EFECTO in vitro DE DOCE ACEITES ESENCIALES SOBRE
EL CRECIMIENTO MICELIAL DE Rhizoctonia solani y
Sclerotinia sclerotiorum Y LA GERMINACIÓN DE
ESCLEROCIOS DE Sclerotinia sclerotiorum

El Alumno:

Sonia Peinado Maldonado

Almería, septiembre 2018

Directores:

Milagrosa Santos Hernández
Fernando Diánez Martínez
ÍNDICE GENERAL

1. INTERÉS Y OBJETIVOS

1.1. IMPORTANCIA DEL CONTROL DE HONGOS EN CULTIVOS

1.2. INTERÉS DEL ENSAYO CON ACEITES ESENCIALES

1.3. OBJETIVOS

1.3.1. Objetivo general.

1.3.2. Objetivos específicos

2. REVISIÓN BIBLIOGRÁFICA

2.1. Sclerotinia sclerotiorum

2.1.1. Descripción básica

2.1.2. Huéspedes y especialización

2.1.3. Distribución geográfica

2.1.4. Enfermedad

2.1.5. Epidemiología

2.1.6. Importancia económica

2.1.7. Control

2.2. Rhizoctonia solani

2.2.1. Descripción básica

2.2.2. Huéspedes y especialización

2.2.3. Distribución geográfica

2.2.4. Enfermedad

2.2.5. Epidemiología

2.2.6. Importancia económica

2.2.7. Control

2.3. ACEITES ESENCIALES

2.3.1. Introducción
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

2.3.2. Características generales. ... 36
2.3.3. Características físicas. ... 39
2.3.4. Características químicas. ... 40
2.3.5. Clasificación de los aceites esenciales. .. 43
2.3.6. Uso de los aceites esenciales. ... 44

3. MATERIAL Y MÉTODOS. .. 47

3.1. MATERIALES UTILIZADOS EN EL ENSAYO. .. 47

3.1.1. Medio de cultivo. .. 47
3.1.2. Placas de Petri. .. 47
3.1.3. Papel Whatman. .. 48
3.1.4. Aceites esenciales. .. 48
3.1.5. Tubos Eppendorf. ... 49
3.1.6. Cromatógrafo y espectrómetro. ... 49
3.1.7. Microorganismos empleados. ... 50
3.1.8. Otros materiales. ... 50

3.2. UBICACIÓN DEL ENSAYO. .. 51

3.3. MÉTODO DE DIFUSIÓN EN DISCO .. 52

3.3.1. Preparación de placas madre para la obtención de micelio. 52
3.3.2. Preparación del medio de cultivo para microorganismos. 52
3.3.3. Preparación de las placas de Petri. ... 53
3.3.4. Colocación de discos de papel Whatman. ... 54
3.3.5. Preparación diluciones de aceites esenciales. 54
3.3.6. Repicado de hongos. ... 57

3.4. PREPARACIÓN ENSAYO GERMINACIÓN ESCLEROCIOS. 58

3.4.1. Producción de esclerocios de *Sclerotinia sclerotiorum*. 58
3.4.2. Preparación aceites esenciales. ... 59
3.4.3. Preparación de tubos Eppendorf. .. 59
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

3.4.4. Colocación esclerocios

3.5. CROMATOGRAFÍA DE GASES Y ESPECTROMETRÍA DE MASAS

3.6. DISEÑO EXPERIMENTAL

3.6.1. Organización del ensayo

3.6.2. Toma de datos

3.6.2.1. Crecimiento micelial

3.6.2.2. Germinación esclerocios

3.6.2.3. Composición química aceites esenciales

3.6.3. Análisis estadístico

4. RESULTADOS Y DISCUSIÓN

4.1. RESULTADOS INHIBICIÓN CRECIMIENTO MICELIAL DE LOS PATÓGENOS

4.1.1. Sclerotinia sclerotiorum

4.2.2. Rhizoctonia solani

4.2. RESULTADOS GERMINACIÓN DE LOS ESCLEROCIOS

4.3. COMPOSICIÓN QUÍMICA ACEITES ESENCIALES

4.4. DISCUSIÓN DE RESULTADOS

5. CONCLUSIONES

6. BIBLIOGRAFÍA
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

ÍNDICE DE FIGURAS

Figura 1. Hifas *Sclerotinia sclerotiorum*. ... 18

Figura 2. Ciclo de vida de *Sclerotinia sclerotiorum*. Fuente: Campa, Pascual y Ferreira (2009). ... 20

Figura 3. Síntomas provocados por *Sclerotinia sclerotiorum* en el cuello de plantas.. 21

Figura 4. Esclerocios *Sclerotinia sclerotiorum* en la médula del tallo de tomate..... 22

Figura 5. Fruto pepino infectado por *Sclerotinia sclerotiorum*................................. 22

Figura 6. Esclerocios (izquierda) y apotecios (derecha) de *Sclerotinia sclerotiorum*.... 23

Figura 7. Hifas *Rhizoctonia solani*. .. 28

Figura 9. Síntomas *Rhizoctonia solani*, ahogamiento de planta de tomate (izquierda) y esclerocios sobre tubérculo de patata (derecha). .. 31

Figura 10. Síntomas en plántulas de tabaco causados por *Rhizoctonia solani* causantes de damping-off. .. 31

Figura 11. Diagrama método destilación con agua... 38

Figura 12. Diagrama método destilación con agua y vapor agua.................................. 38

Figura 13. Diagrama método destilación directa con vapor de agua.......................... 39

Figura 14. Placa Petri. .. 48

Figura 15. Papel Whatman. ... 48

Figura 16. Aceites esenciales de mejorana, menta y manzanilla. 49

Figura 17. Tubo Eppendorf. .. 49

Figura 18. Cromatógrafo de gases Finnigan Trace-GC 2000..................................... 50

Figura 19: Laboratorios de Protección Vegetal de la Escuela Superior de Ingeniería de la Universidad de Almería... 51

Figura 20: Detalle colocación trozo de micelio de *Sclerotinia sclerotiorum* de la colección en la placa madre que se utilizó para el repicado del micelio del ensayo. 52

Figura 21: Placas de Petri con medio de cultivo PDA solidificando............................. 53

Figura 22: Discos de papel Whatman colocados en placa de Petri con PDA........ 54

Figura 23: Detalle agitación del contenido del tubo Eppendorf.................................. 55
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Figura 24. Detalle de codificación de los aceites esenciales para los distintos tratamientos ... 56

Figura 25. Detalle del aporte de dilución a cada disco de papel Whatman. 57

Figura 26. Detalle de placa de *Rhizoctonia solani* con aceite esencial de ciprés al 30%. ... 58

Figura 27. Esclerocios de *Sclerotinia sclerotiorum* recogidos, lavados y desinfectados. .. 59

Figura 28. Tubos Eppendorf preparados y marcados para los cinco tratamientos con aceite esencial de tomillo... 60

Figura 29. Tubo Eppendorf preparado con esclerocio de *Sclerotinia sclerotiorum*. 60

Figura 30. Esquema toma medidas crecimiento micelial .. 62

Figura 31. Mejorana 20%.. 68

Figura 32. Mejorana 30%.. 67

Figura 33. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de mejorana. 67

Figura 34. Menta 15%.. 68

Figura 35. Menta 30%.. 68

Figura 36. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de menta. 68

Figura 37. Tomillo 15%.. 69

Figura 38. Tomillo 30%.. 69

Figura 39. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de tomillo. 69

Figura 40. Manzanilla 20%.. 70

Figura 41. Manzanilla 30%.. 70

Figura 42. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de manzanilla. 70

Figura 43. Naranja 10%.. 71

Figura 44. Naranja 20%.. 71

Figura 45. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de naranja. 71

Figura 46. Romero 10%.. 72

Figura 47. Romero 20%.. 72
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Figura 48. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de naranja. ... 72

