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Abstract: With the growing demand for clean and economically feasible renewable energy,
solar photovoltaic (PV) system usage has increased. Among many factors, the tilt and azimuth
angles are of great importance and influence in determining the photovoltaic panel’s efficiency to
generate electricity. Although much research was conducted related to solar PV panels’ performance,
this work critically determined the tilt and azimuth angles for PV panels in all countries worldwide.
The optimum tilt and azimuth angles are estimated worldwide by the photovoltaic geographic
information system (PVGIS). Also, annual and average daily solar irradiation incident on the tilted
and oriented plate optimally (AR1 and DR1) are calculated. Besides, annual and average daily
solar irradiation incident on plate tilt optimally and oriented because of the south in the northern
hemisphere and because of the north in the southern hemisphere (AR2 and DR2) are estimated.
PVGIS is also used to calculate the annual and average daily solar irradiation incident on the horizontal
plate (AR3 and DR3). The data collected from PVGIS are used to develop an efficient and accurate
artificial neural network model based on feed-forward neural network approach. This model is an
essential subpart that can be used in an embedded system or an online system for further PV system
analysis and optimization. The developed neural model reflected very high accuracy in predicting
the PV panels’ optimal tilt and azimuth angles worldwide. The benefit of tilting is generally increased
by increasing the latitude. As the latitude increases, the tilt factor (F) increases because of the increase
in the optimum tilt angle by increasing the latitude. The optimal orientation is due to the north in the
southern hemisphere and due to the south in the northern hemisphere for most cities worldwide.
In sum, it can be concluded that the optimum tilt angle is equal to or greater than the latitude until
the latitude 30◦. The optimum tilt angle becomes less than the latitude, and the difference is increased
until it reaches more than 20◦. Hence in this study the aim is to develop a simple neural network
model which can accurately predict the annual radiation and optimum tilt and azimuth angle in any
region of the world and can be easily implemented in a low-cost microcontroller.

Keywords: optimal tilt angle; PV system; solar photovoltaic; solar irradiation; Levenberg Marquardt
algorithm; feed-forward neural network
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1. Introduction

Solar energy is considered as an original and unlimited source of energy and it also works to
enhance energy security and sustainability, and this in turn leads to reducing pollution; also, to keep
the prices of fossil fuels lower than others. It also reduces the cost of mitigating climate change [1,2].
Thus, according to IRENE [3], the production of solar photovoltaic (PV) energy is increasing annually.
For example, the existing solar PV energy production increased more than 27 times from the production
ten years ago; in 2009, it was less than 23 gigawatts. The solar PV installation capacity reached
627 gigawatts in 2019 compared to 512 in 2018 [3].

Because of rapid technological progress and reduce costs, solar PV will have an essential role in
reaching the sustainable development goals (SDGs) by 2030 [4], increase the share of renewable energy
in the universal electricity sector, in addition to the provision of electricity for remote areas [5–9].

The amount of solar energy produced by a solar PV panel can be determined based on the local
insolation. However, it is affected by the solar PV panels’ tilt and orientation angles [10–13]. Thus,
an appropriate tilt and orientation angle must be applied to achieve the maximum produced energy
for a specific location [14–17]. Although one can use a solar tracking system that follows the sun to
receive the maximum amount of daily energy, on the other hand, solar tracking systems are expensive
and additional energy is needed for its operation [2].

Thus, it is commonly convenient to fix the solar PV on an optimum orientation and tilt angle [18–20].
Therefore, solar PV panels are recommended to be placed at the optimum tilt and orientation angle to
obtain the yearly maximum energy production [10,11].

Many authors have attempted various analytical, simulations, and experimental work to obtain
the optimum angles [21,22]. A general approximate rule for optimizing angles is that a given location’s
tilt angle is approximately equal to its latitude. The orientation angle should be south for Northern
Hemisphere and north for Southern Hemisphere [23].

The present study used data from the Photovoltaic Geographical Information System (PVGIS),
2019 [24] for estimating optimum angles. The PVGIS gives solar irradiation on a horizontal surface
and a surface tilted from horizontal or oriented because of the south. Moreover, the PVGIS provides
an optimum tilt and azimuth angle that give the maximum yearly solar irradiation. The PVGIS is
employing irradiation data based on satellite images. Based on satellite images, all databases provide
hourly solar irradiation estimates. This means that PVGIS can be employed for any place, no matter
how far from particular meteorological stations.

This study aims to find an artificial neural network model that can calculate an optimum tilt and
azimuth angle in any world region. This model can be used inside an embedded system or as an online
service. For an artificial neural network to be constructed and trained, it is required to obtain data
from many locations worldwide.

The used data are obtained by PVGIS. First, the optimum tilt angles that give the maximum yearly
solar irradiation for surfaces directed because of the south in the northern hemisphere and north in the
southern hemisphere are calculated. Second, the optimum azimuth angles accompanying the optimum
tilt angle are also calculated. Third, the annual and average daily irradiation in different regions all
over the world is calculated for surfaces tilted with optimum tilt angles and directed because of the
south in the northern hemisphere and because of north in the southern hemisphere (AR2 and DR2) and
surfaces tilted with optimum tilt angle and oriented with optimum azimuth angles (AR1 and DR1).
Fourth, the annual and average daily irradiations for horizontal surfaces are calculated (AR3 and DR3).
Lastly, the tilt fact (F), which can be defined as the ratio of the irradiation collected by a tilted surface to
the irradiation collected by a horizontal surface, is calculated.

Although one can use mathematical or statistical modules to calculate that based on some rules or
conditions, these approaches tend to be very difficult and inaccurate when such conditions are hard
to predict, has a non-linear form, or with a pattern that is hard to find [25]. Adding to that, for their
hardware implementation they require expensive microcontrollers.
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The best output energy of a PV panel depends mainly on the maximum vertical amount of solar
radiation that hits the PV panel surface. This maximum vertical solar irradiation changes according to
the tilt and azimuth angles. Artificial intelligence can help increase this amount of solar irradiation by
finding optimum tilt and azimuth angles, which is challenging to model accurately using mathematical
or statistical modules, even for a single location [26].

Neural networks are characterized by being capable to learn by themselves and produce an
output that is not limited to the input provided to them. Moreover, even if a neuron is not responding
or a piece of information is missing, the network can detect the fault and still produce the output.
Hence in this study, the aim is to develop a simple neural network model that can accurately predict
the annual irradiation and optimum tilt and azimuth angle in any region of the world and can be easily
implemented in a low-cost microcontroller.

2. Literature Review

Obtaining the photovoltaic system’s optimum tilt angle is a significant issue because it helps to
effectively transform the amount of sunlight received into energy [27]. Numerous studies have used
various research approaches to find a tilt angle that maximizes the amount of irradiation received
by the solar panel [27]. Such models include Hay’s model, PVsyst simulation, PV-Simulation model,
Nijegorodov equations, Harmony search meta-heuristic algorithm, PVWatts program, PVGIS program,
particle swarm optimization (PSO) estimator, analytical method, MATLAB software, Oracle Crystal
Ball software, and Gradient Boosting Algorithm. Table 1 summarizes these methods.

Kim Gi et al. [11] used a machine learning approach to find the optimum tilt angle of a PV panel
to maximize the energy obtained from the PV panel. Although the analysis was conducted in a single
area, and all PV panels shared similar geometric attributes, the optimal angles varied to certain degrees.

Artificial intelligence techniques can be employed in many problems. Their importance is realized
in the ability to learning and adapt to new variations efficiently. This ability makes these techniques a
promising solution in finding optimum tilt and azimuth angles for PV panels worldwide with high
accuracy. While some attempts to explore the benefits these techniques offer [26,27], there is insufficient
research in this field for such techniques.

This research provides an estimate of optimum tilt angles for (PV) panels for all
countries worldwide.
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Table 1. Shows the optimum tilt angles using different methods for several countries worldwide from 1988 to 2020.

Country or Region City Latitude (ϕ)
(◦) Optimum Tilt Angle (β) (◦) Annually Reference

Jordan Mu’tah 31.7 28.5 A mathematical model is developed [28].

Egypt Assiut 27.2 27 Moncos (1994) developed a mathematical model [29].

Spain Valencia 28.5 31
The Hay model was used to assess the hourly variance of the

optimal tilt angle for a solar collector facing south and to
measure the annual average of this angle [30].

Darussalam Brunei 4.5 3.3 A mathematical model was used [31].

China

Beijing 39.9 39.2

A mathematical model is developed [32].

Kunming 24.9 27.9
Shanghai 31.2 28

Guangzhou 23.1 22
Chengdu 30.6 23

Xi’an 34.3 30.1
Yinchuang 38.5 38.3
Shenyang 41.8 40.3

Turkey Izmir 38.4 June: 0
December: 61 A mathematical model is developed [33].

Syria Damascus 33.5 30.56 A mathematical model is used [34].

Iran

Zahedan 29.5 26.70

A more precise equation than the Nijegorodov one is formed
to measure the monthly optimum tilt angle using a new

correlation for each month [35].

Birjand 32.9 29.93
Shraz 52.9 25.88
Tabas 33.6 30.16
Yazd 31.9 29.05

Kerman 36.7 23.95

Mediterranean Region

Gaza Strip (Palestine) 31.5 32.1

As a function of the tilt angle, a mathematical model is used to
measure the solar radiation on a tilted surface [36].

Damascus (Syria) 33.5 33.7
Beirut (Lebanon) 33.9 33.8
Tunis (Tunisia) 33.9 35.2
Seville (Spain) 37.4 36.6

Milan (Italy) 45.5
41.8

Summer: β = ϕ − 15◦

Winter: β = ϕ + 15◦

Jordan Northern Jordan 32.5◦
30

Summer: 10
Winter: 50

Based on the results of the PVsyst simulation for Northern
Jordan [37].
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Table 1. Cont.

