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Abstract: A yellow fever epidemic occurred in Cádiz and other areas of southern Spain during the
last months of 1800. An anonymous author attributed this disease to the contrast between the cold
and rainy winter and spring, and the subsequent very hot summer. However, the physician J.M.
Aréjula published a report in 1806 where he refuted this conclusion after a detailed analysis of the
meteorological conditions in the area. This controversy is a good example of the discussion about
the relationships between meteorological conditions and public health. In this work, this “scientific”
controversy is studied. Although the arguments of both authors were inspired by the neo-Hippocratic
medical paradigm, the anonymous author put forth a simple cause–effect hypothesis, while Aréjula
recognized the complexity of the problem, introducing the concept of “concause” to explain the
confluence of environmental and contagious effects.
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1. Introduction

Global climate change has suggested that a re-evaluation of the role of the climate in human
health is needed [1]. The influences of weather and climate on human health are significant and varied.
They range from the clear threats of meteorological extremes to connections that may seem less obvious,
such as the survival distribution and behavior of mosquitoes that carry diseases [2]. These vectors are
sensitive to changes in climate conditions, especially temperature and humidity [3].

Yellow fever (YF) is a disease transmitted to humans by the bites of the Aedes aegypti mosquito,
where an infected individual is bitten by a single species of mosquito, and, after an incubation period,
the mosquito bites another individual, passing the pathogen from one person to another. Climate
variability largely determines the distribution and population dynamics of Aedes aegypti on a global
scale [4]. Aedes eagypti is typically found in tropical and subtropical regions worldwide within urban
areas, where it can exploit water-filled containers for its immature (larval and pupal) stages [5]. The rate
of growth of a mosquito population is dependent on the initial population size before the rain season.
Rainfall increases the availability of mosquito breeding habitats and thus the size of the mosquito
population. Temperature controls the rate of larval development. Higher temperatures shorten the
development time of the larvae in the mosquitoes. The optimum temperature for the functional activity,
breeding, and feeding of Aedes aegypti is from 27 to 31 ◦C [6] Therefore, climatic factors may contribute
to severe YF outbreaks by promoting the reproduction, survival, and propagation of the Aedes aegypti
mosquito. The intensity of the transmission is proportional to the size of the mosquito population [7].
Local climatic parameters play a central role in determining the distribution and abundance of vector
organisms through the effects on the host animals. Therefore, it is anticipated that global climate
change will have significant effects on the geographical range and seasonal activity of many vector
species [1–3]. In particular, the mosquito Aedes albopictus is the vector that causes the transmission
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of chikunguya virus and dengue virus, and it is expected that an increase in climatic suitability may
occur in many European areas in a warmer world, although some uncertainties related to precipitation
persist [8]. Due to Spain being located near Africa, being a stopping-off point for migrating birds and
individuals, and due to its climate conditions, nearing those of areas where there are vector-borne
diseases, this is a country where this type of disease could take on greater importance due to climate
change; the possible risk would result from the geographical spread or adaptation of vectors [9].

Human health has always been influenced by climate and weather [2]. In past agrarian societies,
one of the consequences of climate anomalies was the emergence of diseases and epidemics, along with
their social and economic aftermaths [10]. A shortage of food resulting from extreme events, such as
droughts and floods, contributes to malnutrition and weakened immune systems, resulting in ill health,
which makes individuals easily succumb to diseases [6]. The complex interaction between climate
variability and human history has attracted renewed interest in academic and popular literature [11].
Documenting past climate variability and its potential impact has become an interesting focus of
paleoclimate and historical research and may help to prepare modern society to cope with the probable
anthropogenic climate changes of the present. Some studies have analyzed the role of climate variability
in historical diseases and epidemics [10,12,13], but these types of studies (see, for instance, [14]) are
scarce in the case of Spain.

A YF epidemic occurred in Cádiz and other areas of southern Spain during the last months of
1800. The present study considers climate conditions from 1799 to 1800 in Cádiz (southern Spain),
which may have contributed to enhancing the mosquito population during the 1800 summer season.
It was not until the end of the nineteenth century that the apparently high number of mosquitoes noted
during many YF outbreaks was connected to the disease [15]. The YF of 1800 in Cádiz occasioned
much controversy during the first decades of the 19th century, relating to the possible causes of its
appearance and propagation. The main objective of this paper is to study the climatic conditions
prevailing during this YF epidemic, as well as the scientific discussion of its origins, when meteorology
was considered as an ancillary science of medicine. As we will see, the medical controversy was an
incentive to deepen the meteorological knowledge of the time.

