂i(λ)

tXt
i Xj

=︸︷︷︸
Appendix A

Xt
jXj − Xt

jX−i,−j

(
Xt
−i,−jX−i,−j

)−1
Xt
−i,−jXj

−
RSS−i,−j

i

RSS−i,−j
i + (λ2 + 2λ) · RSS−i

i

·

·
(

RSS−i,−j
i Xt

jX−i,−j · B · Bt · Xt
−i,−jXj

+Xt
jXi · Bt · Xt

−i,−jXj

)
−

RSS−i,−j
i

RSS−i,−j
i + (λ2 + 2λ) · RSS−i

i

· α̂t
i X

t
i Xj

= Xt
j

(
I− X−i,−j

(
Xt
−i,−jX−i,−j

)−1
Xt
−i,−j

)
Xj

−
RSS−i,−j

i

RSS−i,−j
i + (λ2 + 2λ) · RSS−i

i

·

·
(

RSS−i,−j
i Xt

jX−i,−j · B · Bt · Xt
−i,−jXj

+Xt
jXi · Bt · Xt

−i,−jXj + α̂t
i X

t
i Xj

)
=︸︷︷︸

Appendix B

RSS−i,−j
j

−
RSS−i,−j

i

RSS−i,−j
i + (λ2 + 2λ) · RSS−i

i

·
(

RSS−i,−j
j − RSS−j

j

)
,

where TSS−j
j and RSS−j

j are the total sum of squares and residual sum of squares of the model in

Equation (4) and where RSS−i,−j
i and RSS−i,−j

j are the residual sums of squares of models:

Xi = X−i,−jγ + η, (11)

Xj = X−i,−jδ + ν. (12)

Indeed, from Equation (10), it is evident that

1. R2
j (λ) decreases as λ increases.

2. lim
λ→+∞

R2
j (λ) =

TSS−j
j −RSS−i,−j

j

TSS−j
j

.

3. R2
j (λ) is continuous in zero. That is to say, R2

j (0) =
TSS−j

j −RSS−j
j

TSS−j
j

= R2
j .

Finally, from properties 1) and 3), it is deduced that R2
j (λ) ≤ R2

j for all λ.

3.3. Properties of VIF(k, λ)

From conditions verified by the coefficient of determination in Equations (9) and (10), it is
concluded that VIF(k, λ) (see expression Equation (8)), verifies that
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1. The VIF associated with the raise regression is continuous in zero because the coefficients of
determination of the auxiliary regressions in Equations (6) and (7) are also continuous in zero.
That is to say, for λ = 0, it coincides with the VIF obtained for the model in Equation (2) when it
is estimated by OLS:

VIF(k, 0) =
1

1− R2
k(0)

=
1

1− R2
k
= VIF(k), k = 2, . . . , p.

2. The VIF associated with the raise regression decreases as λ increases since this is the behavior of
the coefficient of determination of the auxiliary regressions in Equations (6) and (7). Consequently,

VIF(k, λ) =
1

1− R2
k(λ)

≤ 1
1− R2

k
= VIF(k), k = 2, . . . , p, ∀λ ≥ 0.

3. The VIF associated with the raised variable is always higher than one since

lim
λ→+∞

VIF(i, λ) = lim
λ→+∞

1
1− R2

i (λ)
=

1
1− 0

= 1, i = 2, . . . , p.

4. The VIF associated with the non-raised variables has a horizontal asymptote since

lim
λ→+∞

VIF(j, λ) = lim
λ→+∞

1
1− R2

j (λ)
=

1

1−
TSS−j

j −RSS−i,−j
j

TSS−j
j

=
TSS−j

j

RSS−i,−j
j

=
TSS−i,−j

j

RSS−i,−j
j

=
1

1− R2
ij
= VIF−i(j),

where R2
ij is the coefficient of determination of the regression in Equation (12) for j = 2, . . . , p and

j 6= i. Indeed, this asymptote corresponds to the VIF, VIF−i(j), of the regression Y = X−iξ + w
and, consequently, will also always be equal to or higher than one.

Thus, from properties (1) to (4), VIF(k, λ) has the very desirable properties of being continuous,
monotone in the raise parameter, and higher than one, as presented in García et al. [26].

In addition, the property (4) can be applied to determine the variable to be raised only considering
the one with a lower horizontal asymptote. If the asymptote is lower than 10 (the threshold established
traditionally as worrying), the extension could be applied to determine the raising factor by selecting,
for example, the first λ that verifies VIF(k, λ) < 10 for k = 2, . . . , p. If none of the p− 1 asymptotes is
lower than the established threshold, it will not be enough to raise one independent variable and a
successive raise regression will be recommended (see García and Ramírez [42] and García et al. [31] for
more details). Note that, if it were necessary to raise more than one variable, it is guaranteed that there
will be values of the raising parameter that mitigate multicollinearity since, in the extreme case where
all the variables of the model are raised, all the VIFs associated with the raised variables tend to one.
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3.4. Transformation of Variables

The transformation of data is very common when working with models where strong collinearity
exists. For this reason, this section analyzes whether the transformation of the data affects the VIF
obtained in the previous section.

