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ABSTRACT 

This overview covers the different chemometric strategies linked to chromatographic 

methodologies that have been used and presented in the recent literature to cope with problems 

related to incomplete separation, the presence of unexpected components in the sample, matrix 

effect and changes in the analytical signal due to pre-treatment of sample. 

Among the different chemometric strategies it focuses on pre-treatment of data to correct 

background and time shift of chromatographic peaks and the use of second-order algorithms to cope 

with overlapping peaks from analytes or from analytes and interferences in liquid chromatography 

coupled to diode array, fast-scanning fluorescence spectroscopy and mass spectrometry detectors. 

Finally the review presents the strategies used to deal with changes in the analytical response as 

result of matrix effect in liquid and gas chromatography, as well as the use of standardization 

strategies to correct modifications in the analytical signal as a consequence of sample pre-treatment 

in liquid chromatography. 
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1. Introduction 

Developing a chromatograpic method generally implies optimizing the experimental conditions, 

in order to guarantee complete separation of all sample components [1]. In chromatography, the 

retention factor (k) is the degree of retention of the sample component in the column. In most 

chromatographic analysis, analytes elute with retention factors between 1 and 20 allowing their 

complete separation. A peak with k equal to 0 is a component that does not interact with the 

stationary phase and elutes in the void volume [2]. Chromatographic separations can become a 

difficult task when complex samples have to be analyzed. The main drawbacks involved in 

handling complex samples are that the nature and the amount of the co-eluting matrix compounds 

may be rather variable between samples, in such a way that matrix effects in a series of samples can 

also be highly variable and difficult to predict [3]. Nevertheless, the use of chemometrics may 

provide a useful resource for accurate analyte quantitation when the complete separation is not 

accomplished or new compounds are present in the sample being analyzed [4]. Chemometrics is 

especially useful in chromatography when second-order data are recorded, for example, using a 

diode-array detector (DAD), a fast-scanning luminescence or a mass spectrometry based (MS) 

detector during the chromatographic time evolution. An interesting intrinsic property that second-

order data may show (if they are modeled with convenient second-order algorithms) is the so-called 

“second-order advantage” [5], which in principle permits analyte quantitation in samples containing 

unexpected components, i.e., compounds not included in the calibration set [6]. This fact allows one 

to build a predictive model with a limited number of standards, yet quantitating the analyte in the 

presence of potential interferents [6]. 

The use of second-order multivariate algorithms has been shown to play a critical role in several 

analytical fields, as can be gathered from a literature survey in relevant analytical, chemometrics 

and applied journals [6,7]. Specifically, an important number of reports have been presented 

ocusing on the resolution of really complex samples using liquid chromatography and exploiting the 

mentioned second-order advantage [8–12]. In this context, extremely important issues such as 

reduction in the time of analysis and consequently costs and amount of contaminant solvents should 

be considered [12]. 

 Several algorithms can be cited among the approaches involving the second-order advantage: 

generalized rank annihilation (GRAM) [13], direct trilinear decomposition (DTLD) [14,15], self-

weighted alternating trilinear decomposition (SWATLD) [16], alternating penalty trilinear 

decomposition (APTLD) [17], parallel factor analysis (PARAFAC) [18], multivariate curve 

resolution alternating least squares (MCR-ALS) [19], and the most recently implemented bilinear 
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least squares (BLLS) [20], unfolded partial least squares/residual bilinearization (U-PLS/RBL) [21] 

and artificial neural networks followed by residual bilinearization (ANN/RBL) [22]. 

Interestingly, a k value lower than 1 does not result in a differential migration of the component 

and originates dissimilarities in both times of elution and peak shapes, leading to data without the 

property of trilinearity. Second-order data are trilinear when each compound in all experiments 

treated together can be described by a triad of invariant pure profiles [23]. In chromatography with 

DAD detector, each analyte should have the same time and spectral profile in all the samples and 

only differs in the amount in which it intervenes. In this situation, algorithms such as MCR-ALS 

(which can solve this type of problems by resorting to the mathematical resource of matrix 

augmentation) and PARAFAC2, a variant of PARAFAC allowing for distinct time profiles in each 

experimental sample [24], have been proved to be useful alternatives for treating these data since 

they are more flexible with regard to trilinearity [25,26]. However, when data are conveniently pre-

treated in order to alleviate the above-mentioned problems, good results can be obtained using 

GRAM, PARAFAC or RBL based algorithms [10,27]. 

In the present review we describe different chemometric strategies that have been used and 

presented in recent literature reports to cope with the problem of incomplete separation, especially, 

when non-modeled components appears in the sample. 

2. Pre-treatments of data 

In a previous paper, Daszykowski and Walczak [4] pointed out that chromatographic 

performance can be enhanced by eliminating noise and background components, thus becoming the 

chromatogram baseline elimination a crucial step for reducing both the complexity and the number 

of the unexpected components. Moreover, it was demonstrated that the use of signal pre-treatments 

such as baseline and time shift corrections improve the quality of second-order chromatographic 

signals and, as a consequence, the performance of resolution by second-order algorithms [9–11,28]. 

