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Abstract. We investigate the strong asymptotics of Heine-Stieltjes polynomi-

als – polynomial solutions of a second order differential equations with complex
polynomial coefficients. The solution is given in terms of critical measures (sad-

dle points of the weighted logarithmic energy on the plane), that are tightly

related to quadratic differentials with closed trajectories on the plane. The
paper is a continuation of the research initiated in [8]. However, the starting

point here is the WKB method, which allows to obtain the strong asymptotics.

1. Generalized Lamé equation

In 1878 Heine studied the following problem: given two polynomials,

(1.1) A(z) =
p∏
i=0

(z − ai) , B(z) = αzp + lower degree terms , α ∈ C,

where the zeros of A are complex and pairwise distinct, describe the polynomial
solutions of the generalized Lamé differential equation (in algebraic form),

(1.2) A(z) y′′(z) +B(z) y′(z)− n(n+ α− 1)Vn(z) y(z) = 0,

where Vn is a polynomial (in general, depending on n) of degree ≤ p−1; if deg V =
p−1, then V is monic. For p = 1 we can easily recognize in (1.2) the hypergeometric
differential equation, while for p = 2 it is known as the Heun’s equation (see [15]).

Heine [4] proved that for every n ∈ N there exist at most

(1.3) σ(n) =
(
n+ p− 1

n

)
different polynomials Vn such that (1.2) admits a polynomial solution y = Qn ∈ Pn;
hereafter Pn stands for the set of all algebraic polynomials of degree ≤ n. These
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particular Vn’s are called Van Vleck polynomials, and the corresponding polynomial
solutions y = Qn are known as Heine-Stieltjes (or simply Stieltjes) polynomials.
Furthermore, if the polynomials A and B are algebraically independent then for
any n ∈ N there exist exactly σ(n) Van Vleck polynomials Vn, their degree is exactly
p−1, and for each Vn equation (1.2) has a unique (up to a constant factor) solution
y of degree n. According to recent results in [16], this statement still holds for
arbitrary A and B for all sufficiently large n.

Stieltjes discovered an electrostatic interpretation of zeros of the polynomials
discussed in [4], which attracted common attention to the problem. He studied the
problem (1.2) in a particular setting, assuming that all zeros of A are real and that
all residues ρk in

(1.4)
B(x)
A(x)

=
p∑
k=0

ρk
x− ak

are strictly positive. He proved in [18] (see also [20, Theorem 6.8]) that in this case
for each n ∈ N there are exactly σ(n) different Van Vleck polynomials of degree
p−1 and the same number of corresponding Heine-Stieltjes polynomials y of degree
n, given by all possible ways how the n zeros of y can be distributed in the p open
intervals defined by the zeros of A.

After these two contributions a vast number of research papers on this topic
has been published, dealing mainly with the real situation considered by Stieltjes.
Besides the relevant contribution to the algebraic theory [16], we can mention here
the paper [9], where the limit distribution of zeros of Heine-Stieltjes polynomials for
the Stieltjes case has been established in terms of the traditional extremal problem
for the weighted logarithmic energy on a compact set of the plane.

A new approach to the asymptotics of the polynomial solutions of (1.2), based
on a different type of equilibrium problem, has been developed in [8], where zero
distribution of Heine-Stieltjes polynomials was investigated. The present paper is
in many senses a continuation of [8]. We use essentially the same tools: families of
continuous critical measures and their representations in terms of quadratic differ-
entials with closed trajectories. However, the starting point of our considerations
here is different: instead of electrostatics we use the WKB method, which allows
to obtain the strong asymptotics.

2. Asymptotic formula for Heine-Stieltjes polynomials

In this section we describe briefly the strong asymptotics of polynomial solu-
tions of (1.2). As we will see immediately, it is based on the asymptotics of Van
Vleck polynomials, so formally we should have started with the latter topic. We
choose another way of presentation, which follows rather the logic of the proof of
the main result. We formulate next a theorem on asymptotics of Heine-Stieltjes
polynomials, which contains Van Vleck polynomials as unknown (“access”) param-
eters.

Hereafter we assume that n ∈ N is sufficiently large, so that there are exactly
σ(n) Van Vleck polynomials, each of degree exactly p − 1, see [16]; denote by Vn
one of these Van Vleck polynomials, and let Vn stand for the set of zeros of Vn,
A = {a0, . . . , ap} the set of zeros of A, and Ωn

def= C \ (A ∪ Vn).
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Fix any z0 ∈ C; in any simply-connected domain D ⊂ Ω we can select a single-
valued branch of

√
Vn/A and define the natural parameter

(2.1) ξ = ξn(z) =
∫ z

z0

√
Vn(t)
A(t)

dt .

In what follows, many statements will be made in terms of trajectories of the
quadratic differential

$n = −Vn(z)
A(z)

(dz)2,

which are basically level lines of the function Im ξn.
We define also

(2.2) ζn(z) = exp(ξn(z)) = exp

(∫ z

z0

√
Vn(t)
A(t)

dt

)
,

as well as the parameter

(2.3) λn = n+
α− 1

2
.

Theorem 2.1. With the assumptions and notations above, let y = Qn be a Heine-
Stieltjes polynomial (solution of (1.2)) corresponding to Vn. Then:

(i) there exist a set Γn = ∪k≥1γk,n comprised of a finite number of at most
2p− 1 disjoint Jordan arcs γk,n, such that for an appropriate selection of
the branch in (2.1),

(2.4) y(z) = Hn(z) ζλn
n (z) (1 + εn(z)) , z ∈ C \ Γn,

where

(2.5) Hn(z) =
(
A

Vn
(z)
)1/4

exp
(
−
∫ z B

2A
(t) dt

)
.

Moreover, εn(z)→ 0 with n→∞ uniformly for dist(z,Γn) ≥ C > 0.
(ii) The endpoints of each γk,n belong to A ∪ Vn. Two arcs γj,n and γk,n for

i 6= j are either disjoint or have a common endpoint. The domain C \ Γn
is connected, and

√
Vn/A has a single-valued branch. Consequently, the

branch of the square root in (2.4) is fully determined by condition

lim
z→∞

z

√
Vn(z)
A(z)

= 1.

(iii) Each γk,n can be selected as a part of a trajectory of the quadratic differ-
ential

(2.6) $n = −Vn(z)
A(z)

(dz)2,

which is close to its critical trajectory completed by two small segments
connecting the trajectory with two points from A ∪ Vn.