Since the expression given by Equation (9) can be expressed with i = 2, . . . , p in the function of R2
i :

R2
i (λ) =

R2
i

1 + (λ2 + 2λ) · (1− R2
i )

,

it is concluded that it is invariant to origin and scale changes and, consequently, the VIF calculated
from it will also be invariant.

On the other hand, the expression given by Equation (10) can be expressed for j = 2, . . . , p, with
j 6= i as

R2
j (λ) = 1−

RSS−i,−j
j

TSS−j
j

+ 1
TSS−j

j

·
RSS−i,−j

i ·(RSS−i,−j
j −RSS−j

j )

RSS−i,−j
i +(λ2+2λ)·RSS−i

i

= R2
ij +

RSS−i,−j
i

RSS−i,−j
i +(λ2+2λ)·RSS−i

i

·
(

RSS−i,−j
j

TSS−i,−j
j

−
RSS−j

j

TSS−j
j

)
= R2

ij +
R2

j−R2
ij

1+(λ2+2λ)·
RSS−i

i
RSS−i,−j

i

,

(13)

where it was applied that TSS−j
j = TSS−i,−j

j .
In this case, by following García et al. [26], transforming the variable Xi as

xi =
Xi − ai

bi
, ai ∈ R, bi ∈ R− {0}, i = 2, . . . , p,

it is obtained that RSS−i
i (T) = 1

b2
i

RSS−i
i and RSS−i,−j

i (T) = 1
b2

i
RSS−i,−j

i where RSS−i
i (T) and

RSS−i,−j
i (T) are the residual sum of squares of the transformed variables.

Taking into account that Xi is the dependent variables in the regressions of RSS−i
i and RSS−i,−j

i ,
the following is obtained:

RSS−i
i

RSS−i,−j
i

=
RSS−i

i (T)

RSS−i,−j
i (T)

.

Then, the expression given by Equation (13) is invariant to data transformations (As long as
the dependent variables are transformed from the regressions of RSS−i

i and RSS−i,−j
i in the same

form. For example, (a) for considering that ai is its mean and bi is its standard deviation (typification),
(b) for considering that ai is its mean and bi is its standard deviation multiplied by the square root of
the number of observations (standardization), or (c) for considering that ai is zero and bi is the square
root of the squares sum of observations (unit length).) and, consequently, the VIF calculated from it
will also be invariant.
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4. MSE for Raise Regression

Since the estimator β obtained from Equation (5) is biased, it is interesting to study its Mean
Square Error (MSE).

Taking into account that, for k = 2, . . . , p,

X̃k = Xk + λek

= (1 + λ)Xk − λ
(
α̂0 + α̂1X1 + · · ·+ α̂k−1Xk−1 + α̂k+1Xk+1 + · · ·+ α̂pXp

)
,

it is obtained that matrix X̃ of the expression in Equation (5) can be rewritten as X̃ = X ·Mλ, where

Mλ =



1 0 · · · 0 −λα̂0 0 · · · 0
0 1 · · · 0 −λα̂1 0 · · · 0
...

...
...

...
...

...
0 0 · · · 1 −λα̂k−1 0 · · · 0
0 0 · · · 0 1 + λ 0 · · · 0
0 0 · · · 0 −λα̂k+1 1 · · · 0
...

...
...

...
...

...
0 0 · · · 0 −λα̂p 0 · · · 1


. (14)

Thus, we have β̂(λ) = (X̃t · X̃)−1X̃t · Y = M−1
λ · β̂, and then, the estimator of β obtained from

Equation (5) is biased unless Mλ = I, which only occurs when λ = 0, that is to say, when the raise
regression coincides with OLS. Moreover,

tr
(

Var
(

β̂(λ)
))

= tr(M−1
λ ·Var(β̂) · (M−1

λ )t) = σ2tr((X̃tX̃)−1),

(E[β̂(λ)]− β)t(E[β̂(λ)]− β) = βt(M−1
λ − I)t(M−1

λ − I)β,

where tr denotes the trace of a matrix.
In that case, the MSE for raise regression is

MSE
(

β̂(λ)
)

= tr
(

Var
(

β̂(λ)
))

+ (E[β̂(λ)]− β)t(E[β̂(λ)]− β)

= σ2tr((X̃tX̃)−1) + βt(M−1
λ − I)t(M−1

λ − I)β

=︸︷︷︸
Appendix C

σ2tr
((

Xt
−kX−k

)−1
)
+

(
1 +

p

∑
j=0,j 6=k

α̂2
j

)
· β2

k ·
λ2 + h
(1 + λ)2 ,

where h = σ2

β2
k ·RSS−k

k
.

