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Abstract: Real-world complex systems are often modeled by networks such that the elements are
represented by vertices and their interactions are represented by edges. An important characteristic of
these networks is that they contain clusters of vertices densely linked amongst themselves and more
sparsely connected to nodes outside the cluster. Community detection in networks has become an
emerging area of investigation in recent years, but most papers aim to solve single-objective formulations,
often focused on optimizing structural metrics, including the modularity measure. However, several
studies have highlighted that considering modularityas a unique objective often involves resolution
limit and imbalance inconveniences. This paper opens a new avenue of research in the study of
multi-objective variants of the classical community detection problem by applying multi-objective
evolutionary algorithms that simultaneously optimize different objectives. In particular, they analyzed
two multi-objective variants involving not only modularity but also the conductance metric and the
imbalance in the number of nodes of the communities. With this aim, a new Pareto-based multi-objective
evolutionary algorithm is presented that includes advanced initialization strategies and search operators.
The results obtained when solving large-scale networks representing real-life power systems show the
good performance of these methods and demonstrate that it is possible to obtain a balanced number of
nodes in the clusters formed while also having high modularity and conductance values.

Keywords: network optimization; community detection; modularity; imbalance; conductance;
multi-objective evolutionary algorithms

1. Introduction

Graph theory is one of the most important branches of mathematics. Graphs are often used to
model networks such that nodes (vertices) are the elements and links (edges) denote interactions between
these elements. In practice, graph theory is used to model real-life complex systems using graphs and to
understand the role of the nodes within a given network. Some applications of graph theory are found
in the study of transportation networks, computer and interconnection networks, telecommunication
networks, electrical networks, biological systems, social networks, etc. [1].

Community detection is an emerging area of research that is attracting interest among scientists
studying complex networks. The aim here is to detect community structures, that is, groups of densely
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interconnected nodes such that connections between the nodes are denser than connections with the rest of
the network. The interest in detecting these groups or communities comes from the fact that the elements
of each community potentially share similar features. Most research papers dealing with community
detection consider single-objective formulations in which only one objective, usually modularity [2],
is optimized. However, recent investigations have shown some drawbacks derived from the only use of
modularity. For example, in [3], the existence of resolution limit problems is demonstrated, while other
authors have detected the existence of imbalance problems [4], which implies that classical measures tend
to overestimate either the exterior or the interior of a community. Some approaches have been proposed to
mitigate the latter inconvenience, including symmetric frameworks to maintain a balance between the
interior and the exterior of a community [5].

Given the above, it seems suitable to design algorithms to detect communities that consider not only
modularity but also other objective functions. A large number of methods have been proposed for solving
multi-objective optimization problems (MOPs). Among these approaches, Multi-objective Evolutionary
Algorithms (MOEAs) are probably the most widely applied strategies. This paper proposes a new
MOEA, called Multi-objective Generational Genetic Algorithm+ (MOGGA+), which extends the features
of the Generational Genetic Algorithm+ (GGA+) [6] that has successfully been applied to the classical
single-objective formulation of the community detection problem. MOGGA+ uses different strategies to
obtain a set of non-dominated solutions as an approximation to the Pareto-optimal front [7]. This method is
compared with a high-performance MOEA often used in the literature for solving large-scale benchmarks
and network data taken from large-scale power grids.

The rest of the paper is organized as follows: Section 2 describes the problem of community detection
in graphs, including an overview of some multi-objective formulations applied to this problem. Section 3
includes a formal description of the bi-objective formulations proposed in the paper. Section 4 presents in
detail the algorithm proposed to solve these bi-objective problems. Section 5 presents the empirical study,
which compares the proposed method with other approaches in several case studies of different sizes and
topologies. Finally, Section 6 provides the conclusions of this investigation.

2. Multi-Objective Community Detection: An Overview

Community detection is a problem closely related to graph partitioning [8]. In fact, graph partitioning
is often used for community detection in different areas of application [9]. However, while the goal of
graph partitioning is to minimize the number of edges connecting nodes from different graphs, community
detection consists of finding community structures [10], that is, groups of densely interconnected nodes
such that connections between the nodes are denser than connections with the rest of the network.
The interest in detecting these groups or communities comes from the fact that the elements of each
community potentially share similar features [11,12]. It is important to remark that, in some real-world
situations, the number of community structures of the network is known beforehand while, in many other
cases, the number of communities is initially unknown and the algorithms must obtain several solutions
featuring different numbers of community structures.