Observe that formula (2.4) is given in terms of polynomials Vn. In this way,
the problem of asymptotics of Heine-Stieltjes polynomials is reduced to that of Van
Vleck polynomials. We discuss the location of the zeros of Vn’s in Section 4.
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The critical role is played by the set Γn = ∪pk=1γk,n. More exactly, formula (2.4)
should be combined with the local asymptotic formula for Qn in a neighborhood of
γk,n (but away from the endpoints):

(2.7) Qn(z) = Hn(z)
[
ζλn
n (z) (1 + εn,1(z)) + ζ−λn

n (z) (1 + εn,2(z))
]
,

for certain small εn,j(z). Local formulas of this type can be obtained directly
from the WKB estimates as explained in [11]. However, the existence of a global
formula with the specified dominant term is not totally trivial. An arc γk,n enters
the WKB analysis naturally as the Stokes line: the dominant term in (2.7) changes
across γk,n (Stokes’ phenomenon). This means that two terms are asymptotically
equal on γk,n, and equation

ζ2λn
n (z) = −1

defines the zeros of Qn. In other words, arcs γk,n asymptotically carry zeros of Qn.
The proof of the theorem is based on the Liouvulle-Green (also known as the

WKB) asymptotic formula. As we have mentioned above, the WKB method, the
way it is explained in [11], is ready to use in order to obtain local estimates.
Construction of a global formula from the local ones constitutes a challenge, as
it usually happens in the WKB analysis. So, the proof of the theorem, which is
outlined next, is not entirely on the surface, and relies heavily on the fact that both
the coefficients and a solution of (1.2) are polynomials.

3. WKB analysis of the Heine-Stieltjes polynomials

The Liouville-Green (also known as the WKB) method is a standard tool of
asymptotic analysis of ordinary differential equations; we refer the reader to the
comprehensive account contained in the monographs [1] and [11].

It was probably Nuttall [10] who applied the WKB analysis to the study of the
strong asymptotics of the generalized Jacobi polinomials via a differential equation
of the form (1.2).

3.1. Liouville’s transformation. Recall that at this stage we assume that
the Van Vleck polynomial Vn is fixed, and denote by y = Qn a corresponding
Heine-Stieltjes polynomial of degree n. The following procedure is well known, so
we summarize it here very briefly.

Rewriting equation (1.2) in terms of

(3.1) u(z) = y(z) exp
(∫ z B

2A
(t) dt

)
,

we eliminate the first order derivative and get u′′(z) = Fn(z)u(z), with

(3.2) Fn(z) =
(
λ2
n − ρ2

) Vn
A

(z) +
(
B

2A

)2

(z) +
(
B

2A

)′
(z) ,

where λn has been defined in (2.3) and

ρ =
α− 1

2
.

Fix any z0 ∈ C; the Liouville-Green transformation w(ξ) = (ξ′)1/2
u, with ξ = ξn(z)

defined in (2.1), yields

(3.3)
d2w

dξ2
=
(
λ2
n + gn(ξ)

)
w(ξ) ,
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where

(3.4) gn(ξ) = Gn(z(ξ)) , Gn =
A

Vn

((
B

2A

)2

+
(
B

2A

)′
− T 2

n − T ′n

)
− ρ2,

and

Tn(z) =
1
4

(
A′

A
− V ′n
Vn

)
(z) .

A detailed discussion of this transformation in the complex plain and of the resulting
WKB approximation can be found, e.g. in [11].

3.2. Quadratic differentials on the Riemann sphere. At this point let
us recall briefly some notions from the theory of rational quadratic differentials
on the Riemann sphere; see [13] and [19] for further details. Given the quadratic
differential $n defined in (2.6), a smooth curve γ along which

$n = −Vn(z)/A(z) (dz)2 > 0 ⇔ Im ξn(z) = const

is a horizontal arc of $n; the distinguished parameter ξn was defined in (2.1). More
precisely, if γ given by a parametrization z(t), t ∈ (α, β), then

−Vn
A

(z(t))
(
dz

dt

)2

> 0, t ∈ (α, β) .

A maximal horizontal arc is called a horizontal trajectory (or simply a trajectory) of
$n. Analogously, trajectories of −$n are called orthogonal or vertical trajectories
of $n; along these curves

Vn(z)/A(z) (dz)2 > 0 ⇔ Re ξn(z) = const .

We can define a conformal invariant metric associated with the quadratic dif-
ferential $, given by the length element |dξn| = |

√
Vn/A|(z)|dz|; the $n-length of

a curve γ is

‖γ‖$n =
1
π

∫
γ

√∣∣∣∣VnA
∣∣∣∣ (z) |dz| ;

(observe that this definition differs by a normalization constant from the definition
5.3 in [19]). Furthermore, if D is a simply connected domain not containing singular
points of $n, we can introduce the $n-distance by

dist(z1, z2;$,D) = inf{‖γ‖$n
: z1, z2 ∈ γ̄, γ ⊂ D} .

Trajectories and orthogonal trajectories are in fact geodesics (in the $n-metric)
connecting any two of its points (see [13, Thm. 8.4]).

A simply connected domain D not containing points from A ∪ Vn is called a
$n-rectangle if it is delimited by two horizontal and two vertical arcs of $n; in
other words, if ξn(D) is a (euclidean) rectangle [a, b] × [c, d], and D 7→ ξn(D) is a
one-to-one conformal mapping. We call the value d − c the $n-height, b − a the
$n-length, and 2(b−a+d− c) the $n-perimeter of D. Obviously, these definitions
are consistent with the freedom in the selection of the natural parameter ξn.
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3.3. Local asymptotics. Theorems on local asymptotics of solutions are
well-known (see [1] and [11]); using the local estimates that appear in [11, Ch.
VI, Theorem 11.1] it follows that if D is a $n-rectangle such that function gn de-
fined in (3.4) is holomorphic in ξn(D) = [a, b]× [c, d], then the differential equation
(3.3) has in [a, b]×[c, d] two linearly independent holomorphic solutions wj , j = 1, 2,
of the form

(3.5) wj(ξ) = exp
{

(−1)j+1λnξ
}

(1 + εj(ξ)) ,

and such that

(3.6) |εj(ξ)| ≤ exp

(
1
|λn|

∫ ξ

sj

|gn(t)| |dt|

)
− 1 , ξ ∈ [a, b]× [c, d] .

The integrals here are taken following the progressive paths, i.e. contours along
which Re(ξ) is non-decreasing (for j = 1) or non-increasing (for j = 2). In the case
of the rectangle we may take s1 = a+ic and s2 = b+id, so that the whole rectangle
is reachable by progressive paths. Taking advantage of the fact that the coefficients
of the original equation (1.2) are polynomials, we can estimate the total variation

M(D) = max
γ

∫
γ

|gn(t)| |dt| ,

where γ is any horizontal or vertical segment in [a, b] × [c, d]. This yields the
following result:

Proposition 3.1. With the assumptions above, let D̃ be an Euclidean rectangle
such that ξn(D) ⊂ D̃ and ξn can be continued holomorphically to D̃ in such a way
that ξn(A∪Vn) ∩ D̃ = ∅. Let dn = dist(∂D̃, ξn(D)) be the Euclidean distance from
ξn(D) to the boundary of D̃. Then we can replace the estimates (3.6) by

(3.7) |εj(ξ)| ≤ exp
(

K

dn |λn|

)
− 1 , ξ ∈ R .