We can obtain the MSE from the estimated values of σ2 and βk from the model in Equation (2).
On the other hand, once the estimations are obtained and taking into account the Appendix C,

λmin = σ̂2

β̂2
k ·RSS−k

k
minimizes MSE

(
β̂(λ)

)
. Indeed, it is verified that MSE

(
β̂(λmin)

)
< MSE

(
β̂(0)

)
;

that is to say, if the goal is exclusively to minimize the MSE (as in the work presented by
Hoerl et al. [33]), λmin should be selected as the raising factor.

Finally, note that, if λmin > 1, then MSE
(

β̂(λ)
)
< MSE

(
β̂(0)

)
for all λ > 0.
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5. Numerical Examples

To illustrate the results of previous sections, two different set of data will be used that collect the
two situations shown in the graphs of Figures A1 and A2. The second example also compares results
obtained by the raise regression to results obtained by the application of ridge and Lasso regression.

5.1. Example 1: h < 1

The data set includes different financial variables for 15 Spanish companies for the year 2016
(consolidated account and results between e800,000 and e9,000,000) obtained from the dabase Sistema
de Análisis de Balances Ibéricos (SABI) database. The relationship is studied between the number of
employees, E, and the fixed assets (e), FA; operating income (e), OI; and sales (e), S. The model is
expressed as

E = β1 + β2FA + β3OI + β4S + u. (15)

Table 1 displays the results of the estimation by OLS of the model in Equation (15). The presence
of essential collinearity in the model in Equation (15) is indicated by the determinant close to zero
(0.0000919) of the correlation matrix of independent variables

R =

 1 0.7264656 0.7225473
0.7264656 1 0.9998871
0.7225473 0.9998871 1

 ,

and the VIFs (2.45664, 5200.315, and 5138.535) higher than 10. Note that the collinearity is provoked
fundamentally by the relationship between OI and S.

In contrast, due to the fact that the coefficients of variation of the independent variables (1.015027,
0.7469496, and 0.7452014) are higher than 0.1002506, the threshold established as troubling by
Salmerón et al. [39], it is possible to conclude that the nonessential multicollinearity is not troubling.
Thus, the extension of the VIF seems appropriate to check if the application of the raise regression has
mitigated the multicollinearity.

Remark 1. λ(1) and λ(2) will be the raising factor of the first and second raising, respectively.
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Table 1. Estimations of the models in Equations (15)–(18): Standard deviation is inside the parenthesis, R2 is the coefficient of determination, F3,11 is the experimental
value of the joint significance contrast, and σ̂2 is the variance estimate of the random perturbation.

Model (15) p-Value
Model (16) for

λ
(1)
vi f = 24.5 p-Value

Model (17) for
λ
(1)
min = 0.42 and

λ
(2)
vi f = 17.5

p-Value
Model (18) for

λ
(1)
mse = 1.43 and

λ
(2)
vi f = 10

p-Value

Intercept 994.21 (17940) 0.957 4588.68 (17,773.22) 0.801 5257.84 (1744.26) 0.772 5582.29 (17740.18) 0.759
FA −1.28 (0.55) 0.039 −1.59 (0.50) 0.009 −1.59 (0.51) 0.009 −1.58 (0.51) 0.009
OI −81.79 (52.86) 0.150

ÕI
λ
(1)
vi f

−3.21 (2.07) 0.150

ÕI
λ
(1)
min

1.67 (2.28) 0.478

ÕI
λ
(1)
mse

1.51 (2.24) 0.517
S 87.58 (53.29) 0.129 8.38 (2.35) 0.004

S̃
λ
(2)
vi f

3.42 (2.03) 0.120 3.55 (1.99) 0.103

R2 0.70 0.70 0.70 0.70
F3,11 8.50 8.50 8.50 8.50
σ̂2 1,617,171,931 1,617,171,931 1,617,171,931 1,617,171,931

MSE 321,730,738 321,790,581 336,915,567 325,478,516
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5.1.1. First Raising

A possible solution could be to apply the raise regression to try to mitigate the collinearity.
To decide which variable is raised, the thresholds for the VIFs associated with the raise regression
are calculated with the goal of raising the variable that the smaller horizontal asymptotes present.
In addition to raising the variable that presents the lowest VIF, it would be interesting to obtain a lower
mean squared error (MSE) after raising. For this, the λ

(1)
min is calculated for each case. Results are shown

in Table 2. Note that the variable to be raised should be the second or third since their asymptotes are
lower than 10, although in both cases λ

(1)
min is lower than 1 and it is not guaranteed that the MSE of

the raise regression will be less than the one obtained from the estimation by the OLS of the model in
Equation (15). For this reason, this table also shows the values of λ(1) that make the MSE of the raise
regression coincide with the MSE of the OLS regression, λ

(1)
mse, and the minimum value of λ(1) that

leads to values of VIF less than 10, λ
(1)
vi f .