Most research papers dealing with community detection consider single-objective formulations
in which only one objective (usually modularity [2]) is optimized. However, modularity maximization
(see Equation (1)) is an nondeterministic polynomial-time hard (NP-hard) problem [13], which means it is
not possible to guarantee that the optimum solution will be found within a limited execution time [14].
Despite the generalized use of modularity to find community structures, some authors have detected
resolution limit [3] and imbalance problems [4].

Many problems in science and engineering are multi-objective since they involve the simultaneous
optimization of two or more conflicting objectives, that is, the improvement of an objective often involves
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the deterioration of another or others. Typically, these MOPs have been addressed using scalarization
techniques that combine the different objective functions into a single one that can then be solved by
single-objective algorithms. Two typical scalarization techniques are linear weighting and ε-constrained
methods [15]. On the one hand, the idea behind weighting methods is to assign weights to each objective
function and then to maximize (or minimize) the weighted sum of the objectives. On the other hand,
ε-constrained methods establish a rank among objectives according to their importance, such that each
objective function is optimized individually, subject to the restriction that the higher ranked functions
cannot exceed a certain percentage of the optimal values reached in previous generations (iterations).
Despite their popularity, scalarization methods have certain drawbacks; for example, the assignment of
weights or rankings to the objectives is often arbitrary. Furthermore, these methods only obtain a single
(global) trade-off solution. A method to overcome these difficulties is to use Pareto-based optimization
techniques. Pareto-based multi-objective algorithms aim to obtain not one but a set of solutions that
are evaluated in terms of Pareto-dominance relations [16]. A solution A is said to be non-dominated or
Pareto-optimal if no other feasible solution B dominates it, i.e., B is not better than A in at least one objective.
The set of all non-dominated solutions found in the solution space forms the so-called Pareto-optimal front
that represents the optimal trade-off between all objectives considered. This approach is very useful in
decision-making processes since it provides a set of solutions to experts who will choose the one that best
suits their preferences. It is important to remark that it is very difficult to obtain the Pareto-optimal front
in complex optimization problems, which is why the aim is to obtain a set of non-dominated solutions
as an approximation to that set [17]. Many authors have also considered decomposition algorithms that
decompose the task of approximating the Pareto-optimal front into a set of subtasks such that each task is
a subproblem which can be single-objective or multi-objective. This strategy becomes useful when dealing
with many objectives, but it seems to be more accurate for obtaining the entire Pareto-optimal front in
bi-objective formulations since it provides a set of possible solutions to the decision-maker.

In recent years, some researchers have proposed solving the community detection problem by
considering several objectives simultaneously. For example, [18] proposed the Multi-objective Genetic
Algorithm for Networks (MOGA-Net), which maximizes the intra-connections inside each community and
minimizes interconnections between different communities. These objectives were also considered in [19],
which proposed a MOEA with decomposition (MOEA/D-Net). Other authors have proposed decomposing
modularity into two terms that represent the intra-link strength and the interlink strength of a partition [20].
Similarly, [21,22] proposed multi-objective evolutionary frameworks for solving multi-objective community
detection approaches that consider the intra-neighbour score and the inter-neighbour score as objectives to
optimize. In [23], a multi-objective algorithm was presented to optimize the community score and the
community fitness. A MOEA based on Affinity Propagation (APMOEA) was presented in [3] to optimize
the ratio association and the ratio cut, obtaining good results in comparison with MOEA/D-Net. In [24],
the label-based dynamic multi-objective genetic algorithm (L-DMGA) was proposed for maximizing
the snapshot quality and for minimizing the temporal cost. In [25], a Multi-objective Genetic Algorithm
(MOGA-OCD) was proposed for detecting overlapping communities such that the internal connectivity
of the communities is maximized, whereas the number of external connections to the rest of the graph is
minimized. In [26], the negative ratio association and ratio cut were optimized using the Discrete Inverse
Modelling-based MOEA with Decomposition algortihm (DIM-MOEA/D), which obtains a similar or
better performance than other approaches, including MOCD [20], MOGA-Net [18], MOEA/D-net [19],
and MODPSO/D [27].