In a $n-rectangle D we can select a single valued branch of the function Hn

introduced in (2.5). Then a direct consequence of the proposition above is

Corollary 3.2. Let D be a $-rectangle. Then a general solution of (1.2) in D has
the form

(3.8) y(z) = Hn(z)
[
κ1 ζ

λn
n (z) (1 + ε1(z)) + κ2 ζ

−λn
n (z) (1 + ε2(z))

]
,

with ζn defined in (2.2). We have

(3.9) |εj(z)| ≤ exp
(

K

dn |λn|

)
− 1 , z ∈ D ,

where dn is the Euclidean distance defined in Proposition 3.1.

3.4. Global asymptotic formula away from zeros. The result above shows
that if we stay away from the singularities A∪Vn, we can control the errors in the
WKB approximation uniformly. This motivates the following definition. For ε > 0
and t ∈ C and subset K ⊂ C we denote

Dε(t)
def= {z ∈ C : |z − t| < ε} , Dε(K) def=

⋃
t∈K

D(t, ε) ,

and
Dn,ε

def= Dε(A ∪ Vn) .
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Let D be a $n-rectangle in C \ Dn,ε containing infinity. We can select the
branch of ζn and the initial point z0 in (2.2) in such a way that |ζn(z)| ≥ 1 + δ for
a δ > 0, and there is a constant κ such that

(3.10) Qn(z) = Hn(z)
[
ζλn
n (z) (1 + ε1(z)) + κ ζ−λn

n (z) (1 + ε2(z))
]
.

It follows that if we continue all functions analytically in the maximal domain
containing D such that |ζn(z)| ≥ 1 + δ, then formula (3.10) still holds.

Next, standard arguments show that in a domain D, if Qn 6= 0 for all sufficiently
large n, then there exists a dominant term in (3.8):

Lemma 3.3. Let D = {z ∈ C : a < Re(ξn) < b, c < Im(ξn) < d} be a simply
connected $n-rectangle in C \Dn,ε, with

d− c > π

|λn|
.

If Ω does not contain zeros of a solution y of (1.2) then for any choice of the lower
limit of integration and with an appropriate choice of the branch of the square root
in (2.2) we have

(3.11) y(z) = Hn(z) ζλn
n (z) (1 + εn(z)) .

Moreover, there exists a constant M = M(ε,D), independent of n, such that for
any $n-rectangle D′ ⊂ D,

(3.12) |εn(z)| ≤ M

|λn|
, t ∈ D′ .

Now let us observe what happens if we have a union of two $n-rectangles, D(1)

and D(2), such that D(1) ∩ D(2) has an interior point, z0. Assume first that we
take this z0 as the lower limit of integration in (2.2) and (2.5). From Lemma 3.3 it
follows that if y 6≡ 0,

y(z) = κ(j)Hn(z) ζλn
n (z)

(
1 + ε(j)

n (z)
)
, z ∈ D(j) , j = 1, 2,

for certain non zero constants κ(1) and κ(2). Evaluating at z = z0 we get

κ(1)
(

1 + ε(1)
n (z0)

)
= κ(2)

(
1 + ε(2)

n (z0)
)
, z ∈ D(1) ∩D(2) ,

so that,

κ(2) = κ(1) 1 + ε
(1)
n (z0)

1 + ε
(2)
n (z0)

= κ(1) (1 + εn(z)) , |εn(z)| ≤ M ′

|λn|
.

In the intersection (neighborhood of z0) both expressions for y should match, hence
we have that in D(1) ∩D(2),

ζλn
n (z)

(
1 + ε(1)

n (z)
)

= ζ±λn
n (z) (1 + εn(z))

(
1 + ε(2)

n (z)
)
.

Since D(1) ∩D(2) is an open set, necessarily the same branch of ζn has been taken
in both sides of the previous identity. This argument shows that Lemma 3.3 is valid
in the union D(1) ∪D(2), eventually with a different constant in the right hand side
of (3.12).

Now, modifying the lower limit of integration only changes the normalization
constant κ in (3.11). That means that in the representation (3.11) we can choose
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any lower bound z0 ∈ D(1) ∪D(2), as long as we understand the function ζn as the
analytic continuation along a path in D(1) ∪D(2).

The discussion above motivates the following definition:

Definition 3.4. Let D(j), j = 1, . . . , k, be a finite set of $n-rectangles with $n-
height greater than |λn| and bounded $n-perimeters. If each intersection D(j) ∩
D(j+1), j = 1, . . . , k − 1, has an interior point, then their union ∪kj=1D

(j) is called
a finite $n-chain (see Figure 1).

D(3)

D(1)

D(2)

Figure 1. A $n-chain.

Thus, we have proved the following result:

Lemma 3.5. Let D̃ ⊂ C \ Dn,ε be a domain, and D = ∪kj=1D
(j) ⊂ D̃ a finite

and simply connected $n-chain in D̃. If a solution y of (1.2) does not vanish in D
then for any choice of the lower limit of integration in D, and with an appropriate
choice of the branch of the square root in (2.2) there exists a constant C such that
(3.11)–(3.12) holds in D. The branch of ζn is obtained by analytic continuation in
D.

In other words, asymptotic representation can be continued along the chains
of $n-rectangles, as long as we stay away from the zeros of the solution and of the
sets A and Vn.

3.5. Zeros of a solution of the differential equation. Assume now that
y is a nontrivial solution of (1.2) and z0 ∈ C \ Dn,ε is a zero of y. Let Ω be a
maximal simply connected $n-rectangle in C \Dn,ε containing z0, and let γ be the
vertical trajectory in γ passing through z0. By assumption, z0 is a regular point of
the quadratic differential $n, so that γ is well defined.

In Ω the expression (3.8) is valid. In particular,

(3.13) y(z) = 0 ⇔ 2λn ξn(z) = log
(
−κ2

κ1

1 + ε1(z)
1 + ε2(z)

)
mod (2πi) .

Hence, from the assumption y(z0) = 0 it follows that

2λn ξn(z0) = log
(
−κ2

κ1

1 + ε1(z0)
1 + ε2(z0)

)
mod (2πi) .
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Assume that z1 is another point on γ that satisfies the following condition:

(3.14)
λn
π

∫ z1

z0

|dξn(t)| = λn ‖γ(z0, z1)‖$n
∈ N ,

where γ(z0, z1) is the arc of γ joining z0 and z1.