Table 2. Horizontal asymptotes for variance inflation factors (VIF) after raising each variable and λ
(1)
min,

λ
(1)
mse, and λ

(1)
vi f .

Raised lim
λ(1)→+∞

V IF (FA, λ(1)) lim
λ(1)→+∞

V IF (OI, λ(1)) lim
λ(1)→+∞

V IF (S, λ(1))

Variable 1 1 4429.22 4429.22
Variable 2 2.09 1 2.09
Variable 3 2.12 2.12 1

Raised λ
(1)
min λ

(1)
mse λ

(1)
vi f

Variable 1 0.18 0.45 @
Variable 2 0.42 1.43 24.5
Variable 3 0.37 1.18 24.7

Figure 2 displays the VIF associated with the raise regression for 0 ≤ λ(1) ≤ 900 after
raising the second variable. It is observed that VIFs are always higher than its corresponding
horizontal asymptotes.

The model after raising the second variable will be given by

E = β1(λ) + β2(λ)FA + β3(λ)ÕI + β4(λ)S + ũ, (16)

where ÕI = OI + λ(1) · eOI with eOI the residual of regression:

OI = α1 + α2FA + α3S + v.

Figure 2. VIF of the variables after raising OI.
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Remark 2. The coefficient of variation of ÕI for λ(1) = 24.5 is equal to 0.7922063; that is to say, it was
lightly increased.

As can be observed from Table 3, in Equation (16), the collinearity is not mitigated by considering
λ(1) equal to λ

(1)
min and λ

(1)
mse. For this reason, Table 1 only shows the values of the model in Equation

(16) for the value of λ(1) that leads to VIF lower than 10.

Table 3. VIF of regression Equation (16) for λ(1) equal to λ
(1)
min, λ

(1)
mse, and λ

(1)
vi f .

V IF (FA, λ(1)) V IF (ÕI, λ(1)) V IF (S, λ(1))

λ
(1)
min 2.27 2587.84 2557.66

λ
(1)
mse 2.15 878.10 868.58

λ
(1)
vi f 2.09 9.00 9.99

5.1.2. Transformation of Variables

After the first raising, it is interesting to verify that the VIF associated with the raise regression
is invariant to data transformation. With this goal, the second variable has been raised, obtaining
the VIF(FA, λ(1)), VIF(ÕI, λ(1)), and VIF(S, λ(1)) for λ(1) ∈ {0, 0.5, 1, 1.5, 2, . . . , 9.5, 10}, supposing
original, unit length, and standardized data. Next, the three possible differences and the average of the
VIF associated with each variable are obtained. Table 4 displays the results from which it is possible
to conclude that differences are almost null and that, consequently, the VIF associated with the raise
regression is invariant to the most common data transformation.

Table 4. Effect of data transformations on VIF associated with raise regression.

V IF(FA, λ(1)) V IF(ÕE, λ(1)) V IF(S, λ(1))

Original–Unit length 9.83 · 10−16 1.55 · 10−11 1.83 · 10−10

Original–Standardized −1.80 · 10−16 −3.10 · 10−10 2.98 · 10−10

Unit length–Standardized −1.16 · 10−15 −3.26 · 10−10 1.15 · 10−10

5.1.3. Second Raising

After the first raising, we can use the results obtained from the value of λ that obtains all VIFs less
than 10 or consider the results obtained for λmin or λmse and continue the procedure with a second
raising. By following the second option, we part from the value of λ(1) = λ

(1)
min = 0.42 obtained

after the first raising. From Table 5, the third variable is selected to be raised. Table 6 shows the VIF
associated with the following model for λ

(2)
min, λ

(2)
mse, and λ

(2)
vi f :

E = β1(λ) + β2(λ)FA + β3(λ)ÕI + β4(λ)S̃ + ũ, (17)

where S̃ = S + λ(2) · eS with eS the residuals or regression:

S = α1(λ) + α2(λ)FA + α3(λ)ÕI + ṽ.

Remark 3. The coefficient of variation of ÕI for λ(1) = 0.42 is equal to 0.7470222, and the coefficient of
variation of S̃ for λ(2) = 17.5 is equal to 0.7473472. In both cases, they were slightly increased.

Note than it is only possible to state that collinearity has been mitigated when λ(2) = λ
(2)
vi f = 17.5.

Results of this estimation are displayed in Table 1.
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Table 5. Horizontal asymptote for VIFs after raising each variable in the second raising for λ
(2)
min, λ

(2)
mse

and λ
(2)
vi f .

Raised lim
λ(2)→+∞

V IF(FA, λ(2)) lim
λ(2)→+∞

V IF(ÕI, λ(2)) lim
λ(2)→+∞

V IF(S, λ(2))

Variable 1 1 2381.56 2381.56
Variable 3 2.12 2.12 1

Raised λ
(2)
min λ

(2)
mse λ

(2)
vi f

Variable 1 0.15 0.34 @
Variable 3 0.35 1.09 17.5

Table 6. VIFs of regression Equation (16) for λ(2) equal to λ
(2)
min, λ

(2)
mse, and λ

(2)
vi f .