In the present section, different strategies which were developed with these aims and reported in the 

literature will be revised. 

2.1. Background correction 

A proper pre-processing step is crucial to determine the quality of chromatograms, influencing 

the final results of chromatographic analysis. Chromatograms (as any other instrumental signal) 

contain three major components: signal, noise and background, which differ in their frequency [4]. 

Signal enhancement can be achieved by eliminating noise and background components. As was 

stated previously, elimination of the chromatogram baseline could result in a critical step for 

reducing complexity of the analytical task. There are several algorithms that can be useful to 
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overcome this problem, the former attempts probably being made by Cecil and Rutan [29]. They 

worked with fluorescence detection in liquid chromatography with an intensified diode-array 

detector and the data analysis methods used included Kalman filter-based methods for adaptive 

subtraction of background responses, shift correction and linear regression analysis of overlapped 

responses. After that, a new procedure for detecting and correcting baseline offset/drift and spectral 

background in hyphenated chromatographic data was presented by Brereton and co-workers [30], 

which was based on congruence analysis and least-squares fit of the zero-component regions. The 

procedure consists of several different steps: first, the major principal components in the zero-

component chromatographic regions are extracted before the appearance of the first eluting 

chemical constituent and after elution of the last chemical constituent in a peak cluster. Then, 

comparison of the loading patterns of the first principal component in the two zero-component 

regions by means of congruence analysis was used to reveal the presence of a constant spectral 

background and/or systematic baseline offset or drifts. If baseline drift is revealed, the baseline for 

the whole chromatogram is estimated by means of a least-squares fit of the data from the two zero-

component regions with retention time as „independent‟ variable. A background-corrected 

chromatogram is finally obtained by subtracting the estimated spectral background and the 

estimated baseline from the original data. 

Recently, with the increasing of the use of second-order data, several algorithms have been 

proposed. One of them is the methodology presented by Eilers, i.e., the asymmetric least-squares 

method [31], which was recently adapted to multidimensional data [32]. This method consists in the 

matrix background estimation F (J×K) from the data matrix M (J×K), where J is the number of 

digitized wavelengths and K the number of migration times. For achieving this purpose, a B1 (L×J) 

spline basis matrix along the rows of the M matrix and a B2 (M×K) spline basis matrix along the 

columns of the M matrix are used. Generally, the literature [33] suggests a compromise of 10 basis 

function, i.e., L =M= 10. F can be represented as: 

ML

LMMKLJKJ abbf
,

, 21          (1) 

where aLM is the (L,M) element of a matrix A containing the regression coefficients, which can be 

calculated by minimizing the following cost function: 

ML

JKJKJK pfyvQ
,

2
         (2) 

where y is the experimental signal, f a smooth trend (the baseline approximation), and v are the 

prior weights. The elements of v should have large values in the parts of the signal where it is 

allowed to affect estimation of the baseline. Consider the following choice of asymmetric weights: 



5 

 

vJK = p if vJK > fJK and vJK =1−p if vJK ≤ fJK with 0<p < 1. Positive deviations from the trend will 

result in weights different from negative residuals. Experience shows that starting from v  1, and 

iterating between the two computations, quickly and reliably leads to a solution in about 10 

iterations. Finally, in Eq. (2) there is a penalty term defined by: 

L

M

d

L

L

d aaP
2

2

2

1
        (3) 

where 1 and 2 are differences of order d calculated for each column of A (aL) and each row of A 

(aM), respectively. As can be seen in Eq. (3), if different values are used for the regularization 

parameter , the penalty may have different influences for vertical and horizontal directions. As an 

example, Fig. 1A shows an original 3D chromatogram corresponding to the determination of 11 

pharmaceuticals in river water (for more details see Ref. [11]). The landscape corresponds to a data 

matrix M (40×302), which was obtained with a HPLC-DAD system, using a wavelength range 

between 200 and 350 nm. As can be appreciated in this figure, a significant baseline is originated 

during the chromatographic procedure. The matrix background estimation F (40×302) by 

implementing the asymmetric least-squares method can be seen in Fig. 1B. This matrix was 

obtained setting L =M= 10 and an asymmetry parameter (p = 0.005) [see Eq. (2)]. The subtraction 

of F matrix to M matrix furnishes the corrected matrix, whose representation can be observed in 

Fig. 1C. Finally, in order to have a better visualization of the effect of base line subtraction, the 

chromatograms registered a 245nm are represented in Fig. 2. 

On the other hand, on-line coupling between LC and FT-IR becomes a difficult task: as the 

mobile phases employed in LC absorb strongly in the mid infrared, their accurate compensation is 

crucial to obtain characteristic analyte spectra. In the case of on-line isocratic LCFT-IR systems, 

correction for mobile phase absorption can be carried out by subtracting the spectra of the eluent 

recorded at the beginning of the run or immediately before elution of the analytes of interest from 

the spectra when the analyte elutes. 

However, when using the gradient technique, accurate background correction presents important 

difficulties because of existing changes in intensity and shape of the eluent absorption bands, which 

may be up to several orders of magnitude more intense than the absorption due to analytes. 

