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Abstract: Recent advances in statistical inference have significantly expanded the toolbox of proba-
bilistic modeling. Historically, probabilistic modeling has been constrained to very restricted model
classes, where exact or approximate probabilistic inference is feasible. However, developments in
variational inference, a general form of approximate probabilistic inference that originated in statis-
tical physics, have enabled probabilistic modeling to overcome these limitations: (i) Approximate
probabilistic inference is now possible over a broad class of probabilistic models containing a large
number of parameters, and (ii) scalable inference methods based on stochastic gradient descent
and distributed computing engines allow probabilistic modeling to be applied to massive data sets.
One important practical consequence of these advances is the possibility to include deep neural
networks within probabilistic models, thereby capturing complex non-linear stochastic relationships
between the random variables. These advances, in conjunction with the release of novel probabilistic
modeling toolboxes, have greatly expanded the scope of applications of probabilistic models, and al-
lowed the models to take advantage of the recent strides made by the deep learning community.
In this paper, we provide an overview of the main concepts, methods, and tools needed to use deep
neural networks within a probabilistic modeling framework.

Keywords: deep probabilistic modeling; variational inference; neural networks; latent variable
models; Bayesian learning

1. Introduction

The seminal works about probabilistic graphical models (PGMs) [1,2] made proba-
bilistic modeling an indispensable tool for dealing with uncertainty within many different
fields, such as artificial intelligence [3], statistics [4], and machine learning [5,6]. PGMs have
been present in the literature for over 30 years and have become a well established and
highly influential body of research. At the same time, the problem of computing the
posterior probability over hidden quantities given the known evidence, also known as the
inference problem [1,2], has been the corner-stone, as well as the bottleneck that defines
of the feasibility and applicability of probabilistic modeling (Refs. [7,8] provide in-depth
introductions to inference in PGMs).

In the beginning, the first proposed inference algorithms [1,2] were able to compute
this posterior in an exact way by exploiting the conditional independence relationships
encoded by the graphical structure of the model. However, the set of supported probabil-
ity distributions was strongly restricted, and mainly multinomial and conditional linear
Gaussian distributions were used [2,9]. Researchers quickly realized that the high compu-
tational costs of these exact inference schemes made them inappropriate for dealing with
the complex stochastic dependency structures that arise in many relevant problems and,
consequently, approximate inference methods became a main research focus [8].
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Markov Chain Monte Carlo methods were one of the first approximate methods
employed for doing inference over complex PGMs [10–12]. These techniques are extremely
versatile and powerful, and they are able to approximate complex posterior distribu-
tions. However, they have serious issues wrt., e.g., the convergence of the underlying
Markov chain and poor mixing when approximating high dimensional distributions [10].
Computing such high dimensional posteriors started to become relevant in many domains,
specifically when researchers applied a Bayesian approach for learning the parameters of
their PGMs from data [5,6,13]. In this setup, the model parameters are treated as unob-
served random variables, and the learning problem therefore reduces to computing the
posterior probability over the parameters. For models with a large number of parameters,
the approach leads to high dimensional posteriors, where the application of Monte Carlo
methods becomes infeasible. These issues gave rise to the development of alternative
approximate inference schemes.

Belief propagation (BP) [1,14], and the closely related expectation propagation (EP)
algorithm [15], have been successfully used to overcome many of the limitations of Monte
Carlo methods. These deterministic approximate inference techniques can be imple-
mented using a message-passing scheme that takes advantage of the graph structure
of the PGM and, hence, the underlying conditional independence relationships among
variables. In terms of distributional assumptions, BP has mainly been used with multi-
nomial and Gaussian distributions. Although EP allows for a more general family of
distributions, it is restricted by the need to define a non-trivial quotient operation between
the involved densities. While these techniques overcame some of the difficulties of Monte
Carlo methods, they presented two new issues: (i) they do not guarantee convergence
to an approximate and meaningful solution; and (ii) do not scale to the kind of models
that appear in the context of Bayesian learning [6,13]. Again, these challenges motivated
researchers to look into alternative approximate inference schemes.

Variational methods [16] were firstly explored in the context of PGMs during the late
90s [17], inspired by their successful application to inference problems encountered in statis-
tical physics. Like BP and EP, they are deterministic approximate inference techniques. The
main innovation is to cast the inference problem as a minimization-problem with a well de-
fined loss function, namely the negative evidence lower bound (ELBO) function, which acts
as an inference proxy. In general, variational methods guarantee convergence to a local
maximum of this ELBO function and therefore to a meaningful solution. By transform-
ing the inference problem into a continuous optimization problem, variational methods
can take advantage of recent advances in continuous optimization theory. This was the
case for the widely adopted stochastic gradient descent algorithm, which has successfully
been used by the machine learning community to scale learning algorithms to big data
sets [18]. This same learning algorithm was adapted to variational inference in [19], giving
the opportunity to apply probabilistic modeling to problems involving massive data sets.
In terms of distributional assumptions, these variational inference methods were restricted
to the conjugate exponential family [20], where the gradient of the ELBO wrt. the model
parameters can be computed in closed-form [21]. Ad-hoc approaches were developed for
models outside this distributional family.

From the start of the field at end of the 1980’s and up to around 2010, probabilistic
models had mainly been focused on using distributions from the conjugate exponential
family, even though this family of distributions is only able to model linear relationships
between the random variables [21]. On the other hand, one of the reasons for the success
of deep learning methods (Ref. [22] provides a good introduction to the field) is the
ability of deep neural networks to model non-linear relationships among high-dimensional
objects, as is, e.g., observed between the pixels in an image or the words in a document.
Subsequent advances in variational inference [23,24] enabled the integration of deep neural
networks in probabilistic models, thus also making it possible to capture such non-linear
relationships among the random variables. This gave rise to a whole new family of
probabilistic models, which are often denoted deep generative models [25–28]. This new
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family of probabilistic models can encode objects like images, text, audio, and video
probabilistically, thus bringing many of the recent advances produced by the deep learning
community to the field of probabilistic modeling. The release of modern probabilistic
programming languages [29–33] relying on well established deep learning engines like
Tensorflow [34] and PyTorch [35] have also significantly contributed to the adoption of
these powerful probabilistic modeling techniques.

In this paper, we give a coherent overview of the key concepts and methods needed
for integrating deep neural networks in probabilistic models. We do not aim to provide a
detailed review of all the methods published in the last years about this topic like in other
recent reviews of, e.g., deep generative models [28] and variational inference methods [36].
In contrast, this paper introduces the basic concepts of variational inference methods
(Section 2) and neural networks (Section 3). By building on these concepts, in Section 4,
we start describing how probabilistic models with deep neural networks are represented in
terms of stochastic computational graphs, which is the key data structure for implementing
tractable inference methods. In Section 5, we give an overview of the main variational
methods used to make inference over this power class of probabilistic models and how
they are encoded in terms of a stochastic computational graph. Section 6 provides a brief
discussion of current software tools for dealing with probabilistic models containing deep
neural networks, all of them take the form a probabilistic programming language [37,38]
and are based on the variational inference framework presented here. This paper is also
accompanied by online material, where the running examples of the paper together with
other basic probabilistic models containing artificial neural networks are implemented to
illustrate the presented theoretical concepts and methods (https://github.com/PGM-Lab/
ProbModelsDNNs).

2. Probabilistic Models within the Conjugate Exponential Family
2.1. Latent Variable Models

The conjugate exponential family of distributions [20] covers a broad and widely used
range of probability distributions and density functions such as Multinomial, Normal,
Gamma, Dirichlet and Beta. They have been used by the machine learning community [5,6,8]
due to their convenient properties related to parameter learning and inference tasks.

In the following, we focus on probabilistic graphical models with structure as shown in
Figure 1, and where the full model belongs to the conjugate exponential family. These models
are also known as latent variable models (LVMs) [13,39]. LVMs are widely used as a tool for
discovering patterns in data sets. The model in Figure 1 captures “local” patterns, which are
specific to sample i of the data, using unobservable (or latent) random variables denoted by
Zi. “Global” patterns, those that are shared among all the samples of the data set, are modeled
by means of a set of latent random variables denoted by β. The observed data sample i,
Xi, is modeled as random variables whose distribution is conditioned on both the local (Zi)
and global (β) latent variables. α, a vector of fixed hyper-parameters, is also included in
the model.