In addition to MOEAs, other meta-heuristic approaches for solving multi-objective community
detection problems have been proposed. This is the case of the Particle Swarm Optimization (PSO)
algorithm with decomposition (MOPSO/D) proposed in [27] for minimizing the kernel k-means and ratio
cut. These objectives were also considered years later in [28], which proposed the so-called MOPSO-Net,
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also based on PSO. In [29], the researchers presented the so-called Multi-objective Immune Algorithm for
Multi-Resolution Community Detection (MICD), which aims to optimize the modified ratio association and
the ratio cut. In [30], a Multi-objective Biogeography-based Optimization Algorithm with Decomposition
(MBBOD) was presented to simultaneously optimize modularity and a metric that measures the similarity of
attributes of the nodes of a community. Another MBBOD implementation was introduced in [31], where the
two objectives optimized were modularity and the normalized mutual information. This pair of objectives
were also considered in [32] and were optimized by the Multi-objective Discrete Teaching–Learning-based
Optimization with Decomposition (MODTLBO/D), which obtained good results in comparison with
MOCD [20], MOGA-Net [18], MOEA/D-Net [19], and MODPSO/D [27] in different problem instances.
Other researchers proposed a multi-objective optimization community detection algorithm with attribute
information (MOCDA) to simultaneously optimize modularity and homogeneity [33]. This pair of objectives
has also been considered in [34], which proposed the so-called Multi-objective Attributed Community
Detection Algorithm with Node Importance Analysis (MANIA). Another investigation [35] proposed a
local information-based MOEA (L-MOEA) that adopts a decomposition strategy to optimize the negative
ratio association and ratio cut.

Therefore, taking into account these and other previous studies, it is obvious that it is possible
to create a large number of multi-objective community detection formulations by combining different
objectives [36]. The overview of the state of the art in this field shows that most papers dealing with
community detection from a multi-objective perspective still currently use scalarization or decomposition
approaches. Only a few approaches have solved multi-objective community detection approaches
considering Pareto-based methods, for example, as in [37], which proposed the Multi-objective Adaptive
Fast Evolutionary Algorithm for community detection (F-SGCD) that optimizes community score and
community fitness using Pareto-dominance comparisons. The novelty and contributions of this investigation
are as follows: (1) For the first time, a Pareto-based MOEA was designed to reduce the imbalance in
the number of nodes of the communities in addition to structural metrics [38], such as modularity and
conductance. (2) The new Pareto-based MOEA include advanced initialization strategies and search
operators. (3) For the first time, multi-objective community detection was evaluated in graphs that
represent the topological structure of real power systems.

3. Problem Formulation

This paper proposes the analysis of two bi-objective formulations of the community detection problem
based on some previous studies that have highlighted that most papers related to community detection aim
to optimize structural metrics such as modularity (internal connectedness) and conductance (normalized
edge cut) while ignoring an important dimension: community size [38]. This is the reason that has led us
to analyze two multi-objective formulations that try to optimize the following objectives: (a) maximize the
modularity (Equation (1)) and minimize the imbalance (Equation (3)), and (b) maximize the conductance
(Equation (2)) and minimize the imbalance (Equation (3)).

• Modularity (Q) [2]: Modularity considers that a solution is good if there are many edges within
communities and only a few between them. A solution with a Q value close to 1 indicates strong
community structure from a topological perspective [30].

Q =
1

2M ∑ (aij −
KiKj

2M
)δ(i, j) (1)
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where M is the number of edges, Ki and Kj are the degrees of two given nodes of the network (i and
j), aij is the element of the adjacency matrix that is located in the ith row and the jth column, and
δ(i, j) indicates if node i and node j are in the same community (δ(i, j) = 1) or not (δ(i, j) = 0). The
aim is, therefore, to maximize the modularity (Q) value.

• Conductance (CON) [39,40]: Conductance is a measure of the fraction of total edge volume that
points outside the community. The aim here is to minimize the conductance (CON) value.

CON =
N

∑
i=1

Li
Li + 2Zi

(2)

where Li is the number of edges of the ith community that are linked to nodes from other communities,
Zi is the number of edges of the ith community that are not linked to nodes from other communities,
and N is the number of communities considered.

• Imbalance (IMB): Imbalance represents the difference in the number of nodes included in the
communities detected. The aim is, therefore, to minimize the imbalance value.

IMB =

√
∑N

i=1 (Xi − X̄)
2

N
(3)

where Xi is the number of nodes of the ith community, X̄ is the number of nodes of the network
divided by the number of communities considered, and N is the number of communities considered.

