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Abstract: Vegetation generally appears scattered in drylands. Its structure, composition and spatial
patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation
methods to very high-resolution images for monitoring changes in vegetation cover can provide
relevant information for dryland conservation ecology. For this reason, improving segmentation
methods and understanding the effect of spatial resolution on segmentation results is key to improve
dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image
Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the
fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a
case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in
one of the driest areas of Europe. Our results show for the first time that the fusion of the results
from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up
to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very
high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to
more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.

Keywords: deep-learning; fusion; mask R-CNN; object-based; optical sensors; scattered vegetation;
very high-resolution

1. Introduction

Dryland biomes cover ~47% of the Earth’s surface [1]. In these environments, veg-
etation appears scattered [2] and its structure, composition and spatial patterns are key
indicators of biotic interactions [3], regulation of water, and nutrient cycles at landscape
level [4]. Changes in the cover and spatial patterns of dryland vegetation occur in response
to land degradation processes [5]. Hence, methods to identify and characterize vegetation
patches and their structural characteristics can improve our ability to understand dryland
functioning and to assess desertification risk [5–8]. Progress has been made using remote
sensing tools in this regard (e.g., quantification of dryland vegetation structure at land-
scape scale [9], monitoring vegetation trends [10], spatial patterns identifying ecosystem
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multifunctionality [11], characterizing flood dynamics [12], among many others). However,
the improvement in the accuracy of vegetation cover measurement is still being studied
to obtain maximum performance from data and technology. Estimating and monitoring
changes in vegetation cover through remote sensing is key for dryland ecology and conser-
vation [6]. Both historical temporal and spatial data are the base for remote sensing studies
to identify the functioning and structure of vegetation [13,14].

The analysis of very high-resolution images to detect and measure vegetation cover
and its spatial arrangement across the landscape starts typically by segmenting the objects
to be identified in the images [7]. Object-Based Image Analysis (OBIA) [15] and Mask
Region-based Convolutional Neural Networks (Mask R-CNN) [16] are among the most
used and state-of-the-art segmentation methods. Though they provide a similar product,
both methods rely on very different approaches. OBIA combines spectral information from
each pixel with its spatial context [17,18]. Similar pixels are then grouped in homogenous
objects that are used as the basis for further classification. Mask R-CNN, on the other hand,
a type of artificial intelligence whose functioning is inspired by the human brain provides
transferable models between zones and semantic segmentation with unprecedented ac-
curacy [19,20]. Besides, fusion has recently been used to improve spectral, spatial, and
temporal resolution from remote sensing images [21–23]. However, the fusion of methods
for vegetation mapping has not been evaluated.

Remote sensing studies based on very high-resolution images have increased in
the last years (e.g., [24–27]), partly because of the availability of Google Earth images
worldwide [28–30] and the popularization of unmanned aerial vehicles (UAV). Although
these images have shown a high potential for vegetation mapping and monitoring [31–33],
two main problems arise when they are used. First, higher spatial resolution increases the
spectral heterogeneity among and within vegetation types, resulting in a salt and pepper
effect in their identification that does not correctly characterize the actual surface [34].
Second, the processing time of very high-resolution images and the computational power
required is larger than in the case of low-resolution images [35]. Under these conditions,
traditional pixel-based analysis has proved to be less accurate than OBIA or Mask R-CNN
for scattered vegetation mapping [15,36]. There are many applications for OBIA [37–39]
and deep learning segmentation methods [40,41]. For example, mapping greenhouses [42],
monitoring disturbances affecting vegetation cover [5], or counting scattered trees in
Sahel and Sahara [43]. These methods have been compared with excellent results in
both segmenting and detecting tree cover and scattered vegetation [7,44,45]. However,
greater precision is always advisable in problems of very high sensitivity [46]. Despite
methodological advances, selecting the appropriate image source is key to produce accurate
segmentations of objects, like in vegetation maps [47,48], and there is no answer to the
question of which image or method to choose for segmenting objects. Understanding how
the spatial resolution of the imagery used affects these segmentation methods or the fusing
of both is key for their correct application to obtain better accuracy in object segmentation
in vegetation mapping in drylands.

To evaluate which is the most accurate method between OBIA and Mask R-CNN
to segment scattered vegetation in drylands and to understand the effect of the spatial
resolution of the images used in this process, we assessed the accuracy of these two methods
in the segmentation of scattered dryland shrubs and compared how final accuracy varies
as does spatial resolution. We also check the accuracy of the fusion of both methods.