The outline of the article is as follows: Section 2 describes the study area and the main aspects of
the YF epidemic of 1800, while Section 3 describes the weather information obtained from diverse
documentary sources. Section 4 shows the main arguments of the controversy and their implications
for meteorological science. Lastly, Section 5 summarizes some of the findings and research perspectives
for the future.

2. The YF Epidemic in Cádiz in 1800

Cádiz (36◦29′ N, 6◦15′ W; Figure 1) is located in the southwestern Iberian Peninsula. The city
is set on an island connected to the mainland by a long isthmus that forms a wide, protected inlet.
The Cádiz Bay includes wetlands, beaches, pine forests, and scrub areas. Three rivers flow to the
sea—the Guadalete, Iro, and Salado rivers—with many channels among them [16]. In addition, during
the second half of the 18th century, there was an increase in salt flats near the sea [17]. The climate of
Cádiz is characterized by warm temperatures during the summer, relatively mild winters, and high
humidity levels.

Because of the technical difficulties that large ships had getting to Seville along the River
Guadalquivir, Cádiz became the port that held the shipping monopoly between Spain and its colonies
in America from the beginning of the 18th century onwards [18]. There, in 1800, in spite of war conflicts,
18 ships arrived at Cádiz from America, and 19 ships went from Cádiz to America [19]. The city of
Cádiz underwent an intense period of economic and social development during the 18th and the
beginning of the 19th century. It has been estimated that the population of Cádiz in 1800 was around
70,000 inhabitants [20].

The disease began from 10 to 15 August, after the arrival of a ship from La Havana (Cuba),
with three sailors who had died from YF. The disease rapidly spread to the city and other areas of
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southwestern Spain, reaching Seville. From August to the beginning of November, in Cádiz, around
7000 people died—around 10% of the population. It has been estimated that only 13.55% of the
population was not affected by the illness [19]. The epidemic finished on 12 November [21].

This epidemic was not a unique YF epidemic in Spain during the first decades of the 19th century
(Figure 1). YF epidemics have been recorded in Málaga in 1804 and 1813, Cartagena in 1810, Cádiz
in 1813 and 1819, and Barcelona in 1821 [22]. In all of the cases, the epidemic had a clear seasonal
character, with a peak in the summer months.

Atmosphere 2020, 11, x FOR PEER REVIEW 3 of 12 

 

7000 people died—around 10% of the population. It has been estimated that only 13.55% of the 

population was not affected by the illness [19]. The epidemic finished on 12 November [21]. 

This epidemic was not a unique YF epidemic in Spain during the first decades of the 19th century 

(Figure 1). YF epidemics have been recorded in Málaga in 1804 and 1813, Cartagena in 1810, Cádiz in 

1813 and 1819, and Barcelona in 1821 [22]. In all of the cases, the epidemic had a clear seasonal 

character, with a peak in the summer months. 

 

Figure 1. A map of Spain indicating the main cities with yellow fever (YF) epidemics at the beginning 

of the 19th century: Cádiz (1800, 1813, and 1819), Seville (1800), Málaga (1804 and 1813), Cartagena 

(1810), and Barcelona (1821). 

3. The Climate of Cádiz in 1800 

Various documentary sources [23–25] report that in 1800, a long and humid winter was 

succeeded by a very hot summer, with constant and sultry east wind in July and August. The Medical 

News [25] noted a temperature of 85° Fahrenheit (29 °C) in mid-July, an anonymous author [23] 

indicated that a maximum temperature of 88 °F (31 °C) was reached on 19 August, and the physician 

P.M. González [24] recorded a temperature of 90 °F (32 °C) in August.  

The main data source for the climatic conditions in Cádiz during the year 1800 is the text by J.M. 