4. Multi-Objective Generational Genetic Algorithm: MOGGA+

This section presents MOGGA+, a Pareto-based MOEA that solves the multi-objective formulations
described above. MOGGA+ extends the single-objective algorithm GGA+ [6] by including some strategies
such as radial initialization, the use of n sets of non-dominated solutions, and the dynamic modification
of the probability of applying evolutionary operators in runtime. In particular, it incorporates a new
data structure that assigns some probabilities of executing a genetic operator that can be dynamically
adjusted (within a given range) according to the evolution of the operator during successive generations
of the algorithm.

Figure 1 shows the operation of MOGGA+. The input data required by MOGGA+ is a graph G
modelling a given network, the number of communities to be detected, the population size, crossover rate,
mutation rate, and the termination criterion (maximum number of generations). With this information,
MOGGA+ creates a new population initialized based on the radial initialization process and initializes the
migration vector between boundaries. Then, the algorithm evaluates the individuals through the objective
functions and creates a set of non-dominated solutions that will store all the individuals that satisfy
the constraints. After that, the individuals of the population are sorted by assigning a rank according
to Pareto-dominance comparisons. Then, a new population is generated by applying the dynamically
selected genetic operator (crossover and/or mutation) and the individuals are checked in order to update
the non-dominated set. Finally, the replacement operator is applied to the new population. At the end of
the execution, the algorithm returns the set of non-dominated solutions.
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Figure 1. Multi-objective Generational Genetic Algorithm+ (MOGGA+) operation.

4.1. Genetic Representation

The genetic representation used by MOGGA+ is based in the following notation:

rm = [r1
mr2

m...ri
m...rN

m ] (4)

where vector rm represents the mth individual of the population and ri
m indicates the community to which

the ith node belongs. All the nodes in this individual contain a positive integer value, where N is the total
number of nodes of the network.
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4.2. Initialisation of the Population

Random initialisation can generate unfeasible solutions, that is, isolated nodes or groups of nodes that
are not interconnected with nodes of the same community. To guarantee that the individuals generated
during the initialization process are feasible, the initialization process used by MOGGA+ is based on the
concept of safe initialization [41]. In addition, to avoid the generation of unbalanced size communities,
the concept of balanced initialization used in [6] is incorporated to establish the community size. Moreover,
MOGGA+ allows each individual of the population to search for a different number of communities (degree
of abstraction), such that the network can be analyzed from a global perspective (a few communities) to a
higher detail (many communities).

Furthermore, to improve the quality of the initial communities, a radial initialization is used,
which functions as follows: Given a set of communities S1, S2, ...Si, . . . SC, where C is the number of
communities to detect, each community Si is created by including that node nj not previously assigned to
another community having a higher degree of connectivity with other nodes. Then, those neighbouring
nodes of node nj not previously assigned to community Si are incorporated until it reaches the community
size previously established. If the community size is not reached after including node nj and its neighbours
njk, the process is repeated with the first neighbour node, nj1. If this criteria is not reached, the process is
then repeated with the second neighbour node, nj2, and so on. In the hypothetical case that the community
does not reach the preestablished size, the process would be repeated considering the neighbour nodes
located at the next level of distance, that is, using concentric ratios where the neighbour nodes are added
within that distance. This process can be observed in the example shown in Figure 2. Here, the maximum
number of communities to be detected is 2 and the number of nodes is 27. The initialization vector will
establish the size of the communities at |S1| = 13 and |S2| = 14. Next, a non-assigned node is selected
considering the concept of node with a higher degree. In this case, node 1 (degree 5) is selected and then
included in community S1. As S1 has not been completed (current size 1 with respect to |S1| = 13),
the neighbouring nodes to node 1 are included, that is, community S1 now contains nodes 1 to 6, but the
maximum size |S1| = 13 has still not been reached, which is the reason why the next level is analyzed,
until the community is completed (S1 contains nodes 1 to 13). Once community S1 is completed, this
process is repeated to complete community S2.

4.3. Migration Vector and Genetic Operators

MOGGA+ uses a migration vector between boundaries [6]. This vector determines the most attractive
destination of each boundary node between different communities, such that the destination community
for a certain node will be the one that contains the highest number of nodes connected to the former
node. Based on this migration vector, the algorithm herein proposed (MOGGA+) applies several genetic
search operators that have been especially designed to obtain the maximum performance of the proposed
data structure.

4.3.1. Mutation Operator

MOGGA+ uses three mutation operators that consist of the migration of boundary nodes to a different
community. These operators are randomly applied.