V IF(FA, λ(2)) V IF(ÕI, λ(2)) V IF(S̃, λ(2))

λ
(2)
min 2.20 1415.06 1398.05

λ
(2)
mse 2.15 593.98 586.20

λ
(2)
vi f 2.12 9.67 8.47

Considering that, after the first raising, it is obtained that λ(1) = λ
(1)
mse = 1.43, from Table 7, the

third variable is selected to be raised. Table 8 shows the VIF associated with the following model for
λ
(2)
min, λ

(2)
mse, and λ

(2)
vi f :

E = β1(λ) + β2(λ)FA + β3(λ)ÕI + β4(λ)S̃ + ũ, (18)

where S̃ = S + λ · eS.

Remark 4. The coefficient of variation of ÕI for λ(1) = 1.43 is equal to 0.7473033, and the coefficient of
variation of S̃ for λ(2) = 10 is equal to 0.7651473. In both cases, they were lightly increased.

Remark 5. Observing the coefficients of variation of ÕI for different raising factor. it is concluded that the
coefficient of variation increases as the raising factor increases: 0.7470222 (λ = 0.42), 0.7473033 (λ = 1.43),
and 0.7922063 (λ = 24.5).

Note that it is only possible to state that collinearity has been mitigated when λ(2) = λ
(2)
vi f = 10.

Results of the estimations of this model are shown in Table 1.

Table 7. Horizontal asymptote for VIFs after raising each variables in the second raising for λ
(2)
min, λ

(2)
mse,

and λ
(2)
vi f .

Raised lim
λ(2)→+∞

V IF(FA, λ(2)) lim
λ(2)→+∞

V IF(ÕI, λ(2)) lim
λ(2)→+∞

V IF(S, λ(2))

Variable 1 1 853.40 853.40
Variable 3 2.12 2.12 1

Raised λ
(2)
min λ

(2)
mse λ

(2)
vi f

Variable 1 0.12 0.27 @
Variable 3 0.32 0.92 10
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Table 8. VIFs of regression Equation (16) for λ(2) equal to λ
(2)
min, λ

(2)
mse, and λ

(2)
vi f .

V IF(FA, λ(2)) V IF(ÕI, λ(2)) V IF(S̃, λ(2))

λ
(2)
min 2.14 508.54 502.58

λ
(2)
mse 2.13 239.42 236.03

λ
(2)
vi f 2.12 9.36 8.17

5.1.4. Interpretation of Results

Analyzing the results of Table 1, it is possible to conclude that

1. In the model in Equation (16) (in which the second variable is raised considering the smallest λ

that makes all the VIFs less than 10, λ(1) = 24.5), the variable sales have a coefficient significantly
different from zero, where in the original model this was not the case. In this case, the MSE is
superior to the one obtained by OLS.

2. In the model in Equation (17) (in which the second variable is raised considering the value of λ

that minimizes the MSE, λ(1) = 0.42, and after that, the third variable is raised considering the
smallest λ that makes all the VIFs less than 10, λ(2) = 17.5), there is no difference in the individual
significance of the coefficient.

3. In the model in Equation (18) (in which the second variable is raised considering the value of λ that
makes the MSE of the raise regression coincide with that of OLS, λ(1) = 1.43, and next, the third
variable is raised considering the smallest λ that makes all the VIFs less than 10, λ(2) = 10),
there is no difference in the individual significance of the coefficient.

4. Although the coefficient of variable OI is not significantly different from zero in any case, the not
expected negative sign obtained in model in Equation (15) is corrected in models Equations (17)
and (18).

5. In the models with one or two raisings, all the global characteristics coincide with that of the
model in Equation (15). Furthermore, there is a relevant decrease in the estimation of the standard
deviation for the second and third variable.

6. In models with one or two raisings, the MSE increases, with the model in Equation (16) being the
one that presents the smallest MSE among the biased models.

Thus, in conclusion, the model in Equation (16) is selected as it presents the smallest MSE and
there is an improvement in the individual significance of the variables.

5.2. Example 2: h > 1

This example uses the following model previously applied by Klein and Goldberger [43] about
consumption and salaries in the United States from 1936 to 1952 (1942 to 1944 were war years, and data
are not available):

C = β1 + β2WI + β3NWI + β4FI + u, (19)

where C is consumption, WI is wage income, NWI is non-wage, non-farm income, and FI is the farm
income. Its estimation by OLS is shown in Table 9.