Figura 49. Patchouli 10%. ... 73

Figura 50. Patchouli 30%. .. 73

Figura 51. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de patchouli. ... 73

Figura 52. Lavanda 10%. ... 74

Figura 53. Lavanda 30%. ... 74

Figura 54. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de lavanda. ... 74

Figura 55. Geranio 10%. .. 75

Figura 56. Geranio 30%. .. 75

Figura 57. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de geranio. ... 75

Figura 58. Clavo 10%. ... 76

Figura 59. Clavo 30%. ... 76

Figura 60. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de clavo. ... 76

Figura 61. Ciprés 10%. ... 77

Figura 62. Ciprés 20%. ... 77

Figura 63. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de ciprés. ... 77

Figura 64. Eucalipto 10%. ... 78

Figura 65. Eucalipto 30%. ... 78

Figura 66. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de eucalipto. ... 78

Figura 67. Placa control *Rhizoctonia solani* 0%. ... 79

Figura 68. Mejorana 15%. .. 80

Figura 69. Mejorana 30%. .. 80

Figura 70. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de mejorana. ... 80

Figura 71. Menta 15%. ... 81

Figura 72. Menta 30%. ... 81
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Figura 73. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de menta. .. 81

Figura 74. Romero 20%.. 82

Figura 75. Romero 30%.. 82

Figura 76. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de romero. .. 82

Figura 77. Patchouli 10%.. 83

Figura 78. Patchouli 30%.. 83

Figura 79. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de patchouli. .. 83

Figura 80. Lavanda 15%.. 84

Figura 81. Lavanda 30%.. 84

Figura 82. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de lavanda. 84

Figura 83. Geranio 20%.. 85

Figura 84. Geranio 30%.. 85

Figura 85. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de geranio. .. 85

Figura 86. Clavo 15%... 86

Figura 87. Clavo 30%... 86

Figura 88. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de clavo. .. 86
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

ÍNDICE DE TABLAS

Tabla 1. Materias activas contra *Sclerotinia sclerotiorum* y cultivos para los que están autorizadas en España. Fuente: Registro Productos Fitosanitarios MAPAMA. ... 26

Tabla 2. Organismos de control biológico contra *Sclerotinia sclerotiorum* y cultivos para los que están autorizados en España. Fuente: Registro Productos Fitosanitarios MAPAMA. .. 27

Tabla 3. Materias activas y cultivos autorizados para *Rhizoctonia solani*. Fuente: Registro Productos Fitosanitarios MAPAMA. .. 34

Tabla 4. Organismos de control biológico y cultivos para los que están autorizados en el control de *Rhizoctonia solani*. Fuente: Registro Oficial de Productos Fitosanitarios MAPAMA. .. 34

Tabla 5. Clasificación de terpenos según las unidades de isopreno por las que está formado. ... 40

Tabla 6. Cantidad de aceite esencial (µl) y agua destilada (ml) a añadir para la preparación de las diluciones de cada tratamiento. .. 56

Tabla 7: Porcentajes relativos de los principales componentes de los aceites esenciales determinados por análisis de cromatografía de gases y espectrometría de masas. ... 88
1. INTERÉS Y OBJETIVOS
1. INTERÉS Y OBJETIVOS.

1.1. IMPORTANCIA DEL CONTROL DE HONGOS EN CULTIVOS.

Las enfermedades causadas por hongos pueden provocar pérdidas importantes en el rendimiento y la calidad de los cultivos, tanto antes como después de la recolección, ya que éstas afectan al crecimiento y desarrollo de las plantas atacadas, disminuyendo el rendimiento, la calidad y la vida útil de los cultivos y sus productos. Dependiendo del alcance y severidad, estas enfermedades pueden llegar a ser factores limitantes para la producción y comercialización de los productos agrícolas (Agrios, 2005), provocando pérdidas económicas tanto a productores como a comercializadores.

El control de los hongos causantes de enfermedades fúngicas se hace imprescindible en los cultivos, ya que son un factor limitante para su producción. Es por ello, que tradicionalmente para controlar las infecciones provocadas por estos hongos fitopatógenos han sido aplicados fungicidas, en la mayoría de los casos de amplio espectro. Aunque con su uso no se garantiza un control total de dichos hongos fitopatógenos debido a la dificultad de que el producto penetre en cultivos muy densos y el tiempo efectivo del producto, especialmente bajo niveles altos de enfermedad (Jones, Rabeendran y Stewart, 2014). Por otro lado, el uso de productos químicos para el control de hongos fitopatógenos acarrea una serie de inconvenientes:

- Aumento de resistencias químicas (Barera y García, 2008; Gossen, Rimmer y Holley, 2001).
- Contaminación del medio ambiente (Barnard y Padgitt).
- Daños para la salud humana.

Para intentar evitar el aumento de las resistencias químicas de los hongos a ciertos productos fitosanitarios se recomienda realizar rotaciones de cultivos con especies que no se vean atacadas por ciertos hongos y así reducir el número y la supervivencia del inóculo. Pero se ha comprobado que esta práctica resulta ineficaz cuando se trata de hongos con formas de resistencia que pueden permanecer en el suelo varios años (Jones et al., 2014; McLoughlin et al., 2018).
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Debemos destacar que la producción agroalimentaria mundial y especialmente la europea se encuentra sometida a restricciones desde el punto de vista de la comercialización por parte de las grandes cadenas de distribución del mundo. En los últimos años, se han aprobado normativas europeas que a promueven la reducción del uso de productos químicos prohibiendo un gran número de sustancias activas (Diánez, Santos, Carretero y Marín, 2018). Además, las grandes cadenas de distribución agroalimentaria exigen a los productores una serie de restricciones que deben ser cumplidas para que comercialicen su producción, como por ejemplo, limitan el uso de estos productos químicos permitiendo detectar solo tres materias activas fitosanitarias en las analíticas multiresiduos de plaguicidas realizados sobre los productos a comercializar y/o estableciendo un límite máximo de residuos (LMR) permitidos para la comercialización por debajo de los límites legales. Este hecho provoca que todos los sistemas productivos que quieran exportar sus productos, como es el caso de nuestra producción hortofrutícola intensiva, encuentren importantes dificultades, ya que, a pesar de reducirse mucho el uso de productos fitosanitarios gracias al gran avance producido en el control biológico de plagas, el control biológico de enfermedades apenas se ha desarrollado, lo que hace necesario el uso de fungicidas para el control de los hongos fitopatógenos, pero limitando su uso por las restricciones impuestas por las cadenas de distribución alimentarias.

Los productores agrícolas deben reducir los riesgos e impactos negativos de los productos fitosanitarios sobre el medioambiente y la salud humana, pero, al mismo tiempo tienen que mantener su productividad y rentabilidad agrícola. Es por ello, que se deben buscar nuevas estrategias en sistemas de producción integrados que reduzcan la cantidad de desechos generados y minimicen los impactos ambientales negativos.

Debido a la poca eficacia de las estrategias existentes de control para hongos fitopatógenos y los efectos negativos del uso repetido de los productos químicos contra éstos es necesario investigar y estudiar tanto nuevos agentes de control biológico como sustancias naturales que sean efectivos en la lucha contra dichos hongos. A esto se debe la importancia de este trabajo de estudio con aceites esenciales que intenta proporcionar información acerca de su actividad antifúngica y los posibles principales componentes causantes de dicha actividad antifúngica.
1.2. INTERÉS DEL ENSAYO CON ACEITES ESENCIALES.