Definition 3.6. Let z0 ∈ C \Dn,ε, and let γ be the largest connected vertical arc
in C \Dn,ε of the quadratic differential $n passing thorough z0. The set

ω =
⋃
j

ωj

is a necklace in C\Dn,ε corresponding to z0 if all ωj , called beads, are $n-rectangles
of the form

ωj = {z ∈ Ω : |Re(ξn(z)− ξn(zj))| < δ, | Im(ξn(z)− ξn(zj))| < δ} ,
where each zj satisfies condition (3.14), there exists a constant M such that λ2

nδ ≤
M , and all ωj ⊂ C \Dn,ε. The vertical arc γ is the string of the necklace.

z0

z1

Figure 2. Necklace corresponding to z0.

A direct consequence of Rouche’s theorem is the following statement:

Lemma 3.7. Let z0 ∈ C \Dn,ε be a zero of a nontrivial solution y of (1.2), and
let ω be a necklace in C \Dn,ε corresponding to z0. Then each bead wj ⊂ C \Dn,ε

contains one and only one zero of y.
Furthermore, let Ω be a simply connected $n-rectangle in C \Dn,ε, and z0 ∈ Ω

be a zero of a nontrivial solution y of (1.2). If ω is the necklace in C \ Dn,ε

corresponding to z0, then y(z) 6= 0 for z ∈ Ω \ ω.

These results are applicable to any solution of (1.2). Now we concentrate on the
n-th degree Heine-Stieltjes polynomial. The main difference is that we know that it
has exactly n zeros, with account of multiplicity. This and Lemma 3.7 immediately
yield the following

Proposition 3.8. Assume that z0 ∈ C \Dn,ε is a zero of a Heine-Stieltjes polyno-
mial Qn, and let γ be the largest connected vertical arc in C \Dn,ε of the quadratic
differential $n passing thorough z0. Then

‖γ‖$n
≤ n+ 2

λn
.
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In particular, every string of a zero-carrying necklace has a finite $n-length, and
starts and ends at Dn,ε, or is a closed curve.

Indeed, by Lemma 3.7, every necklace carries at least λn‖γ‖ϕn
−2 zeros of Qn,

where γ is the string of the necklace.
Summarizing, if Qn is a Heine-Stieltjes polynomial, there exist a finite number

of zero-carrying necklaces with the corresponding strings γn,j such that all the zeros
belong to the union of these necklaces or lie in Dn,ε.

4. Asymptotics of Van Vleck polynomials

As it is clear from Theorem 2.1, the zeros of the Van Vleck polynomial Vn are
the key parameters in the asymptotic expression for the Heine-Stieltjes polynomi-
als. Hence, as a next step we derive a set of equation that will characterize their
positions. We start with a formal argument and postpone to next section a more
detailed discussion about consistency and meaning of these equations.

Theorem 4.1. With the assumptions and notations above, let y = Qn be a Heine-
Stieltjes polynomial (solution of (1.2)) corresponding to Vn, and let γn,k be the set
of arcs defined in Theorem 2.1. If there exists an ε > 0 such that all arcs γk,n
are disjoint and the $n-distance between them is > ε, then the following system of
equations is satisfied:

(4.1)
1
πi

∫
γk,n

√
Vn(t)
A(t)

dt =
mk

λn
+
ρk/2 + δk,n

λn
, k = 1, . . . , p− 1, mk ∈Mn,

where the index set Mn is a finite subset of N∪{0}. If for γk,n we denote by ηk the
set of endpoints of γk,n that belong to A, then

ρk
def=
∑
a∈ηk

B(a)
A′(a)

+ 1− card(ηk).

Furthermore, there exists a constant C = C(ε) such that

|δk,n| ≤
C

n
.

This theorem is a simple consequence of the asymptotic formula (2.4), which
is valid in a neighborhood of γk,n. Observing its increment along a closed Jordan
curve γ̃k,n encircling γk,n in the positive direction and using the argument principle
we get the formulas above.

The system of equation (4.1) consists of p − 1 equations (since we have fixed
the residue at infinity, equation k = p is dependent from the other p − 1 ones).
More exactly, (4.1) presents a collection of systems of equations. In order to define
it completely we need to specify:

(a) the combinatorics: points from A∪Vn are arranged in p pairs (endpoints
of γk,n).

(b) the homotopic types of curves γk,n (once the combinatorics is fixed); and
(c) the range of values the integer parameters mk in the right hand side of

(4.1) may take.
Observe that by (4.1),

1
πi

∫
γk,n

√
Vn(t)
A(t)

dt =
mk

λn
+
ρk/2
λn

+O
(

1
n2

)
, k = 1, . . . , p− 1, mk ∈ N.



ASYMPTOTICS OF HEINE-STIELTJES AND VAN VLECK POLYNOMIALS 11

This system allows eventually to to find the position of “almost all” zeros of Van
Vleck polynomials, with an error smaller than the distance between zeros. In most
part of the range this error is O(n−2). A complete analysis however is cumbersome
and contains a combination of analytic, geometric and combinatorial arguments.
We restrict our presentation here to the case p = 2 (three points), which at least
has a trivial combinatorics and a rather simple geometry, with additional remarks
on the case p = 3.

4.1. Case of p = 2. We have A = {a0, a1, a2} (in general, non-collinear) and
want to discuss the issues (a)-(c) raised above in order to define completely the set
of equations determining the position of the zero of the Van Vleck polynomial. The
first ingredient we need is the solution of the classical minimal capacity problem
posed in the class of all continua in C containing A (the Chebotarev’s problem).
It was proved by Grötzsch [3] and Lavrentiev [6, 7] that there exists a unique
Γ∗ = Γ∗(A) satisfying

(4.2) cap(Γ∗) = min{cap(F ) : F a continuum containing A},

where cap(·) denotes the logarithmic capacity. If aj ’s are not collinear, then Γ∗ is
a union of three arcs, γ∗0 , γ∗1 , and γ∗2 , connecting a point v∗ = v∗(A) with points
aj ’s, respectively (see also [5] and [12]). We call this Γ∗ the Chebotarev’s compact
or Chebotarev’s continuum corresponding to A, and point v∗ is the Chebotarev’s
center of the set A. If we define

(4.3) Mj =
1
π

∫
γk

∣∣∣∣ t− v∗A(t)

∣∣∣∣1/2 |dt|, k = 0, 1, 2,

then
M0 +M1 +M2 = 1.

Observe that each Mj is the $∗-length of γ∗j , where

$∗
def=

v∗ − z
A(z)

(dz)2.