Austria and Germany

Germany 51.2 30–45

A PV-simulation model is provided for the measurement of
angle-dependent PV performance.

For Germany and Austria, a linear power and simplified
dispatch model was calibrated and used [38].

Austria 47.5 30–45

A PV-simulation model is provided for the measurement of
angle-dependent PV performance.

For Germany and Austria, a linear power and simplified
dispatch model was calibrated and used [38].

Iran

Tehran 35.7 35.7 For measuring solar radiation on a tilted surface, a
mathematical model is suggested.

The maximum angle of incidence is detected using the
Gravitational Search Algorithm (GSA) [39].

Isfahan 36.5 32

Shiraz 29.6 29.4

Mashhad 36.3 36.2

Tabriz 38.1 38

Kosovo Pristina 42.7

34.7
Summer: 8.9
Spring: 25.7

Autumn: 50.9
Winter: 62.1

Based on isotropic sky analysis models, namely Liu and
Jordan models, the incident plane’s solar radiation is

calculated [40].

China

Sanya 11.5 −18 (June) to 49.9 (Dec.)

The algorithm Harmony (meta-heuristic) determines the
azimuth angle and optimum tilt [41]. The findings are built on

the ergodic mechanism [41].

Shanghai 31.2 −7.6 (June) to 61.4 (Dec.)
Zhengzhou 34.7 5.5 (June) to 64.3 (Dec.)

Harbin 45.8 12.6 (June) to 73.7 (Dec.)
Mohe 52.9 16.6 (June) to 80.0 (Dec.)
Lhasa 29.7 −8.9 (June) to 59.9 (Dec.)

All
Countries Worldwide

Canada (Montreal) 45.5 37

This study uses the PVWatts program to calculate the optimal
tilt angles for all countries worldwide [42].

Bordeaux (France) 44.8 33
Cologne (Germany) 50.9 32

Hong Kong 22.4 20
Rajko (India) 42.1 24

Beek (Netherlands) 50.9 34
Castellón (Spain)ón 39.1 36

Austin, TX (United States) 30.3 28
London (United Kingdom) 51.5 34

Jerusalem (Palestine) 31.8 28
Casablanca (Morocco) 33.6 28

Beirut (Lebanon) 33.9 28
Kuwait City (Kuwait) 29.3 26

Amman (Jordan) 31.9 28
Tehran (Iran) 35.68 31

Aswan (Egypt) 24.1 24
Abu Dhabi (United Arab

Emirates) 24.5 25
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Table 1. Cont.

Cyprus Famagusta 35.1
28 to 30

Summer: 20
Winter: 50

PV simulation software will be used to determine the average
solar radiation on different tilt. From this, to assess an optimal

tilt angle, the peak annual average solar radiation shall be
obtained on various tilted surfaces [43].

Palestine
West Bank
Gaza Strip 31.9 29

1. For determining the optimum tilt angle, a mathematical
model is used [20].

2. PVWatts 3. PVGIS

India

Analytical PSO Estimator 1. To find an optimal tilt angle, a model-driven optimization
focus has been proposed, such as a particle swarm

optimization (PSO) estimator [44]
2. Analytical method

Minicoy 8.3 11.00 10.51
Ahmadabad 23.0 26.00 25.83
New Delhi 28.6 27.00 26.92

Ghana Kumasi 6.7 10
System simulation RETScreen 4.

For all the three systems’ orientation, the electrical energy
output produced by the solar module was calculated [45].

Turkey

Antalya 36.9 Winter: β = ϕ + 17◦

Spring: β = ϕ – 18◦

Summer: β = ϕ – 34◦

Autumn: β = ϕ + 7◦

Annual: β = ϕ – 7◦

For the Northern Hemisphere and sample provinces, various
mathematical models have been developed. PVGIS, NASA,

and other approaches [46].
Kayseri 38.7

Trabzon 41.0

Iran

Bandar Abbas 27.13 18.84
The optimal tilt angle is calculated using a distributed

software developed on MATLAB. Based on particle swarm
optimization (PSO) approach [47].

Yazd 31.54 21.47
Isfahan 32.57 22.04
Tehran 35.41 23.59

Urmia 37.32 23.27
β = 0.4663ϕ + 6.5489◦

Indonesia Bukit Jimbaran Bali 5.4
ϕ from 12–18 in the azimuth of 0.

(Apr. to Sep.): 32
(Oct. to Mar.): 24

Simulations found that for fixed solar panels in a year. Data of
solar radiation and the simulation of PV system are from

Metronome 7.2 [48].

USA Eaton County, Michigan 39.7 42.7 Oracle Crystal Ball program using Microsoft Excel (OptQuest
Solver Engine) was used to calculate optimal tilt angles [49].

South Korea Daegu City 35.9 1 to 29 Optimization model using machine learning algorithms:
Gradient Boosting Algorithm [27].

Norway Trondheim 63.4 52
A proposed approach to use real historical solar spectra to test

a panel’s tilt at a given location rigorously [50].
France Paris 48.9 43
Egypt Cairo 30.0 29
Kenya Nairobi −1.3 3
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3. Methodology

In this work, an artificial neural network is used to find the optimum tilt and azimuth angles
that yield maximum energy from PV panels in any worldwide location. To effectively build
such neural networks, training data is sampled from many locations worldwide using PVGIS
(Photovoltaic Geographical Information System, 2019) [24]. PVGIS provides solar irradiation on
a horizontal surface and a surface tilted from horizontal or oriented because of the south. Moreover,
the PVGIS provides an optimum tilt and azimuth angle that gives the maximum yearly solar irradiation.
The PVGIS employs irradiation data based on satellite images. Satellite images are used to collect solar
irradiation data. The different satellites available in PVGIS are:

• PVGIS-SARAH: CM SAF [51] and the PVGIS [24] team have calculated these data covering Europe,
Africa, most of Asia, and parts of South America.

• PVGIS-NSRDB: These data have been supplied by the National Renewable Energy Laboratory
(NREL) [52] and is part of the National Solar Irradiation Database.

• PVGIS-CMSAF: CM SAF collaboration [51] have calculated these data covering Europe, Africa,
and parts of South America.

• PVGIS uses two more satellites to cover high-latitude areas not covered by previous satellites.
• PVGIS-ERA5: This new re-analysis product is obtained from ECMWF [53]. It covers all over the

world on an hourly basis and is used by PVGIS for Europe.
• PVGIS-COSMO: COSMO-REA6 is a regional re-analysis product, covering Europe at hourly

time resolution.

Based on the satellite images, all databases provide hourly solar irradiation estimates. This means
that PVGIS can be employed for any place, no matter how far from particular meteorological stations.

The PVGIS is used to obtain data for training and validating the developed artificial neural
network model. Figure 1 shows the locations around the world used to gather training data.
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Figure 1. The places where the training data are collected.

In Figure 1, the locations are highlighted by colored circles. The circles’ color is separated to give
the figure more detail, and they do not mean anything else.

The development of the artificial neural network model is carried out using feed-forward neural
networks (FFNN). The development process is divided into the training phase and the testing phase.
Figure 2 shows the methodology used to develop the FFNN model.
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The data collected were normalized and divided into two sets after the correct validation using the
PVGIS method. One was used at the development stage of the neural model, representing 90% of the
data collected, and one was used at the neural model test stage, representing around 10%. The testing
phase aims to evaluate the neural network model developed in the training phase. The 90% of the
gathered data used in the training phase was further divided into a neural network model training set,
about 80% of the gathered data, and a neural network model validating set, which is about 10% of the
gathered data. After the training phase, a multi-level FFNN model was developed. The developed
multi-level FFNN model is discussed in the subsequent section.

Multi-Level Neural Network Model

Feed-forward neural network (FFNN) is a supervised learning algorithm that learns, by training
on a dataset, a function f (.) : Rn

→ Ro . Where o is the number of dimensions for output,
and n is the number of dimensions for inputs. Given a set of features X = {x1, x2, . . . , xn} and
targets Y =

{
y1, y2, . . . , yo

}
, it can learn a non-linear function approximator for either regression or

classification problems. In this work, FFNN is used as a regression model, and this differs from logistic
regression, as there are one or more non-linear layers, called the hidden layer, which lies between the
input and output layers. Figure 3 shows one hidden layer FFNN.

The leftmost layer, known as the input layer, consists of neurons expressing the input patterns,

as shown in Figure 3. With a weighted linear summation
n∑

i=1
xiwi j, each neuron in the hidden layer

transforms the previous layer’s values, which are then evaluated using activation function [54].
Where wij is the weight relation between the ith neuron in the input layer and the jth neuron in the
hidden layer, xi is the value of ith neuron in the input layer. The values are propagated to the neurons
of the output layer to generate the output patterns.

Figure 4 shows the topology of the proposed model. The proposed network model predicts the
PV’s optimum tilt and azimuth angle of annual irradiation in various regions worldwide.
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The proposed model is composed of two phases, as shown in Figure 4. The model consists of three
layers in the first stage: Input, Hidden, and Output. Two nodes form the input layer: longitude (deg.)
and latitude (deg.). Three hundred fifty nodes compose the hidden layer, each of which uses the
activation function of the hyperbolic tangent sigmoid. The output layer consists of two nodes that
evaluate the optimal PV’s tilt and azimuth angles.
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The second stage’s input layer is composed of four nodes, two of them are the outputs of the first
stage (tilt and azimuth angles), and the others are the Latitude and the Longitude. The hidden layer is
like the first stage; it has 350 nodes with tanh activation function. At the same time, the output layer has
three nodes, which are the annual irradiation under (1) optimum tilt angle and orientation (2) optimum
tilt angle (azimuth angle = 0 for the Northern hemisphere and 180 for Southern) (3) horizontal surface.
The output nodes in the two stages use an activation function of linear type [49].