• Migration of a boundary node to the best destination community (M1): moves boundary node j
located at community Si to the best neighbouring community Sbest [6].

• Migration of N nodes to the best destination community (M2): moves boundary node j located
at community Si to the best destination community Sbest. Furthermore, a random number of
neighbouring nodes of node j are also moved to community Sbest.
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• Migration of N nodes to a random destination community (M3): moves boundary node j located
at community Si to a random destination community Srandom. Furthermore, a random number of
neighbouring nodes of node j are also moved to community Srandom.

Figure 2. Radial initialisation.

4.3.2. Crossover Operator

Some studies have shown that typical crossover operators are not suitable for community detection
problems since they lead to the disruption of good communities or may even cause the generated
communities to be disconnected, thus significantly degrading the search capability of the algorithms [42].
Our implementation consists of the exchange of communities between boundary nodes of different
communities. Two crossover/exchange operators are considered by MOGGA+:

• Best exchange of boundary nodes (EX1): moves boundary node j located at community Si to the best
neighbouring community Sbest, and then moves from Sbest to Si the node k which obtains the best
result from moving to the Si community.

• Random exchange of boundary nodes (EX2): moves the boundary node j located at the community
Si to a random community Srandom, and then moves from Srandom to Si the node k that gets the best
result from moving to the Si community.

4.3.3. Selection Operator

MOGGA+ uses an elitist replacement procedure for substituting a percentage of individuals of the
main population for some individuals of the non-dominated set. The number of individuals to replace
in each generation is a random number calculated in the range (((minRatio + incrementRatio) × Psize),
(maxRatio × Psize)), where

• minRatio: minimum number of individuals to replace;
• maxRatio: maximum number of individuals to replace;



Mathematics 2020, 8, 2048 9 of 18

• incrementRatio: parameter that dynamically increases the number of individuals to replace, that is,
the algorithm becomes more elistist when the number of generations performed increases. Let Gmax

be the number of generations that the population will evolve; then, the value of incrementRatio is
calculated as follows: incrementRatio = (maxRatio−minRatio)/Gmax.

4.4. Termination Criteria

The termination criteria used here is to perform a maximum number of generations (Gmax).

5. Empirical Study

This section analyzes the performance of MOGGA+ in several networks. The algorithms have been
developed in C# .Net Framework 4. C# is an object-oriented language that allows for the development
of graphic interfaces to visualize the results of the optimization algorithms. Furthermore, not only
managed code is used, but it is also possible to call external unmanaged code and to utilize reference
types and user-defined value types, which are key aspects in the development of optimisation algorithms.
The computer used to execute the codes is a personal computer with an Intel Core i7 3630QM processor
(4 cores and 2 threads per core) at 2.4 GHz, 8 GB DDR3 RAM.

5.1. Algorithms

Experimental analysis involving optimization algorithms often involve the comparison between
algorithms in order to determine the most efficient in terms of solution quality and/or runtime. In this
case, MOGGA+ is compared with MOGA-Net [18] for two reasons. This algorithm has been used for two
reasons: MOGA-Net is a multi-objective algorithm developed by Clara Pizzuti which is often used in the
context of multi-objective community detection, and MOGA-Net adapts the well-known Non-dominated
Sorting Genetic Algorithm (NSGA-II) proposed by Deb et al. [43] to the problem of community detection.
The genetic representation of MOGA-Net is based on the locus-based adjacency representation [44].
The initialization process is based on random generation of individuals but taking into account the
effective connections of the nodes in the network. MOGA-Net uses a standard uniform crossover operator,
while the mutation operator is implemented in order to guarantee that each node is linked only to one of
its neighbours in the mutated child. The operation of MOGA-Net consists of creating a new population
initialized at random and repaired to produce safe individuals. After that, the algorithm evaluates the
individuals through the objective functions and then applies NSGA-II to each one. NSGA-II assigns a
rank according to Pareto dominance and sorts the individuals. Then, a new population is generated by
applying the genetic operators (uniform crossover and mutation). Finally, once the termination criterion
is achieved, the set of non-dominated solutions obtained is returned as an output of the algorithm. It is
worth noting that it was necessary to implement a new version of MOGA-Net that considers the objectives
of modularity, imbalance, and conductance since the original MOGA-Net implementation maximizes the
intra-connections inside each community and minimizes interconnections between different communities.