Los aceites esenciales son concentrados grasos hidrofóbicos aromáticos, líquidos volátiles a temperatura ambiente que se difunden fácilmente en el aire, también llamados aceites volátiles, y que se obtienen de diversas partes de algunas plantas (hojas, tallo, flores, frutos…). Están formados por unos 20-60 componentes a distintas concentraciones, de los cuales, 2 o 3 componentes son principales ya que se encuentran a altas concentraciones (20-70%) en comparación con el resto de componentes que se encuentran presentes en cantidades muy pequeñas. Generalmente, los componentes principales son terpenos (mono y sesquiterpenos) responsables del aroma y sabor asociados con hierbas, especias y perfumes, incluyendo, además, hidratos de carbono, fenoles, alcoholes, éteres, aldehídos y cetonas responsables de su actividad biológica y su aroma.

Diversos investigadores han realizado ensayos con aceites esenciales para estudiar la capacidad antifúngica de éstos y sus componentes. Algunos de estos trabajos in vitro son los realizados por Al-Reza, Rahman, Ahmed y Kang (2010) que demostró la capacidad antifúngica de distintas concentraciones del aceite esencial del galán de noche (Cestrum nocturnum L.) para Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani y Sclerotinia sclerotiorum, ya que dicho aceite esencial tuvo un notable efecto en la germinación de esporas de los patógenos ensayados. García-Camarillo, Quezada-Viay, Moreno-Lara, Sánchez-Hernández, Moreno-Martínez, y Pérez-Reyes (2006) demostraron que los aceites esenciales de canela (Cinnamomum zeylanicum Blume) y orégano (Origanum vulgare L.) tienen una alta capacidad antifúngica sobre Aspergillus flavus. En otro estudio se comprobó que el aceite esencial de laurel (Laurus nobilis) a distintas concentraciones in vitro tiene actividad antifúngica para Botrytis cinerea y Penicillium digitatum (De Corato, Maccioni, Trupo y Di Sanzo, 2010).

Barrera y García (2008) evaluaron la actividad antifúngica de 9 aceites esenciales y 10 componentes de dichos aceites sobre la inhibición del crecimiento micelial de Fusarium sp. procedente de frutos de papaya (Carica papaya). Otras investigaciones han evaluado la actividad fungicida de aceites esenciales de Lavandula officinalis extrayendo el aceite distintas partes de la planta, flores y hojas frescas, contra Fusarium solani, Fusarium oxysporum, Aspergillus niger, Botrytis...
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Sonia Peinado Maldonado

Los resultados han sido comparados con la efectividad de fungicidas sintéticos (Zakaria y Nawras, 2014).

Por otro lado, también se han realizado estudios con aceites esenciales *in vivo* sobre cultivos o en postcosecha sobre frutos. Así, Guerrero, A. (2012) evaluó el aceite esencial de *Lippia organoides* en el control de hongos como *Fusarium sp.* y *Colletotrichum sp.* en el cultivo de aji cayena (*Capsicum anuum*). En cuanto a ensayos en postcosecha, Guerra, Santos, Laranjeira, Lima y Melo (2015) realizaron ensayos con 7 aceites esenciales para controlar *Sclerotium rolfsii* Sacc. en cacahuete y El Ouadi et al. (2017) ensayaron y estudiaron la efectividad fungicida y la composición del aceite esencial de *Melisa officinalis* para 3 hongos fitopatógenos en manzanas.

Además, se han realizado estudios con aceites esenciales para inhibir el crecimiento micelial de hongos patógenos transmitidos por semillas de legumbres de gran interés, y así, poder desarrollar fungicidas naturales alternativos a los productos químicos sintéticos que prevengan y controlen las enfermedades transmitidas por dichas semillas y cuyos tratamientos sean seguros y de bajo impacto ambiental (Marinelli, Orzali, Lotti y Riccioni, 2012).

Los aceites esenciales se consideran compuestos alternativos de control biológico debido a su actividad inhibidora sobre el crecimiento de patógenos como componentes principales o como adyuvantes antimicrobianos (Abdel-Kader, El-Mougy y Lashin, 2011) y que estos aceites esenciales tienen un bajo riesgo en el desarrollo de resistencias en los patógenos, ya que están formados por una mezcla de componentes y cada uno de ellos tiene su propia contribución a la actividad biológica (Daferera, Ziogas y Polissipu, 2003; Yahyazadeh, Zare, Omidbaigi, Faghiih-Nasiri y Abbasi, 2009). Resulta complicado relacionar directamente la acción de un compuesto de un aceite esencial con los efectos antimicrobianos, antimicóticos o el potencial fungitóxico, por lo que Rodríguez, Morales y Ramírez (2010) considera que dichos efectos son el resultado de la actuación sinérgica de los componentes de la mezcla del aceite esencial. En otros estudios varios compuestos de aceites esenciales han sido identificados como bioplaguicidas efectivos contra varias especies de fitopatógenos (Abbaszadeh, Sharifzadeh, Shokri, Khosravi y Abbaszadeh, 2014; Abdolahi, Hassani, Ghosta, Javadi y Meshkataladsat, 2010; Bajpai y Kang, 2010;
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Bakkali, Averbeck, Averbeck y Idaomur, 2008; Nazzaro, Fratianni, Coppola y de Feo, 2017).

Se ha demostrado que los aceites esenciales tienen efecto fungicida (Meepagala, Sturtz y Wedge, 2002), sin efectos secundarios en humanos, animales (Tabassum y Vidyasagar, 2013) y medio ambiente (Al-Reza et al., 2010), por lo que son una interesante alternativa a estudiar. En general, los aceites esenciales y extractos derivados de plantas se consideran compuestos no fitotóxicos y potencialmente eficaces contra varios microorganismos, incluidos muchos hongos patógenos (Tabassum y Vidyasagar, 2013) y se ha demostrado que algunos de ellos son capaces de reemplazar con seguridad parcial o total a fungicidas químicos (Guerrero, 2012; Isman, 2000; Regnault-Roger, 1997; Rodríguez et al., 2010).

Todo lo anteriormente comentado ha aumentado la necesidad de buscar sustancias fungicidas naturales, fácilmente biodegradables y que no resulten dañinas para los productores, consumidores y medioambiente.

1.3. OBJETIVOS.

El objetivo del ensayo consiste en evaluar el efecto de 12 aceites esenciales, los cuales son de: mejorana (*Thymus mastichina*), menta (*Mentha piperita*), tomillo (*Thymus vulgaris*), manzanilla (*Santolina chaecyparissus*), naranja (*Citrus sinensis*), romero (*Rosmarinus officinalis*), patchouli (*Pogostemon cablin*), lavanda (*Lavandula angustifolia*), geranio (*Pelargonium graveolens*), clavo (*Sigyzyum aromaticum*), ciprés (*Cupressus sempervirens*) y eucalipto (*Eucalyptus globulus*), en el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y en la germinación de los esclerocios de *Sclerotinia sclerotiorum*.

1.3.1. Objetivo general.

Determinar las propiedades antifúngicas que tienen cada uno de los 12 aceites esenciales usados a distintas concentraciones sobre los hongos fitopatógenos *Rhizoctonia solani* y *Sclerotinia sclerotiorum*, *in vitro*.
1.3.2. Objetivos específicos.