Different chemometric techniques have been proposed to overcome this problem. Among them, a 

method named objective subtraction of solvent spectrum has been proposed by Istva‟n along with 

iterative use of PARAFAC and PARAFAC2 which yielded promising results when analyzing 

isocratic LC-IR data sets [34,35]. Afterward, univariate and multivariate methods have been 

developed by Quintas et al. to perform eluent subtraction in continuous liquid flow systems under  
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Fig. 1. (A) Landscape obtained by HPLC-DAD corresponding to a water river sample obtained after spiking 

the river water sample with different concentrations of the analytes (sample R1-1 of Ref. [11]) in the time 

region of 30–34 min. (B) Background matrix corresponding to the landscape of (A). (C) Landscape obtained 

by subtraction of the background to the landscape of (A). 
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isocratic and gradient conditions [36–38]. These algorithms use a data set recorded from a gradient 

experiment without injecting any analyte. By matching characteristic absorption bands of the 

eluents in the chromatographic run with those of the reference data set, it is possible to select or to 

calculate an appropriate background spectrum for recovering the analyte spectra. Detailed 

descriptions of the procedure and examples of its application can be found in the former work [36]. 

Very recently, the algorithm has been successfully applied to the chromatographic separation of 

four nitrophenols [39] and these authors have published a review about the advances in isocratic 

and gradient liquid chromatography hyphenated on-line with infrared (LC-IR) spectrometry, 

placing particular emphasis on chemometric background correction and other applications of 

chemometric algorithms used to improve the sensitivity and the resolution of LC-IR signals [40]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Chromatogram (registered at  = 245 nm) of a water river sample obtained after spiking the river water 

sample with different concentrations of the analytes (sample R1-1 of Ref. [11]) (blue solid line), the base line 

calculated at the same wavelength (green point-dashed line), and the corrected chromatogram by subtraction 

of the base line to the original chromatogram (red dashed line).  
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Ramis-Ramos and co-workers [41] presented an automatic two way background correction using 

cubic smoothing splines (CSS) and multivariate data analysis to two-way electropherograms, which 

were automatically processed, with minimal supervision by the user, in less than 2min. A simple 

background elimination method for Raman spectra, based on peak detection, smoothing, and 

interpolation was proposed by Baek et al. [42]. The authors postulate that since the background is 

usually slowly varying with respect to wavelength, they could estimate the background by 

eliminating significant peaks. They seek the peaks by inspecting the smoothed derivative of a given 

spectrum, and after clipping out the corresponding peak regions, an estimation of the background by 

applying a modified linear interpolation was performed. 

A novel technique for removal of three-dimensional background drift in comprehensive two-

dimensional (2D) liquid chromatography coupled with diode-array detection (LC×LC-DAD) data 

was proposed by Yu and co-workers [43]. The authors worked on the basic idea of performing 

trilinear decomposition, based on the alternating trilinear decomposition (ATLD) algorithm, on the 

instrumental response data. A model was built taking into account the background drift as one 

component or factor as well as the analytes of interest, hence, the drift being explicitly included into 

the calibration. 

2.2. Time shift correction 

When applying second-order algorithms, especially for methods such as GRAM, PARAFAC, 

BLLS and U-PLS/RBL, peaks should be properly aligned in order to assure trilinearity in the data. 

Several approaches have been presented in the literature for synchronization of the time axes. This 

procedure is called warping or alignment, and as will be seen, it is a crucial subject when analyzing 

complex samples. If a proper alignment can be applied, the posterior data analysis would be 

simplified, but it has been shown that there are some cases in which shift correction can not be 

implemented [12,44]. The latter fact happens when potential interferences coelute with the analytes. 

In the present review, several approaches will be commented, and a brief description of the most 

important ones will be made. 

The alignment algorithms are based on different basic philosophies. In a first group, advantage 

of the matrix data structure is taken: rank alignment (RA) [45,46] and iterative target transformation 

factor analysis (ITTFA) [47,48]. In a second group, the maximum correlation between 

chromatograms is sought: the so-called ChromAlign algorithm [49] and correlation optimized 

warping (COW) [50–53]. Finally, a suitably initialized and constrained PARAFAC model can be 

used [44]. It should be noted that taking into account that the presence of potential interferences in 
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unknown samples poses severe challenges to the above-mentioned alignment algorithms, especially 

for the second group of algorithms, these will not be commented. 

The RA algorithm is based on the singular value decomposition (SVD) of an N/M matrix, 

joining the data matrices N and M, where N is taken as reference and M is the matrix which has to 

be corrected in relation to N. The correction is carried out by computing the residual variance (RES) 

while the matrix M is moved in relation to N, using a pre-established number of points that can be 

estimated by the inspection of the chromatograms of N and M. The number of significant singular 

values should ideally be equal to the number of species present in N|M. When the matrices N and 

M are aligned, the RES values should reach a minimum. It should be noted that problems appear 

when the test sample contains interferences highly overlapped with the analyte peak, and more than 

one minimum is obtained. In contrast, in the ITTFA algorithm the calibration and test matrices are 

independently decomposed into profiles and spectra, and aligned before the second-order method is 

applied [47]. At the top of Fig. 3 it is shown the contour plots for matrices N and M (used to build 

the augmented N/M matrix) before the alignment. Matrixes N and M correspond to the 

determination of carbamazepine in the presence of interferences using capillary electrophoresis with 

DAD detector (see Ref. [54]). As can be seen in this figure, there is a difference of c.a. 1.5 min 

between the reference matrix (N) and the one to be corrected (M). If matrix M is moved 64 data 

points in the direction indicated by the arrow, a minimum in the RES value is reached. This fact can 

be more clearly appreciated in Fig. 4. 