Next we define three analytic functions (elements) wk(v), k = 0, 1, 2. We
describe first w0 as a germ of an analytic function at v = a0, which allows unlimited
analytic continuation to C \ A. For all v in a sufficiently small neighborhood of a0

let ∆0 be the segment [a0, v], and ∆1 = [a1, a2]. Denote Ω def= C \ (∆0 ∪∆1). With
R(z) def= (z − v∗)/A(z) we consider in Ω the single-valued branch of

√
R given by

the asymptotic condition limz→∞ z
√
R(z) = 1, and define

w0(v) =
1
πi

∫
∆0

√
R(t) dt =

1
2πi

∮
∂∆0

√
R(t) dt,

where ∂∆0 is the doubly-connected component of ∂Ω (the Carathéodory boundary
of Ω), with the boundary values of the branch of

√
R specified above. It is clear

that w0 is analytic at v = a0, and may be continued as a multi-valued analytic
function to C\A. Similarly, we define w1 and w2, starting from v = a1 and v = a2,
respectively. The proof of the following statement can be found, e.g. in [8]:

Proposition 4.2. For k = 0, 1, 2 there exist an analytic arc `k, connecting ak with
v∗, defined by

`k = {v ∈ C : wk(v) ∈ [0,Mk]}.
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Furthermore, for k = 0, 1, 2, wk(v) is univalent in a neighborhood Lk of `k (which
is mapped by wk onto a neighborhood of the interval [0,Mk]).

Now we are ready to formulate a theorem about the asymptotic location of the
zeros of Van Vleck polynomials for p = 2.

Theorem 4.3. Let y = Qn be a Heine-Stieltjes polynomial (solution of (1.2))
with A = {a0, a1, a2}, corresponding to Vn(z) = z − vn. Assume that there exists
an ε > 0 such that dist(vn, v∗) > ε (where v∗ is the Chebotarev’s center). Then
for all sufficiently large n, there exist an index k ∈ {0, 1, 2} and an integer value
0 ≤ mk ≤ [nMn] such that the following equation is satisfied:

(4.4) wk(vn) =
mk

λn
+

1
λn

B(ak)
2A′(ak)

+
δk,n
λn

,

and there exists a constant C = C(ε) such that

|δk,n| ≤
C

n
.

Obviously, this statement does not cover, roughly speaking, εn zeros out of
n + 1 possible zeros of Van Vleck polynomials, but it provides an error estimate
of order C(ε)n−2. The exceptional set of “missed” Van Vleck zeros may be made
smaller (up to a constant) for the price of relaxing the error estimate; also the
technical details become more cumbersome.

4.2. Case of p = 3. Now we turn to the problems (a) and (b) related to
the system (4.1), namely, we discuss the combinatorics and the homotopic type of
curves γk,n from Theorem 4.1; we leave the issue (c) of the range of values of mk

in the equations to the following Section.
Here we illustrate the situation considering the points aj from A at vertices of

a rectangle whose height (vertical size) is smaller then length (horizontal size), see
Fig. 3, with the results of some numerical experiments, as well as Fig. 4, where the
corresponding Chebotarev’s continuum is depicted.

In this case Vn(z) = (z − v1,n)(z − v2,n); its zeros are determined completely
by a system of two independent equations of the form (4.1).

We claim that in this situation there are exactly 8 + 1 homotopically different
groups of systems, see Figure 6. In eight of them we integrate along two arcs γk,n,
each connecting a point from A with a zero of Vn. In the remaining case (Figure 6,
bottom right) one of the curves will connect both zeros of Vn.

For the case depicted in Figure 6, upper left, system (4.1) is written as
w1(c1, c2) =

1
πi

∫ v1

a1

√
Vn(t)
A(t)

dt =
mk,1

λn
+

1
λn

B(a1)
2A′(a1)

+
δk,n,1
λn

,

w2(c1, c2) =
1
πi

∫ v2

a2

√
Vn(t)
A(t)

dt =
mj,2

λn
+

1
λn

B(a2)
2A′(a2)

+
δj,n,2
λn

,

where (mk,1,mj,2) is a pair of integers. We postpone the discussion about the
possible range of variation of these constants until next section. In order to claim
that

|δk,n,j | ≤
C

n
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Figure 3. Zeros of Heine-Stieltjes (small dots) and of the corre-
sponding Van Vleck polynomials (fat dots) for aj ’s at vertices of a
rectangle (p = 3).

we need to leave aside again a fraction of zeros of Van Vleck polynomials (for which
conditions of Theorem 2.1 are not satisfied), which is typically o(n2) (recall that the
cardinality of the set of all Van Vleck polynomials corresponding to a Heine-Stieltjes
polynomial of degree n is σ(n) = O(n2)).

5. The Van Vleck set (outline of the proof)

This section is essentially based on the results of our recent paper [8], and we
will be regularly referring the reader to some parts of this work for further details.

We have seen that even in the simplest cases the geometry behind the set of
equations (4.1) is quite involved; furthermore, we have not clarified yet the selection
of the index set Mn. However, the situation becomes much more clear when we
take limit as n→∞.

We start by considering an arbitrary p for the price of omitting some non-
essential details; a more thorough analysis will be carried out at the end for the
particular (but non-trivial) case p = 2.
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v∗1 v∗2

a1

a2

a0

a3

Figure 4. Chebotarev’s compact corresponding to 4 points form-
ing a rectangle.

5.1. Zero distribution of Heine-Stieltjes polynomials and critical mea-
sures. It is known (see e.g. [16]) that the zeros of the Heine-Stieltjes polynomials
accumulate on the convex hull of A. Hence, without loss of generality we may
assume that there is a subsequence Λ ⊂ N such that the Van Vleck polynomials
have a limit,

(5.1) lim
n∈Λ

Vn(z) = V (z) =
p−1∏
j=1

(z − vj) .

This limit induces the following rational quadratic differential on the Riemann
sphere,

(5.2) $ = −V (z)
A(z)

(dz)2.

Let us consider the corresponding sequence of Heine-Stieltjes polynomials Qn,
n ∈ Λ; from Proposition 3.8 it follows that the zeros of Qn’s lie asymptotically
on critical trajectories of $, and that these trajectories have the total $-length 1.
Further results can be obtained using the electrostatic interpretation of these zeros;
it has been proved in [8] that any weak-* limit of the normalized zero-counting
measure for Qn’s is a continuous critical measure with respect to the set A of fixed
points on the plane. Let us recall the definition in its simplest form, sufficient for
what follows.

With every (real-valued) Borel measure µ on C we associate its (continuous)
logarithmic energy

(5.3) E(µ) def=
∫∫

log
1

|x− y|
dµ(x)dµ(y) .