This work is organized as follows. Section 2 describes the study area, the dataset used,
and the methodologies tested. Section 3 describes the experiments addressed to assess the
accuracies of the methods used. The experimental results and discussion are presented in
Section 4, and conclusions are given in Section 5.
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2. Materials and Methods
2.1. Study Area

We focused on the community of Ziziphus lotus shrubs, an ecosystem of priority
conservation interest at European level (habitat 5220* of Directive 92/43/EEC), located in
Cabo de Gata-Níjar Natural Park (36◦49′43′ ′ N, 2◦17′30′ ′ W, SE Spain), one of the driest
areas of continental Europe. This type of vegetation is scarce and patchy, which appears
surrounded by a matrix of bare soil and small shrubs (e.g., Launea arborescens, Lygeum
spartum and Thymus hyemalis). Z. lotus is a facultative phreatophyte [49] and forms large
hemispherical canopies (1–3 m tall) that constitute fertility islands where many other
species of plants and animals live [50]. These shrubs are long-lived species contributing to
the formation of geomorphological structures, called nebkhas [51], that protect from the
intense wind erosion activity that characterizes the area, thereby retaining soil, nutrients,
and moisture.

2.2. Dataset

The data set consisted of two plots (Plot 1 and Plot 2) with 3 images of different spatial
resolution in each one. The plots had an area of 250 × 250 m with scattered Z. lotus shrubs.
The images were obtained from optical remote sensors in the visible spectral range, Red,
Green and Blue bands (RGB) and spatial resolutions of < 1 m/pixel:

• A 0.5 × 0.5 m spatial resolution RGB image obtained from Google Earth [52].
• A 0.1 × 0.1 m spatial resolution image acquired using an RGB camera sensor of

50 megapixels (Hasselblad H4D) equipped with a 50 mm lens and charge-coupled
device (CCD) sensor of 8176 pixels× 6132 pixels mounted on a helicopter with a flight
height of 550 m.

• A 0.03 × 0.03 m spatial resolution image acquired using a 4K pixels resolution RGB
camera sensor on a professional UAV Phantom 4 UAV (DJI, Shenzhen, China) and
with a flight height of 40 m.

2.3. OBIA

OBIA-based segmentation is a method of image analysis that divides the image into
homogeneous objects of interest (i.e., groups of pixels also called segments) based on
similarities of shape, spectral information, and contextual information [17]. It identifies
homogeneous and discrete image objects by setting an optimal combination of values
for three parameters (i.e., Scale, Shape, and Compactness) related to their spectral and
spatial variability. There are no unique values for any of these parameters, and their final
combination always depends on the object of interest, so finding this optimal combination
represents a challenge due to the vast number of possible combinations. First, it is necessary
to establish an appropriate Scale level depending on the size of the object studied in
the image [43]; for example, low Scale values for small shrubs and high Scale values
for large shrubs [44,45]. Recent advances have been oriented in developing techniques
(e.g., [53–59]) and algorithms (e.g., [60–63]) to automatically find the optimal value of the
Scale parameter [64], which is the most important for determining the size of the segmented
objects [65,66]. The Shape and the Compactness parameters must be configured too. While
high values of the Shape parameter prioritize the shape over the colour, high values of the
Compactness parameter prioritize compactness of the objects over the smoothness of their
edges [67].

2.4. Mask R-CNN

In this problem of locating and delimiting the edges of dispersed shrubs, we used a
computer vision technique named instance segmentation [68]. Such technique infers a label
for each pixel considering other nearby objects, thus including the boundaries of the object.
We used Mask R-CNN segmentation model [16], which extends Faster R-CNN detection
model [16] and provides three outputs for each object: (i) a class label, (ii) a bounding box
that delimits the object and (iii) a mask which delimits the pixels that constitute each object.
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In the binary problem addressed in this work, Mask R-CNN generates for each predicted
object instance a binary mask (values of 0 and 1), where values of 1 indicate a Z. lotus pixel
and 0 indicates a bare soil pixel.

Mask R-CNN relies on a classification model for the task of feature extraction. In this
work, we used ResNet 101 [69] to extract increasingly higher-level characteristics from the
lowest to the deepest layer levels.