Finally, the PARAFAC alignment is based on analyzing the fit of a PARAFAC model for a 

three-way array built with matrices N and M placed on top of each other. If potential interferents 

coelute with the analytes, the correct alignment of M with respect to N requires two bilinear 

contributions, i.e., two spectral-time retention matrices (one for the analyte and one for the 

interferent). On the other hand, the incorrect possibility should in principle require three bilinear 

components: two of them correspond to the analyte (having the same spectrum but different peaks 

in the time dimension), and the remaining one to the interferent. Other possibilities to correct peaks 

misalingned will also require three bilinear components. Therefore, a suitably initialized and 

restricted two component PARAFAC model will only yield a reasonable fit when the correct 

alignment is performed. As can be observed, this method exploits the matrix structure of the studied 

data in order to align the test data matrix with respect to the reference one [44]. 

 

 

 

 



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Top: contour plots for matrices N and M corresponding to the determination of carbamazepine in the 

presence of interferences using capillary electrophoresis with DAD detector (see Ref. [53]) before the 

alignment. Bottom: the same matrices after alignment by shifting 64 data points matrix M in the direction of 

the arrow. 

3. Second-order algorithms 

As was mentioned above, coupling chromatography or capillary electrophoresis with either 

diode array, fast-scanning fluorescence or mass detectors originate second-order data. The 

spectroscopic response is therefore arranged as a data matrix, where each column corresponds to a 

wavelength (or m/z ratio) and each row corresponds to a different time. Interestingly, in those cases 

in which full selectivity in the chromatographic separation is not achieved, calibration can be 

performed, and quantitation can be accomplished in the presence of unexpected constituents and 

only synthetic standards are necessary for the model development, in those cases in which there is 

not matrix effect (see above). Thus, a data set for several samples (unknowns plus standards) can be 
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conveniently arranged into different modes: (a) to build a threeway array (PARAFAC, 

PARAFAC2, GRAM, DTLD, APTLD, SWATLD and N-PLS), (b) to arrange the second-order data 

set into an augmented matrix, as is regularly done in MCR-ALS; (c) to vectorize the higher-order 

sample data and then employ first-order multivariate methods (the unfolded variants of PLS or 

ANN); (d) to combine the unfolded variants with the RBL procedure in order to exploit the second-

order advantage (BLLS, U-PLS/RBL and ANN/RBL); and (e) to combine the three-way array of N-

PLS with the RBL procedure in order to exploit the second-order advantage, as this property is not 

fulfilled by this latter algorithm (see Table 1). All of these algorithms allow for the development of 

the so-called second-order multivariate calibration methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Residual variance computed for the augmented N/M matrix when shifting M (solid blue line). The 

dashed red line shows the residual variance computed for an augmented N/N matrix.  
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Table 1. Algorithms employed to model second-order chromatographic data with calibration purposes 

 

Application Algorithm References 

Building three-way arrays PARAFAC 
PARAFAC2 

GRAM 
DTLD 

APTLD 
SWATLD 

N-PLS 

[10,28,47,48,58,64] 
[9] 

[47,48,82,84,85] 
[15] 

[57] 
[16] 
[24] 

Arranging the second-order data set into an 
augmented matrix   

MCR-ALS [9,10,12,47,48,59–63,65–71,83,85] 

Combining the unfolded variants with the RBL 
procedure in order to exploit the second-order 
advantage 

BLLS 
U-PLS/RBL 

[28,58] 
[59,60] 

Combining the three-way array of N-PLS with the 
RBL procedure in order to exploit the second-order 
advantage 

N-PLS/RBL [10] 

 

From an analytical point of view, the main object of using second-order data is to assure 

exploiting the second-order advantage. For this purpose, two alternative ways are possible [6]: (a) 

data for the test sample has an influence on the regression coefficients leading to prediction 

(PARAFAC, PARAFAC2, GRAM, DTLD, APTLD, SWATLD and MCR-ALS) or (b) calibration 

is first performed using only training data, with the test sample leading to sample-specific 

regression coefficients in a subsequent step (BLLS, U-PLS/RBL, NPLS/RBL and ANN/RBL). 

Comprehensive information about the different second-order algorithms can be found in the 

pertinent literature [13–21]. In addition, complete reviews were presented with a wide range of 

applications to second-order data (including chromatography) [6–8]. Thus, in this review we will 

revise the most recent and important applications, especially in those cases in which complex 

samples were analyzed and overlapping peaks had to be solved because of incomplete selectivity 

due to insufficient separation among analytes or the presence of unexpected components in the 

sample. 