Aréjula [26], where he studied the YF epidemic of 1800 after compiling meteorological data on a daily 

scale from 1799, 1800, and 1803. This author yields daily data of the temperature, pressure, wind 

direction and state of the atmosphere taken daily at 12 h during 1799 and 1800. The author conveys 

that the instruments were located at 12 feet above the sea level (around 4 m). The barometer used is 

unknown. After a preliminary inspection, it was evident that the barometer in use was of French 

origin, using French inches, lines, and fractions of a line. The thermometer was an English instrument, 

with data expressed in degrees Fahrenheit and fractions of a degree. There is no suggestion that they 

were taken in outdoor shaded locations or indoors. However, the analysis of the day-by-day 

variability of temperature shows that the thermometer was probably indoors, or strongly conditioned 

by the building structure. Wind direction was recorded on a 16-point compass. Finally, the state of 

the atmosphere is a qualitative description of rain, cloudiness, and other events. Data corresponding 

to the year 1803 cover the period from 1 January to 17 October. In this case, observations were taken 

 

*Cartagena 

 *Málaga  *Cádiz 

*Seville 

44N 

42N 

40N 

38N 

36N 

8W 10W 6W 4W 2W 0  2E 4E 

*Barcelona 

Figure 1. A map of Spain indicating the main cities with yellow fever (YF) epidemics at the beginning
of the 19th century: Cádiz (1800, 1813, and 1819), Seville (1800), Málaga (1804 and 1813), Cartagena
(1810), and Barcelona (1821).

3. The Climate of Cádiz in 1800

Various documentary sources [23–25] report that in 1800, a long and humid winter was succeeded
by a very hot summer, with constant and sultry east wind in July and August. The Medical News [25]
noted a temperature of 85◦ Fahrenheit (29 ◦C) in mid-July, an anonymous author [23] indicated that a
maximum temperature of 88 ◦F (31 ◦C) was reached on 19 August, and the physician P.M. González [24]
recorded a temperature of 90 ◦F (32 ◦C) in August.

The main data source for the climatic conditions in Cádiz during the year 1800 is the text by
J.M. Aréjula [26], where he studied the YF epidemic of 1800 after compiling meteorological data on
a daily scale from 1799, 1800, and 1803. This author yields daily data of the temperature, pressure,
wind direction and state of the atmosphere taken daily at 12 h during 1799 and 1800. The author
conveys that the instruments were located at 12 feet above the sea level (around 4 m). The barometer
used is unknown. After a preliminary inspection, it was evident that the barometer in use was of
French origin, using French inches, lines, and fractions of a line. The thermometer was an English
instrument, with data expressed in degrees Fahrenheit and fractions of a degree. There is no suggestion
that they were taken in outdoor shaded locations or indoors. However, the analysis of the day-by-day
variability of temperature shows that the thermometer was probably indoors, or strongly conditioned
by the building structure. Wind direction was recorded on a 16-point compass. Finally, the state of the
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atmosphere is a qualitative description of rain, cloudiness, and other events. Data corresponding to
the year 1803 cover the period from 1 January to 17 October. In this case, observations were taken
three times daily: in the morning, at noon–afternoon, and in the evening. The author conveys that
the series is interrupted on the 17 October because he had to travel to other city in southern Spain
(Málaga) for professional duties. The instruments used by Aréjula and their exposure conditions are
unknown. In this case, air pressure data seem to be consistent with English system and are expressed
in inches, lines, and tenths of a line. Temperature data are expressed in degrees Reamur and fractions
of a degree. Again, we do not know if the instruments were exposed to the open air or, conversely,
kept indoors, but the thermometer was placed indoors in the house of the author, located in the Old
City. Wind direction was recorded on a 16-point compass. Aréjula includes information about the
wind strength, with terms used in the ship logbooks of the time. The description of the state of the
atmosphere consists of a list of very different qualitative terms, including references to rainy days,
cloudiness, wind, storms, etc. This data source has been studied previously [27,28], and the data
have been digitized and they are available in the “Early Meteorological Observations in Southern
Spain” database (EMOSSv2, [29]). Unfortunately, a more detailed description of metadata (the types of
instrument and producers) is absent, and this problem must be taken into account when analyzing
these data and their uncertainties.