The learning process of Mask R-CNN is influenced by the number of epochs, which is
the number of times the network goes through the training phase, and by other optimiza-
tions such as transfer-learning or data-augmentation (see Section 3.2). Finally, the 1024 ×
1024 × 3 band image input is converted to 32 × 32 × 2048 to represent objects at different
scales via the characteristic network pyramid.

2.5. Segmentation Accuracy Assessment

The accuracy of the segmentation task in this work was assessed with respect to
ground truth by using the Euclidean Distance v.2 (ED2; [70]), which evaluates the geometric
and arithmetic discrepancy between reference polygons and the segments obtained during
the segmentation process. Both types of discrepancy need to be assessed. As reference
polygons, we used the perimeter of 60 Z. lotus shrubs measured with photo-interpretation in
all images by a technical expert. We estimated the geometric discrepancy by the “Potential
Segmentation Error” (PSE; Equation (1)), defined as the ratio of the total area of each
segment obtained in the segmentation that falls outside the reference segment and the total
area of reference polygons as:

PSE =
Σ|si − rk|

Σ|rk|
(1)

where PSE is the “Potential Segmentation Error”, rk is the area of the reference polygon
and si is the overestimated area of the segment obtained during the segmentation. A value
of 0 indicates that segments obtained from the segmentation fit well into the reference
polygons. Conversely, larger values indicate a discrepancy between reference polygons
and the segments.

Although the geometric relation is necessary, it is not enough to describe the discrepan-
cies between the segments obtained during the segmentation process and the corresponding
reference polygons. To solve such problem the ED2 index includes an additional factor, the
“Number-of-Segmentation Ratio” (NSR), that evaluates the arithmetic discrepancy between
the reference polygons and the generated segments (Equation (2)):

NSR =
abs(m− v)

m
(2)

where NSR is the arithmetic discrepancy between the polygons of the resulting segmen-
tation and the reference polygons and abs is the absolute value of the difference of the
number of reference polygons, m, and the number of segments obtained, v.

Thus, the ED2 can be defined as the joint effect of geometric and arithmetic differences
(Equation (3)), estimated from PSE and NSR, respectively, as:

ED2 =

√
(PSE)2 + (NSR)2 (3)

where ED2 is Euclidean Distance v.2, PSE is Potential Segmentation Error, and NSR is
Number-of-Segmentation Ratio. According to Liu et al. [70], values of ED2 close to 0 indi-
cate good arithmetic and geometric coincidence, while high values indicate a mismatch
between them.

3. Experiments

We set several experiments to assess the accuracy of the two different OBIA and Mask
R-CNN segmenting scattered vegetation in drylands. We used the images of Plot 1 to
test the OBIA and Mask R-CNN segmentation methods. The images of Plot 2 were used
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for the training phase in Mask R-CNN experiments exclusively (Figure 1). In Section 3.1,
we describe OBIA experiments, focused on detecting the best parameters (i.e., Scale, Shape
and Compactness) of a popularly used “multi-resolution” segmentation algorithm [71].
In Section 3.2. we described the Mask R-CNN experiments, in which we first evaluated the
precision in the detection of shrubs (capture or notice the presence of shrubs) and second
how accurate is the segmentation of those shrubs. Finally, in Section 3.3. we described the
fusion of both methods and compared all the accuracies between them in Section 4.3.

Figure 1. Workflow with the main processes carried out in this work. Asterisk shows an example
of the result of the fusion of the segmentation results from OBIA and Mask R-CNN. OBIA: Object-
Based Image Analysis; Mask R-CNN: Mask Region-based Convolutional Neural Networks; ESP v.2:
Estimation of Scale Parameter v.2; SPR: Segmentation Parameters Range.
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3.1. OBIA Experiments

To obtain the optimal value of each parameter of the OBIA segmentation, we use
two approaches:

(i) A ruleset called Segmentation Parameters Range (SPR) in eCognition v8.9 (Definiens,
Munich, Germany) with the “multi-resolution” algorithm that segmented the images
of Plot 1 by systematically increasing the Scale parameter in steps of 5 and the Shape
and Compactness parameters in steps of 0.1. The Scale parameter ranged from 80
to 430, and the Shape and the Compactness from 0.1 to 0.9. We generated a total
of 9234 results with possible segmentations of Z. lotus shrubs. The Scale parameter
ranges were evaluated considering the minimum cover size (12 m2) and maximum
cover size (311 m2) of the shrubs measured in the plot and the pixel size.