- Calcular la concentración adecuada de cada aceite en el control de *Rhizoctonia solani* y *Sclerotinia sclerotiorum*.
- Determinar la actividad fungicida de los aceites esenciales empleados.
- Conocer los principales componentes de cada aceite esencial.
2. REVISIÓN
BIBLIOGRÁFICA
2. REVISIÓN BIBLIOGRÁFICA

2.1. Sclerotinia sclerotiorum.

2.1.1. Descripción básica.

- Reino: Fungi
- Clase: Dothideomycetes
- Orden: Helotiales
- Familia: Sclerotiniaceae
- Género: Sclerotinia
- Especie: Sclerotinia sclerotiorum

Figura 1. Hifas Sclerotinia sclerotiorum.

Sclerotinia sclerotiorum es un hongo conocido popularmente como el moho blanco. Pertenece al grupo de los ascomicetes, sus hifas son hialinas, septadas, ramificadas y multinucleadas. El micelio que aparece sobre el cultivo o planta puede
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

ser de blanco a bronceado. Este hongo no produce conidios ni esporas, en la fase de reproducción sexual producen ascas que contienen encerradas las ascosporas y éstas son liberadas mediante un mecanismo más o menos explosivo. El hongo inverna en forma de esclerocios en el material vegetal, vivo y muerto, o en el suelo.

El ciclo de vida de *Sclerotinia sclerotiorum* consta de una fase sexual y una fase asexual cuyo objetivo es dispersar el hongo. En la etapa asexual, los esclerocios, bajo condiciones de elevada humedad relativa (superior al 80%) y moderadas temperaturas (Tª óptima de germinación 13-15 ºC) germinan y producen un micelio blanco de aspecto algodonoso. Dicho micelio penetra en las plantas, generalmente a la altura del suelo y a través de heridas o aperturas. El hongo se desarrolla sobre la planta infectada y produce nuevos esclerocios que caen fácilmente al suelo y dan lugar al comienzo del ciclo.

El ciclo de vida sexual también comienza a partir de los esclerocios, pero en este caso, sobre ellos se desarrollan unas estructuras llamadas apotecios, en cuyo interior se albergan las ascas que contienen las ascosporas. Estas ascosporas se dispersan fácilmente con el viento y si se adhieren a órganos vegetales senescentes y si la humedad relativa es adecuada, las ascosporas germinan y se produce la infección. Cuando las ascosporas germinan, rápidamente se produce la infección, el hongo crece e infecta todos los órganos de la planta y desarrolla el micelio blanco de aspecto algodonoso característico de este hongo. Sobre el micelio se forman esclerocios que fácilmente caen al suelo y dan lugar al comienzo del ciclo.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

2.1.2. Huéspedes y especialización.

Sclerotinia sclerotiorum es uno de los patógenos más inespecíficos y polífagos. Tiene un amplio rango de huéspedes, siendo capaz de infectar a más de 400 especies de plantas diferentes (Abdullah, Ali y Suleman, 2008), pertenecientes a diversas familias, la mayoría dicotiledóneas, aunque también son huéspedes de varias monocotiledóneas de importancia agrícola (Bolton, Thomma y Nelson, 2006). Es capaz de infectar a plantas en cualquiera de sus etapas de desarrollo, incluyendo plántulas, plantas maduras y órganos cosechados (Agrios, 2005). La mayoría de sus huéspedes son plantas herbáceas (Purdy, 1979).
2.1.3. Distribución geográfica.

Sclerotinia sclerotiorum se encuentra distribuido por todo el mundo, tanto en zonas frías y húmedas como en calientes y secas (Purdy, 1979), aunque la enfermedad se da principalmente en zonas con condiciones frescas y húmedas. Es un patógeno del invierno en climas subtropical y mediterráneo.

2.1.4. Enfermedad.

El primer síntoma observado en una planta infectada por *Sclerotinia sclerotiorum* son lesiones húmedas en el cuello de la planta de color café o oscuro y posterior marchitamiento y pudrición en la parte aérea. En dichas lesiones crece un micelio blanco de aspecto algodonoso que le da nombre a la enfermedad (moho blanco) (Fig. 2).

![Figure 2. Síntomas provocados por Sclerotinia sclerotiorum en el cuello de plantas.](image)

En las primeras etapas de infección la parte aérea de las plantas infectadas no presentan ningún síntoma, hasta que el hongo se desarrolla totalmente sobre el tallo y lo pudre. Debido a ello, la parte aérea se marchita y muere con relativa rapidez.

El micelio puede ser observado en los tallos, hojas, frutos y vainas, y sobre él se forman unas estructuras compactas de resistencia, oscuras y alargadas, llamadas esclerocios. Dichos esclerocios pueden formarse en la médula del tallo sin que se observen síntomas de que se encuentran presentes (Fig. 3).

![Figure 3. Síntomas provocados por Sclerotinia sclerotiorum en el cuello de plantas.](image)
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Figura 4. Esclerocios *Sclerotinia sclerotiorum* en la médula del tallo de tomate.

Las infecciones radiculares suelen provocar un marchitamiento y muerte prematura de las plantas.

Los frutos carnosos como el pepino, la calabaza y la berenjena son atacados por *Sclerotinia sclerotiorum* cuando se encuentran cercanos al suelo o a través de sus órganos florales senescentes (Fig. 4). Dicha infección produce una pudrición húmeda que se extiende desde la punta del fruto o vaina hasta el resto del órgano, el cual acaba pudriéndose y degradándose por completo.

Figura 5. Fruto pepino infectado por *Sclerotinia sclerotiorum*.
2.1.5. Epidemiología.

Sclerotinia sclerotiorum forma los esclerocíos cuando las condiciones climáticas son desfavorables y/o en ausencia de plantas huésped. Los esclerocíos son estructuras de resistencia, con un tamaño entre 2-10 mm y que están constituidos por una masa de hifas. Dichos esclerocíos pueden permanecer viables durante largos períodos de tiempo en condiciones desfavorables para el crecimiento, según Young y Wener (2012) pueden permanecer en el suelo esperando que se den las condiciones adecuadas para su germinación hasta 10 años.

El esclerocio puede germinar carpogénica o micelogénicamente, dependiendo las condiciones ambientales. Si germina micelogénicamente produce micelio infectivo capaz de atacar a los tejidos de las plantas próximas (Bardin y Huang, 2001), mientras que los que germinan carpogénicamente producen apotecios que contienen las ascas con numerosas ascosporas las cuales son dispersadas e infectan las partes aéreas de las plantas.

![Imagen de esclerocios y apotecios](image.png)

Figura 6. Esclerocios (izquierda) y apotecios (derecha) de *Sclerotinia sclerotiorum*.

La mayoría de las infecciones causadas por este hongo son iniciadas por las ascosporas procedentes de los apotecios. Estos están formados por un estípite que se origina del esclerocio y un receptáculo con una capa himenial cóncava (2-10 mm de diámetro) de color ocre claro. Dicha capa tiene filas de ascas, que son sacos cilíndricos que contienen 8 ascosporas (Kohn, 1979).
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

En la dispersión de la enfermedad, juega un papel muy importante la germinación carpogénica, ya que cada apotecio, en condiciones óptimas, es capaz de producir 1 millón de ascosporas (Liu y Paul, 2007). Dichas ascosporas se dispersan a través del aire y se adhieren, normalmente, a plantas próximas, originando nuevas infecciones (Wegulo, Sun, Martinson y Yang, 2000), aunque en ocasiones pueden ser transportadas varios kilómetros (Li, Yongli y Nian citado por Allori, Yansem y Ploper, 2016). La germinación carpogénica depende de la humedad del suelo, la temperatura del suelo y la temperatura a la que estuvieron sometidos los esclerocios antes de su germinación (Huang y Kozub, 1989). El patógeno se encuentra adaptado a las condiciones climáticas locales de su zona de origen.