As was previously discussed, when data are not trilinear, there exist algorithms which can 

overcome this problem, and calibration can be performed without pre-treatment of the data (see 

above). The most popular one is MCR-ALS [19], which resorts to the mathematical resource of 

matrix augmentation. Alternatively, several applications of PARAFAC2 have been recently 

presented, which allows for separate time profiles in each experimental sample [55]. On the other 

hand, when data are conveniently pre-treated, good results have been presented by applying 

GRAM, PARAFAC or RBL based algorithms [6,10,44,56]. 
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3.1. UV spectroscopy with diode-array detection 

Li et al. presented a method based on modeling LC-DAD data with the alternating trilinear 

decomposition (ATLD) algorithm for the quantitative analysis of levodopa, carbidopa and 

methyldopa in human plasma samples. Although the spectra of these analytes were similar and 

interferents coeluted with the analytes studied in biological samples, good recoveries of the analytes 

were obtained, with additional benefits like decreasing times of analysis and less solvent 

consumption [57]. 

Braga et al. presented the simultaneous determination of five pesticides and two metabolites in 

wine samples by HPLCDAD, using the second-order advantage. The authors compared two 

chromatographic methods, which involve either isocratic or gradient elution. Due to loss of 

trilinearity, an appropriate preprocessing method was necessary to correct the effects of time shifts, 

baseline variations and background. BLLS yielded results that were of the same quality as 

PARAFAC in five cases, but in two other situations only PARAFAC enabled analyte quantitation 

[28]. In a posterior work, these authors presented a variable selection methodology based on genetic 

algorithm to improve the results [58]. 

Several methods were developed in our group to be applied in the quantitation of diverse 

analytes in environmental samples by modeling liquid chromatography data with MCR-ALS and U-

PLS/RBL algorithms. Firstly, eight tetracycline antibiotics were determined in effluent wastewater, 

solving matrix effects and exploiting the second-order advantage [59,60]. Afterward, the 

determination of anti-inflammatory and antiepileptic drugs in river and wastewater by solid-phase 

microextraction and liquid chromatography diode-array detection with MCR-ALS was presented 

[61]. The following study included 11 pharmaceuticals which were quantitated in river water by 

column switching of large sample volumes and HPLC-DAD, modeling with MCR-ALS [62]. 

Additional works involved the determination of dyes in beverages reaching a considerable reduction 

of the analysis time [12], and the resolution of fully overlapped capillary electrophoresis peaks 

applied to the quantitation of carbamazepine in human serum in the presence of several 

interferences [63]. It should be noticed that, owing to the complete overlapping among three of the 

analytes, the only algorithm capable of resolve this task was MCR-ALS. 

In a study presented by Vosough et al., a second-order calibration strategy for the simultaneous 

determination of aflatoxins B1, B2, G1 and G2 in pistachio nuts in the presence of matrix 

interferences has been developed combining HPLC-DAD and PARAFAC. Sample preparation was 

based on solvent extraction followed by solid-phase extraction. Since the sample preparation 

procedure was not selective to the analytes of interest, exploiting second order advantage to obtain 

concentrations of individual analytes in the presence of uncalibrated interfering compounds was 
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necessary. Appropriate pre-processing steps were applied to correct background signals and the 

effect of retention time shifts. The proposed method presented advantages like using a low-cost SPE 

step, a unique and simple isocratic elution program for all samples and a calibration transfer for 

saving both chemicals and time of analysis [64]. 

Finally, MCR-ALS was evaluated in the analysis of nine phenolic acids, both in standards 

mixture samples and in strawberry juice samples by LC-DAD. Chromatographic co-elution 

problems either because of unknown matrix interferences or because of the increase of organic 

modifier to reduce chromatographic analysis times were investigated. Results obtained in the 

resolution and quantitation of phenolic acids in standards mixture samples and strawberry samples 

showed that the proposed MCR-ALS approach reduces analysis times and solvent expenses and 

improves determinations in case of strong co-elution [65]. 

A reduced number of CE-DAD applications can be found in the literature, most of them based 

on MCR-ALS modeling. This fact is due to this technique generally originates data which are not 

trilinear. Several ebrotidines metabolites were analyzed and pure spectra and electrophoretic 

profiles were conveniently extracted by MCR-ALS in a study presented by Sentellas et al. [66]. In 

addition, Li and co-workers presented several strategies to enhance the quantitation of several 

analytes combining CE-DAD data and MCRALS [67–69]. Finally, we presented a challenging 

application in which three analytes, whose peaks were totally overlapped, could be determined in 

serum samples with acceptable analytical figures of merit [54]. 

3.2. Fast-scanning fluorescence spectroscopy (FS-FS) detection 

It is important to notice that a reduced number of applications in this area have been presented. 

In a study carried out by Cañada- Cañada et al., different second-order algorithms were compared 

(PARAFAC, N-PLS/RBL and MCR-ALS) for the analysis of four fluoroquinolones in aqueous 

solutions, including some human urine samples. Data were measured in a short time with a 

chromatographic system operating in the isocratic mode. The detection system consisted of a fast-

scanning spectrofluorimeter obtaining second-order data matrices containing the fluorescence 

intensity as a function of retention time and emission wavelength. Interestingly, although the 

analytes presented overlapped profiles, it was not necessary to apply an elution gradient, and thus 

significantly reducing both the experimental time and complexity [10]. 