βα

XiZi

i = 1, . . . , N

Figure 1. Structure of the probabilistic model examined in this paper, defined for a sample of size N.

While the model structure in Figure 1 at first sight can appear restrictive, it is in fact
quite versatile, and many books contain entire sections devoted to LVMs [5,6,8]. For in-
stance, LVMs include popular models like latent Dirichlet allocation (LDA) models used to
uncover the hidden topics in a text corpora [40], mixture of Gaussian models to discover
hidden clusters in data [5], probabilistic principal component analysis for dimensionality

https://github.com/PGM-Lab/ProbModelsDNNs
https://github.com/PGM-Lab/ProbModelsDNNs
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reduction [41], and models to capture drift in a data stream [42,43]. They have been used
for knowledge extraction from GPS data [44], genetic data [45], graph data [46], and so on.

The joint distribution of this probabilistic model factorizes into a product of local
terms and a global term as

p(x, z, β) = p(β)
N

∏
i=1

p(xi, zi|β),

where N is the number of samples. The local latent variables Zi are assumed to be condi-
tionally independent given the global latent variables β.

Another standard assumption in these models is known as the assumption of complete
conditional form [19]. Now, the distribution of one latent variable given the other variables
in the model can be expressed in exponential family form,

ln p(β|x, z) = hg(β) + ηg(x, z)Tt(β)− ag(ηg(x, z)),

ln p(zi|xi, β) = hl(zi) + ηl(xi, β)Tt(zi)− al(ηl(xi, β)).
(1)

where the scalar functions h·(·) and a·(·) are the base measures and the log-normalizers
functions, respectively; the vector functions η·(·) and t·(·) are the natural parameter and
the sufficient statistics vectors, respectively. The subscripts of these functions, here g for
“global” and l for “local”, are used to signify that the different functions differ between
variables. The subscripts will be removed when clear from context.

By conjugacy properties, the above assumptions also ensure that the conditional
distribution p(xi, zi|β) is in the exponential family,

ln p(xi, zi|β) = ln h(xi, zi) + βTt(xi, zi)− a(β), (2)

and, similarly, for the prior distribution p(β),

ln p(β) = ln hβ(β) + αTtβ(β)− aβ(α). (3)

Combining Equations (2) and (3), we see that the posterior p(β|x, z) remains in the
same distribution family as the prior p(β) (that is, we have conjugacy) and, in consequence,
the natural parameter of the global posterior ηg(x, z) can be expressed as

ηg(x, z) = α +
N

∑
i=1

t(xi, zi).

This representation of the complete conditional will be used later to derive the variational
inference scheme over this model.

Example 1. Principal component analysis (PCA) is a classic statistical technique for dimensionality
reduction. It defines a mapping between the d-dimensional data-representation of a point x and its
k-dimensional latent representation, z. The latent representation is known as the scores, and the
affine transformation is performed using the loading matrix β, which has dimensions k× d.

A simplified probabilistic view of PCA [41] is given in Algorithm 1, which provides pseudo-
code for the generative process of a probabilistic PCA model. This model is obviously an LVM, as the
loadings represented by β are global latent variables and zi is the vector of local latent variables
associated with the i-th element in the sample.

This model belongs to this conjugate exponential family with complete conditionals, because the
joint of p(x, z, β) is multivariate normal and, by standard properties of the multivariate normal
distribution, the conditional p(β|z, x) and p(zi|xi, β) are both conditional multivariate Gaussians.
A multivariate normal distribution with mean µ and covariance matrix Σ is a member of the

exponential family with natural parameters η =
[
Σ−1µ,−1/2Σ−1

]T

and sufficient statistics

t(x) = [x, xxT]T.
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Note that while this linear relationship between the latent and the observed variables is a strong
limitation of this model [47], it guarantees that the model belongs to the conjugate exponential
family. Using a non-linear relationship would put PCA outside this model family and would
prevent, as we will see in the next section, the use of efficient inference algorithms to calculate
p(β|z, x) and p(zi|xi, β). Similarly, if the variance parameter σx (see Algorithm 1) depends on the
latent variables zi, the model falls outside the conjugate exponential family.

Figure 2 illustrates the behavior of Probabilistic PCA as a feature reduction method on two
different data sets, Iris and (a reduced version of) MNIST. The data is projected from data-dimension
d = 4 (Iris) or d = 784 (MNIST) down into k = 2 latent dimensions. It can be seen that the method
captures some of the underlying structure in the Iris-data, and even generates a representation
where the three types of flower can be separated. On the other hand, the MNIST representation
appears less informative. Images of the three digits “1”, “2” and “3” are given to the PCA, but even
though these three groups of images are quite distinct, the learned representation is not able to
clearly separate the classes from one another. As we will see later in this paper, when we consider
a more expressive mapping between the local latent Zi and Xi (using artificial neural networks),
the latent representations will become more informative.

Algorithm 1 Pseudo-code of the generative model of a probabilistic PCA model.

# Sample from global random variables
βu,v ∼ N (0, 1) # Sample for u = 1, . . . , k, v = 1, . . . , d.
for i = 1, . . . , N do

# Sample from the local latent variables
zi ∼ N (0, I)
# Sample from the observed variables
xi ∼ N (βTzi, σ2

x I)
end for

1.6 1.4 1.2 1.0 0.8

0.2

0.1

0.0

0.1

0.2
versicolor
setosa
virginica

15 10 5 0
20

15

10

5

0
0
1
2

Figure 2. Two-dimensional latent representations resulting of applying a probabilistic PCA of: (Left) the iris dataset [48]
and (Right) a subset of 1000 instances from the MNIST dataset [49] corresponding to the handwritten digits 1, 2 and 3.

2.2. Mean-Field Variational Inference

The problem of Bayesian inference reduces to computing the posterior over the un-
known quantities (i.e., the global and local latent variables β and z, respectively) given
the observations,

p(β, z|x) = p(x|z, β)p(z|β)p(β)∫ ∫
p(x|z, β)p(z|β)p(β)dzdβ

.

Computing the above posterior is intractable for many interesting models, because it
requires to solve the complicated multidimensional integral in the denominator. As com-
mented in the introduction, variational inference (VI) methods are one of the best per-
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forming options to address this problem. In this section, we revise the main ideas behind
this approach.

Example 2. Computing p(β, z|x) for the probabilistic PCA model described in Example 1 is not
feasible since the integral

p(x) =
∫ ∫

p(x|z, β)p(z|β)p(β)dzdβ

is intractable. The source of the problem is that p(x|β) =
∫

p(x|z, β)p(z|β)dz is not in the
conjugate exponential family.

Variational inference is a deterministic technique that finds a tractable approxima-
tion to an intractable (posterior) distribution. We will use q to denote the approximation,
and use p to signify the true distribution (like p(β, z|x) in the example above). More specif-
ically, let Q denote a set of possible approximations q. Now, VI solves the following
optimization problem:

min
q∈Q

KL(q||p), (4)

where KL denotes the Kullback–Leibler divergence between two probability distributions.
For the specific problem at hand, this general formulation is more precisely written as

min
q(β,z)∈Q

KL(q(β, z)||p(β, z|x))

Notice that while q depends on the observations x, it is customary to make this implicit in
the notation, and write, e.g., q(β, z) instead of q(β, z|x). In practice, one will typically posit
that Q is a convenient distributional family indexed by some parameters, say θ, and the
minimization of Equation (4) amounts to finding the parameters θ? that minimize the
KL divergence.

Under the mean field variational approach, the approximation family Q is assumed
to fully factorize. Following the notation in [19], we have that

q(β, z|λ, φ) = q(β|λ)
N

∏
i=1

q(zi|φi), (5)

where λ parameterizes the variational distribution of β, while φi has the same role for the
variational distribution of Zi.

Furthermore, if the model is within the conjugate exponential family, each factor in the
variational distribution is assumed to belong to the same family of the model’s complete
conditionals (see Equation (1)),

ln q(β|λ) = h(β) + λTt(β)− a(λ),

ln q(zi|φi) = h(zi) + φT
i t(zi)− a(φi).