2.1.6. Importancia económica.

Sclerotinia sclerotiorum produce pérdidas muy significativas. Puede provocar la pérdida total del cultivo o su producción, de forma directa por la muerte del hospedante o en forma indirecta causando una reducción en la calidad del producto, dependiendo del estado de crecimiento en el que se encuentren las plantas infectadas. Además, puede producir pérdidas debidas a una disminución en la producción porque haya que reemplazar el cultivo hospedante por otros cultivos menos lucrativos (Purdy, 1979).

Este hongo afecta a cultivos de gran importancia económica como soja (*Glicine max*), girasol (*Helianthus annuus*), cacahuete (*Arachis hypogea*), lechuga (*Lactuca sativa*), judía (*Phaseolus vulgaris*), patata (*Solanum tuberosum*), tomate (*Solanum lycopersicum*), fresa (*Fragaria spp.*), pimiento (*Capsicum anuum*), entre otros.

2.1.7. Control.

Sclerotinia sclerotiorum es un patógeno que presenta grandes dificultades para ser controlado debido a la elevada capacidad de supervivencia de sus esclerocios y al gran número de plantas diferentes que es capaz de infectar. Existen diferentes métodos para controlar el desarrollo del hongo, como pueden ser: prácticas culturales, control químico, control genético o control biológico.

- **Prácticas culturales.**

El manejo cultural de los cultivos tiene una gran importancia, ya que con estas prácticas se puede reducir la cantidad de patógeno o el número de infecciones en la
mayoría de los cultivos, debido a que con ellas se reduce la dispersión del patógeno desde una planta infectada a otra, eliminando al patógeno o creando condiciones desfavorables para su desarrollo (Zhou y Boland, 1998).

Entre las prácticas culturales que reducen la cantidad de patógeno o número de infecciones se encuentran:

- Utilizar semillas de calidad y libres de patógenos.

- Orientar las líneas de cultivo, normalmente de norte a sur, para favorecer un ambiente seco y hostil para el desarrollo del patógeno.

- Controlar las malas hierbas para que estas no sirvan de plantas huésped para el patógeno.

- Retirar y destruir los restos de cosecha y las plantas con síntomas para evitar la propagación por medio de los esclerocios.

- Minimizar el contacto entre la planta y los esclerocios presentes en el suelo infectado utilizando acolchados.

- Rotación de cultivos, en zonas donde los problemas con el patógeno sean recurrentes, se recomienda dejarlos en barbecho o cultivar especies no sensibles, como los cereales, aunque esta estrategia es poco eficaz por la amplia viabilidad de los esclerocios.

- **Control químico.**

Los métodos de control químico pueden ser efectivos en la lucha contra este hongo, pero el elevado costo de éstos y la posible aparición de resistencias del patógeno contra ciertos productos químicos han determinado su ineficacia. A esto se une las prohibiciones sobre algunos productos por parte de las normativas europeas y las restricciones de las cadenas comercializadoras.

Los productos químicos son aplicados en distintos momentos del cultivo y en diferentes formas. Suelen ser más efectivos en la fase de crecimiento micelial y la autorización para ser utilizados está sometida a una revisión continua.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

En la Tabla 1 se presentan las materias activas, su forma de presentación y para que cultivos están autorizadas a día de hoy en España contra Sclerotinia sclerotiorum.

<table>
<thead>
<tr>
<th>MATERIA ACTIVA</th>
<th>CULTIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZOXISTROBIN 12,5% + DIFENOCONAZOL 12,5% [SC] P/V</td>
<td>Girasol</td>
</tr>
<tr>
<td>AZOXISTROBIN 20% + CIPROCONAZOL 8% [SC] P/V</td>
<td>Camelia, Colza, Guisante, Judía, Mostaza blanca</td>
</tr>
<tr>
<td>AZOXISTROBIN 20% + DIFENOCONAZOL 12,5% [SC] P/V</td>
<td>Lechuga</td>
</tr>
<tr>
<td>AZOXISTROBIN 25% [SC] P/V</td>
<td>Achicoria, Berro, Canónigo, Endibia, Escarola, Lechuga, Colza</td>
</tr>
<tr>
<td>BOSCALIDA 50% [WG] P/P</td>
<td>Judías verdes</td>
</tr>
<tr>
<td>CIPRODINIL 37,5% + FLUDIOXONIL 25% [WG] P/P</td>
<td>Berenjena, Cebolla, Cebolleta, Cebollino, Cucurbitáceas de piel comestible, Hierbas aromáticas, Lechuga y similares, Leguminosas, Pimiento, Tabaco, Tomate, Ajo, Altramuz, Calabacin, Guisante, Hinojo, Judía, Judías verdes, Pepinillo, Pepino, Zanahoria</td>
</tr>
<tr>
<td>DIFENOCONAZOL 25% [EC] P/V</td>
<td>Colza, Tomate</td>
</tr>
<tr>
<td>FENHEXAMIDA 50% [WG] P/P</td>
<td>Escarola, Lechuga</td>
</tr>
<tr>
<td>FLUOPYRAM 20% + TEBUCONAZOL 20% [SC] P/V</td>
<td>Ajo, Cebolla</td>
</tr>
<tr>
<td>FLUOPYRAM 25% + TRIFLOXISTROBIN 25% [SC] P/V</td>
<td>Lechuga</td>
</tr>
<tr>
<td>HIMEXAZOL 70% [DS] P/P</td>
<td>Semilla remolacha</td>
</tr>
<tr>
<td>METIL TIOFANATO 50% [SC] P/V</td>
<td>Colza, Leguminosas para grano, verdes (frescas) y forrajeras</td>
</tr>
<tr>
<td>PENIPIRIPAD 20% [SC] P/V</td>
<td>Berenjena, Cardos comestibles, Espinaca, Lechuga y similares, Tomate</td>
</tr>
<tr>
<td>PIRACLOSTROBIN 6,7% + BOSCALIDA 26,7% () [WG] P/P</td>
<td>Escarola, Especies, Flor cortada, Hierbas aromáticas, Lechuga, Horticolas para la produccion de semillas, Zanahoria</td>
</tr>
<tr>
<td>PIRACLOSTROBIN 6,7% + BOSCALIDA 26,7% (I) [WG] P/P</td>
<td>Berenjena, Cebolla, Escarola, Garbanzo, Judias, Lechuga, Pimiento, Tomate</td>
</tr>
<tr>
<td>PROCLORAZ 20% [SC] P/V</td>
<td>Semilla ajo</td>
</tr>
<tr>
<td>PROTOCONAZOL 12,5% + TEBUCONAZOL 12,5% [EC] P/V</td>
<td>Colza</td>
</tr>
<tr>
<td>TEBUCONAZOL 20% [EC] P/V</td>
<td>Colza</td>
</tr>
<tr>
<td>TEBUCONAZOL 20% [EW] P/V</td>
<td>Ajo, Calabacin, Cebolla, Pepino, Pimiento, Tomate</td>
</tr>
<tr>
<td>TEBUCONAZOL 25% [EC] P/V</td>
<td>Berenjena, Calabacin, Calabaza, Melon, Pepino, Sandia, Tomate</td>
</tr>
<tr>
<td>TEBUCONAZOL 25% [EW] P/V</td>
<td>Ajo, Calabacin, Cebolla, Melon, Pepino, Pimiento, Tomate</td>
</tr>
<tr>
<td>TEBUCONAZOL 25% [WG] P/P</td>
<td>Pepino, Ajo, Calabacin, Cebolla, Melon, Pimiento, Tomate</td>
</tr>
<tr>
<td>TEBUCONAZOL 43% [SC] P/V</td>
<td>Colza</td>
</tr>
</tbody>
</table>

Tabla 1. Materias activas contra Sclerotinia sclerotiorum y cultivos para los que están autorizadas en España. Fuente: Registro Productos Fitosanitarios MAPAMA.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

- **Control genético.**

Para que la incidencia de la enfermedad sobre el cultivo sea menor se busca utilizar variedades o cultivares resistentes, tolerantes o poco susceptibles al patógeno y sobre las cuales la enfermedad no se desarrolle.