Figure 2 shows the monthly means of daily maximum temperatures (TX) from January 1799 to
December 1800 in Cádiz according to the data given by Aréjula. These data are compared with those
corresponding to the modern reference period 1961–1990 [30]. The period 1961–1990 is interesting
because it includes different climatic conditions, with a shift towards warmer conditions around 1980,
globally and regionally [31]. However, other reference periods were proved (i.e., 1971–2000) and the
results of the comparison were similar. Error margins consider the uncertainty due to the instruments
and measurement units, and the standard error in the estimation of the mean value [32]. Historical
data reproduce the annual cycle of temperature, but with values lower than those of the reference
period, particularly in 1799. This difference has been assigned to the general coldest conditions being
during the Dalton Minimum of solar activity [33]. This period belongs to the so-called Little Ice Age
(LIA). The coldest period during the LIA is considered to be the 17th century, when a social and
economic crisis spread globally [34]. The end of the LIA is normally dated to the mid-19th century, at
the beginning of the industrial period [35], although according to dendroclimatological studies [36–38],
the end of the LIA in the Iberian Peninsula can be dated to the 18th century, in the 1770s. However,
cold and wet conditions in southern Spain continued until at least the mid-19th century. The main
impacts of these conditions were the frequent rainfalls and floods of the Guadalquivir River in Seville
during the 1780s [28], and the so-called “year without summer” in 1816, with temperature anomalies
within the −1.2 to −2 ◦C range [39]. However, the values corresponding to 1800 are very similar to
modern values, ranging between 25.4 and 28.4 ◦C in July 1800 (27.4 ◦C in 1961–1990), and between
25.1 and 28.1 ◦C in August 1800 (27.9 ◦C in 1961–1990). This result underlines the marked variability
of the climate in the Iberian Peninsula during the LIA [14,37]. Under the general cold conditions
of this period, it is the logical qualitative perception of contemporaneous authors that it was a very
hot summer. These conditions were also noted in other documentary sources, such as the weekly
reports of the newspaper Correo Mercantil de España y sus Indias (CMEI [40]), in which information on
“excessively hot weather” during July and August 1800 in the southern Spanish provinces may be
found [41]. The periodical appeared twice a week, on Mondays and Thursdays, from 1792 to 1808,
with alternating information from the northern and southern provinces each day, thus providing a
weekly summary of the general conditions (economic, agricultural, and meteorological) across the
country. All the editions began with a report on agriculture, qualitatively describing general weather
conditions and indicating the grain prices.
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Figure 2. Red: monthly mean values of daily maximum temperatures from January 1799 to December
1800. Dotted black line: error margins. Blue: monthly mean values of daily maximum temperatures for
the reference period 1961–1990.

Figure 3 shows the monthly number of rainy days (RDs) according to the Aréjula data. Again,
these data are compared with the mean value corresponding to the reference period in 1961–1990.
This variable is important, because it indicates the degree to which a constant supply of moisture is
available in order to provide proper breeding grounds [13]. Here, it can be seen that from December
1799 to March 1800, the RDs were higher than the reference period values, confirming the information
about wet conditions during the months prior to the summer of 1800. The information about continuous
and strong rainfalls until the end of March is also included in the reports of CMEI. There is a one-month
lag between the peak rainfall and the peak river flow, as the rivers are recharged by surface runoff

and groundwater flow from the drainage basin [6,42]. Therefore, the moisture content of wetlands in
the Cádiz Bay probably increased during the spring, increasing the availability of mosquito breeding
habitats, and thus the size of the mosquito population. In fact, there are references in the literature
of the time [22,26,43] to standing waters and their role as a source of miasmas, responsible of the
appearance of illness (miasmas was understood as a kind of corrupt or pestilent air that emanated
from putrefactive bodies and spread infectious diseases).
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Figure 3. Red: monthly rainy days in Cádiz from January 1799 to December 1800. Blue: the monthly
mean value of rainy days in Cádiz for the reference period 1961–1990.