In a very recent and interesting application presented by Bortolato et al., the analysis of 10 

polycyclic aromatic hydrocarbons (PAHs) was performed. The goal of the work was the successful 

resolution of a system even in the presence of real interferences. Second-order HPLC-FS-FS data 

matrices were obtained in a short time with a chromatographic system operating in isocratic mode. 



15 

 

The difficulties in aligning chromatographic bands in complex systems were discussed. Two 

second-order calibration algorithms which do not require chromatographic alignment were selected 

(MCR-ALS and PARAFAC2), the superiority of MCR-ALS to successfully resolve this complex 

system [9], being demonstrated. 

Pere-Trepat et al. applied MCR-ALS to solve co-elution problems in liquid chromatography 

with DAD and MS detection. Interestingly, a MCR-ALS property allowing the fusion of both 

detector signals improved results versus those obtained using only one of the two detector signals. 

Wavelet transform had to be applied to MS data before its fusion with DAD data, which further 

facilitated the resolution and quantitation of the coeluted compounds under study, besides a 

decrease of time of analysis. Mixtures of biocide compounds in standard mixtures and in 

environmental samples (sediment and wastewater samples) were analyzed with acceptable 

quantitation errors considering the complexity of the samples [70]. 

Finally, in an application to a metabonomic study, a chemometric strategy based on MCR-ALS 

applied to LC–MS in the scan mode was developed by our group to perform a metabonomic study 

in tomato fruits following treatment with carbofuran. The methodology proved to be adequate for 

the detection of unintended stress effects due to the previous treatment with this pesticide. MCR-

ALS was performed on augmented matrices built with the data obtained from treated and nontreated 

samples through the sampling time. By applying this strategy the concentration and spectra profiles 

of the main components were obtained from samples treated with pesticide as well as from blank 

samples, showing how they vary with time after plants treatment with the pesticide. In addition, a 

simple resolved mass spectrum was obtained corresponding to the peaks of a particular component 

in all matrices, thus avoiding ambiguity in the compound identity assignment. Different time 

profiles were found for some metabolites in treated and non-treated samples, which demonstrate 

that the presence of pesticide causes changes through time in the behavior of certain endogenous 

tomato metabolites as a result of physiological stress [71]. 

4. Variations in the analytical response 

Generally, quantitation of analytes in real samples is performed using calibration models built 

with standards prepared in pure solvent. However, in some cases it can be observed that the analyte 

response in real samples is different from the one obtained for analytes prepared in pure 

solvents. Apart of background and additive interferences, the main causes of the variation in the 

analyte signal are due to the phenomenon known as matrix effect and to the implementation of 

treatment steps prior to the measurement of analyte, such as extraction or clean-up steps. 
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In multivariate (as in univariate) calibration methodologies, the correction of changes in the 

analyte signal of real samples requires the application of different strategies depending of the type 

of phenomena that causes these changes. 

Three classes of strategies have been proposed to correct the matrix effect: (a) based on sample 

handling, e.g., selective extraction, effective sample clean-up after extraction or improvement of the 

chromatographic separation, (b) based on the reduction of matrix components injected onto the 

chromatographic system, which can be performed by simply injecting smaller volumes in the 

chromatographic system or by diluting the sample extract; and (c) based on suitable calibration 

approaches, e.g., the use of internal standards, matrix-matched standards and standard addition of 

each analyte into each sample. 

Strategies included in the first group require an additional effort, are rather time consuming [72], 

in some cases the problem persists, and, in addition, they can cause losses of the analytes related to 

extraction and/or clean-up process.  

On the other hand, each of the approaches used to reduce matrix components loaded on the 

detector involves a lack of sensitivity [73]. 

The third group of strategies also shows some drawbacks. Thus, matrix-matched standards are 

often used to correct the matrix effect in spite of the great drawback which involves the availability 

of real samples not containing the analytes of interest (i.e., real blank samples). In addition, as 

matrix effect is attributed to organic and/or inorganic components of the sample co-eluting with the 

analytes and interfering during the detection process, it is matrix dependent being rather variable 

between samples, in such a way that matrix effect in a series of samples can also be highly variable 

and difficult to predict [74]. Therefore, errors in the prediction should be expected when using only 

a matrix-matched curve for the quantitation of analytes in all different sample matrices. 

According to Benijts et al. [75] the best way to tackle matrix effect is to use appropriate internal 

standards, being preferred an isotopically labeled one, even though they are not regularly available 

and alternatively structural analogues are used [76]. On the other hand, the internal standard had to 

elute close to the compound of interest, showing similar behavior in the detector, in such a way that 

more than one of them should be used [77]. It is generally observed that using internal standards 

derives in significant enhancement of certain analytical figures of merit such as precision, linearity 

and accuracy. 