Min-Max normalization method is used on all data to improve the qualified network’s
efficiency [55]. The data are then used to trained the network to understand the relationships
between the input patterns.

IN = (I − Imin)

[
Nmax −Nmin
Imax − Imin

]
+ Nmin (1)

O = (ON −Nmin)

[
Omax −Omin
Nmax −Nmin

]
+ Omin (2)

where Nmin and Nmax are the Min-Max normalize range, Omax and Omin are the maximum and minima
values for the O output vector, ON and IN are the normalized training output and input values, Imax and
Imin are the maximum and minima values for the input vector I, and I and O are the non-normalized
training input and output values. For this work, Nmin = −1 and Nmax = 1 [56].

Different types of FFNN’s trained algorithms were developed [55,57,58]. These include the
Gradient descent with momentum approach, the Levenberg-Marquardt (LM) backpropagation,
the Gradient descent backpropagation, and the adaptive learning rate resilient scaled conjugate
gradient backpropagation. The LM training algorithm has been chosen for this work for the training of
the proposed network model. Since the less responsive approach to local converges, the LM teaching
method offers a more robust learning training approach. It also offers a healthy trade-off between the
pace of preparation and stability [55].

Figure 5 displays the pseudocode for the training algorithm. The goal is to minimize as much as
possible, the mean square error (MSE) by tuning the parameter (µ) as follows:

• µ × 0.1 when the MSE is equal or less to the previous one.
• µ × 10 when the current epoch MSE exceeds the previous value.
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4. Results and Discussion

4.1. Results Obtained by PVGIS

In the first part of the paper, PVGIS was used to obtain the results and tabulated in Table A1
(Appendix A). The optimum tilt angles, optimum azimuth angle, AR1, DR1, AR2, DR2, AR3, DR3,
and F, are calculated for the different regions worldwide.

It can be concluded that the tilt angle is equal to or greater than the latitude until the latitude of
30◦, then the tilt angle becomes less than the latitude until the difference between them reaches more
than 20◦. The relation between them is not linear for all the latitudes because the linear relationship
does not take into account the air pollution and cloud cover. As the cloud cover increases, the optimum
tilt angle decreases because the cloud cover scatters the solar irradiation. The solar PV is closer to the
horizontal as it receives more of the diffuse solar irradiation that is scattered by the cloud cover. Besides,
the direct solar irradiation, which mainly depends on the tilt angle, is mostly blocked by clouds, so the
diffuse irradiation becomes more critical in the overcast latitudes. The azimuth or orientation of the
solar PV is measured from the south, meaning that if it is directed to the south, then the azimuth angle
is 0◦, while if it is directed to the north, then the azimuth angle is 180◦. For the east, the azimuth is
−90 degrees, and for the west, it is 90 degrees. It can be concluded that the optimum azimuth angle for
most cities in the northern hemisphere and southern hemisphere is close to 0◦ and 180◦, respectively.
Even cities with an optimum azimuth angle further from 0◦ and 180◦ gain a little extra annual solar
irradiation (AR1-AR2). This means that the solar PV can be directed toward the south in the northern
hemisphere and toward the north in the southern hemisphere.
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Table 1 shows that the annual solar irradiation increases as it moves away from the equator until
it reaches the maximum point (25–30◦) for latitude and then begins to decrease. It can also be noticed
that the tilt factor (F) increases with increasing latitude because of the increase in the optimum tilt
angle with latitude.

The results obtained from PVGIS are compared with many previous studies and the results are
very close [59,60].

4.2. Evaluation of the Proposed Nural Network Model

Several experiments have been performed to determine the best composition of the neural network.
The decisions were made based on two main features: the activation function for each layer and the
neurons’ number in the hidden layer. Table 2 shows the attributes of the selected configurations.

Table 2. The parameters of the proposed network models’ structures.

Stage 1 Structure
(Angle Prediction)

Stage 2 Structure
(Annual Irradiation Prediction)

Attribute Choice Attribute Choice

Number of inputs 2 Number of inputs 4
Number of outputs 2 Number of outputs 3

The hidden layer
activation function Hyperbolic Tangent The hidden layer

activation function Hyperbolic Tangent

Output layer activation
function

Linear
(Regression)

Output layer activation
function

Linear
(Regression)

Normalization interval
of the dataset [−1, 1] Normalization interval

of the dataset [−1, 1]

Training approach Levenberg-Marquardt Training approach Levenberg-Marquardt
Error Mean Squared Error Error Mean Squared Error

Another important feature that has been studied to complete the neural network structures is
the number of nodes in each hidden layer. Table 3 compares the mean square error (MSE) results in
various hidden layer numbers for both network stages.

Table 3. The hidden layers number of neurons vs. best-obtained results.

Stage 1 Structure
(Angle Prediction)

Stage 2 Structure
(Annual Irradiation Prediction)

Nodes MSE Train MSE
Validation MSE Test Number

of Nodes MSE Train MSE
Validation MSE Test

100 12.5169 8.3296 17.861 100 50.6192 150.9851 212.771
150 7.8641 2.0191 11.218 150 13.8712 33.8164 41.831
200 4.0127 1.1729 6.071 200 2.1176 3.8155 7.981
250 3.810 × 10−1 4.7263 5.291 250 6.1839 × 10−1 1.0069 4.441
300 6.211 × 10−2 2.1058 × 10−1 8.16 × 10−1 300 2.0174 × 10−2 5.9816 × 10−2 7.97 × 10−1

350 2.527 × 10−2 1.1688 × 10−3 4.0 × 10−2 350 7.3972 × 10−3 1.5783 × 10−4 6.26 × 10−3

400 8.875 × 10−2 4.6688 × 10−2 1.94 × 10−1 400 2.9261 × 10−3 7.2705 × 10−3 7.91 × 10−2

300 × 300 2.1197 × 10−2 8.9912 × 10−1 1.368 300 × 300 4.2281 × 10−1 2.8861 × 10−1 1.891
350 × 350 7.9712 × 10−1 9.1862 × 10−1 2.261 350 × 350 8.6691 × 10−2 7.6331 × 10−1 3.225

The best-obtained configuration for models’ stages 1 and 2 is 350 neurons the hidden layer, seen in
Table 3. MSE for both first stage preparation, checking, and validation is 0.0253, 0.041, and 0.00117,
respectively, and for the second stage is 0.0074, 0.0063, and 0.00016, respectively. However, the results
did not get any higher, while the sophistication grew as we went to the deep neural network.

Once the network configuration was chosen and before the simulation started, the dataset of
573 cities was split into three sections: training (459 cases), validation (57 cases), and testing (57 cases)
(57 cases). The dataset has been chosen in a way that covers the maximum possible area, according to
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the map shown in Figure 1. Using the early stop technique and the validation set [61], the overfitting
was reduced. Figure 6 demonstrates the consequences of both systems during training and validation.
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As shown Figure 6, the linear regression for the training and validation of both models exactly
matches the data sets, which means that the decision coefficient (R2) is very similar to 1.

The testing dataset portion was used to assess the model, and then measure the output after the
training stage is finished.

Table A2 (Appendix A) shows a comparison between the calculated model using PVGIS and
the proposed model. The comparison has been made regarding 40 cities (30 in-sample and ten
out-of-sample). As shown in Table A2 (Appendix A), the residual average difference (between the
calculated and proposed model) for the tilt angle, azimuth angle, and the three annual irradiations
(see Figure 4) is 0.0234, −0.0224, 0.136, 1.41, 0.264, respectively. That comparison demonstrates the
effectiveness of the proposed model.
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5. Conclusions

The solar energy incident on a PV depends of the tilt angle and orientation. Therefore,
they considered a vital factor to obtain maximum solar radiation. It can be concluded that in
most cases in the northern hemisphere, solar PV must be directed toward the south, this means that
the azimuth angle is equal to zero. Whereas for the southern hemisphere, the solar panels must be
directed toward the north, which means that the azimuth angle is equal to 180. So AR1 and AR2 are
almost the same for most cities. In general, as the latitude of a specific city increases, it benefits from
tilting increases, So the tilt factor increases with increasing latitude.

Neural networks are distinguished by being able to learn and generate an output of their own
that is not limited to the feedback they receive. In addition, the network will detect the fault and still
generate the output, even though a neuron is not responding, or a piece of information is missing.
Therefore, the purpose of this research is to create a simple neural network model that can reliably
predict the annual radiation and optimum tilt and azimuth angle in any area of the world and can be
easily implemented in a low-cost microcontroller.

It can be concluded that the tilt angle is about or greater than the latitude until the latitude
of 30◦, then it becomes less than the latitude until the difference between them reaches more than 20◦.
The relation between them is not linear for all the latitudes.

Moreover, this study presents a multi-level world comprehensive neural network model for
annual irradiation and PV optimum azimuth and tilt angles. Several simulations were carried out with
different evaluation criteria to select the best network topology.