However, this estimation is questionable since no estimated coefficient is significantly different to
zero while the model is globally significant (with 5% significance level), and the VIFs associated with
each variable (12.296, 9.23, and 2.97) indicate the presence of severe essential collinearity. In addition,
the determinant of the matrix of correlation

R =

 1 0.9431118 0.8106989
0.9431118 1 0.7371272
0.8106989 0.7371272 1

 ,
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is equal to 0.03713592 and, consequently, lower than the threshold recommended by García et al. [44]
(1.013 · 0.1 + 0.00008626 · n− 0.01384 · p = 0.04714764 being n = 14 and p = 4); it is maintained the
conclusion that the near multicollinearity existing in this model is troubling.

Once again, the values of the coefficients of variation (0.2761369, 0.2597991, and 0.2976122) indicate
that the nonessential multicollinearity is not troubling (see Salmerón et al. [39]). Thus, the extension of
the VIF seems appropriate to check if the application of the raise regression has mitigated the near
multicollinearity.

Next, it is presented the estimation of the model by raise regression and the results are compared
to the estimation by ridge and Lasso regression.

5.2.1. Raise Regression

When calculating the thresholds that would be obtained for VIFs by raising each variable (see
Table 10), it is observed that, in all cases, they are less than 10. However, when calculating λmin in
each case, a value higher than one is only obtained when raising the third variable. Figure 3 displays
the MSE for λ ∈ [0, 37). Note that MSE(β̂(λ)) is always less than the one obtained by OLS, 49.434,
and presents an asymptote in lim

λ→+∞
MSE(β̂(λ)) = 45.69422.

0 10 20 30

46
47

48
49

λ

M
S

E

Figure 3. Mean square error (MSE) for the model in Equation (19) after raising third variable.
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Table 9. Estimation of the original and raised models: Standard deviation is inside the parentheses, R2 is the coefficient of determination, F3,10 is the experimental
value of the joint significance contrast, and σ̂2 is the variance estimate of the random perturbation.

Model (19) p-Value Model (20) for λmin = 6.895 p-Value Model (21) for λmin = 0.673 p-Value

Intercept 18.7021 (6.8454) 0.021 19.21507 (6.67216) 0.016 18.2948 (6.8129) 0.023
WI 0.3803 (0.3121) 0.251 0.43365 (0.26849) 0.137
W̃I 0.2273 (0.1866) 0.251

NWI 1.4186 (0.7204) 0.077 1.38479 (0.71329) 0.081 1.7269 (0.5143) 0.007
FI 0.5331 (1.3998) 0.711 0.8858 (1.2754) 0.503
F̃I 0.06752 (0.17730) 0.711
R2 0.9187 0.9187 0.9187
σ̂ 6.06 6.06 6.06

F3,10 37.68 37.68 37.68
MSE 49.43469 45.61387 48.7497
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Table 10. Horizontal asymptote for VIFs after raising each variable and λmin.

Raised lim
λ→+∞

V IF(WI, λ) lim
λ→+∞

V IF(NWI, λ) lim
λ→+∞

V IF(FI, λ) λmin

Variable 1 1 2.19 2.19 0.673
Variable 2 2.92 1 2.92 0.257
Variable 3 9.05 9.05 1 6.895

The following model is obtained by raising the third variable:

C = β1(λ) + β2(λ)WI + β3(λ)NWI + β4(λ)F̃I + ũ, (20)

where F̃I = FI + λ · eFI being eFI the residuals of regression:

FI = α1 + α2WI + α3NWI + v.

Remark 6. The coefficient of variation F̃I for λ(1) = 6.895 is 1.383309. Thus, the application of the raise
regression has mitigated the nonessential multicollinearity in this variable.

Table 9 shows the results for the model in Equation (20), being λ = 6.895. In this case, the MSE
is the lowest possible for every possible value of λ and lower than the one obtained by OLS for the
model in Equation (19). Furthermore, in this case, the collinearity is not strong once all the VIF are lower
than 10 (9.098, 9.049, and 1.031, respectively). However, the individual significance in the variable was
not improved.

With the purpose of improving this situation, another variable is raised. If the first variable is
selected to be raised, the following model is obtained:

C = β1(λ) + β2(λ)W̃I + β3(λ)NWI + β4(λ)FI + ũ, (21)

where W̃I = WI + λ · eWI being eWI the residuals of regression:

WI = α1 + α2NWI + α3FI + v.

Remark 7. The coefficient of variation of W̃I for λ(1) = 0.673 is 0.2956465. Thus, it is noted that the raise
regression has lightly mitigated the nonessential mutlicollinearity of this variable.

Table 9 shows the results for the model in Equation (21), being λ = 0.673. In this case, the MSE
is lower than the one obtained by OLS for the model in Equation (19). Furthermore, in this case,
the collinearity is not strong once all the VIF are lower than 10 (5.036024, 4.705204, and 2.470980,
respectively). Note that raising this variable, the values of VIFs are lower than raising the first variable
but the MSE is higher. However, this model is selected as preferable due to the individual significance
being better in this model and the MSE being lower than the one obtained by OLS.