(ii) We also performed the semi-automatic method Estimation of Scale Parameter v.2
(ESP2; [70]) to select the best scale parameter. This tool performs semi-automatic
segmentation of multiband images within a range of increasing Scale values (Levels),
while the user previously defines the values of the Compactness and Shape parame-
ters. Three options available in the ESP2 tool were tested: a) the hierarchical analysis
Top-down (HT), starting from the highest level and segmenting these objects for lower
levels; b) the hierarchical analysis Bottom-up (HB), which starts from the lower level
and combines objects to get larger levels; and c) analysis without hierarchy (NH),
where each scale parameter is generated independently, based only on the level of the
pixel [64].

3.2. Mask R-CNN Experiments

Mask R-CNN segmentation is divided in two phases: i) Training and ii) Testing phases.
In the training phase, we selected 100 training polygons representing 100 shrub individuals
with different sizes. The sampling was done using VGG Image Annotator [72] to generate
a JSON file, which includes the coordinates of all the vertices of each segment, equivalent
to the perimeter of each shrub. To increase the number of samples and reduce overfitting
of the model, we applied data-augmentation and transfer-learning:

• Data augmentation aims to artificially increase the size of the dataset by slightly
modifying the original images. We applied the filters of vertical and horizontal flip;
Scale decrease and increase in the horizontal and vertical axis between 0.8 to 1.2;
Rotation of 0 to 365 degrees; Shearing factor between −8 to 8; Contrast normalization
with values of 0.75 and 1.5 per channel; Emboss with alpha 0, 0.1; Strength with 0 to
2.0; Multiply 0.5 and 1.5, per channel to change the brightness of the image (50–150%
of the original value).

• Transfer-learning consists in using knowledge learnt from one problem to another
related one [73], and we used it to improve the neural network. Since the first layers
of a neural network extract low-level characteristics, such as colour and edges, they
do not change significantly and can be used for other visual recognition works. As
our new dataset was small, we applied fine adjustment to the last part of the network
by updating the penultimate weights, so that the model was not overfitting, as mainly
occurs between the first layers of the network. We specifically used transfer-learning
on ResNet 101 [69] and used Region-based CNN with the pre-trained weights of the
same architectures on COCO dataset (around 1.28 million images over 1000 generic
object classes) [74].

We tested three different learning periods (100 steps per epoch) per model:

(A) 40 epochs with transfer-learning in heads,
(B) 80 epochs with 4 fist layers transfer-learning,
(C) 160 epochs with all layers transfer-learning.

We trained the algorithm based on the ResNet architecture with a depth of 101 lay-
ers with each of the three proposed spatial resolutions. We then evaluated the trained
models in all possible combinations between the resolutions. We evaluated the use of data-
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augmentation and transfer-learning from more superficial layers to the whole architecture
with different stages in the training process. Particularly:

(1.1) Trained with UAV images.
(1.2) Trained with UAV images and data-augmentation.
(2.1) Trained with airborne images.
(2.2) Trained with airborne images and with data-augmentation.
(3.1) Trained with Google Earth images.
(3.2) Trained with Google Earth images and data-augmentation.

We did the test phase using Plot 1. To identify the most accurate experiments, we
evaluated the detection of the CNN-based models, and determined their Precision, Recall,
and F1-measure [75] as:

Precision =
True Positives

True Positives + False Positives
, (4)

Recall =
True Positives

True positives + False Negatives
, (5)

F1−measure = 2× Precision × Recall
Precision + Recall

(6)

3.3. Fusion of OBIA and Mask R-CNN

We combined the most accurate segmentations obtained using OBIA and Mask R-
CNN, according to ED2 values (Figure 1). We let oi denote the i-th OBIA polygon within
the OBIA segmentation, O, and mj denote the j-th Mask R-CNN polygon within the Mask
R-CNN segmentation, C. Then we have O = {oi: i = 1, 2, ..., m} and C = {cj: j = 1, 2, ..., n}.
Here, the subscripts i and j are sequential numbers for the polygons of the OBIA and Mask
R-CNN segmentations, respectively. m and n indicate the total numbers of the objects
segmented with OBIA and Mask R-CNN, respectively. m and n must be equal. Finally, the
corresponding segment data sets extracted (Equation (7)) by the fusion are considered a
consensus among the initially segmented objects as:

OCij = areaOi ∩ areaCj (7)

where OCij is the intersected area between the segments of the OBIA segmentation (Oi)
and the area of the segments of the Mask R-CNN segmentation (Cj).