The proposed network topology is composed of two stages. The first stage is to predict the
PV optimum tilt and azimuth angle, and the second stage is to predict the AR1, AR2, and AR3.
The simulation result shows that the proposed module exhibits excellent performance with an average
training MSE of 0.01635. This proposed model can be used in an embedded system or an online system
for further PV system analysis and optimization.
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Abbreviations

AR1 Annual Irradiation (kWh/m2) at optimum tilt angle and orientation

AR2
Annual Irradiation (kWh/m2) at optimum tilt angle (azimuth angle = 0◦ for Northern
hemisphere and 180◦ for Southern)

AR3 Annual Irradiation (kWh/m2) at horizontal surface
CMSAF Climate Monitoring Satellite Application Facility
DR1 Daily Average Irradiation (kWh/m2/day) at optimum tilt angle and orientation

DR2
Daily Average Irradiation (kWh/m2/day) at optimum tilt angle (azimuth angle = 0◦ for
Northern hemisphere and 180◦ for Southern)

DR3 Daily Average Irradiation (kWh/m2/day) at horizontal surface
ECMWF European Centre for Medium-Range Weather Forecasts
F The tilt factor
MSE Mean Square Error
NREL National Solar Irradiation Database
PSO Particle Swarm Optimization
PV Photovoltaic
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PVGIS Photovoltaic Geographical Information System
SDGs Sustainable Development Goals
β Tilt angle (Degrees)
FFNN Feed-Forward Neural Networks
LM Levenberg-Marquardt
AR1 Annual Irradiation (kWh/m2) at optimum tilt angle and orientation

AR2
Annual Irradiation (kWh/m2) at optimum tilt angle (azimuth angle = 0 for Northern
hemisphere and 180 for Southern)

AR3 Annual Irradiation (kWh/m2) at horizontal surface
DR1 Daily Average Irradiation (kWh/m2/day) at optimum tilt angle and orientation

DR2
Daily Average Irradiation (kWh/m2/day) at optimum tilt angle (azimuth angle = 0 for
Northern hemisphere and 180 for Southern)

DR3 Daily Average Irradiation (kWh/m2/day) at horizontal surface.
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Appendix A

Table A1. Optimum tilt and azimuth angles for PV panels, AR1, AR2, AR3, DR1, DR2, and DR3 for all countries of the world.

Country City Latitude
(deg.)

Longitude
(deg.)

Optimum
Tilt Angle

(deg.)

Azimuth
Angle
(deg.)

AR1
(kWh/m2)

DR1
(kWh/m2)

AR2
(kWh/m2)

DR2
(kWh/m2)

AR3
(kWh/m2)

DR3
(kWh/m2)

F
(Tilt Factor)

Iceland Reykjavík 64.15 −21.94 49 0 1093.00 2.99 1093.00 2.99 839.15 2.30 1.30

Afghanistan Kandahar 31.63 65.74 30 −2 2418.44 6.63 2418.29 6.63 2166.78 5.94 1.12

Afghanistan Kabul 34.56 69.21 31 −8 2228.34 6.11 2226.44 6.10 1981.05 5.43 1.12

Albania Tirana 41.33 19.82 35 −2 1835.59 5.03 1835.37 5.03 1581.86 4.33 1.16

Albania Sarande 39.87 20.00 33 2 1939.22 5.31 1939.00 5.31 1694.53 4.64 1.14

Algeria Algiers 36.75 3.06 31 −4 2014.21 5.52 2013.71 5.52 1788.61 4.90 1.13

Andorra Andorra La Vella 42.51 1.52 35 (34) −18 1644.99 4.51 1627.00 4.46 1418.10 3.89 1.15

Angola Luanda −8.84 13.29 9 −179 1988.58 5.45 1988.57 5.45 1972.00 5.40 1.01

Antigua and Barbuda St. Johns 17.12 −61.84 19(18) −17 2164.31 5.93 2158.43 5.91 2080.39 5.70 1.04

Argentina Entre Rios −32.23 −58.69 30 −169 1896.28 5.20 1895.30 5.19 1721.98 4.72 1.10

Argentina Santa Fe −29.77 −60.51 28 −169 1917.10 5.25 1915.26 5.25 1760.64 4.82 1.09

Armenia Yerevan 40.19 44.52 33 −6 1826.76 5.00 1826.36 5.00 1611.18 4.41 1.13

Australia Perth −31.95 115.86 29 −176 2165.87 5.93 2165.50 5.93 1965.62 5.39 1.10

Australia Geraldton −28.78 114.61 28 −180 2301.10 6.30 2301.10 6.30 2092.13 5.73 1.10

Australia Karratha −20.73 116.84 23 −180 2490.05 6.82 2490.05 6.82 2343.49 6.42 1.06

Austria Vienna 48.21 16.37 38 0 1430.94 3.92 1430.94 3.92 1224.67 3.36 1.17

Austria Graz 47.07 15.44 39 −2 1503.00 4.12 1502.85 4.12 1270.51 3.48 1.18

Azerbaijan Baku 40.41 49.87 32 5 1663.83 4.56 1663.05 4.56 1495.81 4.10 1.11

Azerbaijan Lankaran 38.75 48.85 31 2 1678.76 4.60 1678.55 4.60 1514.72 4.15 1.11

Bahamas Nassau 25.05 −77.36 25 −5 2104.47 5.77 2104.42 5.77 1958.65 5.37 1.07

Bahrain Manama 26.22 50.59 26 −1 2404.04 6.59 2404.00 6.59 2230.98 6.11 1.08

Bahrain Riffa 26.13 50.54 26 −1 2416.54 6.62 2416.48 6.62 2245.62 6.15 1.08

Bangladesh Dhaka 23.81 90.41 28 4 1916.26 5.25 1915.32 5.25 1759.41 4.82 1.09

Bangladesh Chittagong 22.36 91.78 27 8 2036.81 5.58 2034.05 5.57 1872.39 5.13 1.09
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Barbados Bridgetown 13.11 −59.61 15 −27 2107.36 5.77 2098.29 5.75 2058.16 5.64 1.02

Belgium Brussels 50.85 4.35 39 0 1258.11 3.45 1258.11 3.45 1076.91 2.95 1.17

Belgium Saint Hubert 50.03 5.37 36 0 1198.90 3.28 1198.90 3.28 1049.61 2.88 1.14

Belize Belmopan 17.25 −88.76 17 7 1907.61 5.23 1906.68 5.22 1850.78 5.07 1.03

Belize Belize City 17.50 −88.20 18 4 2056.07 5.63 2055.63 5.63 1983.43 5.43 1.04

Benin Port Novo 6.50 2.63 11 27 1932.30 5.29 1927.88 5.28 1906.39 5.22 1.01

Bhutan Thimphu 27.47 89.63 31 −15 1913.66 5.24 1902.28 5.21 1704.45 4.67 1.12

Bolivia Sucre −19.04 −65.26 23 −180 2433.17 6.67 2433.17 6.67 2280.76 6.25 1.07

Bolivia La Paz −16.49 −68.12 21 −180 2285.57 6.26 2285.57 6.26 2165.62 5.93 1.06

Bosnia Herzegovina Sarajevo 43.86 18.41 34 −5 1431.11 3.92 1430.05 3.92 1258.74 3.45 1.14

Bosnia Herzegovina Banja Luka 44.77 17.19 35 −4 1458.17 3.99 1457.45 3.99 1274.61 3.49 1.14

Botswana Gaborone −24.63 25.92 29 −180 2352.15 6.44 2352.15 6.44 2135.01 5.85 1.10

Brazil Brasilia −15.83 −47.92 23 −180 2112.59 5.79 2112.59 5.79 1997.21 5.47 1.06

Brazil Rio De Janeiro −22.91 −43.17 24 −180 1872.95 5.13 1872.95 5.13 1755.27 4.81 1.07

Brazil Manaus −3.12 −60.02 7 −180 1780.18 4.88 1780.18 4.88 1772.99 4.86 1.00

Brunei Darussalam Bandar Seri
Begawan 4.90 114.94 5 47 1849.17 5.07 1845.30 5.06 1841.85 5.05 1.00

Bulgaria Sofia 42.70 23.32 35 −4 1605.33 4.40 1605.16 4.40 1404.10 3.85 1.14

Bulgaria Plovdiv 42.14 24.75 35 0 1701.22 4.66 1701.22 4.66 1479.08 4.05 1.15

Burkina Faso Ouagadougou 12.37 −1.52 16 0 2356.42 6.46 2356.42 6.46 2282.11 6.25 1.03

Burkina Faso Banfora 10.64 −4.76 15 1 2274.34 6.23 2274.07 6.23 2214.97 6.07 1.03

Burundi Gitega −3.43 29.92 7 −180 1903.71 5.22 1903.71 5.22 1893.34 5.19 1.01

Burundi Bujumbura −3.36 29.36 8 −180 1982.06 5.43 1982.06 5.43 1970.43 5.40 1.01

Cabo Verde Praia 15.00 −23.51 15 3 2263.18 6.20 2262.90 6.20 2205.96 6.04 1.03

Cambodia Phnom Penh 11.56 104.93 14 0 1932.87 5.30 1932.87 5.30 1893.75 5.19 1.02

Cameroon Yaounde 3.85 11.50 7 35 1882.09 5.16 1877.84 5.14 1867.71 5.12 1.01

Cameroon Douala 4.05 9.77 12 43 1784.62 4.89 1772.88 4.86 1762.26 4.83 1.01

Canada Ottawa 45.42 −75.70 37 0 1563.56 4.28 1563.56 4.28 1325.33 3.63 1.18

Canada Montreal 45.50 −73.57 37 5 1535.22 4.21 1533.93 4.20 1302.97 3.57 1.18



Energies 2020, 13, 6422 18 of 31

Table A1. Cont.