- **Control biológico.**

Consiste en el empleo de microorganismos que interfieren parcial o totalmente en el ciclo de vida del patógeno. Dicha interferencia puede ser por antagonismo o por resistencia inducida, por la cual, el organismo de control biológico actúa induciendo en la planta huésped la producción de compuestos que pueden tener efecto antagonista contra el patógeno y que pueden ser liberados al medio o depositarse sobre sus tejidos (Agrios, 2005).

En la Tabla 2 se presentan los organismos de control biológico que están autorizados a día de hoy en España y para que cultivos están autorizados contra Sclerotinia sclerotiorum.

<table>
<thead>
<tr>
<th>ORGANISMO CONTROL BIOLÓGICO</th>
<th>CULTIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACILLUS AMYLOLQUEFACIENS SUBESP. PLANTARUM, CEPA D747 25% [WG] P/P</td>
<td>Lechuga y similares</td>
</tr>
<tr>
<td>BACILLUS SUBTILIS (CEPA QST 713) 1,34% [SC] P/V</td>
<td>Lechuga</td>
</tr>
<tr>
<td>BACILLUS SUBTILIS (CEPA QST 713) 15,67% (5,13 X 10E10 UFC/G ESP) [WP] P/P</td>
<td>Lechuga y similares</td>
</tr>
<tr>
<td>CONIOTHYRIUM MINITANS 5,3% (1 X 10E12 ESPORAS VIABLES/KG) [WG] P/P</td>
<td>Suelo</td>
</tr>
<tr>
<td>TRICHODERMA ASPERELLM (CEPA ICC012) 2% + TRICHODERMA GAMSII (CEPA ICC080) 2% (3 X 10E7 CFU/G (SUMA DE AMBOS MICROORGANISMOS)) [WP] P/P</td>
<td>Alcachofa, Endibia, Espinaca, Hierbas aromáticas, Hinojo, Lechuga, Ornamentales florales o de flor, Pimiento, Rábano, Zanahoria</td>
</tr>
<tr>
<td>RICHODERMA ASPERELLM (CEPA ICC012) 2% (5 X 10 E7 UFC/G) + TRICHODERMA GAMSII (CEPA ICC080) 2% (5 X 10 E7 UFC/G) [WP] P/P</td>
<td>Lechuga</td>
</tr>
<tr>
<td>TRICHODERMA ASPERELLM (CEPA T25) 0,5% (1X10E8 UFC/G) + TRICHODERMA ATROVIRIDE (CEPA T11) 0,5% (1X10E8 UFC/G) [WG] P/P</td>
<td>Berenjena, Calabacín, Calabaza, Escarola, Flor cortada, Lechuga, Melón, Pepino, Pimiento, Sandía, Tomate</td>
</tr>
</tbody>
</table>

Tabla 2. Organismos de control biológico contra Sclerotinia sclerotiorum y cultivos para los que están autorizados en España. Fuente: Registro Productos Fitosanitarios MAPAMA.
2.2. *Rhizoctonia solani*.

2.2.1. Descripción básica.

Ajayi-Oyetunde y Bradley (2018) ubican taxonómicamente a *Rhizoctonia solani* de la siguiente manera:

- Reino: Fungi
- Clase: Agaricomycetes
- Orden: Ceratobasidiaceae
- Familia: Cantharellales
- Género: *Rhizoctonia*
- Especie: *Rhizoctonia solani*

Figura 7. Hifas *Rhizoctonia solani*.

Rhizoctonia solani es un hongo de suelo que no produce esporas asexuales (conidios) y solo bajo unas condiciones concretas produce esporas sexuales (basidiosporas). El micelio está formado por células largas, multinucleadas y sus ramificaciones crecen en ángulo recto con respecto a la hifa principal, las cuales se estrechan ligeramente a nivel de la bifurcación y poseen una septa cerca de ésta. Su
micelio es incoloro en la etapa juvenil y cambia de amarillo a café claro según madura. En la naturaleza se reproduce asexualmente y sobrevive en forma de micelio, el cual puede formar estructuras de resistencia o esclerocios (masas de hifas entrelazadas con superficie dura y resistente).

El micelio de *Rhizoctonia solani* infecta la planta a través de heridas o aperturas naturales como los estomas. Su dispersión se produce a través de la lluvia, agua, maquinaria, herramientas, partículas del suelo y movimiento de las partes de la planta. Al tratarse de un hongo de suelo, las partes bajas de la planta son las que primero se infectan y el hongo crece desde el suelo hacia arriba. En las partes infectadas, se observa el micelio y los nuevos esclerocios que caen de la planta al suelo pudiendo infectar a otras plantas. El hongo inverna normalmente en forma de micelio o esclerocios en el suelo, en plantas perennes infectadas o en órganos de propagación (Agrios, 2005).

La temperatura óptima para que se produzca la infección por *Rhizoctonia solani* está entre 15 y 18 ºC, aunque algunas razas muestran una actividad mayor a
temperaturas mayores a 35 ºC. Los suelos húmedos o inundados reúnen condiciones más favorables para el desarrollo del hongo. En plantas jóvenes con crecimiento lento la infección es más severa que en plantas con crecimiento rápido ya que éstas tienen mayor posibilidad de escapar a la infección, aunque las condiciones sean favorables (Agrios, 2005).

2.2.2. Huéspedes y especialización.

Rhizoctonia solani se encuentra presente en la mayoría de los suelos, tiene un amplio rango de plantas huésped (Agrios, 2005). Puede atacar 250 especies de plantas y se presenta en plantas en campo y en tubérculos o semillas almacenados.

Rhizoctonia solani afecta a gran variedad de cultivos entre los que se encuentran gramíneas (maíz, arroz, trigo, cebada, avena), fabáceas (soja, cacahuate, alfalfa, garbanzo, lenteja, guisante), solanáceas (tabaco, patata), amarantáceas (remolacha azucarera), brasicas (colza), rúbiáceas (café), malváceas (algodón), asteráceas (lechuga), aráceas (potos), moráceas (ficus) y lináceas (lino) (Ajayi-Oyetunde y Bradley, 2018).

2.2.3. Distribución geográfica.

Rhizoctonia solani causa enfermedades en plantas de todo el mundo, pero éstas son más frecuentes y severas en zonas con climas fríos y suelos húmedos (Cedeño et al., 2001).

2.2.4. Enfermedad.

Los síntomas de la enfermedad causados por *Rhizoctonia solani* pueden variar según el cultivo e incluso dentro de una misma planta huésped, dependen del estado de desarrollo de la planta y de las condiciones ambientales (Agrios, 2005).