Any smooth complex-valued function h in the closure Ω of a domain Ω containing
A generates a local variation of Ω by z 7→ zt = z + t h(z), t ∈ C, and consequently,
a variation of sets e 7→ et

def= {zt : z ∈ e}, and (signed) measures: µ 7→ µt, defined
by µt(et) = µ(e).
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Figure 5. Possible homotopic classes of curves γn,k for the case
p = 3; compare with the examples depicted in Figure 3.

We say that a signed measure µ supported in Ω is a continuous A-critical if for
any h smooth in Ω \ A such that h

∣∣
A ≡ 0,

(5.4)
d

dt
E(µt)

∣∣
t=0

= lim
t→0

E(µt)− E(µ)
t

= 0.

A-critical measures appear quite frequently in many problems of approximation
theory; any such a measure µ can be characterized in terms of its logarithmic
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potential

Uµ(z) def=
∫

log
1

|z − t|
dµ(t)

as follows:

Lemma 5.1 ([8], Section 5.3). The logarithmic potential of an A-critical measure
µ satisfies the following properties:

(i) if supp(µ) = γ1 ∪ · · · ∪ γs, where γj are the connected components of
supp(µ), then

Uµ(z) = wj = const, z ∈ γj , j = 1, . . . , s.

(ii) at any regular point z ∈ supp(µ) (that is, such that locally at z, supp(µ)
is a smooth Jordan arc),

(5.5)
∂Uµ

∂n+
(z) =

∂Uµ

∂n−
(z) ,

where n± are the normal vectors to supp(µ) at z pointing in the opposite
directions.

Additionally, if z ∈ supp(µ) \ A is not regular, then

(5.6) gradUµ(z) = 0.

Reciprocally, assume that a finite real measure µ, whose support supp(µ) consists of
a union of a finite set of analytic arcs, supp(µ) = γ1 ∪ · · · ∪ γs, satisfies conditions
(i) and (ii) above. Then µ is A-critical.

In other words, (i) says that A-critical measures are in fact equilibrium mea-
sures in a piece-wise constant external field, exhibiting additionally (see (ii)) the
so-called S-property, introduced first by Stahl [17] and in a more general context,
by Gonchar and Rakhmanov [2] (where it was used to establish the well-known
“1/9”-conjecture in approximation theory). A first rigorous proof of the connec-
tion of a critical measure with the S-property appeared in [14].

With a polynomial Q(z) =
∏n
k=1(z − ζk) of degree n we associate its (normal-

ized) zero counting measure

ν(Q) =
1
n

n∑
k=1

δζk
.

The differential equation (1.2) is an expression of the fact that the zeros of Qn sit
in equilibrium (zeros of the gradient of the discrete total energy) in presence of an
external field depending from the residues ρk in (1.4). The intensity of this field
decays with n proportionally to 1/n, so that in the limit we get

Proposition 5.2 ([8], Section 7). Let νn = ν(Qn) be a zero-counting measure
corresponding to a sequence of Heine-Stieltjes polynomials Qn. Then any weak-*
limit point µ of νn is a unit continuous A-critical measure.

In other words, weak-* limits of the normalized zero counting measures of Qn’s
are unit positive A-critical measures. The inverse inclusion (that any unit positive
A-critical measure is a weak-* limit of the normalized zero counting measures of
Heine-Stieltjes polynomials) is also valid, but it cannot be established within the
framework of this paper.
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Continuous critical measures can be also related with rational quadratic dif-
ferentials on C by means of a variational argument. Our WKB analysis allows to
establish this link, at least partially, more directly:

Theorem 5.3. Let y = Qn be a Heine-Stieltjes polynomial (solution of (1.2))
corresponding to Vn, and assume that (5.1) holds. Then the quadratic differential

$ = −V
A

(z) dz2

is closed (all its trajectories are either critical or closed), and there is a probability
A-critical measure µ on C such that the normalized zero counting measures ν(Qn)
converge (in a weak-* sense and along the subset Λ) to µ. The support Γ = supp(µ)
consists of critical trajectories of $, C \ Γ is connected, and we can fix the single
valued branch of

√
V/A there by limz→∞ z

√
V (z)/A(z) = 1. With this convention,

(5.7) lim
n
|Qn(z)|1/n = exp

(
Re
∫ z

√
V

A
(t) dt

)
locally uniformly in C \ Γ, where a proper normalization of the integral in the right
hand side is chosen, so that

lim
z→∞

(
Re
∫ z

√
V

A
(t) dt− log |z|

)
= 0.

The analysis above yields the following addendum, that we state using the
notation and assumptions of Theorems 2.1 and 5.3:

Proposition 5.4. The support Γ = supp(µ) is comprised of p analytic arcs γk,
such that

lim
n∈Λ

Γn = Γ.

5.2. Structure of the family of positive critical measures. Theorem
5.3 is essential for understanding the asymptotics of Heine-Stieltjes polynomials,
although this result is in a certain sense implicit, since it depends on the limit V
of the Van Vleck polynomials Vn, that constitute therefore the main parameters of
the problem. We must complement this description with the study of the set of all
possible limits V .

To this end it is convenient to consider a correspondence between closed qua-
dratic differentials and A-critical measures, independently of their origin. In gen-
eral, this is not a one-to-one correspondence, since many critical measures may
correspond to the same closed quadratic differential. It was pointed out in [8] that
the bijection between closed quadratic differentials of the form (5.2) and signed
A-critical measures is restored if we restrict ourselves to signed measure with a
connected complement of the support. Indeed, any such a measure is supported
on a finite union of analytic arcs, and these arcs are necessarily critical trajectories
of a quadratic differential like in (5.2). Reciprocally, from (5.2) we can construct
explicitly (using the Sokhotsky-Plemelj formulas) a measure µ that satisfies (5.4).

Thus, any closed quadratic differential uniquely generates an A-critical mea-
sure µ with a connected complement to its support. In general, such a µ is a signed
measure, and for our purposes one has to select those quadratic differentials asso-
ciated with positive measures. One of the ways to solve this problem goes through
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describing the global structure of the trajectories of closed rational quadratic dif-
ferentials with fixed denominators on the Riemann sphere, and the corresponding
parameters (numerators), and later extracting from this set the subset giving rise
to positive unit A-critical measures.

This way is implemented in for p = 2 at the end of this paper. For an arbitrary
p such an investigation would be more difficult to carry out, in particular due to
the heavy combinatorics involved. Below we present a direct construction from [8],
based on the v-local coordinates that we introduce in the space of the A-critical
measures, as well as on the topological structure of the Chebotarev’s compact for
A. We start by introducing the v-coordinates.