Canada Calgary 51.04 −114.07 43 −4 1592.94 4.36 1592.13 4.36 1268.46 3.48 1.26

Canada Vancouver 49.28 −123.12 38 6 1403.44 3.85 1401.30 3.84 1186.43 3.25 1.18

Central Afr. Republic Bangui 4.39 18.56 8 21 2037.03 5.58 2034.98 5.58 2021.71 5.54 1.01

Central Afr. Republic Carnot 4.94 15.88 10 25 2073.25 5.68 2069.33 5.67 2051.33 5.62 1.01

Chad N’Djamena 12.13 15.06 17 2 2402.55 6.58 2402.16 6.58 2323.50 6.37 1.03

Chile Arica −18.48 −70.31 18 −180 2274.32 6.23 2274.32 6.23 2193.16 6.01 1.04

China Guigang 23.11 109.60 19 17 1400.07 3.84 1396.45 3.83 1354.50 3.71 1.03

China Kashgar 39.47 75.99 36 2 2009.22 5.50 2008.93 5.50 1720.53 4.71 1.17

China Lhasa 29.65 91.14 35 −4 2305.73 6.32 2304.28 6.31 1992.22 5.46 1.16

China Kunming 25.02 102.68 28 4 1745.82 4.78 1745.04 4.78 1605.72 4.40 1.09

Colombia Bogota 4.71 −74.07 6 0 1684.99 4.62 1684.99 4.62 1678.45 4.60 1.00

Colombia Medellin 6.254 −75.576 5 −8 1896.07 5.19 1895.95 5.19 1890.18 5.18 1.00

Comoros Moroni −11.72 43.25 13 −140 1892.52 5.18 1877.10 5.14 1846.07 5.06 1.02

Republic of the
Congo Brazzaville −4.27 15.28 4 −180 1877.58 5.14 1877.58 5.14 1874.81 5.14 1.00

Republic of the
Congo Owando −0.48 15.89 0 −180 1924.80 5.27 1924.80 5.27 1924.80 5.27 1.00

Democratic Republic
of the Congo Kinshasa −4.44 15.27 5 −180 1841.02 5.04 1841.02 5.04 1837.45 5.03 1.00

Democratic Republic
of the Congo Lubumbashi −11.69 27.50 19 −180 2286.65 6.26 2286.65 6.26 2195.55 6.02 1.04

Costa-Rica San José 9.93 −84.09 14 −45 1933.00 5.30 1908.08 5.23 1875.87 5.14 1.02

Croatia Zagreb 45.82 15.98 35 2 1511.78 4.14 1511.63 4.14 1311.44 3.59 1.15

Croatia Zadar 44.12 15.23 37 2 1801.18 4.93 1801.08 4.93 1530.99 4.19 1.18

Cuba Havana 23.11 −82.37 23 −11 2094.01 5.74 2089.25 5.72 1965.96 5.39 1.06

Cuba Sancti Spiritus 21.93 −79.44 23 −19 2113.43 5.79 2102.92 5.76 1982.22 5.43 1.06

Cyprus Nicosia 35.19 33.38 31 −2 2167.72 5.94 2167.36 5.94 1928.19 5.28 1.12

Cyprus Larnaca 34.90 33.62 31 1 2164.18 5.93 2164.12 5.93 1929.96 5.29 1.12

Czech Republic Prague 50.08 14.44 37 −1 1317.92 3.61 1317.88 3.61 1132.38 3.10 1.16

Czech Republic Ostrava 49.82 18.26 38 −1 1292.84 3.54 1292.75 3.54 1105.96 3.03 1.17

Denmark Copenhagen 55.69 12.59 40 2 1261.85 3.46 1261.65 3.46 1050.72 2.88 1.20
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Djibouti Djibouti City 11.57 43.15 14 11 2383.11 6.53 2381.31 6.52 2333.55 6.39 1.02

Dominica Roseau 15.31 −61.38 15 2 1915.78 5.25 1915.71 5.25 1875.46 5.14 1.02

Dominican Republic Santo Domingo 18.49 −69.93 20 −13 2084.80 5.71 2080.37 5.70 1989.93 5.45 1.05

Dutch-Antilles Willemstad 12.11 −68.93 12 7 2208.67 6.05 2208.21 6.05 2171.92 5.95 1.02

Ecuador Quito −0.18 −78.47 3 −108 1959.69 5.37 1952.43 5.35 1950.98 5.35 1.00

Egypt Cairo 30.04 31.24 28 7 2417.65 6.62 2416.13 6.62 2197.43 6.02 1.10

Egypt Port Said 31.26 32.31 29 3 2316.73 6.35 2314.47 6.34 2093.57 5.74 1.11

Egypt Aswan 24.09 32.90 25 4 2669.99 7.32 2669.07 7.31 2471.27 6.77 1.08

Egypt Marsa Matruh 31.35 27.24 27 6 2351.08 6.44 2348.95 6.44 2150.14 5.89 1.09

El Salvador San Salvador 13.69 −89.22 18 −18 2242.27 6.14 2235.02 6.12 2160.75 5.92 1.03

Equatorial Guinea Malabo 3.76 8.78 8 19 1676.42 4.59 1675.38 4.59 1664.01 4.56 1.01

Eritrea Asmara 15.33 38.93 20 0 2339.85 6.41 2339.85 6.41 2236.93 6.13 1.05

Estonia Tallinn 59.44 24.75 41 1 1119.41 3.07 1119.31 3.07 932.40 2.55 1.20

Estonia Tartu 58.38 26.73 41 0 1124.62 3.08 1124.62 3.08 943.57 2.59 1.19

Ethiopia Addis Ababa 8.97 38.73 15 −2 2173.71 5.96 2173.62 5.96 2118.91 5.81 1.03

Ethiopia Gondar 12.60 37.45 19 −26 2145.84 5.88 2130.39 5.84 2054.75 5.63 1.04

Finland Helsinki 60.17 24.94 42 3 1125.27 3.08 1124.86 3.08 925.59 2.54 1.22

France Paris 48.85 2.35 38 −3 1381.32 3.78 1380.65 3.78 1181.09 3.24 1.17

France Lyon 45.76 4.84 37 1 1578.76 4.33 1578.74 4.33 1348.05 3.69 1.17

France Rennes 48.114 −1.669 38 0 1413.59 3.87 1413.59 3.87 1210.02 3.32 1.17

France Bordeaux 44.84 −0.58 37 3 1608.95 4.41 1608.44 4.41 1374.99 3.77 1.17

Gabon Libreville 0.41 9.47 3 48 1804.25 4.94 1802.80 4.94 1801.52 4.94 1.00

Gabon Franceville −1.62 13.60 0 −180 1790.85 4.91 1790.85 4.91 1790.85 4.91 1.00

Gambia Banjul 13.45 −16.59 16 4 2288.49 6.27 2288.15 6.27 2226.59 6.10 1.03

Georgia Tbilisi 41.70 44.82 35 4 1737.14 4.76 1736.14 4.76 1509.04 4.13 1.15

Germany Berlin 52.52 13.38 38 −4 1261.69 3.46 1261.22 3.46 1077.30 2.95 1.17

Germany Cologne 50.94 6.96 38 −2 1257.92 3.45 1257.79 3.45 1072.06 2.94 1.17

Germany Munich 48.14 11.58 38 1 1372.50 3.76 1372.46 3.76 1169.59 3.20 1.17

Germany Hamburg 53.55 9.99 38 −1 1185.43 3.25 1185.34 3.25 1011.99 2.77 1.17
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Ghana Accra 5.60 −0.19 9 28 2131.69 5.84 2126.79 5.83 2109.18 5.78 1.01

Gibraltar Catalan Bay 36.14 −5.34 31 −27 1884.42 5.16 1845.21 5.06 1654.38 4.53 1.12

Greece Athens 37.98 23.73 32 2 2055.37 5.63 2055.21 5.63 1818.83 4.98 1.13

Guatemala Guatemala City 14.63 −90.51 18 −2 2007.60 5.50 2007.56 5.50 1939.68 5.31 1.03

Guinea Kindia 10.04 −12.86 15 9 2135.68 5.85 2134.46 5.85 2085.93 5.71 1.02

Guinea Kankan 10.38 −9.31 15 9 2256.01 6.18 2254.54 6.18 2202.55 6.03 1.02

Guinea-Bissau Bissau 11.86 −15.58 14 5 2223.35 6.09 2222.89 6.09 2169.36 5.94 1.02

Guyana Georgetown 6.80 −58.16 7 −14 2004.88 5.49 2004.09 5.49 1993.37 5.46 1.01

Haiti Port-Au-Prince 18.55 −72.34 21 −16 2244.58 6.15 2235.80 6.13 2124.32 5.82 1.05

Honduras Tegucigalpa 14.07 −87.17 16 1 1956.36 5.36 1956.34 5.36 1905.88 5.22 1.03

Honduras Catacamas 14.84 −85.88 14 −7 1886.46 5.17 1885.78 5.17 1845.84 5.06 1.02

Hong Kong Hong Kong 22.42 114.16 20 13 1523.23 4.17 1520.24 4.17 1463.19 4.01 1.04

Hungary Budapest 47.50 19.04 37 −5 1512.04 4.14 1510.81 4.14 1298.57 3.56 1.16

Hungary Debrecen 47.53 21.63 37 0 1502.57 4.12 1502.57 4.12 1288.64 3.53 1.17

India New Delhi 28.61 77.21 31 3 2138.18 5.86 2137.84 5.86 1921.33 5.26 1.11

India Rajkot 22.30 70.80 27 −1 2300.66 6.30 2300.64 6.30 2108.29 5.78 1.09

India Jodhpur 26.293 73.034 30 0 2324.87 6.37 2324.87 6.37 2098.01 5.75 1.11

India Chennai 13.08 80.27 15 3 2137.98 5.86 2137.87 5.86 2088.66 5.72 1.02

India Nagercoil 8.18 77.41 9 1 2166.94 5.94 2166.92 5.94 2143.62 5.87 1.01

Indonesia Jakarta −6.17 106.83 10 −180 1852.98 5.08 1852.98 5.08 1835.41 5.03 1.01

Indonesia Balikpapan −1.24 116.85 4 114 1685.95 4.62 1678.05 4.60 1675.83 4.59 1.00