(6)

To solve the minimization problem in Equation (4), the variational approach exploits
the transformation

ln p(x) = L(λ, φ) + KL(q(β, z|λ, φ)||p(β, z|x)), (7)

where L can be expressed as

L(λ, φ) = Eq[ln p(x, Z, β)]−Eq[ln q(β, Z|λ, φ)]. (8)

L is of interest in its own right. Notice in particular that L in Equation (7) is a lower bound of
ln p(x) since the KL-divergence is non-negative. For this reason, L is usually referred to as
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the ELBO (evidence lower bound). Furthermore, as ln p(x) is constant in the optimization
wrt. q, minimizing the KL divergence in Equation (4) is equivalent to maximizing the lower
bound L. Variational methods maximize L using gradient based techniques.

The key advantage of having a conjugate exponential model is that the gradients of L
wrt. its parameters can always be computed in closed form [21]. This is important, as it
leads to a natural scheme in which the parameters are updated iteratively: For a parameter
θj, simply choose the value θ?j so that ∇θjL(θ)

∣∣∣
θ:θj=θ?j

= 0. In practice, it is beneficial to

use the natural gradient, which is the standard gradient pre-multiplied by the inverse of
the Fisher information matrix, to account for the Riemannian geometry of the parameter
space [50].

The gradients with respect to the variational parameters λ and φ can be computed
as follows,

∇nat
λ L(λ, φ) = α +

N

∑
i=1

EZi [t(xi, Zi)]− λ,

∇nat
φi
L(λ, φ) = Eβ[ηl(xi, β)]−φi,

(9)

where∇nat denotes natural gradients and EZi [·] and Eβ[·] denote expectations with respect
to q(zi|φi) and q(β|λ), respectively.

From the above gradients, we can derive a coordinate ascent algorithm to optimize
the ELBO function with the following coordinate ascent rules,

λ? = arg max
λ
L(λ, φ) = α +

N

∑
i=1

EZi [t(xi, Zi)],

φ?
i = arg max

φi
L(λ, φ) = Eβ[ηl(xi, β)].

(10)

By iteratively running the above updating equations, we are guaranteed to (i) mono-
tonically increase the ELBO function at every time step and (ii) to converge to a stationary
point of the ELBO function or, equivalently, the function minimizing Equation (4).

Example 3. For the PCA model in Example 1, the variational distributions are

q(β|µβ, Σβ) = N (β|µβ, Σβ),

q(zi|µzi
, Σzi ) = N (zi|µzi

, Σzi ).

Given the above variational family, the coordinate updating equations derived from Equation (10)
can be written, after some algebraic manipulations, as [5]

Σβ =

(
N

∑
i=1

E[ZiZT
i ] + σ2

x A

)−1

,

µβ =

[
N

∑
i=1

xiE[Zi]

]T

Σβ,

Σzi =
(

I + µT
βµβ/σ2

x

)−1
,

µzi
= Σzi µ

T
βxi/σ2

x ,

where A is a diagonal matrix with element at index (i, i) given by d/µT
β,iµβ,i. Again, we have a

set of closed-form equations that guarantees convergence to the solution of the inference problem.
We should note that this is possible due to the strong assumptions, imposed both on the probabilistic
model p and on the family of variational approximations Q.
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2.3. Scalable Variational Inference

Performing VI on large data sets (measured by the number of samples, N) raises
many challenges. Firstly, the model itself may not fit in memory, and, secondly, the cost
of computing the gradient of the ELBO with respect to λ linearly depends on the size of
the data set (see Equation (9)), which can be prohibitively expensive when N is very large.
Stochastic variational inference (SVI) [19] is a popular method for scaling VI to massive
data sets, and relies on stochastic optimization techniques [18,51].

We start by re-parameterizing the ELBO so that L is expressed only in terms of the
global parameters λ. This is done by defining

L(λ) = L(λ, φ?(λ)), (11)

where φ?(λ) is defined as in Equation (10), i.e., it returns a local optimum of the local
variational parameters φ for a given λ. Now L(λ) has the following form:

L(λ) = Eq[ln p(β)]−Eq[ln q(β|λ)]

+
N

∑
i=1

max
φi

{
Eq[ln p(xi, Zi|β)]−Eq[ln q(Zi|φi)]

} (12)

As shown in [19], we can compute the gradient of L(λ) by first finding φ?(λ), and then
compute the gradient w.r.t. λ while keeping φ?(λ) fixed (because∇λL(λ) = ∇λL(λ, φ?(λ))).
By exploiting properties of the conjugate exponential family, Ref. [19] computes the the natural
gradient with respect to λ in closed-form as

∇nat
λ L(λ) = α +

N

∑
i=1

Eq(zi |φ?
i )
[t(xi, Zi)]− λ.

The key idea behind SVI is to compute unbiased albeit noisy estimates of ∇nat
λ L,

denoted ∇̂nat
λ L, by randomly selecting a mini-batch of M data samples, and then define

∇̂nat
λ L(λ) = α +

N
M

M

∑
m=1

Eq(zi |φ?
i )
[t(xim , Zim)]− λ,

where im is the variable index form the subsampled mini-batch. It is immediate that
E[∇̂nat

λ L] = ∇
nat
λ L, hence the estimator is unbiased. Utilizing stochastic optimization

theory [51], the ELBO can be optimized by following noisy estimates of the gradient,

λt+1 = λt + ρt∇̂nat
λ L(λt), (13)

where the learning rate ρt should satisfy the Robbins–Monro conditions (A sequence
{ρt}∞

t=1 satisfies the Robbins–Monro conditions if ∑∞
t=1 ρt = ∞ and ∑∞

t=1 ρ2
t < ∞).

To choose the size of the mini-batch M, two conflicting issues should be considered:
smaller values of M (i.e., M� N) lead to a reduction in the computational complexity of
computing the gradient, while larger values of M (i.e., M� 1) reduce the variance of the
estimator. The optimal value for M is problem dependent [52].

Alternative ways to scale up variational inference in conjugate exponential models
involve the use of distributed computing clusters. For example, it can be assumed that the
data set is stored in a distributed way among different machines [53]. Then, the problem
of computing the ELBO’s gradient given in Equation (9) is scaled up by distributing the
computation of the gradient ∇nat

φi
L(λ, φ), so that each machine computes this term for

those samples that are locally stored. Finally, all the terms are sent to a master node, which
aggregates them and computes the gradient ∇nat

λ L(λ, φ) (see Equation (9)).
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Example 4. For Example 3, we detailed the variational updating equations for the probabilistic
PCA model introduced in Example 1. In order to update µ?

β, we need to iterate over the whole data
set. Furthermore, the number of local variational parameters µ?

zi
and Σ?

zi
is equal to the number of

data points. Therefore, if N is very large, the computation of these variational updating equations
becomes infeasible.

Following the methodology presented in this section, we can obtain a new set of variational
updating equations,

Σβ,t+1 =

[
(1− ρt)Σ

−1
β,t + ρt

(
N
M

M

∑
m=1

Et,im
[
Zim ZT

im

]
+ σ2

x A

)]−1

,

µβ,t+1 = (1− ρt)µβ,t+1 + ρt

(
N
M

M

∑
m=1

ximEt,im [Zim ]

)T

Σβ,t+1,

where {i1, . . . , iM} are the indexes of the mini-batch, and Et,im [·] denotes expectations when Zim
follows a multivariate normal distribution with parameters

Σt,zim
=

(
I + σ−2

x µT
β,tµβ,t

)−1
,

µt,zim
= Σt,zim

µT
β,txim /σ2

x ;

confer also Example 3. Using this set-up, we do not need to go thorough the full data set to get an
update on the global variational parameters.