Finally, we estimate ED2 values of the final segmentation using validation shrubs from
Plot 1, and we compared it with segmentation accuracy obtained by the different methods.

4. Results and Discussion
4.1. OBIA Segmentation

In total, 9234 segmentations were performed by SPR, 3078 for each image type (e.g.,
Google Earth, airborne and UAV). OBIA segmentation accuracy using the SPR presented
large variability (Table 1), with values of ED2 ranging between 0.05 and 0.28. Segmentation
accuracy increased with image spatial resolution. Thus, the higher the spatial resolution,
the higher the Scale values and more accurate the segmentation was. This result was
represented by a decrease in ED2 values of 0.14, 0.10 and 0.05 for Google Earth, airborne
and UAV images, respectively. The best combinations of segmentation parameters along
the different images were (Figure 2): (i) for the Google Earth image, Scale values ranging
from 105 to 110, low Shape values of 0.3 and high Compactness values from 0.8 to 0.9; (ii)
for the orthoimage from the airborne sensor, Scale values between 125 and 155, Shape of
0.6 and Compactness of 0.9; and (iii) for the UAV image, the optimal segmentation showed
the highest Scale values, ranging from 360 to 420, whereas Shape and Compactness values
were similar to the values of the Google Earth image.
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Table 1. Segmentation accuracies of Object-Based Image Analysis (OBIA) among the three spatial resolutions evaluated.
For each segmentation type, only the most accurate combination of Scale, Shape, and Compactness is shown. ESP2/HB:
Estimate Scale Parameter v.2 (ESP2) with Bottom-up Hierarchy; ESP2/HT: ESP2 with Top-down Hierarchy; ESP2/NH: ESP2
Non-Hierarchical; SPR: Segmentation with Parameters Range. Closer values to 0 indicate accurate segmentations. In bold
the most accurate results.

Segmentation Parameters Segmentation
Quality

Image Source Resolution
(m/Pixel)

Segmentation
Method Scale Shape Compactness ED2 Average Time

(s)

Google Earth 0.5 ESP2/HB 100 0.6 0.9 0.25 365
ESP2/HT 105 0.7 0.5 0.26 414
ESP2/NH 105 0.5 0.1 0.28 2057

SPR 90 0.3 0.8 0.2 18
Airborne 0.1 ESP2/HB 170 0.5 0.9 0.14 416

ESP2/HT 160 0.5 0.9 0.15 650
ESP2/NH 160 0.5 0.5 0.14 3125

SPR 155 0.6 0.9 0.1 24
UAV 0.03 ESP2/HB 355 0.3 0.7 0.12 5537

ESP2/HT 370 0.5 0.7 0.11 8365
ESP2/NH 350 0.5 0.7 0.1 40,735

SPR 420 0.1 0.8 0.05 298

When we applied the semi-automatic method ESP2 to estimate the optimum value
of the Scale parameter, we observed a similar pattern to that described for the SPR, with
an increase in accuracy when increasing spatial resolution. The highest value of ED2
was for the Google Earth image segmentation results (ED2 = 0.25), decreasing for the
orthoimage from the airborne sensor (ED2 = 0.15) and reaching the minimum value (best)
in the UAV image (ED2 = 0.12). However, the results obtained by ESP2 were worse than
the results obtained by the SPR method in all the images analysed (Table 1) with the largest
differences in the image with the lowest spatial resolution (Google Earth). In the Google
Earth images, the best method of analysis of the three options presented by the ESP2 tool
was the hierarchical bottom level, with acceptable ED2 values, lower than 0.14 (Table 1).
For the airborne images, the results were equal to Google Earth images (hierarchical bottom
level). Conversely, the segmentation of the UAV image produced the best ED2 values when
applying the ESP2 without hierarchical level. The computational time for the segmentation
of the images was higher in ESP2 than SPR approach. In addition, the computation time
of the analysis was also influenced by the number of pixels to analyse, it increased in
higher spatial resolution images in computer with a Core i7-4790K, 4 GHz and 32G of RAM
memory (Intel, Santa Clara, CA, USA) (Table 1).
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Figure 2. Relationship between Scale, Shape and Compactness parameters (X axis) evaluated using
Euclidean distance v.2 (ED2; Y axis) in 9234 Object-based image analysis (OBIA) segmentations from
Google Earth, Airborne and unmanned aerial vehicle (UAV) images. The rainbow palette shows the
density of validation results. In red high density and in blue low density.