Figure 4a shows the prevailing wind directions during August 1800, with a clear predominance
of east winds (29%). These data are compared with the mean value of the wind frequencies in
August in Cádiz corresponding to the period 1788–1795 (Figure 4b [44]), with 16.4% being east winds.
Although the wind rose of 1800 is more detailed than that of 1788–1795 (16 versus 8 compass points),
the differences are clear, showing the anomalous character of August 1800, namely: west winds were
absent in 1800 (47% in the previous decade), and east winds during August 1800 (29%) were almost
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double the mean value corresponding to the previous decade (16.4%). This fact was perceived by
contemporaneous authors, who noted that during August and September, “the east wind persisted
more than forty days” [24]. The predominance of east winds in the Seville province is also included in
the weekly reports of CMEI. The east wind in Cádiz in summer is hot and dry, and it contributes to the
reinforcement of the warm thermal sensation. These conditions are provoked by the predominance
of anticyclonic conditions over the Iberian Peninsula, as reflected in Figure 4c, which shows the
independent reconstruction of the mean value of the sea level pressure field during August 1800 [45].
This reconstruction was made from a multi-proxy approach of past climate in Europe [46].
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Rainy conditions between December 1799 and March 1800 and warm weather during the
summer months may have contributed to the YF outbreak, by promoting the reproduction, survival,
and propagation of the Aedes aegypti mosquito. Similar conditions were recorded in other YF epidemics.
Therefore, in Málaga in 1804, the winter was mild and rainy, with maximum temperatures of around 17
◦C; the spring was mild and very wet; and the summer was very warm, with maximum temperatures of
36 ◦C “in the shadow” [47]. The YF epidemics in Cádiz in 1819 also occurred during a very hot summer,
with a high frequency of east winds [44]. In a previous study on climate conditions in southern Spain
during the Dalton Minimum [41], it was found that wet springs and warm and dry summers prevailed
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during this time. Therefore, it seems that conditions appropriate for the development of mosquitoes
and the appearance of diseases prevailed. This situation could have led some authors to consider the
YF as endemic in southern Spain, which “resembled the ordinary climate of the Antilles” [26].

4. The Controversy

At the beginning of the 19th century, physicians did not know the role of mosquitoes in the
transmission of diseases. They followed the neo-Hippocratic hypothesis. According to this medical
paradigm, illness, epidemics, and public health were related to environmental conditions, in particular,
to the variability of meteorological variables. The controversy focused on the origin and character
(contagious or not) of the disease.

The first document on the YF in Cádiz in 1800 is an anonymous book published at the end of
that year [23]. According to the author, we must “focus on heat and moisture as main factors causing
the corruption”. Afterwards, he indicated that the high values of temperature measured in Cádiz
during August 1800 were “almost similar to the highest heat measured in the globe”, in reference to
the Caribbean climate. In a work published in 1821, the English physician R. Jackson [48] assigned the
origin of epidemics to “causes inherent in the physical qualities of the soil and atmosphere”, and T.
O’Halloran, in his study published in 1823 [49], underlined the strong seasonality of the illness (“it never
appears before the end of July or the beginning of August, and it begins to abate in violence in October,
and has never been observed to continue till November or December”) and that “its presence has been
generally preceded by an unsual state of the atmosphere”. The conclusion is that the prevalence of a
peculiar state of the atmosphere is the “essential cause on which the formation and propagation of
febrile epidemics depend”.

However, the fact that epidemics prevailed in maritime towns, with traffic between America and
Spain, led to considering their origin to be foreign importation. The physician P.M. González [24]
indicated the arrival of ships from America just before the beginning of the illness, and the similarities
of the illness with diseases in the Antilles. He compares Cádiz with other cities in southern Spain,
with warmer and drier climates, to refute the previous thesis, considering the importance of local
factors in climate and public health. In this text, the heat is considered as a “concause, able to active
the contagion, increasing its propagation and virulence”. The YF of Cádiz in 1800 contributed to the
development of a genre of scientific literature—medical topographies [50]. These reports studied local
conditions (geographical, hydrological, and climatological) to analyze the public health in a concrete
city (see, for example, [51]).

Aréjula [26] denied the role of high temperatures as a main causal factor. His argument was
based on a comparison of the maximum temperatures of other years. Figure 5 shows the maximum
temperatures recorded in Cádiz from 1789 to 1803. The maximum temperature recorded in 1800 was
30.6 ◦C on 19 August. The argument by Aréjula was that in other years with temperatures similar or
higher than those in 1800 (32.2 ◦C on 27 July 1790 and 31.7 ◦C on 7 July 1803), there was not an epidemic.
A similar argument was used by the physician J. Mendoza in his description of the YF in Málaga in
1804 [47]. The maximum temperature in this city in 1804 was 36 ◦C on 13 August; meanwhile, on 9
July 1808, the thermometer reached 45.3 ◦C (thermometer in the shadow), and there were no health
problems that year.