2.4. Variational Message Passing

So far, we have treated the set of variables x, z and β as undividable blocks of variables
without internal structure. However, as we are dealing with flexible probabilistic graphical
models, these sets of variables can often encode conditional independencies that can be
further exploited when using VI. variational message passing (VMP) [21] is a VI scheme
which readily exploits such conditional independencies when performing approximate
inference. Now, Zi and Xi, the set of latent and observable variables associated to the i-th
data sample, are separated into individual variables Zi = {Zi,1, . . . , Zi,K}, and similarly for
Xi. Additionally, β is regarded as a set of J separate random variables β = {β1, . . . , β J}.
Now, under the mean field assumption, the variational distribution is expressed as

q(β, z|λi, φ) =
J

∏
j=1

q(β j|λj)
N

∏
i=1

K

∏
k=1

q(zi,k|φi,k).

Using the VMP scheme, the gradients wrt. the variational parameters can be computed
using a message-passing algorithm which exploits the conditional independencies between
the variables in Xi, Zi and β. The flow of messages is similar to the one employed by
loopy belief propagation [1]. The messages are expected sufficient statistics of the variables
involved, and since the model is in the conjugate exponential family, both the messages
and the update rules can be expressed analytically, leading to parameter updates akin to
Equation (10); cf. [21] for details.

3. Deep Neural Networks and Computational Graphs
3.1. Deep Neural Networks

An artificial neural network (ANN) [54] can be seen as a deterministic non-linear
function f (· : W) parametrized by a matrix W . An ANN with L hidden layers defines a
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mapping from a given input x to a given output y. This mapping is built by the recursive
application of a sequence of (non-)linear transformations,

h0 = r0(W T
0 x),

. . .

hl = rl(W
T
l hl−1), (14)

. . .

y = rL(W T
L hL−1),

where rl(·) defines the (non-linear) activation function at the l-th layer; standard activation
functions include the soft-max function and the relu function [55,56]. Wl are the parameters
defining the linear transformation at the l-th layer, where the dimensionality of the target
layer is defined by the size of Wl . Deep neural networks (DNNs) is a renaming of classic
ANNs, with the key difference that DNNs usually have a higher number of hidden layers
compared to what classical ANNs used to have.

Learning a DNN from a given data set of input-output pairs (x, y) reduces to solving
the optimization problem

W? = arg min
W

N

∑
i=1

`(yi, f (xi; W)), (15)

where `(yi, ŷi) is a loss function which defines the quality of the model, i.e, how well the
output ŷi = f (xi; W) returned by the DNN model matches the real output yi. This continu-
ous optimization problem is usually solved by applying a variant of the stochastic gradient
descent method, which involves the computation of the gradient of the loss function with
respect to the parameters of the ANN, ∇W `(yi, f (xi; W)). The algorithm for computing
this gradient in an ANN is known as the back-propagation algorithm, which is based on the
recursive application of the chain-rule of derivatives and typically implemented based in
the computational graph of the ANN. A detailed and modern introduction to this field is
provided in [22].

3.2. Computational Graphs

Computational graphs [34,35,57] have been extremely useful when developing algo-
rithms and software packages for neural networks and other models in machine learning.
The main idea of a computational graph is to express a (deterministic) function, as is the
case of a neural network, as an acyclic directed graph defining a sequence of computational
operations. A computational graph is composed of input and output nodes as well as oper-
ation nodes. The data and the parameters of the model serve as input nodes, whereas the
operation nodes (represented as squares in the subsequent diagrams) correspond to the
primitive operations of the network and also define the output of the network. The directed
edges in the graph specify the inputs of each node. Input nodes are usually defined over
tensors (n-dimensional arrays) and operations are thus similarly defined over tensors,
thereby also enabling the computational graph to, e.g., process batches of data. Figure 3
shows a simple example of a computational graph.

With computational graphs, simple/primitive functions can be combined to form
complex operations, and the vast majority of current neural networks can be defined using
computational graphs. However, the key strength of computational graphs is that they al-
low for automatic differentiation [58]. As shown in the previous section (see Equation (15)),
most neural network learning algorithms translate to a continuous optimization problem
of a differentiable loss function often solved by a gradient descent algorithm. Automatic
differentiation is a technique for automatically computing all the partial derivatives of
the function encoded by a computational graph: once the graph has been defined using
underlying primitive operations, derivatives are automatically calculated based on the
“local” derivatives of these operations and the recursive application of the chain rule of
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derivatives, incurring only a small computational overhead. Before the use of computa-
tional graphs in deep learning, these derivatives had to be computed manually, giving rise
to a slow and error-prone development process.

w 10

3 ∗ + f

Figure 3. Example of a simple Computational Graph. Squared nodes denote operations, and the
rest are input nodes. This computational graph encodes the operation f = 3 · w + 10, where w is a
variable wrt. which we can differentiate.

Example 5. Figure 4 provides an example of a computational graph encoding a neural network
with x as input, ŷ as output, and two hidden layers. This computational graph also encodes the loss
function `(y, ŷ). As computational graphs can be defined over tensors, the above computational
graph can encode the forward (and backward) pass of the neural network for a whole data batch
x, and thereby also provide the loss (and the gradient) for this set of data samples. Algorithm 2
shows the pseudo-code description for defining and learning this neural network using standard
gradient descent.

Algorithm 2 Pseudo-code of the definition and learning of a simple neural network.

input x, y the labels.
# Define the computational graph encoding the ANN and the loss function
W0, W1, W2 = Parameters()
h0 = relu(W T

0 x)
h1 = relu(W T

1 h0)

ŷ = relu(W T
2 h1)

` = ||ŷ− y||2
# Follow the gradients until convergence.
W = (W0, W1, W2)
repeat

W = W − ρ∇W `
until convergence

W0 W1 W2 y

x h0 = relu(W T
0 x) h1 = relu(W T

2 h0) ŷ = relu(W T
2 h1) ` = ||ŷ− y||2

Figure 4. Example of a simple computational graph encoding a neural network with two hidden
layers and the squared loss function. Note that each operation node encapsulates a part of the CG
encoding the associated operations, we do not expand the whole CG for the sake of simplicity.

4. Probabilistic Models with Deep Neural Networks
4.1. Deep Latent Variable Models

LVMs have usually been restricted to the conjugate exponential family because, in this
case, inference is feasible (and scalable) as we showed in Section 2. But recent advances
in VI (which will be outline in Section 5) have enabled LVMs to be extended with DNNs.
Variational auto-encoders (VAE) [23,59] are probably the most influential models combining
LVMs and DNNs. VAEs extend the classical technique of PCA for data representation in
lower-dimensional spaces. More precisely, the probabilistic version of the PCA model [41]
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is extended in [23], where the relationship between the low-dimensional representation
and the observed data is governed by a DNN, i.e., a highly non-linear function, as opposed
to the standard linear transformation in the basic version of the PCA model. These models
are able to capture more compact low-dimensional representations, especially in cases
where data is high-dimensional but “lives” in a low-dimensional manifold [60]. This is, e.g.,
the case for image data [23,61–64], text data [65], audio data [66], chemical molecules [67],
to name some representative applications of this technique. We note that, in this section
and in the following ones, we will use VAEs as a running example illustrating how DNNs
can be used in probabilistic modeling.

VAEs have also given rise to a plethora of extensions of classic LVMs to their deep
counterpart. For instance, different examples of this approach are given in [68], along with
extensions of Gaussian mixture models, latent linear dynamical systems and latent switch-
ing linear dynamical systems with the non-linear relationships modeled by DNNs. Hidden
semi-Markov models are extended with recurrent neural networks in [69]. Extensions
of popular LDA models [40] for uncovering topics in text data can be found in [70,71].
Many other works are following the same trend [72–75].

Example 6. VAEs are widely adopted LVMs containing DNNs [23]. Algorithm 1 provides a
simplified pseudo-code description of the generative part of a VAE model. It can also be seen as a
non-linear probabilistic PCA model, where the non-linearity is included in the form of an artificial
neural network.

This model is quite similar to the PCA model presented in Example 1. The main difference
comes from the conditional distribution of X. In the PCA model, the mean of the normal distribution
of X linearly depends on Z through β. In the VAE model, the mean depends on Z through a DNN
parametrized by β. This DNN is also known as the decoder network of the VAE [23].

Note that some formulations of this model also include another DNN component, which
connects Z with the variance σ2 of the normal distribution of X; for the sake of simplicity, we have
not included this extension in the example.