El ahogamiento de plantas es el síntoma más común que provoca *Rhizoctonia solani* en la mayoría de las plántulas. Además, es común la pudrición de semillas, raíz, hipocótilo, corona, tallo o vaina, el cancro del tallo o manchas en las hojas cercanas al suelo (Ajayi-Oyetunde y Bradley, 2018).
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Las plántulas jóvenes pueden morir antes o poco después de la emergencia. Si la infección se produce una vez la plántula ha emergido, el hongo ataca al tallo, lo hace acuoso, blanco e incapaz de sostener la plántula, la cual se desploma y muere (damping-off). En plantas maduras, el hongo produce en sus tejidos lesiones grandes de color canela a café rojizo, dichas lesiones crecen y rodean el tallo, dando lugar a la muerte de la planta o el ennegrecimiento del tallo, el cual se dobla, pero no se rompe. También produce pudriciones en frutos y vainas u otros órganos que se encuentran cercanos al suelo o sobre él. Además, la infección puede extenderse a frutos después de haber sido cosechados y durante su transporte y almacenamiento, en los cuales aparecen lesiones firmes y húmedas al principio, que en poco tiempo se colapsan y forman una zona hendida (Agrios, 2005).

Figura 10. Daños en plántulas de tabaco causados por *Rhizoctonia solani* causantes de damping-off.
2.2.5. Epidemiología.

Rhizoctonia solani se encuentra en suelos de todo el mundo, tanto cultivados como no cultivados, en ellos puede vivir en forma de esclerocicos (estructuras de resistencia), de forma saprófita en la materia orgánica o en asociación con los residuos de cosecha (Olaya y Abawi, 1994).

La infección puede ser causada por los esclerocicos, el micelio o las basidiosporas. El hongo se disemina a través de las semillas, material trasplantado, aire y el agua. La germinación de las basidiosporas se produce con humedades relativas altas, cercanas al 100 %. Los inóculos causantes de daños en la raíz son los esclerocicos y el micelio.

2.2.6. Importancia económica.

Rhizoctonia solani es un patógeno con una gran importancia económica debido a que tiene la habilidad de permanecer de forma saprófita en el suelo o en forma de esclerocicos, además de tener un rango de huéspedes casi ilimitado.

Las pérdidas de rendimiento en los cultivos afectados por *Rhizoctonia solani* son muy variables, además del cultivo al que afecte dependen de la fecha de infección, del momento de desarrollo del cultivo y del tamaño de la superficie infectada.

2.2.7. Control.

Rhizoctonia solani es un hongo patógeno complicado de controlar ya que, como hemos comentado en apartados anteriores, tiene la capacidad de sobrevivir en el suelo de forma saprófita o en forma de estructuras de resistencia. Además, es capaz de infectar un gran número de especies distintas de plantas, muchas de ellas malas hierbas asociadas a determinados cultivos, las cuales sirven de reservorio para el hongo.

Para el control del patógeno existen diferentes estrategias entre las que se encuentran las prácticas culturales, el control con productos químicos, el control genético o el control biológico.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

- **Prácticas culturales.**

 El control químico y biológico es más efectivo cuando se realizan unas buenas prácticas culturales que intenten prevenir la infección. Algunas de estas prácticas culturales pueden ser:

 - No utilizar el sustrato donde hayan crecido plantas infectadas.
 - Eliminar las plantas enfermas y residuos de las plantas infectadas.
 - Utilizar recipientes nuevos o desinfectarlos antes de realizar una nueva plantación.
 - Evitar realizar lesiones que provoquen heridas abiertas por las que pueda acceder el hongo.
 - Usar material de propagación (semillas, esquejes...) libres del hongo.
 - Evitar cultivar en tierras húmedas y poco drenadas.
 - Dejar espacios amplios entre plantas para que haya una buena aireación de la superficie del suelo y de las plantas.
 - Solarización.
 - Realizar rotaciones de cultivos con otros que no sean tan sensibles al ataque del hongo.
 - Uso de acolchados para evitar el contacto de las plantas con el suelo.

- **Control químico.**

 Normalmente el control de *Rhizoctonia solani* se basa en tratamientos con fungicidas, aunque no siempre son efectivos, además del alto costo, la generación de resistencias en el hongo y los problemas medioambientales que conlleva su uso. Los productos suelen aplicarse a las semillas o durante la siembra.

 En la Tabla 3 se presentan las materias activas contra *Rhizoctonia solani*, su forma de presentación y para que cultivos están autorizadas a día de hoy en España.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Tabla 3. Materias activas y cultivos autorizados para *Rhizoctonia solani*. Fuente: Registro Productos Fitosanitarios MAPAMA.

<table>
<thead>
<tr>
<th>MATERIA ACTIVA</th>
<th>CULTIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-HIDROXIQIUNIXOLEÍNA 37,5% (SULFATO) [SL] P/V</td>
<td>Cucurbitáceas</td>
</tr>
<tr>
<td>AZOXISTROBIN 50% [WG] P/P</td>
<td>Céspedes</td>
</tr>
<tr>
<td>CAPTAN 47,5% [SC] P/V</td>
<td>Arbustos y herbáceas ornamentales</td>
</tr>
<tr>
<td>ETRIDIAZOL 48% [EC] P/V</td>
<td>Melón, Pepino, Pimiento</td>
</tr>
<tr>
<td>FLUTOLANIL 46% [SC] P/V</td>
<td>Clavel, Esquejes alcachofa, Judías verdes, Patata, Pimiento</td>
</tr>
<tr>
<td>METIL TIOFANATO 50% [SC] P/V</td>
<td>Berenjena, Melón, Sandía, Tomate</td>
</tr>
<tr>
<td>METIL TIOFANATO 70% [WG] P/P</td>
<td>Bulbos ornamentales</td>
</tr>
<tr>
<td>METIL TOLCLOFOS 10% [DS] P/P</td>
<td>Patata de siembra</td>
</tr>
<tr>
<td>METIL TOLCLOFOS 50% [WP] P/P</td>
<td>Arbustos, Herbáceas y leñosas ornamentales, Patata de siembra</td>
</tr>
<tr>
<td>PENCICURON 25% [SC] P/V</td>
<td>Alcachofa, Clavel, Espárrago, Fresales, Hortícolas, Patata</td>
</tr>
<tr>
<td>PIRACLOSTROBIN 6,7% + BOSCALIDA 26,7% [WG] P/P</td>
<td>Canónigos, Diente de león, Escarola, Lechuga</td>
</tr>
<tr>
<td>SEDAXANE 2.5% + FLUDIOXONIL 2.5% + TEBUCONAZOL 1% [FS] P/V</td>
<td>Semillas de trigo</td>
</tr>
<tr>
<td>SEDAXANE 2.5% + FLUDIOXONIL 2.5% [FS] P/V</td>
<td>Semillas de trigo</td>
</tr>
</tbody>
</table>

- **Control genético.**

 Consiste en utilizar variedades resistentes al hongo en las cuales el patógeno no se desarrolle o los daños que estos causen sean menores.

- **Control biológico.**

 En la siguiente Tabla 4 se presentan los organismos de control biológico que están autorizados a día de hoy en España contra *Rhizoctonia solani* y los cultivos para los que están autorizados.

Tabla 4. Organismos de control biológico y cultivos para los que están autorizados en el control de *Rhizoctonia solani*. Fuente: Registro Oficial de Productos Fitosanitarios MAPAMA.

<table>
<thead>
<tr>
<th>ORGANISMO CONTROL BIOLÓGICO</th>
<th>CULTIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLIOCLADIUM CATENULATUM (CEPA J1446) 32% (2 X 10E6 CFU/G) [WP] P/P</td>
<td>Hierbas aromáticas, Ornamentales herbáceas y leñosas, Pepino, Pimiento, Tomate</td>
</tr>
<tr>
<td>TRICHODERMA ASPERELLIUM (CEPA T25) 0,5% (1X10E8 UFC/G) + TRICHODERMA ATROVIRIDE (CEPA T11) 0,5% (1X10E8 UFC/G) [WG] P/P</td>
<td>Berenjena, Calabacin, Calabaza, Escarola, Flor cortada, Lechuga, Melón, Sandía, Pepino, Pimiento, Tomate</td>
</tr>
</tbody>
</table>
2.3. ACEITES ESENCIALES.