From a meteorological point of view, the main interest of this discussion is that these measurements
were taken at different observatories and under different exposure conditions. Measurements from 1789
to 1794 were taken in the Royal Observatory of Cádiz, located 26.7 m above sea level. Measurements
from 1799 and 1800 were taken in the Observatory of La Isla, located in another site of the city,
at 40.7 m above sea level. The medical controversy consisted of a methodological discussion on
the influence of exposure conditions on instrumental records. According to the anonymous author,
the thermometer located in the Royal Observatory of Cádiz was unprotected from the sunrays;
meanwhile, the thermometer in La Isla was in the shadow. As a consequence, the thermometers from
1789 to 1794 were influenced by sunrays, and their measurements were biased, recording values higher
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than the correct values. Therefore, 1800 would be the warmest year in the complete series. Aréjula
refuted this argument, adding that the temperature recorded in La Isla in 1803 was directly comparable
with the temperature recorded in 1800. The efforts of the anonymous author to describe the differences
between the measurements taken outdoors and indoors, and in different seasons of the year, were not
countered by Aréjula, because this problem was outside of the scope of his book. However, these efforts
indicate that authors were aware of these methodological and practical problems.
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Aréjula was a neo-Hippocratic physician. As a consequence, he had to develop a methodology
including environmental factors in the explanation of epidemics. Thus, he spoke on external causes
(contagion), underlying causes (vulnerability of the individual), and concauses (meteorological factors).
Today, we would speak about vulnerability, that is, the tendency or predisposition to be adversely
affected by climate-related health effects, which encompasses three elements, namely exposure,
sensitivity or susceptibility to harm, and the capacity to adapt or to cope [2]. Note the similarities
between historical and modern concepts.

According to pro-contagion authors, the role of high temperatures was to promote the appearance of
contagious miasmas. Water masses were the main source of these miasmas. Thus, they recommended
cleaning mains and streams, and desiccating areas with water-stilling waters [22]. According to
anti-contagion authors, on the contrary, “marshy situations are undoubtedly insalubrions, but they
are not the sole causes of epidemic disease” [49]. Pro-contagion authors underlined the need for
establishing quarantines, and anti-contagion authors indicated “the irregularitity of the malady,
jumping from point to point and leaving intermediate places untouched” ([49], note that this last
argument suggests the random flight of mosquitoes).

Anti-contagion authors argued a cause-effect relationship between diseases and climate, attributing
the disease to warm conditions in the summer and the specific geographical characteristics of the region.
Their criticism of the person-to-person contagion model was correct. On the other hand, pro-contagion
authors included environmental factors in a more complex explanation, where the combined action
of environmental conditions, contagion, and the susceptibility of individuals contributed to the
appearance and propagation of the disease. Pro-contagion authors were correct in assigning the
origin of the disease to foreign importation. Neither pro- nor anti-contagion authors knew the role
of mosquitoes. However, their discussions contributed to the deepening of meteorological science,
including the analysis of local climates and methodological problems associated with instrumental
measurements [52].
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5. Conclusions

The main conclusions of this work are the following:

- Climate conditions in Cádiz during 1800 (wet winter and spring, warm summer) were appropriate
for the development of mosquitoes and the outbreak of the YF epidemic.

- Differences in measurement sites and the exposure conditions of the meteorological instruments
precluded the comparison of different measurements and promoted the scientific discussion of
the meteorological conditions during the summer of 1800.

- The medical controversy surrounding the origin and propagation of the epidemic contributed
to the deepening of meteorological science in Spain, promoting local climate studies and the
analysis of problems related to the exposure conditions of meteorological instruments.

The study of past diseases contributes to the knowledge of complex relationships between climate
and human health. The example studied here may help to understand other past epidemic events
in Spain, for instance, the pest epidemics during the 17th century. On the other hand, it allows for
obtaining an overview of the relationship between medicine and meteorology during the studied period.
Although meteorology was an auxiliary science of medicine, it was promoted by the neo-Hippocratic
paradigm, which encouraged observational studies and instrumental measurements.
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