The standard addition methodology implies the addition of increasing amounts of a standard of 

the analytes to several portions of sample (n = 4–6) to build the calibration curve for the 

quantitation of the analytes in each sample. Even though their use requires a great amount of sample 

and, in addition, it leads to a significant increase in analysis and processing time, as one calibration 
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curve must be built for analyzing each sample, nowadays it is the only fairly effective methodology 

dealing with matrix effect. An interesting example of calibration using internal standard with 

second-order data for an experiment with CE-DAD data was presented by Zhang and Li et al. [69]. 

Finally, the standardization of the analyte signal has been currently used to compensate changes 

in the analytical signal, which are due to the implementation of treatment steps prior to the 

measurement of the analytes, such as extraction or clean-up. The most widely used methodology for 

standardization is piecewise direct standardization (PDS) [78], which consist of relating the 

response of a sample measured in a “situation A” to its response obtained in a “situation B”. This 

relationship is described by the transformation matrix Ft, according to 

tAB FXX            (4) 

where XA and XB are the response matrices of the standardization samples obtained from the A 

and B conditions, respectively. PDS builds a multivariate model between the response r of a sample 

measured at the jth wavelength in the situation A and the corresponding window (a selected region) 

of the response obtained on situation B: 

jjj bRr            (5) 

where Rj is the localized response matrix of the transfer samples and bj is the vector of 

transformation coefficients for the jth wavelength. The regression vectors calculated for each 

window in the data are then assembled to form a banded diagonal matrix Ft, according to 

T

k

T

j

TT

t bbbdiagF ,........,.....,21         (6) 

where k is the number of wavelengths. The response of any unknown sample (xs) can then be 

standardized according to the equation: 

Fxx T

s            (7) 

All these approaches have been successfully applied to univariate data, but recently, a number of 

papers have been published, which report the application of some of the above-mentioned 

methodologies in combination with second-order multivariate algorithms, with satisfactory results 

[8,59,60,64]. 

4.1. Strategies based on calibration approaches (standard addition and internal standard) 

In analytical chemistry, the standard addition method has been employed to perform quantitative 

analysis in situations where external calibration is not feasible, basically to overcome the problem 

of changing matrix effects [79]. Matrix effect occurs when the sample contains organic and 
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inorganic components that not give a response but coelute with the target analytes [80] causing 

variations in their responses, thus affecting sensitivity and accuracy of the analytical method and 

therefore producing relative systematic errors. Matrix effect occurs especially in chromatographic 

techniques coupled with mass spectrometric detection (MS) due to a suppression of the ionization 

efficiency of the analytes in the presence of co-eluting substances and coupled with UV or 

fluorescence detectors due to a suppression or enhancement of the signal as the result of the 

interactions of the analytes with other matrix components which modify their absorptive or 

emissive properties. As stated above, this behavior may be rather variable between samples, in such 

a way that matrix effects in a series of samples can also be highly variable and difficult to predict 

[81]. Therefore quantitation should be carried out by applying the standard addition method, as this 

methodology assures that the standards used in the calibration step are undergone to the same effect 

that the analytes contained in the analyzed samples. 

The hardly difficult issue related to the analysis of highly complex samples may be handled 

using second (and higher) order data from hyphenated techniques coupled to multivariate 

calibration algorithms involving the second-order advantage in combination with the standard 

addition methodology. The second-order advantage allows accurate quantitation of multiple 

analytes using calibration samples containing multiple chemical components without knowledge of 

the interfering chemical components whereas standard addition copes with matrix effect. This 

methodology has been widely used with spectroscopic data whereas a less number of applications 

have been published using chromatographic techniques. 

4.1.1. Liquid chromatography 

Gimeno et al. [82] applied GRAM combined with standard addition to quantify polycyclic 

aromatic compounds in marine sediments by liquid chromatography with diode-array detection. 

This second-order algorithm was applied to three-way data obtained using a program gradient not 

requiring the complete separation of analytes and was compared with a previously optimized 

univariate method for these analytes in the same real samples with longer analysis time. The 

similarity of the results obtained using GRAM with those obtained with univariate calibration 

showed that second-order methodology is advantageous in situations in which the analytes cannot 

be completely separated or the analysis would be time consuming if complete separation is 

achieved. In both cases, they found the added advantage that the standard addition method succeed 

the quantitation of target analytes in samples with matrix effect. 

Recently, in our group the second-order algorithm MCR-ALS was applied in combination with 

standard addition calibration for the determination of drugs in environmental water samples by LC-

DAD [61,62]. In a first work, eight pharmaceuticals were determined in wastewaters samples [59] 
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containing compounds interfering with the analytes of interest with a variable effect between 

samples, in addition to matrix effect. MCR-ALS coped with the problems of overlapped 

interferences whereas the standard addition corrected the different behavior of the wastewater 

matrix in the response of the analytes. Then, MCR-ALS was applied in combination with the 

standard addition calibration method to deal with overlapping peaks and systematic (additive) and 

proportional (matrix effect) errors in the determination of eleven pharmaceuticals by LC-DAD in 

river water samples [62]. 