Iran Tehran 35.69 51.42 32 −2 2083.70 5.71 2083.35 5.71 1850.42 5.07 1.13

Iran Tabriz 38.09 46.27 32 −10 2025.04 5.55 2023.06 5.54 1795.77 4.92 1.13

Iran Yazd 31.90 54.36 31 −3 2453.82 6.72 2453.18 6.72 2183.47 5.98 1.12

Iraq Baghdad 33.32 44.37 31 1 2280.20 6.25 2280.20 6.25 2038.03 5.58 1.12

Iraq Mosul 36.35 43.15 32 0 2178.96 5.97 2178.96 5.97 1928.69 5.28 1.13

Iraq Basrah 30.52 47.80 29 0 2324.75 6.37 2324.75 6.37 2117.19 5.80 1.10

Ireland Dublin 53.35 −6.27 40 −3 1144.43 3.14 1144.21 3.13 968.59 2.65 1.18

Ireland Kilkenny 52.65 −7.25 38 −1 1129.48 3.09 1129.44 3.09 973.43 2.67 1.16
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Israel Haifa 32.79 34.99 29 6 2167.67 5.94 2165.42 5.93 1958.53 5.37 1.11

Israel Eilat 29.56 34.95 29 3 2526.58 6.92 2525.82 6.92 2280.23 6.25 1.11

Italy Rome 41.90 12.50 36 2 1935.18 5.30 1935.05 5.30 1653.95 4.53 1.17

Italy Catania 37.51 15.08 33 −4 2049.02 5.61 2047.78 5.61 1804.48 4.94 1.13

Ivory Coast Yamoussoukro 6.83 −5.29 10 36 2001.01 5.48 1991.39 5.46 1970.58 5.40 1.01

Jamaica Kingston 18.02 −76.80 19 −24 2020.66 5.54 2007.25 5.50 1933.03 5.30 1.04

Jordan Amman 31.95 35.91 28 4 2313.66 6.34 2312.82 6.34 2102.64 5.76 1.10

Jordan Zarqa 32.063 36.09 28 2 2315.94 6.35 2315.57 6.34 2101.66 5.76 1.10

Jordan Irbid 32.56 35.85 9 7 2268.95 6.22 2266.16 6.21 2049.04 5.61 1.11

Kazakhstan Nur-Sultan 51.16 71.47 38 −5 1442.67 3.95 1442.49 3.95 1231.44 3.37 1.17

Kazakhstan Zhezqazghan 47.80 67.70 36 −3 1646.43 4.51 1645.54 4.51 1416.89 3.88 1.16

Kenya Nairobi −1.29 36.82 0 0 1998.16 5.47 1998.16 5.47 1998.16 5.47 1.00

Kosovo Prishtina 42.66 21.17 30 0 1613.38 4.42 1613.38 4.42 1419.47 3.89 1.14

Kuwait Kuwait City 29.38 47.98 28 −1 2380.38 6.52 2380.37 6.52 2173.16 5.95 1.10

Kyrgyz Republic Bishkek 42.87 74.57 35 −1 1782.39 4.88 1782.30 4.88 1550.76 4.25 1.15

Kyrgyz Republic Jalal-Abad 40.93 72.98 33.00 2 1882.07 5.16 1881.77 5.16 1656.30 4.54 1.14

Laos Vientiane 17.98 102.63 23.00 11 1961.04 5.37 1956.94 5.36 1852.99 5.08 1.06

Latvia Riga 56.95 24.11 40 −1 1170.30 3.21 1170.29 3.21 982.95 2.69 1.19

Latvia Daugavpils 55.87 26.54 38 0 1154.60 3.16 1154.60 3.16 982.60 2.69 1.18

Lebanon Beirut 33.89 35.50 29 −1 2113.95 5.79 2113.94 5.79 1909.46 5.23 1.11

Lesotho Maseru −29.32 27.49 32 −178 2289.04 6.27 2288.99 6.27 2026.68 5.55 1.13

Liberia Monrovia 6.32 10.81 11 25 1907.17 5.23 1903.23 5.21 1881.63 5.16 1.01

Libyan Arab
Jamahiriya Tripoli 32.89 13.18 30 6 2267.00 6.21 2264.80 6.20 2036.14 5.58 1.11

Liechtenstein Vaduz 47.14 9.52 37 5 1326.21 3.63 1324.96 3.63 1138.42 3.12 1.16

Lithuania Vilnius 54.69 25.28 38 −1 1150.50 3.15 1150.41 3.15 985.76 2.70 1.17

Lithuania Kaunas 54.90 23.890 38 0 1180.46 3.23 1180.46 3.23 1007.24 2.76 1.17

Luxembourg Luxembourg 49.61 6.13 36 0 1282.81 3.51 1282.81 3.51 1120.82 3.07 1.14

Macedonia Skopje 42.00 21.44 34 −2 1663.28 4.56 1663.14 4.56 1461.89 4.01 1.14

Macedonia Bitola 41.03 21.33 32 −6 1630.95 4.47 1629.71 4.46 1456.76 3.99 1.12
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Malaysia Kuala Lumpur 3.14 101.69 2 −66 1802.55 4.94 1799.80 4.93 1799.19 4.93 1.00

Malaysia Kangar 6.44 100.20 7 −31 1945.97 5.33 1942.29 5.32 1932.41 5.29 1.01

Mali Bamako 12.64 −8.00 17 2 2332.23 6.39 2332.18 6.39 2261.85 6.20 1.03

Malta Valletta 35.90 14.51 31 8 2098.64 5.75 2097.52 5.75 1875.20 5.14 1.12

Mauritania Nouakchott 18.07 −15.96 19 6 2456.65 6.73 2456.08 6.73 2360.03 6.47 1.04

Mauritius Port Louis −20.16 57.50 20 −165 2079.81 5.70 2076.19 5.69 1987.61 5.45 1.04

Mexico Mexico City 19.43 −99.13 22 −18 2211.22 6.06 2199.60 6.03 2082.58 5.71 1.06

Mexico Merida 20.97 −89.59 21 −16 2063.70 5.65 2056.68 5.63 1960.02 5.37 1.05

Mexico Ciudad Juárez 31.69 −106.42 31 0 2484.94 6.81 2484.94 6.81 2190.48 6.00 1.13

Moldova Republic Chisinau 47.01 28.863 35 0 1508.85 4.13 1508.85 4.13 1310.20 3.59 1.15

Monaco Monte Carlo 43.74 7.43 38 −1 1895.71 5.19 1895.64 5.19 1579.61 4.33 1.20

Mongolia Mandalgovi 45.76 106.27 42 0 1895.97 5.19 1895.97 5.19 1534.75 4.20 1.24

Mongolia Ulgii 48.97 89.970 42 −6 1751.26 4.80 1749.85 4.79 1412.41 3.87 1.24

Montenegro Podgorica 42.43 19.26 36 1 1854.69 5.08 1854.66 5.08 1581.32 4.33 1.17

Morocco Rabat 34.02 −6.84 31 7 2196.62 6.02 2192.83 6.01 1947.56 5.34 1.13

Morocco Casablanca 33.57 −7.59 32 6 2216.54 6.07 2213.90 6.07 1963.28 5.38 1.13

Mozambique Maputo −25.97 32.57 29 168 2082.81 5.71 2074.42 5.68 1884.70 5.16 1.10

Mozambique Lichinga −13.30 35.25 17 −164 1996.18 5.47 1992.87 5.46 1933.83 5.30 1.03

Myanmar Naypyitaw 19.76 96.14 26 5 2180.17 5.97 2179.51 5.97 2019.55 5.53 1.08

Myanmar ‘Yangon 16.80 96.16 24 −2 1975.38 5.41 1975.27 5.41 1852.94 5.08 1.07

Namibia Windhoek −22.57 17.08 27 −173 2473.43 6.78 2471.35 6.77 2266.39 6.21 1.09

Nepal Kathmandu 27.72 85.32 32 −2 2083.44 5.71 2083.18 5.71 1855.30 5.08 1.12

Netherlands Amsterdam 52.37 4.89 38 4 1245.27 3.41 1244.87 3.41 1064.77 2.92 1.17

Netherlands Maastricht 50.85 5.69 38 0 1265.56 3.47 1265.56 3.47 1079.98 2.96 1.17

Nicaragua Managua 12.15 −86.28 16 −12 2202.59 6.03 2199.97 6.03 2139.88 5.86 1.03

Nicaragua Rivas 11.44 −85.83 14 1 2113.39 5.79 2113.38 5.79 2066.00 5.66 1.02

Niger Niamey 13.52 2.13 18 6 2414.85 6.62 2413.94 6.61 2331.02 6.39 1.04

Nigeria Abuja 9.06 7.49 15 12 2110.16 5.78 2107.84 5.77 2053.46 5.63 1.03

Nigeria Lagos 6.45 3.40 11 30 1943.48 5.32 1937.03 5.31 1915.62 5.25 1.01
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Norway Oslo 59.91 10.75 43 1 1130.68 3.10 1130.57 3.10 910.76 2.50 1.24

Norway Tromsø 69.65 18.96 49 9 906.42 2.48 905.73 2.48 713.85 1.96 1.27

Oman Muscat 23.60 58.54 25 −1 2495.07 6.84 2494.98 6.84 2321.49 6.36 1.07

Oman Salalah 17.02 54.10 21 4 2383.35 6.53 2382.76 6.53 2258.85 6.19 1.05

Pakistan Islamabad 33.69 73.06 33 2 2099.78 5.75 2099.36 5.75 1847.45 5.06 1.14

Pakistan Karachi 24.86 67.01 28 4 2377.52 6.51 2376.65 6.51 2168.84 5.94 1.10

Palestine Jerusalem 31.78 35.31 28 2 2275.05 6.23 2274.88 6.23 2076.64 5.69 1.10

Palestine Gaza 31.53 34.46 28 10 2299.91 6.30 2294.36 6.29 2079.07 5.70 1.10

Panama Panama City 8.98 −79.52 11 −35 1747.42 4.79 1739.50 4.77 1718.60 4.71 1.01