Figure 5 experimentally illustrates the advantage of using a non-linear PCA model over the
classic PCA model. As can be seen, the non-linear version separates more clearly the three digits
than the linear model did. We shall return to this example in Section 5.2, where we will introduce
the so-called encoder network used for inference.

Algorithm 1 Pseudo-code of the generative model of a variational auto-encoder (or non-linear probabilistic PCA).

# Define the global parameters
α0, β0, α1, β1 ∼ N (0, I)
for i = 1, . . . , N do

# Define the local latent variables
Zi ∼ N (0, I)
# Define the ANN with a single hidden layer hi
hi = relu(βT

0 zi + α0)

µi = βT
1 hi + α1

# Define the observed variables
Xi ∼ N (µi, σ2 I)

end for

LVMs with DNNs can also be found in the literature under the name of deep generative
models [25–28]. They generate data samples using probabilistic constructs that include
DNNs. This new capacity has also resulted in substantial impact within the deep learning
community because it has opened up for the possibility of dealing with unsupervised
learning problems, e.g., in the form of generative adversarial nets [27]. This should be seen
in contrast to the classic deep learning methods, which are mainly focused on supervised
learning settings. In any case, this active area of research is out of the scope of this paper
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and contains many alternative models, which do not fall within the category of the models
explored in this paper (Ref. [76] provides a recent survey of this field).
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Figure 5. Two-dimensional latent representations of the the MNIST dataset resulting of applying: (Left) a standard probabilistic PCA
(reproduced from Figure 2 to ease comparison), and (Right) a non-linear probabilistic PCA with a ANN containing a hidden layer of
size 100 with a relu activation function.

4.2. Stochastic Computational Graphs

The key data structure for representing probabilistic models with deep neural net-
works is the so-called stochastic computational graph (SCG) [77]. SCGs extend standard
computational graphs (defined Section 3.2 with stochastic nodes (represented as circles in
the subsequent diagrams). The probability distributions associated with stochastic nodes
are defined conditionally on their parents and enable the specification of complex functions
involving expectations over random variables. Figure 6 (Left) shows an example of a sim-
ple SCG involving an expectation over a random variable Z. Modern PPLs support a wide
and diverse range of probability distributions for defining SCGs [78]. These probability
distributions are defined over tensor objects to seamlessly accommodate the underlying
CGs, which define operations over tensor objects too.

ĥ = 1
k ∑k

i=1(z
?
i − 5)2, Z?

i ∼N (µ, 1)h = EZ∼N (µ,1)[(Z− 5)2]

(Z− 5)2 (z? − 5)2avg

h ĥ

Z 5 Z z? 5

µ µ

Figure 6. (Left) A stochastic computational graph encoding the function h = EZ[(Z − 5)2],
where Z ∼ N(µ, 1). (Right) Computational graph processing k samples from Z and producing
ĥ, an estimate of EZ[(Z− 5)2].

We note that SCGs are not directly implemented within PPLs, because computing the
exact expected value of a complex function is typically infeasible. However, they are indi-
rectly included through the use of a standard computational graph engine: Each stochastic
node, Z, is associated with a tensor, z?, which represents a (set of) sample(s) from the
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distribution associated with z, and the generated samples can thus be fed to the underlying
computational graph through the tensor z?. Hence, SCGs can be simulated by sampling from
the stochastic nodes and processing these samples by a standard CG. Figure 6 illustrates
how SCG can be simulated using standard CGs. Note that CGs are designed to operate
efficiently with tensors (current toolboxes like TensorFlow exploit high-performance com-
puting hardware such as GPUs or TPUs [34]), and it is therefore much more efficient to run
the CG once over a collection of samples, rather than running the CG multiple times over a
single sample.

In this way, SCGs can be used to define and support inference and learning of general
probabilistic models, including the ones referenced in Section 4.1. More generally, all
the concepts outlined in this paper apply to any probabilistic model that can be defined
by means of an SCG or which can be compiled into an equivalent SCG representation.
For instance, the following model specification (illustrated by the top part in Figure 7)
relating Z with the natural parameters ηx of x can be equivalently represented by the SCG
illustrated in the lower part of Figure 7.

ln p(β) = ln h(β) + αTt(β)− ag(α),

ln p(zi|β) = ln h(zi) + ηz(β)Tt(zi)− az(ηz(β)),

h0 = r0(zT
i β0),

. . .

hl = rl(h
T
l−1βl−1),

. . .

hL = rL(hT
L βL),

ln p(xi|zi, β) = ln h(xi) + ηx(hL)
Tt(xi)− ax(ηx(hL)). (16)

β

XiZi

i = 1, . . . , N

z h0 · · · hL−1 hL ηx x

βz β0 βL−1 βL

Figure 7. The top part depicts a probabilistic graphical model using plate notation [8]. The lower part depicts an abstract
representation of a stochastic computational graph encoding the model, where the relation between z and x is defined by a
DNN with L + 1 layers. See Section 4 for details.

From this example, we again see the main difference with respect to standard LVMs
(see Section 2.1) is the conditional distribution of the observations xi given the local hidden
variables Zi and the global parameters β, which is here governed by a DNN parameterized
by β.

5. Variational Inference with Deep Neural Networks

Similarly to standard probabilistic models, performing variational inference in deep
latent variable models (as described in the previous section) also reduces to maximizing
the ELBO function L(λ, φ) given in Section 2.2 (Equation (8)); recall that this is equivalent
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to minimizing the KL divergence between the variational posterior q(β, z|λ, φ) and the
target distribution p(β, z|x). However, as was also noted in the previous section, when the
probabilistic model contains complex constructs like DNNs, it falls outside the conjugate
exponential family and the traditional VI methods, tailored to this specific family form,
can therefore not be applied.

In terms of the variational distribution, we will still assume the same factorization
scheme defined in Equation (5) for the deep latent variable models considered in this
section. However, as we will see below, we need not adopt the conjugate models’ strong
restrictions on the variational approximation family (see Equation (6)). Instead, the only
(and much weaker) restriction that we will impose is that (i) the log probability of the
variational distribution, ln q(β, z|λ, φ), can be represented by a computational graph (and,
as a consequence, that it is differentiable wrt. λ and φ) and (ii) that we can sample from
the variational distribution q(β, z|λ, φ). Depending on the specific method being applied,
additional requirements may be introduced.

In the rest of the section, we will give an overview of the two main techniques em-
ployed in modern variational methods to perform inference in probabilistic models with
deep neural networks. In Section 5.1, we provide an overview to black-box variational
inference [24,79,80] whose main purpose is the computation of the gradient of the ELBO.
Within this section, we described the two main approaches for computing this gradient
using Monte Carlo methods. Section 5.2 introduces amortized variational inference [81,82],
a widely used technique for dealing with probabilistic models containing local latent
variables [23]. We end this section by discussing the pros and cons of each of the pre-
sented methods.

5.1. Black Box Variational Inference

For the sake of presentation, we reparameterize the ELBO function with r = (β, z)
and ν = (λ, φ) and define g(r, ν) = ln p(x, r)− ln q(r|ν). With this notation the ELBO
function L of Equation (8) can then be expressed as

L(ν) = ER[g(r, ν)] =
∫

q(r|ν)g(r, ν)dr, (17)

from which we see that the ELBO function can easily be represented by an SCG as shown
in Figure 8. If the SCG in Figure 8 did not include stochastic nodes (thus corresponding
to a standard CG), we could, in principle, perform variational inference (maximizing
L(ν) wrt. ν) by simply relying on automatic differentiation and a variation of gradient
ascent. However, optimizing over SCGs is much more challenging because automatic
differentiation does not readily apply. The problem is that the variational parameters ν
(wrt. which we should differentiate) also affects the expectation inherent in the ELBO
function, see Equation (17):

∇νL = ∇νER[g(r, ν)]. (18)

In the case of conjugate models, we can take advantage of their properties and derive closed-
form solutions for this problem, as detailed in Section 2.2. In general, though, there are no
closed-form solutions for computing gradients in non-conjugate models; a simple concrete
example is the Bayesian logistic regression model [6] (p. 756).

r g

ν x

Figure 8. SCG representing the ELBO function L(ν). r is distributed according to the variational
distribution, r ∼ q(r|ν).
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In this section, we provide two generic solutions for computing the gradient of the
ELBO function for probabilistic models including DNNs. Both methods directly rely on the
automatic differentiation engines available for standard computational graphs. In this way,
the methods can be seen as extending the automatic differentiation methods of standard
computational graphs to SCGs, giving rise to a powerful approach to VI for generic
probabilistic models. The main idea underlying both approaches is to compute the gradient
of the expectation given in Equation (18) using Monte Carlo techniques. More precisely,
we will show how we can build unbiased estimates of this gradient by sampling from the
variational (or an auxiliary) distribution without having to compute the gradient of the
ELBO analytically [24,79,80].