5.2. Test Problems

To conduct performance analysis of the different algorithms herein presented, networks representing
five national-scale power grids proposed in [45] are utilized. Four graphs correspond to European areas:
Italy, including Sardinia and Sicily; Germany, the continental territory of France; and the Iberian peninsula,
including the Balearic islands. The fifth network is the Texas power grid. Table 1 describes some graph
characteristics of these five networks. Some previous studies have shown that community detection in
national-scale high-voltage transmission networks provides topological information about the physical
layout of these grids [45].
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Table 1. Description of the graphs used to model the five power grids.

Feature Power Grid Italy Germany France Iberian Peninsula Texas

Nodes 352 438 904 1104 2007

Edges 462 662 1163 1416 2607

Average degree 2.63 3.03 2.57 2.57 2.60

Network diameter 39 21 28 40 39

5.3. Parameter Settings

Table 2 shows the parameters settings used by MOGGA+. Some of these parameters, including
population size and the number of generations, are the same than those used in [6], which applied a
sensitivity analysis to determine accurate values for the population size and probabilities of applying
the evolutionary operators. In the present study, the probabilities of applying different variants of the
mutation, crossover, and selection operators are established within a range of values, such that each
mutation operator (M1, M2, and M3) and crossover operator (EX1 and EX2) has a certain probability of
being executed according to the results obtained in previous generations, that is, the probability of applying
an operator is increased if its use improves the quality of the solutions or is reduced if it deteriorates
these solutions. The population size and the number of generations (termination criterion) is the same
for MOGA-Net.

Table 2. MOGGA+ parameters.

Population size (Psize) 200
Generations (Gmax) 200
Mutation probability (initial/min/max)

M1 0.35/0.20/0.60
M2 0.35/0.20/0.60
M3 0.30/0.20/0.60

Crossover probability (initial/min/max )
EX1 0.50/0.20/0.80
EX2 0.50/0.20/0.80

Selection probability (minRatio/maxRatio) 0.15/0.35

5.4. Performance Metrics

As commented above, the aim of multi-objective optimization algorithms is to obtain the true
Pareto-optimal front or, alternatively, an approximation to it. However, an important issue here is the
intrinsic trade-off between the goals of proximity and diversity preservation [46], that is, the selection
mechanisms should select a diverse set of solutions close to the set of non–dominated solutions. A large
number of performance metrics have been proposed in the past [47]. Two widely used metrics have been
used in our study: the hyper-volume and the Schott’s spacing metrics. The Hyper-volume (HV) metric is the
only unary indicator that is Pareto-compliant [48] and often used as a measure of convergence towards the
Pareto front as well as the maximum spread of the solutions obtained. The Schott’s Spacing (SS) metric [49]
measures the spread of solutions in a non-dominated set according to the relative distance between the
nearest solutions in the non-dominated set.

5.5. Results and Discussion

To conduct the performance analysis, a total of 30 independent runs have been performed for each
algorithm on the five networks representing the power grids of Italy, France, Germany, the Iberian
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peninsula, and Texas. The accuracy of the algorithms has been evaluated according to the HV and SS
metrics described above. Table 3 shows the results obtained by both algorithms in these five networks
when optimizing modularity and imbalance, while Table 4 shows the same comparison when optimizing
conductance and imbalance. As can be observed, in both multi-objective formulations, MOGGA+ clearly
outperforms the results obtained by MOGA-Net in all these networks in terms of the HV metric, that is,
the former provides a better approximation to the (unknown) true Pareto-optimal front than the latter.

Table 3. Results obtained by Multi-objective Genetic Algorithm for Networks (MOGA-Net) and MOGGA+
considering the modularity and imbalance objectives.

Method
Hyper-Volume Schott’s Spacing

Best Mean Best Mean

Italy MOGA-Net 1.683 1.644 0.024 0.046
MOGGA+ 2.186 2.168 0.076 0.096

Germany MOGA-Net 1.667 1.594 0.022 0.061
MOGGA+ 2.166 2.156 0.060 0.093

France MOGA-Net 1.894 1.779 0.016 0.030
MOGGA+ 2.929 2.919 0.077 0.165

Iberian
Peninsula

MOGA-Net 1.533 1.426 0.124 0.010
MOGGA+ 2.578 2.546 0.168 0.018

Texas MOGA-Net 1.763 1.605 0.012 0.021
MOGGA+ 3.939 3.926 0.159 0.194

Table 4. Results obtained by MOGA-Net and MOGGA+ considering the conductance and imbalance objectives.