Paraguay Asuncion −25.29 −57.62 23 −170 1890.38 5.18 1887.57 5.17 1778.81 4.87 1.06

Peru Lima −12.05 77.04 10 155 1761.39 4.83 1757.43 4.81 1741.46 4.77 1.01

Poland Warsaw 52.23 21.01 38 −3 1273.84 3.49 1273.69 3.49 1086.43 2.98 1.17

Poland Bielsko-Biala 49.82 19.06 38 −2 1255.06 3.44 1254.91 3.44 1073.01 2.94 1.17

Poland Gdynia 54.52 18.55 40 0 1249.85 3.42 1249.85 3.42 1051.69 2.88 1.19

Portugal Lisbon 38.72 −9.14 33 5 1994.31 5.46 1992.69 5.46 1751.20 4.80 1.14

Qatar Doha 25.29 51.53 25 0 2431.34 6.66 2431.34 6.66 2266.09 6.21 1.07

Romania Bucharest 44.43 26.10 34 5 1610.98 4.41 1610.02 4.41 1406.15 3.85 1.14

Romania Craiova 44.315 23.828 35 4 1642.53 4.50 1641.27 4.50 1431.19 3.92 1.15

Romania Botos, ani 47.74 26.67 32 2 1451.10 3.98 1450.93 3.98 1252.32 3.43 1.16

Russia Saint Petersburg 59.94 30.32 41 3 1076.88 2.95 1076.41 2.95 897.41 2.46 1.20

Russia Omsk 54.99 73.36 40 −3 1326.81 3.64 1326.34 3.63 1105.67 3.03 1.20

Russia Barnaul 53.35 83.78 40 −1 1355.12 3.71 1355.10 3.71 1136.97 3.11 1.19

Russia Murmansk 68.97 33.09 47 −5 866.53 2.37 865.44 2.37 684.00 1.87 1.27

Rwanda Kigali −1.94 30.06 4 −167 1930.06 5.29 1929.85 5.29 1926.68 5.28 1.00

Saint Kitts And Nevis Basseterre 17.30 −62.72 19 −16 2136.25 5.85 2130.80 5.84 2051.04 5.62 1.04

Saint Lucia Castries 14.01 −60.99 15 −19 2104.18 5.76 2098.57 5.75 2046.02 5.61 1.03

San Marino San Marino 43.94 12.45 34 9 1592.04 4.36 1587.17 4.35 1394.67 3.82 1.14

Sao Tome & Principe Sao Tome 0.34 6.73 1 0 1908.00 5.23 1908.00 5.23 1907.91 5.23 1.00

Saudi Arabia Riyadh 24.63 46.72 25 1 2493.58 6.83 2493.48 6.83 2318.87 6.35 1.08
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Saudi Arabia Jeddah 21.58 39.17 22 15 2488.38 6.82 2479.29 6.79 2344.20 6.42 1.06

Saudi Arabia Jazan 16.89 42.57 19 0 2394.38 6.56 2394.38 6.56 2300.99 6.30 1.04

Saudi Arabia Arar 30.98 41.02 29 0 2456.95 6.73 2456.95 6.73 2212.61 6.06 1.11

Senegal Dakar 14.72 −17.47 17 2 2322.37 6.36 2322.26 6.36 2252.59 6.17 1.03

Serbia Belgrade 44.82 20.47 36 0 1579.56 4.33 1579.56 4.33 1366.20 3.74 1.16

Seychelles Victoria 48.43 −123.37 37 5 1547.90 4.24 1546.05 4.24 1317.54 3.61 1.17

Sierra Leone Koidu 8.62 −10.96 13 26 2068.93 5.67 2063.04 5.65 2027.23 5.55 1.02

Singapore Singapore 1.29 103.84 0 0 1733.09 4.75 1733.09 4.75 1733.09 4.75 1.00

Slovakia Bratislava 48.15 17.11 37 0 1466.30 4.02 1466.30 4.02 1256.99 3.44 1.17

Slovakia Žilina 49.22 18.74 37 −2 1286.53 3.52 1286.41 3.52 1108.48 3.04 1.16

Slovenia Ljubljana 46.05 14.51 34 12 1428.33 3.91 1420.87 3.89 1247.25 3.42 1.14

Somalia Mogadishu 2.05 45.32 3 14 2427.88 6.65 2427.64 6.65 2423.50 6.64 1.00

Somalia Borama 9.94 43.18 14 −24 2459.72 6.74 2450.99 6.72 2397.80 6.57 1.02

South Sudan Juba 4.85 31.59 8 16 2165.23 5.93 2163.93 5.93 2147.55 5.88 1.01

South Sudan Renk 11.75 32.811 18 13 2325.21 6.37 2320.93 6.36 2240.34 6.14 1.04

South Africa Johannesburg −26.20 28.05 30 180 2256.50 6.18 2256.50 6.18 2020.48 5.54 1.12

South Africa Durban −29.855 30.985 33 178 1923.65 5.27 1922.63 5.27 1694.33 4.64 1.13

South Africa Cape Town −33.93 18.42 30 173 2160.45 5.92 2157.75 5.91 1944.01 5.33 1.11

Spain Madrid 40.42 −3.70 36 3 2099.17 5.75 2098.86 5.75 1788.13 4.90 1.17

Spain Barcelona 41.39 2.17 37 2 1972.30 5.40 1971.63 5.40 1662.81 4.56 1.19

Spain Málaga 36.72 −4.43 34 5 2142.65 5.87 2141.03 5.87 1869.34 5.12 1.15

Sri-Lanka Colombo 6.93 79.86 8 −9 2109.74 5.78 2109.31 5.78 2094.87 5.74 1.01

Sri-Lanka Jaffna 9.66 80.03 8 −8 2153.39 5.90 2153.05 5.90 2138.77 5.86 1.01

St.
Vincent/Grenadines Kingstown 13.16 −61.23 14 −17 2083.32 5.71 2079.13 5.70 2035.39 5.58 1.02

Sudan Khartoum 15.59 32.54 19 4 2543.61 6.97 2542.19 6.96 2435.33 6.67 1.04

Sudan El Obeid 13.18 30.22 18 6 2458.61 6.74 2457.59 6.73 2367.66 6.49 1.04

Suriname Paramaribo 5.85 −55.20 6 −53 1946.84 5.33 1937.57 5.31 1930.37 5.29 1.00

Swaziland Mbabane −26.31 31.14 31 177 1928.83 5.28 1927.79 5.28 1724.97 4.73 1.12
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Sweden Stockholm 59.33 18.07 43 1 1172.53 3.21 1172.50 3.21 961.01 2.63 1.22

Sweden Luleå 65.58 22.16 48 −3 1188.99 3.26 1188.74 3.26 908.70 2.49 1.31

Switzerland Bern 46.95 7.45 41 2 1592.63 4.36 1592.59 4.36 1291.08 3.54 1.23

Syrian Arab Republic Damascus 33.51 36.28 31 −8 2335.49 6.40 2334.01 6.39 2073.87 5.68 1.13

Syrian Arab Republic Homs 34.73 36.716 30 7 2190.91 6.00 2187.95 5.99 1964.10 5.38 1.11

Syrian Arab Republic Aleppo 36.20 37.13 33 −6 2160.63 5.92 2160.10 5.92 1894.68 5.19 1.14

Tajikistan Dushanbe 38.56 68.79 31 −4 1867.17 5.12 1866.30 5.11 1665.90 4.56 1.12

Tanzania Dodoma −6.16 35.75 8 160 2365.45 6.48 2362.99 6.47 2346.13 6.43 1.01

Tanzania Songea −10.65 35.64 12 168 2025.61 5.55 2024.03 5.55 1994.46 5.46 1.01

Thailand Bangkok 13.76 100.50 17 0 1994.13 5.46 1994.13 5.46 1935.70 5.30 1.03

Thailand Mueang Chiang
Rai 19.91 99.84 25 9 2009.07 5.50 2006.42 5.50 1880.23 5.15 1.07

Togo Lome 6.13 1.23 9 20 2135.78 5.85 2133.33 5.84 2112.99 5.79 1.01

Togo Dapaong 10.87 0.20 16 5 2271.33 6.22 2270.77 6.22 2207.94 6.05 1.03

Trinidad and Tobago Port of Spain 10.66 −61.51 11 −37 1973.87 5.41 1961.97 5.38 1938.35 5.31 1.01

Tunisia Tunis 36.81 10.18 32 2 2055.49 5.63 2054.98 5.63 1824.57 5.00 1.13

Turkey Ankara 39.93 32.86 32 −4 1856.34 5.09 1855.51 5.08 1642.72 4.50 1.13

Turkey İstanbul 41.01 28.97 32 11 1746.38 4.78 1741.66 4.77 1551.90 4.25 1.12

Turkey Hakkâri 37.58 43.74 29 −5 1896.31 5.20 1895.59 5.19 1722.17 4.72 1.10

Turkmenistan Ashgabat 37.94 58.39 32 0 1975.89 5.41 1975.89 5.41 1752.51 4.80 1.13