5.1.1. Pathwise Gradients

The idea of this approach is to exploit reparameterizations of the variational distribu-
tion in terms of deterministic transformations of a noise distribution [83,84]. A distribution
q(r|ν) is reparameterizable if it can be expressed as

ε ∼ q(ε),

r = t(ε; ν),
(19)

where ε does not depend on parameter ν and t(·; ν) is a deterministic function which
encapsulates the dependence of r with respect to ν. This transforms the expectation over r
to an expectation over ε. By exploiting this reparameterization property, we can express
the gradient of L in Equation (18) as [23,85,86],

∇νL(ν) = ∇νER[g(r, ν)]

= ∇νEε[g(t(ε; ν), ν)]

= Eε[∇νg(t(ε; ν), ν)]

= Eε

[
∇tg(t(ε; ν), ν)T∇νt(ε; ν) +∇νg(t(ε; ν), ν)

]
= Eε

[
∇r g(r, ν)T∇νt(ε; ν) +∇νg(r, ν)

]
= Eε

[
∇r g(r, ν)T∇νt(ε; ν)

]
.

(20)

In the last step we have exploited that Eε[∇νg(r, ν)] = 0. To see this, we first utilize that

Eε[∇νg(r, ν)] =
∫

q(ε)∇νg(r, ν)dε =
∫

q(r|ν)∇νg(r, ν)dr = ER[∇νg(r, ν)].

Next, as g(r, ν) = ln p(x, r)− ln q(r|ν), it follows that ∇νg(r, ν) = −∇ν ln q(r|ν). Finally,
since ER[∇ν ln q(r|ν)] = 0, we have that Eε[∇νg(r, ν)] = 0.

Note that once we employ this reparameterization trick, the gradient enters the
expectation, and afterwards we simply apply the chain rule of derivatives. Here, it is also
worth noticing that the gradient estimator is informed by the gradient with respect to g,
which gives the direction of the maximum posterior mode (we shall return to this issue in
Section 5.1.2).

Example 7. The normal distribution is the best known example where this technique can be
applied: a variable W ∼ N (µ, σ2) can be reparameterized as ε ∼ N (0, 1) and W = µ + σε. So,
by exploiting this reparameterization, we can compute the gradient of stochastic functions as the
one defined in Figure 6, i.e., compute ∇µEZ[(Z− 5)2], where Z ∼ N (µ, 1),

∇µEZ

[
(Z− 5)2

]
= Eε

[
∇µ(µ + ε− 5)2

]
= Eε[2(µ + ε− 5)] = 2(µ− 5).

In practice, this expectation is approximated using Monte Carlo sampling,
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∇µEZ[(Z− 5)2] ≈ 1
K

K

∑
i=1

2(µ + εi − 5) εi ∼ N (0, 1).

In terms of SCGs, this reparameterization trick can be captured by the transformation
of the (original) SCG shown in Figure 8 to the SCG shown in Figure 9. For the trans-
formed SCG, the underlying CG (exemplified in Figure 6) can be readily applied and from
automatic differentiation we obtain unbiased estimates of the gradients of the ELBO.

ε t g

ν x

Figure 9. Reparameterized SCG representing the ELBO function L(ν).

More generally, and pertinently, through the reparameterization trick we can define
a CG representation of the ELBO function L, which in turn can be used for computing a
Monte Carlo estimation of L,

L̂ =
1
K

K

∑
i=1

ln p(x, t(εi; ν))− ln q(t(εi; ν)|ν) εi ∼ q(ε), (21)

and the associated automatic differentiation engine of the CG can be used for finding the
derivatives of L (cf. Equation (20)). The CG thus also serves as a generic tool for abstracting
away and hiding the details of the gradient calculations from the user.

The applicability of the reparameterization trick only extends to distributions that can
be expressed in the form shown in Equation (19). Fortunately, [87] recently introduced an
implicit reparameterization approach, which apply to a wider range of distributions includ-
ing Gamma, Beta, Dirichlet and von Mises (i.e., distributions not covered by Equation (19)).
This method computes the gradient of L as

∇νL(ν) = −ER

[
∇r g(r, ν)T∇νF(r; ν)

q(r|ν)

]
, (22)

where F(r; ν) is the cumulative distribution function of q(r|ν). Other similar approaches
have been proposed for models with discrete latent random variables [88,89].

The above family of gradient estimators usually have lower variance than other
methods [44] and, in many cases, they can even provide good estimates with a single Monte
Carlo sample. However, the estimators only apply to distributions that support explicit or
implicit reparameterizations. Although many distributions provide this support, there are
also other relevant distributions, such as the multinomial distribution, which cannot be
handled using either of the reparameterization techniques.

Example 8. We end this sub-section with our running example about VAEs. In this case, we con-
sider a VAE without an encoder network; the encoder network will be discussed in the Section 5.2.
This model can thus be seen as a non-linear PCA model (the non-linearity is defined in terms of an
ANN) as described in Example 6. For this model, the ELBO function can be expressed as

L(λ, φ) = Eq[ln p(x|z, β)] +Eq[ln p(z)] +Eq[ln p(β)]

−Eq[ln q(z|φ)−Eq[ln q(β|λ)].

Algorithm 2 gives a pseudo-code specification of the SCG defining the ELBO function using
the reparameterization trick; here we only use a single sample from the variational distribution
q(β, Z|λ, φ) in reparameterized form. The definition of the ELBO function L is introduced together
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with the specification of the decoder network, hence gradients wrt. the variational parameters can be
readily computed and optimized using standard algorithms.

Algorithm 2 Pseudo-code for defining the ELBO function L̂, and by translation the SCG, of a VAE with no encoder
network (see Algorithm 1). We use a single sample to compute the Monte Carlo estimate of L̂ (see Equation (21)).
ln pN (·|·, ·) denotes the log-probability function of a normal distribution.

input Data: xtrain, Variational Parameters: λ, φ
# Sample (using reparameterization) from q(β|λ) and q(z|φ).
εα0 , εβ0 , εα1 , εβ1 , εz ∼ N (0, I)
α0 = λα0,µ + εα0 λα0,σ, β0 = λβ0,µ + εβ0 λβ0,σ
α1 = λα1,µ + εα1 λα1,σ, β1 = λβ1,µ + εβ1 λβ1,σ
z = φz,µ + εzφz,σ
# Pass the variational sample z through the decoder ANN
h0 = relu(zβT

0 + α0)

µx = h0βT
1 + α1

# Define the “energy part” of the ELBO function Eq[ln p(xtrain, z, α, β)].
L = ln pN (xtrain|µx, σ2

x I)
L = L+ ln pN (z|0, I) + ∑i ln pN (αi|0, I) + ln pN (βi|0, I)
# Define the “entropy part” of the ELBO function Eq[ln q(z, α, β)].
L = L− ln pN (z|φz,µ, φ2

z,σ)

L = L−∑i ln pN (αi|λαi ,µ, λ2
αi ,σ)−∑i ln pN (βi|λβi ,µ, λ2

βi ,σ)
return L

5.1.2. Score Function Gradients

This is a classical method for gradient estimation, also known as the REINFORCE
method [24,90,91]. It builds on the following generic transformations to compute the
gradient of an expected value,

∇νL(ν) = ∇ν

∫
q(r|ν)g(r, ν)dr

=
∫

g(r, ν)∇νq(r|ν) + q(r|ν)∇νg(r, ν)dr

=
∫

g(r, ν) q(r|ν)∇ν ln q(r|ν) + q(r|ν)∇νg(r, ν)dr

= ER[g(r, ν)∇ν ln q(r|ν) +∇νg(r, ν)].