4.2. Mask R-CNN Segmentation
4.2.1. Detection of Scattered Shrubs

We obtained the best detection results for the models trained and evaluated with UAV
images (F1-measure = 0.91) and the models trained with the highest number of epochs
and data-augmentation activated (Table 2). The best transfer from a UAV trained model
to a test with another resolution was to the image from the airborne sensor. Nevertheless,
the Google Earth test image produced a similar result of F1-measure = 0.90. We consider
that a model trained with data-augmentation and very high spatial resolution images
(0.03 m/pixel) can generalize well to less accurate images such as those from Google Earth
(0.5 m/pixel). Furthermore, when we trained the models with Google Earth images, we
observed that it also generalised well to more precise resolutions (F1-measure = 0.90). For
this reason, the detection of Z. lotus shrubs might be generalizable from any resolution less
than 1 m/pixel.
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Table 2. Test results of Mask Region-based Convolutional Neural Networks (Mask R-CNN) ex-
periments in three different spatial resolutions images. TP: True Positive; FP: False Negative; FN:
False Negative. Precision, Recall, and F1-measure were used for detection results. In bold the most
accurate results.

Experiments/Image TP FP FN Precision Recall F1

1.1.A
UAV 55 5 10 0.92 0.85 0.88

Airborne 56 4 9 0.93 0.86 0.90
GE 50 1 15 0.98 0.77 0.86

1.1.B
UAV 59 6 6 0.91 0.91 0.91

Airborne 60 7 5 0.90 0.92 0.91
GE 55 2 10 0.96 0.85 0.90

1.1.C
UAV 55 1 10 0.98 0.85 0.91

Airborne 52 3 13 0.94 0.80 0.87
GE 53 0 12 1 0.81 0.89

1.2.A
UAV 53 1 12 0.98 0.82 0.89

Airborne 54 1 11 0.98 0.83 0.90
GE 42 3 23 0.93 0.65 0.76

1.2.B
UAV 55 1 10 0.98 0.85 0.91

Airborne 50 2 15 0.96 0.77 0.85
GE 50 2 15 0.96 0.77 0.85

1.2.C
UAV 56 3 8 0.95 0.87 0.91

Airborne 52 3 13 0.94 0.80 0.87
GE 54 1 12 0.98 0.81 0.89

2.1.A
UAV 41 0 24 1 0.63 0.77

Airborne 38 0 27 1 0.58 0.74
GE 34 1 31 0.97 0.52 0.68

2.1.B
UAV 47 0 18 1 0.72 0.84

Airborne 55 3 10 0.95 0.85 0.89
GE 50 1 16 0.98 0.76 0.85

2.1.C
UAV 52 1 13 0.98 0.80 0.88

Airborne 58 3 7 0.95 0.88 0.91
GE 54 1 12 0.98 0.82 0.89

2.2.A
UAV 31 0 34 1 0.48 0.65

Airborne 48 1 17 0.98 0.74 0.84
GE 38 1 27 0.97 0.58 0.73

2.2.B
UAV 38 1 27 0.97 0.58 0.73

Airborne 46 1 19 0.98 0.71 0.82
GE 47 3 18 0.94 0.72 0.82

2.2.C
UAV 46 1 19 0.98 0.70 0.82

Airborne 51 2 14 0.96 0.78 0.86
GE 50 2 15 0.96 0.77 0.85

3.1.A
UAV 37 0 28 1 0.57 0.73

Airborne 43 0 22 1 0.66 0.80
GE 41 1 24 0.98 0.63 0.77

3.1.B
UAV 48 1 17 0.98 0.74 0.84

Airborne 51 1 14 0.98 0.78 0.87
GE 54 1 11 0.98 0.83 0.90

3.1.C
UAV 52 1 13 0.98 0.80 0.88

Airborne 52 1 13 0.98 0.80 0.88
GE 54 2 11 0.96 0.83 0.89

3.2.A
UAV 54 1 11 0.98 0.83 0.90

Airborne 56 4 9 0.93 0.86 0.90
GE 53 2 12 0.96 0.82 0.88

3.2.B
UAV 56 3 9 0.95 0.86 0.90

Airborne 54 5 11 0.92 0.83 0.87
GE 53 3 12 0.95 0.82 0.88

3.2.C
UAV 54 3 11 0.95 0.83 0.89

Airborne 52 3 13 0.95 0.80 0.87
GE 52 3 13 0.95 0.80 0.87
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4.2.2. Segmentation Accuracy for Detected Shrubs