Uganda Kampala 0.35 32.58 1 74 1955.52 5.36 1953.95 5.35 1953.69 5.35 1.00

Ukraine Kyiv 50.45 30.52 36 1 1357.97 3.72 1357.93 3.72 1173.62 3.22 1.16

Ukraine Lviv 49.848 24.033 37 1 1304.11 3.57 1304.03 3.57 1123.40 3.08 1.16

Ukraine Odessa 46.48 30.72 35 4 1574.72 4.31 1574.14 4.31 1366.41 3.74 1.15

United States Washington, D.C 38.91 −77.04 35 1 1763.08 4.83 1762.92 4.83 1525.77 4.18 1.16

United States Minot, ND 48.23 −101.29 42 5 1674.01 4.59 1673.38 4.58 1359.81 3.73 1.23

United States San Antonio, TX 29.42 −98.49 28 7 2023.09 5.54 2020.54 5.54 1851.56 5.07 1.09

United States Los Angeles, CA 34.05 −118.24 32 12 2247.35 6.16 2238.74 6.13 1966.44 5.39 1.14

United Arab
Emirates Abu Dhabi 24.43 54.65 25 1 2481.46 6.80 2481.38 6.80 2309.42 6.33 1.07
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United Arab
Emirates Dubai 25.27 55.30 25 1 2457.38 6.73 2457.36 6.73 2277.89 6.24 1.08

United Kingdom London 51.507 −0.128 39 −3 1227.62 3.36 1227.42 3.36 1046.30 2.87 1.17

United Kingdom York 53.96 −1.087 40 −1 1142.40 3.13 1142.34 3.13 967.71 2.65 1.18

United Kingdom Truro 50.26 −5.05 37 6 1269.16 3.48 1268.19 3.47 1097.53 3.01 1.16

Uruguay Montevideo −34.91 −56.19 30 −177 1802.71 4.94 1801.84 4.94 1622.85 4.45 1.11

Uruguay Tacuarembo −31.711 −55.964 29 −176 1814.57 4.97 1814.47 4.97 1664.21 4.56 1.09

Uzbekistan Tashkent 41.30 69.24 33 0 1924.70 5.27 1924.70 5.27 1692.18 4.64 1.14

Vatican City Vatican City 41.90 12.45 36 2 1935.25 5.30 1935.14 5.30 1653.96 4.53 1.17

Venezuela Caracas 10.48 −66.90 11 −17 1952.14 5.35 1949.93 5.34 1927.48 5.28 1.01

Venezuela Amazonas 2.81 −65.10 4 0 1998.58 5.48 1998.58 5.48 1995.50 5.47 1.00

Vietnam Hanoi 21.03 105.83 16 28 1483.03 4.06 1475.95 4.04 1446.40 3.96 1.02

Vietnam Cà Mau 9.18 105.15 11 −25 1849.86 5.07 1845.96 5.06 1826.08 5.00 1.01

Yemen Sana’A 15.37 44.19 19 −23 2384.73 6.53 2370.25 6.49 2275.92 6.24 1.04

Yemen Aden 12.79 45.02 15 5 2430.15 6.66 2429.76 6.66 2365.05 6.48 1.03

Zambia Lusaka −15.42 28.29 22 −176 2252.38 6.17 2252.05 6.17 2137.47 5.86 1.05

Zimbabwe Harare −17.83 31.03 24 −174 2270.50 6.22 2269.35 6.22 2131.28 5.84 1.06
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Table A2. In-sample and out-of-sample proposed model performance.

Location Coordinates Calculated Model Using PVGIS Proposed Model Using Neural Network

Country City Latitude
(deg.)

Longitude
(deg.)

Optimum
Tilt Angle

(deg.)

Azimuth
Angle
(deg.)

AR1
(kWh/m2)

AR2
(kWh/m2)

AR3
(kWh/m2)

Optimum
Tilt Angle

(deg.)

Azimuth
Angle
(deg.)

AR1
(kWh/m2)

AR2
(kWh/m2)

AR3
(kWh/m2)

In-Sample Testing Set

Sweden Luleå 65.58 22.16 48 −3 1188.99 1188.74 908.7 48.03 −3.138 1219 1219 925.5

Australia Geraldton −28.78 114.61 28 −180 2301.1 2301.1 2092.13 28 −180 2301 2301 2092

Norway Tromsø 69.65 18.96 49 9 906.42 905.73 713.85 48.82 10.86 848.8 860.8 703.4

Rwanda Kigali −1.94 30.06 4 −167 1930.06 1929.85 1926.68 4.059 −167.3 1940 1933 1916

Brazil Rio De
Janeiro −22.91 −43.17 24 −180 1872.95 1872.95 1755.27 24 −180 1873 1873 1755

Burundi Bujumbura −3.36 29.36 8 −180 1982.06 1982.06 1970.43 7.978 −179.9 1974 1973 1964

Iraq Mosul 36.35 43.15 32 0 2178.96 2178.96 1928.69 32 −0.1384 2188 2188 1936

Spain Málaga 36.72 −4.43 34 5 2142.65 2141.03 1869.34 34 4.687 2156 2157 1870

Chile Arica −18.48 −70.31 18 −180 2274.32 2274.32 2193.16 18.08 −180 2237 2241 2161

Finland Helsinki 60.17 24.94 42 3 1125.27 1124.86 925.59 41.92 3.342 1140 1141 927.7

Somalia Mogadishu 2.05 45.32 3 14 2427.88 2427.64 2423.5 2.827 14.29 2405 2382 2381

Malaysia Kuala
Lumpur 3.14 101.69 2 −66 1802.55 1799.8 1799.19 1.942 −65.99 1783 1785 1773

Suriname Paramaribo 5.85 −55.20 6 −53 1946.84 1937.57 1930.37 6.055 −53.1 1907 1894 1894

Benin Port Novo 6.50 2.63 11 27 1932.3 1927.88 1906.39 11.05 27.2 1923 1918 1897

India Nagercoil 8.18 77.41 9 1 2166.94 2166.92 2143.62 8.986 1.572 2123 2133 2108

Sri-Lanka Jaffna 9.66 80.03 8 −8 2153.39 2153.05 2138.77 8.038 −8.211 2173 2165 2157

China Guigang 23.11 109.60 19 17 1400.07 1396.45 1354.5 18.99 17.11 1392 1389 1347

Lebanon Beirut 33.89 35.50 29 −1 2113.95 2113.94 1909.46 29.07 −1.031 2118 2118 1912

Malta Valletta 35.90 14.51 31 8 2098.64 2097.52 1875.2 31.03 7.936 2105 2104 1883
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Table A2. Cont.

United States Washington,
D.C 38.91 −77.04 35 1 1763.08 1762.92 1525.77 34.85 0.6785 1712 1689 1552

Italy Rome 41.90 12.50 36 2 1935.18 1935.05 1653.95 36.13 2.23 1925 1924 1645

Croatia Zadar 44.12 15.23 37 2 1801.18 1801.08 1530.99 36.99 2.03 1799 1799 1530

Canada Ottawa 45.42 −75.70 37 0 1563.56 1563.56 1325.33 36.95 0.0682 1563 1560 1341

Liechtenstein Vaduz 47.14 9.52 37 5 1326.21 1324.96 1138.42 37 4.99 1326 1325 1139

Germany Munich 48.14 11.58 38 1 1372.5 1372.46 1169.59 37.99 1.023 1373 1373 1170

Belize Belmopan 17.25 −88.76 17 7 1907.61 1906.68 1850.78 17 7.008 1907 1906 1850

Bhutan Thimphu 27.47 89.63 31 −15 1913.66 1902.28 1704.45 31.06 −15.16 1926 1913 1711

Australia Karratha −20.73 116.84 23 −180 2490.05 2490.05 2343.49 22.99 −180.9 2520 2494 2339

South Africa Johannesburg −26.20 28.05 30 180 2256.5 2256.5 2020.48 29.94 179.8 2262 2265 2026

Namibia Windhoek −22.57 17.08 27 −173 2473.43 2471.35 2266.39 26.99 −173.1 2466 2468 2256

Out-of-Sample Testing Set

Egypt Port Said 31.263 32.308 29 3 2316.73 2314.47 2093.57 28.98 3 2315 2313 2093

Jordan Zarqa 32.063 36.09 28 2 2315.94 2315.57 2101.66 27.32 2.042 2474 2477 2226

Syrian Arab
Republic Homs 34.73 36.716 30 7 2190.91 2187.95 1964.1 30 6.999 2191 2188 1964

Romania Craiova 44.315 23.828 35 4 1642.53 1641.27 1431.19 35 4.001 1643 1641 1431

Ukraine Lviv 49.848 24.033 37 1 1304.11 1304.03 1123.4 37 1 1304 1304 1123

South Africa Durban −29.855 30.985 33 178 1923.65 1922.63 1694.33 33 178 1924 1923 1694

France Rennes 48.114 −1.669 38 0 1413.59 1413.59 1210.02 38 0.00012 1414 1414 1210

Colombia Medellin 6.254 −75.576 5 −8 1896.07 1895.95 1890.18 5 −8 1896 1896 1890

India Jodhpur 26.293 73.034 30 0 2324.87 2324.87 2098.01 30 0.0005 2325 2325 2098

Uruguay Tacuarembo −31.711 −55.964 29 −176 1814.57 1814.47 1664.21 29 −176 1815 1814 1664

AR1: annual irradiation (kWh/m2) at optimum tilt angle and orientation. AR2: annual irradiation (kWh/m2) at optimum tilt angle (azimuth angle = 0 for Northern Hemisphere and 180 for
Southern). AR3: annual irradiation (kWh/m2) at horizontal surface. DR1: daily average irradiation (kWh/m2/day) at optimum tilt angle and orientation. DR2: daily average irradiation
(kWh/m2/day) at optimum tilt angle (azimuth angle = 0 for Northern Hemisphere and 180 for Southern). DR3: daily average irradiation (kWh/m2/day) at horizontal surface.
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