(23)

Following the discussion surrounding the derivation of Equation (20), we have that
ER[∇νg(r, ν)] = ER[−∇ν ln q(r|ν)] = 0 and the gradient of the ELBO therefore sim-
plifies to

∇νL(ν) = ER[g(r, ν)∇ν ln q(r|ν)]. (24)

The term ∇ν ln q(r|ν) (the gradient of the log of a probability distribution) is referred to as
the score function, hence the name of the method.

From the above equation, we obtain unbiased estimates of the gradient by sampling
from q(r|ν). This method is general in the sense that it only requires being able to evalu-
ate the function g(r, ν) and computing the score function, ∇ν ln q(r|ν). In consequence,
the method applies to a wide range of models, including those covered by the pathwise
gradient estimator. However, in practice, the score function gradient often yields high
variance estimates when the dimensionality of ν is relatively high. This is accentuated by
the gradient estimator only being guided by the gradient of the (log of the) variational
distribution and not the likelihood term of the model (which was the case for the path-
wise gradient estimator). To reduce the variance, one often relies on variance reduction
techniques for improved performance [24,86,92,93], but, still, in a practical setting the
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score function estimator mostly serve as the fall-back method when the pathwise gradient
estimator is not applicable.

Example 9. We revisit Example 7. We have to compute the gradient of an expectation∇µEZ[(Z− 5)2],
where Z ∼ N (µ, 1). By applying the score function gradient estimator, we get

∇µEZ[(Z− 5)2] = EZ[(Z− 5)2∇µ ln N(Z|µ, 1)]

= EZ

[
(Z− 5)2∇µ

(
−1

2
(Z− µ)2

)]
= EZ[(Z− 5)2(Z− µ)],

which can be approximated by Monte Carlo sampling,∇µEZ[(Z− 5)2] ≈ 1
K ∑K

i=1(zi − 5)2(zi − µ),
where zi are samples fromN (µ, 1).

In [94], it is detailed an elegant implementation of this technique using SCGs.

5.2. ELBO Optimization with Amortized Variational Inference

In principle, we can address the optimization of the ELBO function using an off-the-
shelf gradient ascent algorithm combined with the techniques presented in the previous
section. The ELBO function L(λ, φ), in this case, is again expressed in terms of global
variational parameters λ (defining the variational distribution over the global latent vari-
ables q(β|λ)) and in terms of local variational parameters φ (defining the variational
distribution over the local latent variables q(zi|φi)); we implicitly assume that the vari-
ational posterior fully factorizes, as shown in Equation (5), although this assumption is
not crucial for the discussion below. Unfortunately, as the number of local variational
parameters φ = (φ1, . . . , φN) grows with the size N of the data set, straight-forward
optimization using gradient ascent quickly becomes computationally infeasible as the size
of the data grows.

To address this issue we can rely on some of the tricks detailed in Section 2.3. First,
we can express L(λ, φ) only in terms of λ, as previously shown in Equations (11) and (12),

L(λ) = Eq[ln p(β)]−Eq[ln q(β|λ)] +
N

∑
i=1

max
φi

(Eq[ln p(xi, Zi|β)]−Eq[ln q(Zi|φi)]).

As done in Section 2.3, we can get unbiased noisy estimates of this ELBO by data
subsampling. If I is a randomly chosen data index, I ∈ {1, . . . , N}, and

LI(λ) = Eq[ln p(β)]−Eq[ln q(β|λ)] + N max
φI

(Eq[ln p(xI , ZI |β)]−Eq[ln q(ZI |φI)]),

then the expectation of LI(λ) is equal to L(λ) [19] and computing the gradient of LI(λ)
wrt. λ will give us a noisy unbiased estimate. However, in this case, we require solving
an maximization problem for each subsampled data point (i.e., maxφI ). In the case of
conjugate exponential models, this inner maximization step can be computed in closed
form as shown in Equation (10). However, for models outside the conjugate exponential
family, we would have to resort to iterative algorithms, based on the methods described in
Section 5.1, making the approach infeasible.

Amortized inference [81,82] aims to address this problem by learning a mapping
function, denoted by s, between xi and φi parameterized by θ, i.e., φi = s(xi|θ). Hence,
LI(λ) is expressed as LI(λ, θ),

LI(λ, θ) = Eq[ln p(β)]−Eq[ln q(β|λ)]
+ N ·Eq[ln p(xI , ZI |β)]− N ·Eq[ln q(ZI |xI , φI = s(xi|θ))].
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The parameter vector θ is shared among all the data points and does not grow with
the data set as was previously the case when each data point was assigned its own local
variational parameters, φ = {φ1, . . . , φN}. On the other hand, amortized inference as-
sumes that the parameterized function s is flexible enough to allow for the estimation of
the local variational parameters φi from the data points xi. Thus, the family of variational
distributions defined by this technique,

q(β, z|x, λ, θ) = q(β|λ)
N

∏
i=1

q(zi|xi, φi = s(xi|θ)),

is more restricted than the one defined in Equation (5), which directly depends of λ
and φ. So, there is a trade-off between flexibility in the variational approximation and
computational efficiency when applying amortized inference techniques.

Note that the amortized function greatly simplifies the use of the model when making
predictions over unseen data x′. If we need the posterior p(z′|x′) over a new data sample
x′ (e.g., for dimensionality reduction when using a VAE model), we just need to invoke the
learnt amortized inference function to recover this posterior, q(z′|φ = s(x′|θ?)).

An unbiased estimate of the gradient of LI(λ, θ) wrt to λ and θ can be computed
using the techniques described in the previous section, as both affect an expectation term.
Note that the unbiased estimate of the gradient of LI(λ, θ) is also an unbiased estimate of
the gradient of L(λ, θ). Similar to Equation (13), the ELBO can be maximized by following
noisy estimates of the gradient,

λt+1 = λt + ρt∇̂λLIt(λt, θt),

θt+1 = θt + ρt∇̂θLIt(λt, θt)
(25)

where It are the indexes of randomly subsampled data points at time step t.

Example 10. We finally arrive at the original formulation of VAEs, which includes an amortized
inference function linking the data samples with the latent variables Z. This amortized function
takes the form of a neural network and is referred to as the encoder network because it translates an
observation X to (a distribution over) its hidden representation Z; recall that the decoder network
(part of the model specification) links the latent variables Z to (a distribution over) the observable
variables X. The existence of these two networks, the encoder and the decoder, establishes a direct
link with the previously known auto-encoder networks [95]. In this example, both the encoder and
the decoder network have a single hidden layer with a relu activation function.

Algorithm 3 shows pseudo-code defining the ELBO function associated with this model.
The model falls outside the conjugate exponential family, but due to distributional assumptions of
the VAE’s we can estimate the gradients by applying the reparameterization trick (see Section 5.1.1).
Specifically, from the encoder network, we sample from the variational distribution over ZI given
XI (in reparameterized form), and at the end of the algorithm, we define the ELBO function LI ,
which includes the definition of the decoder network. As for the previous example, the pseudo-code
specification directly translates into a computational graph. From this representation, the gradients
wrt. the variational parameters can be readily computed and the ELBO function optimized using,
in this case, stochastic gradient ascent or some of a variation hereof.

Figure 10 shows the two-dimensional latent embedding found by the non-linear probabilistic
PCA (Left; reproduced from Figure 5) and VAE (Right) for the same reduced MNIST data set used
previously. The three classes are clearly separated in latent space for both models.
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Figure 10. Two-dimensional latent representation of the the MNIST dataset resulting of applying:
(Left) a non-linear probabilistic PCA, and (Right) a VAE. The ANNs of the non-linear PCA and the
ones defining the VAE’s decoder and encoder contain a single hidden layer of size 100.