The best segmentation accuracy was obtained with the models trained and tested with
the same source of images, reaching values of ED2 = 0.07 in Google Earth ones. However,
when the model trained with Google Earth images was tested in a UAV image, the ED2
resulted in 0.08. Moreover, the effect of data-augmentation was counterproductive in
models trained with airborne images and only lowered ED2 (best results) in models trained
with the UAV image. In general, data-augmentation helped to generalise between images
but did not obtain a considerable increase in precision in models trained and tested with
the same image resolution (Table 3 and Figure 3).

Table 3. Segmentation accuracies of Mask Region-based Convolutional Neural Networks (Mask
R-CNN). PSE: Potential Segmentation Error; NSR: Number Segmentation Ratio; ED2: Euclidean
Distance v.2. In bold the most accurate results.

Best Experiment Image Train Image Test PSE NSR ED2

1.1.C UAV UAV 0.0532 0.1290 0.1396
1.2.C UAV UAV 0.0512 0.0967 0.1095
2.1.C Airborne Airborne 0.0408 0.0645 0.0763
2.2.C Airborne Airborne 0.0589 0.0645 0.0873
3.1.B GE GE 0.0414 0.0645 0.0767
3.2.B GE UAV 0.0501 0.0645 0.0816

Figure 3. Examples of segmentation of images from Plot 1 using Object-based Image Analysis (OBIA;
Top) and Mask Region-based Convolutional Neural Networks (Mask R-CNN; Down) on Google
Earth, Airborne and Unmanned Aerial Vehicle (UAV) images. The different colours in the Mask
R-CNN approach are to differentiate the shrubs individually.

4.3. Fusion of OBIA and Mask R-CNN

Our results showed that the fusion between OBIA and Mask R-CNN methods in very
high-resolution RGB images is a powerful tool for mapping scattered shrubs in drylands.



Sensors 2021, 21, 320 12 of 17

We found that the individual segmentations by using OBIA and Mask R-CNN indepen-
dently were worse than the fusion of both. The accuracy of the fusion of OBIA and Mask
R-CNN was higher than the accuracies of the separate segmentations (Table 4), being the
most accurate segmentation of all the experiments tested in this work, with an ED2 = 0.038.
However, the fusion between results on Google Earth images only improved the ED2 by
0.02. Therefore, the fusion of both segmentation methods provided the best segmentation
over the previous methods (OBIA (ED2 = 0.05) and Mask R-CNN (ED2 = 0.07)), in very
high-resolution images to segment scattered vegetation in drylands. Moreover, by merging
the results of both methodologies (OBIA ∩Mask R-CNN), the accuracy increases with an
ED2 = 0.03.

Table 4. Segmentation accuracies of the fusion of Object-Based Image Analysis (OBIA) and Mask Region-based Convo-
lutional Neural Networks (Mask R-CNN). PSE: Potential Segmentation Error; NSR: Number Segmentation Ratio; ED2:
Euclidean Distance v.2. In bold the most accurate results.

Best Experiment Best OBIA (ED2) Best Mask R-CNN (ED2) PSE NSR ED2

1.1.C 0.05 0.13 0.02 0.03 0.0386
1.2.C 0.05 0.10 0.02 0.03 0.0417
2.1.C 0.10 0.07 0.02 0.03 0.0388
2.2.C 0.10 0.08 0.05 0.06 0.0395
3.1.B 0.20 0.07 0.00 0.06 0.0645
3.2.B 0.20 0.08 0.00 0.06 0.0645

To our knowledge, the effect of mixing these two methodologies has not been studied
until the date, and it might be vital to improving future segmentation methods. As can be
seen in the conceptual framework (Figure 1), it is reasonable to think that the higher the
resolution and, therefore, the higher the detail at the edges of vegetation represented in the
images, the fusion will improve the final precision of the segmentation. Nevertheless, in
images with lower resolution, the fusion improved but to a minor degree.