Finally, Tauler and co-workers [83] applied different approaches in combination with MCR.ALS 

for the quantitation of six biocide compounds in mussel samples, undergone to co-elution and to 

matrix effect in LC–MS. Among the three calibration strategies used (external calibration, standard 

addition and internal standard), multivariate extension of the standard addition method using 

MCRALS provided an improvement in the results which was increased when internal standard was 

additionally used on the same mussel matrix sample. 

4.1.2. Gas chromatography 

The application of second-order algorithms to three-way data generated in gas chromatography 

(GC) using standard addition is more limited that in LC. In our knowledge, only two papers 

reported the application of second-order methodologies in combination with standard addition to 

quantify analytes in complex samples that causes matrix effect in the GC responses. In this sense, 

Fraga et al. [84] used GRAM with two-dimensional GC(GC–GC) coupled to a flame ionization 

detector (FID) for the determination of aromatic isomers in a jet fuel. The application of GRAM 

allowed for the separation of the overlapped GC×GC peaks, whereas the standard addition 

calibration corrected changes in peak widths and retention times between samples and standards. 

Finally, Vosough and Salemi [85] applied two second-order calibration methods (GRAM and 

MCR-ALS) on standard addition data matrices obtained by GC–MS, to characterize and quantify 

fatty acids in fish oil, and the results obtained were compared. As trilinearity is the essential 

requirement for implementing GRAM a retention algorithm was applied with similar results to 

those obtained by MCR-ALS. In both cases, the combination of second-order calibration methods 

with standard addition calibration showed the great potential of these approaches as an efficient way 

for solving matrix effect in GC–MS in complex samples. 

4.2. Standardization 

There are several reasons to implement transference of models (standardization), which include 

the following examples: (a) need to transport a calibration model previously built on the first 

instrument to another; (b) changes in the instrument over time; (c) variation between samples from 
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different production batches; and (d) situations when necessary sample treatments such as 

extraction or clean-up steps are carried out [86]. The latter case was observed with different 

extraction techniques such as solid-phase extraction (SPE) [59,60,64] and solid-phase 

microextraction (SPME) [61]. These sample treatments are necessary to increase sensitivity of the 

analytical methods when analytes are present at ultratrace levels in the samples being analyzed. 

However, in some cases, the treatment step causes partial losses or changes in the response signal of 

analytes. This drawback would be overcome by undergoing the analytical standards to the SPE step, 

but this option demands considerable both time and cost, which makes advisable the use of 

transference models. By applying standardization, only a reduced number of the whole calibration 

samples in the real situation is necessary for building a useful model to predict new real sample 

signals. 

PDS was applied to correct the breakthrough effect observed for the most polar analytes after the 

SPE step in a method developed for the determination of eight tetracyclines in effluent wastewater 

samples by solid-phase extraction (SPE) and LC-DAD using MCR-ALS [60] and U-PLS/RBL [61] 

algorithms. The five first eluting compounds were partially lost during the pre-concentration step 

and this drawback was overcome by transferring sample signals obtained from standards prepared 

in pure solvent to signals after SPE and then, unknown samples were predicted with models built 

with the former. 

Very recently, Vosough et al. [64] used PDS combined with PARAFAC algorithm to quantify 

four alfatoxins in extract of pistachio nuts by LC-DAD, in the presence of interferences remaining 

after SPE. PARAFAC dealt with the problem caused by non-modeled interferences and a 

transferred calibration data set, obtained from standardization of solvent based calibration data, was 

used in the prediction step. Using these approaches, the cost per analysis was also significantly 

reduced. 

PDS combined with MCR-ALS was also applied in the determination of seven non-steroidal 

anti-inflammatory drugs and one anticonvulsant in river and wastewater by SPME-LC-DAD [61]. 

In SPME, standards and samples must be processed in the same way, which increase the error in 

handling, leading to the fact that the main source on uncertainty is that associated with the 

calibration step [87], along with an increase in the time spent in the calibration step. In order to 

avoid the pre-concentration of the calibration standards, PDS was applied to transform the signal 

obtained from direct injection of standards in the LC-DAD system to the signals obtained by 

standards prepared in Milli-Q water and subjected to the SPME step. In the case of river water, PDS 

became a useful tool in reducing the number of standard samples which must be undergone to 

SPME for calibration, thus allowing quantifying pre-concentrated river water samples. 
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5. Conclusions 

Analytical chemistry involves the analysis of complex samples which currently needs 

sophisticated instrumentation and a number of handling sample steps to accomplish the goal. The 

use of powerful mathematical tools for data treatment is able to improve the results, in addition to 

save time and cost in the total analytical method. 

Thus, background correction (including baseline drift and additive interferences) greatly 

improves spectral and elution profiles, allowing the resolution and quantitation of analytes in 

complex samples using second-order algorithms. In addition these algorithms are useful when 

trilinearity is not accomplished by the data and time shift correction is not necessary. 

Even though the drawbacks inherent to the standard addition calibration method, this approach is 

a fairly effective methodology dealing with matrix effect, which has been successfully applied in 

combination with second-order algorithms for the analysis of complex samples. 

The standardization of second-order data sets allows to correct changes in the analytical signal 

after sample pre-treatments in addition to reduce the number of standard samples that must be 

prepared for calibration when they must be undergone to the same pre-treatment that the samples. 
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