Algorithm 3 Pseudo-code for the estimation of the ELBO function LI of a Variational Auto-encoder. We use a single
sample to compute the Monte Carlo estimation of L̂ (see Equation (21)). ln pN (·|·, ·) denotes the log-probability function
of a Normal distribution.
input Data: xI a single data-sample, N size of the data, Variational Parameters: λ, θ

# Sample (using reparameterization) from q(β|λ).
εθ0 , εθ′0

, εθ1 , εθ′1
∼ N (0, I)

θ0 = λθ0,µ + εθ0 λθ0,σ, θ′0 = λθ′0,µ + εθ′0
λθ′0,σ

θ1 = λθ1,µ + εθ1 λθ1,σ, θ′1 = λθ′1,µ + εθ′1
λθ′1,σ

# Pass x through the encoder network and sample zI ∼ q(z|φ = s(xI |θ))
hz,0 = relu(xIθ

T
0 + θ′0)

hz,1 = hz,0θT
1 + θ′1

# hz,1 contains both the mean, hz,1,µ, and the scale, hz,1,σ.
εz ∼ N (0, I)
zI = hz,1,µ + εzhz,1,σ
# Pass the variational sample z through the decoder network
εα0 , εβ0 , εα1 , εβ1 ∼ N (0, I)
α0 = λα0,µ + εα0 λα0,σ, β0 = λβ0,µ + εβ0 λβ0,σ
α1 = λα1,µ + εα1 λα1,σ, β1 = λβ1,µ + εβ1 λβ1,σ

h0 = relu(zI βT
0 + α0)

µx = h0βT
1 + α1

# Define the “energy part” of the ELBO function
LI = N · ln pN (xI |µx, σ2

x I) + N · ln pN (zI |0, I)
LI = LI + ∑i ln pN (αi|0, I) + ln pN (βi|0, I)
# Define the “entropy part” of the ELBO function
LI = LI − N · ln pN (zI |h′1,µ, h′1,σ)

LI = LI −∑i ln pN (αi|λαi ,µ, λ2
αi ,σ) + ln pN (βi|λβi ,µ, λ2

βi ,σ)
return LI

5.3. Discussion

Although the different variational techniques we have presented in this section can
be used to make inference over probabilistic models with deep neural networks, each of
them presents different trade-offs which should be taken into account. The black-box
methods presented in Section 5.1 are extremely powerful in theory, as they make only
few assumptions about the probabilistic model. However, this comes at a price: a high
variance is introduced when the gradient is estimated using Monte Carlo sampling, and this
can strongly hinder the convergence of the underlying optimization method. In this
sense, pathwise gradients (Section 5.1.1) should be preferred to score function gradients
(Section 5.1.2), because the former produces less noisy gradient estimates than the latter.
Score function gradients should only be used when the pathwise gradient estimator is not
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applicable. Furthermore, as commented before, they have to be implemented using the
variance reduction technique [24,86,92,93].

Amortized variational inference (Section 5.2) is usually the default choice. Although
amortized variational inference reduces the flexibility of the variational approximation,
it greatly improves the computational efficiency, to the point that most standard LVMs can-
not be used for analyzing any meaningful data sample without this technique. The lack of
flexibility of amortized variational inference can be alleviated by the use of more expressive
mapping functions (i.e., more powerful neural networks).

6. Probabilistic Programming Languages

One of the main reasons for the wide adoption of deep learning has been the avail-
ability of (open-source) software tools containing robust and well-tested implementations
of the main building blocks for defining and learning DNNs [34,35]. Recently, a new
wave of software tools have appeared, building on top of these deep learning frameworks
in order to accommodate modern probabilistic models containing DNNs [29–33,96–98].
These software tools usually fall under the umbrella term probabilistic programming lan-
guages (PPLs) [37,38], and support methods for learning and reasoning about complex
probabilistic models. Although PPLs have been present in the field of machine learning for
many years, traditional PPLs have mainly focused on defining languages for expressing
(more restricted types of) probabilistic models [8] with only little focus on issues such
as scalability. The advent of deep learning and the introduction of probabilistic models
containing DNNs has motivated the development of a new family of PPLs offering support
for flexible and complex models as well as scalable inference. Some of the main PPLs
supporting the definition of models with DNNs are listed below.

• Edward2 [29,30], developed by Google, is a fast Python PPL built over TensorFlow-
probability [34,78]. This framework is compatible with neural networks defined with
Keras [99].

• InferPy [32,33] is a Python package built on top of Edward which focuses on the ease
of use. It provides a compact and simple way to code probabilistic models with DNNs,
at the expense of slightly reducing expressibility and flexibility.

• Pyro [31], developed by Uber, is based on Pytorch and allows for the definition of
probabilistic models with DNNs in Python [35].

• PyMC3 [96] is a PPL written in Python that uses Theano [100] as calculus framework.
• Stan [97] is a PPL in C++ for statistical modeling and high-performance statistical

computation. Even though the integration with DNNs is not natively supported,
an extension for this was proposed [101].

• Turing.jl [98] is a Julia library for probabilistic programming inference. Originally,
Mote Carlo methods were only considered, but recent releases of this library also
provide support for variational inference.

There are other examples of PPLs, but these alternatively PPLs do typically not sup-
port DNNs in the model specifications. Examples of such languages include: Birch [102] is
a C++ library with inference algorithms based on Sequential Monte Carlo (SMC); Bean Ma-
chine [103] is a declarative PPL in Python with a special focus on compositional and block
inference; Infer.net [104] is a framework for running Bayesian inference in graphical models
which can also be used for probabilistic programming.

7. Conclusions and Open Issues

In this paper, we have discussed the recent breakthroughs in approximate inference
for PGMs. In particular, we have considered variational inference (VI), a scalable and
versatile approach for doing approximate inference in probabilistic models. The versa-
tility of VI enables the data analyst to build flexible models, without the constraints of
limiting modeling assumptions (e.g., linear relationship between random variables). VI is
supported by a sound and well-understood mathematical foundation and exhibits good
theoretical properties. For instance, VI is (theoretically) guaranteed to converge to an
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approximate posterior q, contained in a set of viable approximations Q, that corresponds
to a (local) maximum of the ELBO function, as defined in Equation (8). Nevertheless,
variational inference often encounters difficulties when used in practice. Different random
initializations of the parameter space can have significant effect on the end-result and,
unless extra care is taken, issues wrt. numerical stability may also endanger the robustness
of the obtained results. More research is needed to develop practical guidelines for using
variational inference.

As the power of deep neural networks has entered in PGMs, the PGM community
has largely responded enthusiastically, embracing the new extensions to the PGM toolbox
and used them eagerly. This has lead to new and interesting tools and models, some of
which are discussed in this paper. However, we also see a potential pitfall here: The trend
is to move away from the modeling paradigm that the PGM community has traditionally
held in so high regard and instead move towards catch-all LVMs (like the one depicted
in Figure 1). These models “let the data speak for itself ”, but at the cost of interpretability.
PGMs are typically seen as fully transparent models, but risk becoming more opaque
with the increased emphasis on LVMs parameterized through deep neural networks and
driven by general purpose inference techniques. Initial steps have, however, already been
made to leverage the PGM’s modeling power also in this context (e.g., Ref. [68] combines
structured latent variable representations with non-linear likelihood functions), but a
seamless and transparent integration of neural networks and PGMs still requires further
developments: Firstly, in a PGM model where some variables are defined using traditional
probability distributions and others use deep neural networks, parts of the model may
lend itself to efficient approximative inference (e.g., using VMP as described in Section 2.4),
while others do not. An inference engine that utilizes an efficient (mixed) strategy approach
for approximate inference in such models would be a valuable contribution. Secondly,
VI reduces the inference problem to a continuous optimization problem. However, this is
insufficient if the model contains latent categorical variables. While some PPLs, like the
current release (Pyro version 1.5.1.) of Pyro [31], implements automatic enumeration over
discrete latent variables, alternative approaches like the Concrete distribution [105] are
also gaining some popularity. Thirdly, with a combined focus on inference and modeling,
we may balance the results of performing approximate inference in "exact models" and
performing exact inference in "approximate models" (with the understanding that all
models are approximations). Here, the modeling approach may lead to better understood
approximations, and therefore give results that are more robust and better suited for
decision support.
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