Let us recall the notation. We have the fixed set A = {a0, a1, . . . , ap} of distinct
points on C, A(z) =

∏p
j=0(z−aj). For any signed A-critical measure µ there exists

a rational quadratic differential $ on the Riemann sphere C given by

(5.8) $(z) = −R(z) (dz)2, R(z) def=
V (z)
A(z)

, V (z) def=
p−1∏
j=1

(z − vj),

such that supp(µ) = Γµ = Γ = γ1 ∪ · · · ∪ γp is a union of trajectories of $.
We begin by introducing the local coordinates under the assumption that mea-

sures are in general position; this notion of genericity (as opposed to some more
special or coincidental cases that are possible) means in our context that Γ is com-
prised of exactly p disjoint arcs. In consequence, zeros vj ’s of V are simple, and
vector v

def= {v1, . . . , vp−1} ∈ Cp−1 can be used as a local coordinate. Define also

V def= {v : $ is closed}.
Next we use these local coordinates to introduce the period mapping for our

quadratic differentials. The Carathéodory boundary of C \ Γ consists of p compo-
nents γ̂k

def= γ+
k ∪ γ

−
k , with a positive orientation with respect to C \ Γ. We can

consider γ̂k as cycles in C \ Γ enclosing the endpoints of γk. Part of R over C \ Γ
splits into two disjoint sheets, so we may consider γ̂k as cycles on R.

Let us define

(5.9) wk(v) = wk(v,Γ) def=
1

2πi

∮
bγk

√
R(z)dz, k = 1, . . . , p,

where
√
R
∣∣bγk

are the boundary values of the branch of
√
R in C \ Γ defined by

limz→∞ z
√
R(z) = 1. Clearly, the boundary values (

√
R)± on γ±k are opposite

in sign. Therefore, with any choice of orientation of γk and a proper choice of√
R = (

√
R)+ on γk, we will have

(5.10) wk(v) =
1
πi

∫
γk

√
R(z)dz, k = 1, . . . , p.

By the Cauchy residue theorem we have that w1 + · · · + wp = 1 for any v ∈
Cp−1. Thus, we can restrict the mapping v 7→ w to p − 1 components of w

def=
(w1, . . . , wp−1) ∈ Cp−1. In this way, we have defined the mapping

(5.11) P(·,Γ) : Cp−1 → Cp−1 such that P(v,Γ) = w(v,Γ).

Each component function wj(v1, . . . , vp−1) is analytic in each coordinate vk (even
if vk is at one of the endpoints of γk). Once defined by the integral in (5.10), this
analytic germ allows an analytic continuation along any curve in C \ A. Arcs γk
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are not an obstacle for the continuation since the integral in (5.10) depends only
on the homotopic class of Γ in C \ (A ∪ v). The homotopy of Γ is a continuous
modification of all components simultaneously in such a way that they remain
disjoint in all intermediate positions. Under this assumption we can continuously
modify the selected branch of

√
R in C \ Γ along with the motion of Γ.

Proposition 5.5. Mapping w = P(v) is locally invertible at any v(v1, . . . , vp−1) ∈
(C \ A)p−1 with vi 6= vj for i 6= j.

Furthermore, we have

Proposition 5.6. Let µ0 be an A-critical measure such that Γ = supp(µ0) has con-
nected components γ0

1 , . . . , γ
0
p, and C \ Γ is connected. Let $0 = R0(z)(dz)2 be the

quadratic differential associated with µ0, where R0 = V0/A, and v0 = (v0
1 , . . . , v

0
p−1)

is the vector of zeros of V0. Assume that $0 is in general position (that is, all vk’s
are pairwise distinct and disjoint with A). Then for an ε > 0 and any mj ∈ R,
j ∈ {1, . . . , p− 1}, satisfying

|mj − µ0(γ0
j )| < ε, j = 1, . . . , p− 1,

there exists a unique solution v ∈ V of the system

(5.12) wj(v,Γ) = mj , j = 1, . . . , p− 1.

The quadratic differential $ = −R(z)(dz)2, R(z) =
∏p−1
k=1(z − vk)/A(z), is closed,

and the associated A-critical measure µ satisfies µ(γj) = mj, j = 1, . . . , p−1, where
supp(µ) = γ1 ∪ · · · ∪ γp and supp(µ) is homotopic to supp(µ0).

This Proposition introduces a topology in the set of A-critical measures in
general position. We call a cell any connected component of this topological space.
A measure in general position preserves sign along any connected component of its
support. This sign is subsequently preserved when we homotopically modify the
measure within its cell. In particular, if µ is a positive A-critical measure, then all
measures in the same cell with µ are positive.

In v-coordinates a cell G = G(Γ) in V is a subspace of Cp−1 ' R2p−2, which is
a manifold of the real dimension p− 1, defined by p− 1 real equations of the form

(5.13) Imwj(v) = Im

(
1

2πi

∫
bγj

√
R(t) dt

)
= 0, j = 1, . . . , p− 1,

where Γ̂ = γ̂1 ∪ · · · ∪ γ̂p−1 ∪ γ̂p is a union of Jordan contours γ̂k on R (double arcs)
depending on v, but mutually homotopically equivalent for values of v from the
same cell. Practically, any v0 ∈ G has a neighborhood of v satisfying (5.13) with
constant γ̂k’s.

Next, let V+ be the set of positive A-critical measures; it will be comprised of
3p−1 cells. Below we introduce these cells by means of the Chebotarev’s continuum
Γ∗ = Γ∗(A), associated with A = {a0, . . . , ap} (that is, the continuum solving
the extremal problem (4.2)). It constitutes the “universal boundary”, i.e., the
intersection of all boundary points of all cells. In general, isolating a cell from its
boundary point is a formidable task. We take advantage here that we are interested
only in those that yield positive A-critical measures, that are characterized by the
trivial homotopy.

The Chebotarev’s continuum consists of critical trajectories of $ = −R∗dz2,
R∗ = V ∗/A. Assume that the set A satisfies the condition that A and V ∗ do not
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have common zeros and V ∗(z) =
∏p−1
k=1(z−v∗k) does not have multiple zeros. Thus,

the critical set A∗ = A ∪ {v∗1 , . . . , v∗p−1} consists of 2p different points, and Γ∗ is
comprised of 2p − 1 arcs, that are critical trajectories of $. Each trajectory joins
two different points from A∗.

Now we come to the procedure of selection of combinatorial (rather than ho-
motopic) types of cells; once the combinatorial type is fixed, the homotopic one
will be determined from the Chebotarev’s continuum, as described next. Each zero
v∗ = v∗k, k = 1, . . . , p − 1, is connected by component arcs of Γ∗ with three other
points, say a∗1, a

∗
2, a
∗
3 ∈ A∗. We select one of these three arcs (for definiteness,

[v∗, a∗1]) and join two other arcs to make a single arc [a∗2, a
∗
3], bypassing v∗ (we

think that the arc [a∗2, a
∗
3] still follows the two arcs from Γ∗, but without touching

v∗, instead passing infinitely close to it). This procedure, carried out at each zeros
v∗k of V ∗, creates a compact set Γ, and consequently, a cell G(Γ) of corresponding
measures µ ∈ V̂+.