The spatial resolution of the images affected the accuracy of the segmentation, pro-
viding outstanding results in all segmentation methods and spatial resolutions. However,
according to [57], we observed that the spatial resolution and Scale parameter played a key
role during the segmentation process and controlled the accuracy of the final segmentations.
In non-fusion segmentation methods (OBIA or Mask R-CNN) the segmentation accuracy
was higher in the spatial resolution image from UAV and OBIA up to ED2 = 0.05. However,
when the object to be segmented is larger than the pixel size of the image, the spatial resolu-
tion of the image is of secondary importance [37,57,76,77]. For this reason, as the scattered
vegetation in this area presents a mean size of 100 m2 [5], corresponding to 400 pixels
of Google Earth image, only slight increases in segmentation accuracy were observed as
the spatial resolution increased. Moreover, the overestimation of the area of each shrub
was not significant as the images spatial resolution increased. Therefore, Google Earth
images could be used to map scattered vegetation in drylands, if the plants to be mapped
are larger than the pixel size. This result opens a wide range of new opportunities for
vegetation mapping in remote areas where UAV or airborne image acquisition is difficult
or acquiring commercial imagery of very high-resolution is very expensive. These results
are promising and highlight the usefulness of free available Google Earth images for big
shrubs mapping with only a negligible decrease in segmentation accuracy when compared
with commercial UAV or airborne images. However, the segmentation of vegetation could
be better if we use the near infrared NIR band since vegetation highlights in this range of
the spectrum (e.g., 750 to 2500 nm) or used in vegetation indices such as the normalized
difference vegetation index (NDVI) or Enhanced vegetation index (EVI). Finally, very high
spatial resolution UAV images need much more computational time and are expensive and
not always possible to obtain at larger scales in remote areas, hampering their use.
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5. Conclusions

Our results showed that both OBIA and Mask R-CNN methods are powerful tools
for mapping scattered vegetation in drylands. However, both methods were affected by
the spatial resolution of the orthoimages utilized. We have shown for the first time that
the fusion of the results from these methods increases, even more, the precision of the
segmentation. This methodology should be tested on other types of vegetation or objects
in order to prove to be fully effective. We propose an approach that offers a new way of
fusing these methodologies to increase accuracy in the segmentation of scattered shrubs
and should be evaluated on other objects in very high-resolution and hyperspectral images.

Using images with very high spatial resolution could provide the required precision to
further develop methodologies to evaluate the spatial distribution of shrubs and dynamics
of plant populations in global drylands, especially when utilizing free-to-use images, like
the ones obtained from Google Earth. Such evaluation is of particular importance in
drylands of developing countries, which are particularly sensitive to anthropogenic and
climatic disturbances and may not have enough resources to acquire airborne or UAV
imagery. For these reasons, future methodologies as the one presented in this work should
focus on using freely available datasets.

In this context, the fusion of OBIA and Mask R-CNN could be extended to a larger
number of classes of shrub and tree species or improved with the inclusion of more spectral
and temporal information. Furthermore, this approach could improve the segmentation
and monitoring of the crown of trees and arborescent shrubs in general, which are of par-
ticular importance for biodiversity conservation and for reducing uncertainties in carbon
storages worldwide [78]. Recently, scattered trees have been identified as key structures for
maintaining ecosystem services provision and high levels of biodiversity [43]. Global ini-
tiatives could benefit largely from CNNs, including those recently developed by FAO [79]
to provide the forest extent in drylands. The uncertainties in this initiative [80,81] might
be reduced implementing our approach CNN-based to segment trees. Tree and shrub seg-
mentation methods could provide a global characterization of forest ecosystem structures
and population abundances as part of the critical biodiversity variables initiative [82,83].
In long-lived shrubs where the precision of the segmentation is key for monitoring the
detection of disturbances (e.g., pests, soil loss or seawater intrusion) [5]. Finally, the mon-
itoring of persistent vegetation with minimal cover changes over decades could benefit
from fusion approaches in the segmentation methods proposed.
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The following abbreviations are used in this manuscript:
Abbreviation Description
CCD Charge-Coupled Device
ED2 Euclidean Distance v.2
ESP2 Estimation Scale Parameter v.2
ETRS European Terrestrial Reference System
HB Bottom-up Hierarchy
HT Top-down Hierarchy
JSON JavaScript Object Notation
NH Non-Hierarchical
NSR Number-of-Segmentation Ratio
OBIA Object-based Image Analysis
R-CNN Region—Convolutional Neural Networks
RGB Red Green Blue
SPR Segmentation Parameters Range
UAV Unmanned aerial vehicle
UTM Universal Transverse Mercator
VGG Visual Geometry Group
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