Method
Hyper-Volume Schott’s Spacing

Best Mean Best Mean

Italy MOGA-Net 5936.804 5723.398 0.120 0.254
MOGGA+ 6160.020 6160.020 66.202 66.202

Germany MOGA-Net 2680.895 2616.242 0.096 0.254
MOGGA+ 2831.827 2831.735 3.891 3.891

France MOGA-Net 29984.032 28639.357 0.155 0.328
MOGGA+ 35615.731 35614.983 0.00 193.953

Iberian
Peninsula

MOGA-Net 43316.548 41260.761 0.154 0.421
MOGGA+ 53646.681 53646.653 6.584 7.992

Texas MOGA-Net 12556.285 11639.416 0.262 0.653
MOGGA+ 19685.936 19685.928 0.216 34.303

Analysis of the results in terms of the SS metric indicates, however, that MOGA-Net outperforms
MOGGA+. These results are due to the characteristics of spacing metrics. In particular, some previous
studies have highlighted that, if the solutions of the non-dominated set are clustered in small groups,
the distance between the groups is not considered since only the shortest distances are computed [50].
Our results denote that MOGGA+ obtains a better approximation to the true Pareto-optimal front but
that these solutions are relatively dispersed in the solution space, while MOGA-Net often obtains a set
of non-dominated solutions distant from the Pareto-optimal front but more concentrated so that the
spacing between solutions is smaller, thus obtaining a better result in the SS metric. Figure 3 shows the
non-dominated fronts obtained by MOGA-Net and MOGGA+ in the Italian network when optimizing
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both formulations. It is important to remark that the non-dominated fronts shown in both figures are
concave because minimization of the conductance and imbalance objectives has been implemented as the
maximization of the inverse values of CON (Equation (2)) and IMB (Equation (3)). These figures show that
MOGGA obtains fronts of non-dominated solutions that are closer to the (unknown) Pareto-optimal front
but that there are several solutions which are far from the others, which is why the SS metric obtained by
MOGA-Net is better.

Finally, Figures 4 and 5 display some examples of communities detected by MOGGA+ in the five
networks representing power grids considering different levels of resolution (2 and 10 communities).
These figures are useful to understand how the implemented algorithms could provide high-quality
solutions considering different objectives, such that the decision-maker could later decide which one is
the best option according to the particular characteristics of the study at hand. In this case, it is observed
that solutions with only two communities return balanced solutions while augmenting the number of
communities often increases the imbalance.

(a)
Figure 3. Cont.
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(b)
Figure 3. Comparison between MOGA-Net and MOGGA+ in the Italian network considering (a) modularity
and imbalance, and (b) conductance and imbalance.

(a) Italy (2 communities) (b) Italy (10 communities)
Figure 4. Cont.
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(c) Germany (2 communities) (d) Germany (10 communities)

(e) France (2 communities) (f) France (10 communities)
Figure 4. Communities detected in the networks representing the power grids of Italy, Germany, and
France considering 2 and 10 communities.

(a) Iberian p. (2 communities) (b) Iberian p. (10 communities)
Figure 5. Cont.



Mathematics 2020, 8, 2048 15 of 18

(c) Texas (2 communities) (d) Texas (10 communities)
Figure 5. Communities detected in the networks representing the power grids of the Iberian Peninsula and
Texas considering 2 and 10 communities.

6. Conclusions

Community detection is a relevant area of investigation in the field of complex networks. An overview
of the state-of-the-art in this field shows that most published papers aim to maximize the modularity
value. However, considering modularity as a lone objective can involve resolution limit and imbalance
inconveniences. This paper is the first to propose the use of Pareto-based MOEAs for solving two
different multi-objective formulations: (a) maximization of modularity and minimization of imbalance,
and (b) maximization of conductance and minimization of imbalance. More specifically, a new MOEA that
includes effective initialization methods and search operators to obtain high-quality non-dominated sets is
presented. The empirical study compares MOGGA+ with MOGA-Net for solving these multi-objective
formulations in graphs having hundreds of vertices and edges that represent the topological structure of
real power systems. The numerical and graphical results show the high performance of these Pareto-based
MOEAs for solving both formulations. This paper opens a new line of research in the detection of
community structures considering different objectives simultaneously. Moreover, the results obtained in
a set of graphs representing high-voltage transmission networks can be used to obtain information on
the physical layout of these grids. As future work, these approaches will be also compared with other
methods different from genetic algorithms.
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