The selection of Γ, and hence, of the cell G(Γ), is made by choosing one of the
three connections for each v∗k; there are 3p−1 ways to make the choice. Any choice
splits Γ∗ into p “disjoint” arcs Γ∗ = γ1 ∪ · · · ∪ γp; out of them we select p− 1 arcs
(to make an homology basis for C \Γ∗) and then consider the corresponding cycles
γ̂k, as described above.

Finally, we describe the cell G(Γ) in terms of the mapping P. Let w = w(v) =
P(v, Γ̂); the cell G(Γ) is completely defined by the system

(5.14) wj(v) = µj ∈ R+, j = 1, . . . , p− 1;

more precisely, there exists a domain M(Γ) = {(µ1, . . . , µp−1) ∈ Rp−1
+ } such that

for any point (µ1, . . . , µp−1) ∈M(Γ) system (5.14) has a unique solution v ∈ Cp−1.
Moreover, the corresponding measure µ = µv satisfies µ(γj) = µj , and supp(µ) =
γ1 ∪ · · · ∪ γp = Γv is homotopic to Γ.

Summarizing, a rough description of the set V̂+ of unit positive A-critical mea-
sures may be made as follows. The set V̂+ is a union of 3p−1 of closed bounded cells
G(Γ) (Γ = γ1∪· · ·∪γp may be selected in 3p−1 ways). The interior G(Γ) of each cell
consists of measures µ in general position with supp(µ) homotopic to Γ. Interiors of
different cells are disjoint. Chebotarev’s measure µ∗ (Robin measure of Γ∗) is the
only common point of all boundaries: µ∗ =

⋂
Γ ∂G(Γ). A graphical description of

all these cells for p = 3, obtained from the construction just described, is contained
in Figure 6.

5.3. Case p = 2. In order to clarify the construction above let us discuss in
more detail the simplest (but far from trivial) case of p = 2.

Let us introduce the following set of the plane. For the quadratic differential

(5.15) $v =
v − z
A(z)

dz2

define
V def= {v ∈ C : $v is closed} ,

as well as the Van Vleck set

V+
def= {v ∈ C : v is an accumulation point of the zeros of Van Vleck polynomials} .

A direct consequence of Theorem 5.3 is that

V+ ⊂ V.
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As it was mentioned for the general case, this inclusion is proper.
As in Subsection 4.1, we denote by v∗ the Chebotarev’s center of A (the value

of v in (5.15) such that $v∗ corresponds to the Chebotarev’s continuum for A),
and let A∗ = A ∪ {v∗}.

Theorem 5.7 ([8], Section 8.3). The set V is a union of a countable number of
analytic arcs `k, k ∈ Z, each connecting v∗ and ∞.

Two arcs from V are either identical or have v∗ as the only finite common point.
The homotopic type of the critical trajectories of $v in C \A remains invariant on
each arc `k \ A∗.

There are three distinguished arcs `k, k ∈ {0, 1, 2}, such that

(i) `k connects v∗ with infinity and passes through ak;
(ii) for every v ∈ `k the homotopic class of trajectories of the closed quadratic

differential $v is trivial.

In the terminology introduced in the previous subsection, this theorem says that
each cell (connected component) in the topological space of A-critical measures is
homeomorphic to an analytic arc with endpoints either at v∗, A or infinity. This
settles the problem of identification of all closed quadratic differentials ϕv. Using the
arguments described above we single out the differentials corresponding to positive
measures:

Theorem 5.8. Let `k, k ∈ {0, 1, 2}, be the distinguished arcs in V described in
Theorem 5.7. The set V̂+ is the union of the sub-arcs `+k of each `k, k ∈ {0, 1, 2},
connecting ak with the Chebotarev’s center v∗ (and lying in the convex hull of A).

Furthermore, if v ∈ `k ∩ V̂+, k ∈ {0, 1, 2}, then there is a critical trajectory
γ(v) of µv connecting v with the pole ak and such that

(5.16) 0 ≤ µv(γ(v)) ≤Mk,

where Mk is defined in (4.3). In this case both critical trajectories of $v that
constitute the support of µv are homotopic to a segment. The bijection µv(γ(v))↔ v

is a parametrization of the set `k ∩ V̂+ by points of the interval [0,mk].

In other words, the only three cells corresponding to positive A-critical mea-
sures are homeomorphic to three analytic arcs, joining the Chebotarev’s center v∗

with each pole aj ∈ A (in fact, these arcs form a star homeotopic and quite close
to the Chebotarev’s continuum, although in general not coincident with it). If v
travels such an arc, the boundary of the cell is reached when either endpoint of
this arc is met. If we continue further along the same arc, a new cell is entered,
corresponding to sign-changing A-critical measures (see an illustration of the cor-
respondence between the position of v on V and the trajectories of $v in Figure
6).

Furthermore, by Theorem 5.8, the limit zero v of V (z) = z − v satisfies an
equation of the form

1
πi

∫ v

ak

√
V (t)
A(t)

dt = β ∈ [0,Mk],

which is consistent with our construction in Subsection 4.1. We can go back now
to the set of equations (4.1) and add the following result:
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Theorem 5.9. For any ε > 0, equations

(5.17) wk(ṽj,k) =
j

λn
+
ρk/2
λn

, j = 0, . . . ,Mk = [mkn(1− ε)],

with k = 0, 1, 2, uniquely define ñ = (1−ε)n±1 points ṽj,k. There exists a constant
C = C(ε) > 0 such that any Van Vleck zero lies in a C/n2 distance from a point
ṽj,k.

In this way, each zero of Vn “belongs” to a O(n−2) neighborhood of one of the
points defined by the equations above. We need to show additionally that (again,
up to a small neighborhood of the Chebotarev’s center v∗) all neighborhoods of
this form contain at least one Van Vleck zero (establishing in this form a bijection
between points ṽj,k and the set Vn). However, the techniques developed in this
paper do not allow to complete this proof, so we formulate it as an open question:

Conjecture 5.10. There exists a constant C = C(ε) > 0 such that to each point
ṽj,k defined by equations (5.17) it corresponds at least one zero v of a Van Vleck
polynomial such that |v − ṽj,k| ≤ C/n2.
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i) µv(γ(v)) < 0ak

v

ii) µv(γ(v)) = 0v = ak

iii) 0 < µv(γ(v)) < mk
ak

v

iv) µv(γ(v)) = mk
ak

v = v∗

v) µv(γ′(v)) < 0ak

v

Figure 6. Position of v on `0∪`1∪`2 (left) and the corresponding
trajectories of the differential $v in (5.15).
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