5.2.2. Ridge Regression

This subsection presents the estimation of the model in Equation (19) by ridge regression (see Hoerl
and Kennard [4] or Marquardt [45]). The first step is the selection of the appropriate value of K.

The following suggestions are addressed:

• Hoerl et al. [33] proposed the value of KHKB = p · σ̂2

β̂
t
β̂

since probability higher than 50% leads to a

MSE lower than the one from OLS.
• García et al. [26] proposed the value of K, denoted as KVIF, that leads to values of VIF lower than

10 (threshold traditionally established as troubling).
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• García et al. [44] proposed the following values:

Kexp = 0.006639 · e1−det(R) − 0.00001241 · n + 0.005745 · p,

Klinear = 0.01837 · (1− det(R))− 0.00001262 · n + 0.005678 · p,

Ksq = 0.7922 · (1− det(R))2 − 0.6901 · (1− det(R))− 0.000007567 · n
−0.01081 · p,

where det(R) denotes the determinant of the matrix of correlation, R.

The following values are obtained KHKB = 0.417083, KVIF = 0.013, Kexp = 0.04020704, Klinear =

0.04022313, and Ksq = 0.02663591.
Tables 11 and 12 show (The results for Klinear are not considered as they are very similar to results

obtained by Kexp.) the estimations obtained from ridge estimators (expression (1)) and the individual
significance intervals obtained by bootstrap considering percentiles 5 and 95 for 5000 repeats. It is also
calculated the goodness of the fit by following the results shown by Rodríguez et al. [28] and the MSE.

Note that only the constant term can be considered significatively different to zero and that,
curiously, the value of K proposed by Hoerl et al. [33] leads to a value of MSE higher than the one from OLS
while the values proposed by García et al. [26] and García et al. [44] lead to a value of MSE lower than the
one obtained by OLS. All cases lead to values of VIF lower than 10; see García et al. [26] for its calculation:

2.0529, 1.8933 and 1.5678 for KHKB,

9.8856, 7.5541 and 2.7991 for KVIF,

7.1255, 5.6191 and 2.5473 for Kexp,

8.2528, 6.4123 and 2.65903 for Ksq.

In any case, the lack of individual significance justifies the selection of the raise regression as
preferable in comparison to the models obtained by ridge regression.

Table 11. Estimation of the ridge models for KHKB = 0.417083 and KVIF = 0.013. Confidence interval,
at 10% confidence, is obtained from bootstrap inside the parentheses, and R2 is the coefficient of
determination obtained from Rodríguez et al. [28].

Model (19) for KHKB = 0.417083 Model (19) for KV IF = 0.013

Intercept 12.2395 (6.5394, 15.9444) 18.3981 (12.1725, 24.1816)
WI 0.3495 (−0.4376, 1.2481) 0.3787 (−0.4593, 1.216)

NWI 1.6474 (−0.1453, 3.4272) 1.4295 (−0.2405, 3.2544)
FI 0.8133 (−1.5584, 3.028) 0.5467 (−1.827, 2.9238)
R2 0.8957 0.9353

MSE 64.20028 47.99713

Table 12. Estimation of the ridge models for Kexp = 0.04020704 and Ksq = 0.02663591. Confidence
interval, at 10% confidence, is obtained from bootstrap inside the parentheses, and R2 is the coefficient
of determination obtained from Rodríguez et al. [28].

Model (19) for Kexp = 0.04020704 Model (19) for Ksq = 0.02663591

Intercept 17.7932 (11.4986, 22.9815) 18.0898 (11.8745, 23.8594)
WI 0.3756 (−0.4752, 1.2254) 0.3771 (−0.4653, 1.2401)

NWI 1.4512 (−0.2249, 3.288) 1.4406 (−0.2551, 3.2519)
FI 0.5737 (−1.798, 2.9337) 0.5605 (−1.6999, 2.9505)
R2 0.918034 0.9183955

MSE 45.76226 46.75402



Mathematics 2020, 8, 605 21 of 28

5.2.3. Lasso Regression

The Lasso regression (see Tibshirani [5]) is a method initially designed to select variables
constraining the coefficient to zero, being specially useful in models with a high number of independent
variables. However, this estimation methodology has been widely applied in situation where the
model presents worrying near multicollinearity.

Table 13 shows results obtained by the application of the Lasso regression to the model in
Equation (19) by using the package glmnet of the programming environment R Core Team [46]. Note
that these estimations are obtained for the optimal value of λ = 0.1258925 obtained after a k-fold
cross-validation.

Table 13. Estimation of the Lasso model for λ = 0.1258925: Confidence interval at 10% confidence
(obtained from bootstrap inside the parentheses).

Model (19) for λ = 0.1258925

Intercept 19.1444 (13.5814489, 24.586207)
WI 0.4198 (−0.2013491, 1.052905)

NWI 1.3253 (0.0000000, 2.752345)
FI 0.4675 (−1.1574169, 2.151648)

The inference obtained by bootstrap methodology (with 5000 repeats) allows us to conclude that
in, at least, the 5% of the cases, the coefficient of NWI is constrained to zero. Thus, this variable should
be eliminated from the model.

However, we consider that this situation should be avoided, and as an alternative to the
elimination of variable, that is, as an alternative from the following model, the estimation by raise or
ridge regression is proposed.

C = π1 + π2WI + π3FI + ε, (22)

It could be also appropriate to apply the residualization method (see, for example, York [47],
Salmerón et al. [48], and García et al. [44]), which consists in the estimation of the following model:

C = τ1 + τ2WI + τ3FI + τ4resNWI + ε, (23)

where, for example, resNWI represents the residuals of the regression of NWI as a function of WI
that will be interpreted as the part of NWI not related to WI. In this case (see García et al. [44]), it is
verified that π̂i = τ̂i for i = 1, 2, 3. That is to say, the model in Equation (23) estimates the same
relationship between WI and FI with C as in the model in Equation (22) with the benefit that the
variable NWI is not eliminated due to a part of it being considered..

6. Conclusions

The Variance Inflation Factor (VIF) is one of the most applied measures to diagnose collinearity
together with the Condition Number (CN). Once the collinearity is detected, different methodologies
can be applied as, for example, the raise regression, but it will be required to check if the methodology
has mitigated the collinearity effectively. This paper extends the concept of VIF to be applied after the
raise regression and presents an expression of the VIF that verifies the following desirable properties
(see García et al. [26]):

1. continuous in zero. That is to say, when the raising factor (λ) is zero, the VIF obtained in the raise
regression coincides with the one obtained by OLS;

2. decreasing as a function of the raising factor (λ). That is to say, the degree of collinearity diminishes
as λ increases, and

3. always equal or higher than 1.
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The paper also shows that the VIF in the raise regression is scale invariant, which is a very
common transformation when working with models with collinearity. Thus, it yields identical results
regardless of whether predictions are based on unstandardized or standardized predictors. Contrarily,
the VIFs obtained from other penalized regressions (ridge regression, Lasso, and Elastic Net) are not
scale invariant and hence yield different results depending on the predictor scaling used.

Another contribution of this paper is the analysis of the asymptotic behavior of the VIF associated
with the raised variable (verifying that its limit is equal to 1) and associated with the rest of the
variables (presenting an horizontal asymptote). This analysis allows to conclude that

• It is possible to know a priori how far each of the VIFs can decrease simply by calculating their
horizontal asymptote. This could be used as a criterion to select the variable to be raised, the one
with the lowest horizontal asymptote being chosen.

• If there is asymptote under the threshold established as worrying, the extension of the VIF can
be applied to select the raising factor considering the value of λ that verifies VIF(k, λ) < 10 for
k = 2, . . . , p.

• It is possible that the collinearity is not mitigated with any value of λ. This can happen when at
least one horizontal asymptote is greater than the threshold. In that case, a second variable has to
be raised. García and Ramírez [42] and García et al. [31] show the successive raising procedure.

On the other hand, since the raise estimator is biased, the paper analyzes its Mean Square Error
(MSE), showing that there is a value of λ that minimizes the possibility of the MSE being lower than the
one obtained by OLS. However, it is not guaranteed that the VIF for this value of λ presents a value less
than the established thresholds. The results are illustrated with two numerical examples, and in the
second one, the results obtained by OLS are compared to the results obtained with the raise, ridge, and
Lasso regressions that are widely applied to estimated models with worrying multicollinearity. It is
showed that the raise regression can compete and even overcome these methodologies.

Finally, we propose as future lines of research the following questions:

• The examples showed that the coefficients of variation increase after raising the variables. This fact
is associated with an increase in the variability of the variable and, consequently, with a decrease
of the near nonessential multicollinearity. Although a deeper analysis is required, it seems that
raise regression mitigates this kind of near multicollinearity.

• The value of the ridge factor traditionally applied, KHKB, leads to estimators with smaller MSEs
than the OLS estimators with probability greater than 0.5. In contrast, the value of the raising
factor λmin always leads to estimators with smaller MSEs than OLS estimators. Thus, it is
deduced that the ridge regression provides estimators with MSEs higher than the MSEs of
OLS estimators with probability lower than 0.5. These questions seem to indicate that, in terms of
MSE, the raise regression can present better behaviour than the ridge regression. However, the
confirmation of this judgment will require a more complete analysis, including other aspects such
as interpretability and inference.
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Appendix A

Given the linear model in Equation (7), it is obtained that
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Appendix B

Given the linear model

Xj = X−jα + v =
(
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) ( α−i,−j
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)
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it is obtained that
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Appendix C

First, parting from the expression Equation (14), it is obtained that
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and then,
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if h > 1, then MSE
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From this information, the behavior of the MSE is represented in Figures A1 and A2. Note that

the MSE presents a minimum value for λ = h.
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