2.3.1. Introducción.

En la actualidad, mercados y consumidores exigen alimentos inocuos y con bajos niveles de residuos. Además, demandan que su forma de producción sea lo más respetuosa con el medioambiente, produciendo mediante sistemas sostenibles que no afecten negativamente al medioambiente, mantengan su biodiversidad y utilicen de forma eficiente los recursos de los que se disponga. Ello conlleva una reducción de los productos fitosanitarios para así minimizar el impacto en el medioambiente, minimizar los costes en la producción y mejorar la salud del productor y los consumidores. Para conseguirlo es necesario buscar otras alternativas menos residuales que los productos químicos.

Tradicionalmente, los productores buscaban en su entorno más próximo remedios naturales o productos que les ayudasen a repeler o combatir plagas y enfermedades de sus cultivos, pero con la aparición y comercialización de los pesticidas esta práctica calló en desuso. Debido al uso de productos químicos de amplio espectro y/o al uso repetitivo e indiscriminado, los organismos patógenos han desarrollado resistencias a tales productos, por ello, es importante cambiar la forma de uso de dichos productos y buscar alternativas más naturales y que no generen resistencias.

Llevando a cabo una agricultura sostenible, se evita la degradación del medioambiente y los recursos naturales son manejados más eficientemente. Ello implica la disminución del uso de productos químicos y la búsqueda de nuevas sustancias o métodos. Es, por ello, que en los últimos años ha aumentado el interés por el uso de los aceites esenciales en agricultura para el control de hongos, ya que se ha demostrado que algunos inhiben el crecimiento micelial y sus compuestos tienen propiedades antifúngicas (Abdel-Kader et al., 2011; Al-Reza et al., 2010; Bakkali et al., 2008), además de ser sustancias naturales y biodegradables, poseer poca toxicidad, ser capaces de cumplir la función de otras sustancias obtenidas vía sintética, ser inocuos para el medioambiente y poseer un amplio rango de actividades que disminuye el riesgo del desarrollo de cepas patogénicas resistentes (Pino, 2015).
2.3.2. Características generales.

Los aceites esenciales son metabolitos secundarios producidos por el metabolismo secundario de algunas plantas, y son una mezcla de un número variable de sustancias orgánicas olorosas y muy volátiles. Estas sustancias se producen en unas glándulas especiales formadas por células secretoras modificadas para formar una bolsa donde se acumula el aceite esencial, y, las cuales, pueden estar localizadas en diferentes órganos de la planta, como, semillas (anís, cardamomo, hinojo), hojas y tallo (albahaca, mejorana, menta, romero, salvia), corteza (canela, ciprés, pino, eucalipto), flores (geranio, jazmín, rosa, lavanda), cáscara de frutos (naranja, limón, mandarina) y/o raíces (valeriana) (Noriega, 2009).

Los aceites esenciales son fuente de olores de muchas plantas y tienen función atrayente o repelente de animales, atraen a polinizadores o pueden tener función protectora frente a depredadores o mecanismos de defensa frente a diferentes patógenos, actuando como pesticidas naturales (Ávalos y Pérez-Urria, 2009).

Las plantas que contienen aceites esenciales se encuentran principalmente en zonas templadas y cálidas, como áreas mediterráneas y tropicales (Pino, 2015). Los aceites esenciales son comunes en especies de las familias Apiáceas (Umbelíferas), como el anís o el hinojo, Asteráceas (Compuestas), como la manzanilla, Cupresáceas, como el ciprés, Hiperáceas (Gutíferas), como el hipéricum, Lamiáceas (Labiadas), como el patchouli, menta, romero, lavanda, Lauráceas, como el laurel, Leguminosas (Fabáceas), como el cacahuete, Liliáceas, como la azucena, Malváceas, Mirtáceas, como el eucalipto, Oleáceas, como el jazmín, Rosáceas, como la rosa, Rutáceas, como el naranjo y Zingiberáceas, como el cardamomo. (Mann et al., 2002; Torssell, 1997; Bauer et al., 2001; Evans, 2002; Dewick, 2002; Başer y Demirci, 2007; Figueredo et al., 2008 citado por Pino, 2005).

La composición de los aceites esenciales varía según el lugar de origen de la planta, el hábitat en el que se desarrolle, el momento de recolección, las condiciones agronómicas y el método de extracción (Piccaglia, Marroti y Galleti, 1991).
Los aceites esenciales pueden ser extraídos mediante extrusión o distintos métodos de destilación dependiendo de la especie, de la parte de la planta del que se extraiga el aceite y la estabilidad de dicho aceite.

El método de extrusión se utiliza principalmente para extraer aceites esenciales de cítricos, los cuales se encuentran en la piel del fruto y si es sometido a calor se puede alterar su composición. El método consiste en exprimir la piel del fruto rompiendo las celdas que contienen el aceite esencial y liberándolo.

La mayoría de los aceites esenciales son extraídos mediante destilación, en este método se aprovecha la propiedad que tienen las moléculas de vapor de agua para asociarse con los aceites esenciales. La destilación para la extracción de los aceites esenciales se puede llevar a cabo a través de tres procesos diferentes: destilación con agua, destilación con agua y vapor de agua y destilación directa con vapor de agua.

El equipo de destilación está formado por una fuente de energía que calienta para que se produzca la evaporación, un destilador donde se coloca el material vegetal del que se va a extraer el aceite esencial, un intercambiador de calor que transforma a estado líquido el vapor de agua y el aceite esencial que emerge del destilador y un decantador donde se separa el agua del aceite esencial.

Destilación con agua.

En este proceso se sumerge el material vegetal en agua hirviendo. Al elevarse la temperatura el agua se transforma en vapor y arrastra con él el aceite esencial hasta otro recipiente donde se condensa y se separa del agua.

Este método se usa para extraer los aceites esenciales de material vegetal delicado, como por ejemplo flores.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Figura 11. Diagrama método destilación con agua.

Destilación con agua y vapor de agua.

En este proceso se coloca el material vegetal sobre una placa en el fondo del destilador y se añade agua, dejándola a un nivel cercano a la placa. Se calienta el agua desde una fuente externa o desde dentro del destilador y el vapor de agua generado satura el recipiente y atraviesa el material vegetal arrastrando el aceite esencial por el intercambiador de calor hasta el decantador donde se separa del agua.

Este proceso se utiliza para extraer aceites esenciales de hierbas y hojas.

Figura 12. Diagrama método destilación con agua y vapor agua.
Destilación directa con vapor de agua.

En este proceso no hay agua en el destilador, se lleva a cabo con un vapor seco sobrecalentado generado por una caldera, que penetra en el material vegetal a una presión más alta que la atmosférica, esta corriente de vapor rompe las células o canales que contienen el aceite esencial y arrastra la mezcla volátil hacia el decantador por el intercambiador de calor.

Este proceso es usado para extraer aceites esenciales de raíces, rizomas, semillas y hojas secas o fermentadas.

Figura 13. Diagrama método destilación directa con vapor de agua.

2.3.3. Características físicas.

Los aceites esenciales son de olor intenso y penetrante, sabor caustico, irritante y concentrado, a veces, amargo o dulce. Tienen aspecto aceitoso, muy volátiles, líquidos a temperatura ambiente e inflamables. Su punto de ebullición está entre 150 y 300 ºC. Son liposolubles, solubles en alcoholes y disolventes orgánicos, como el éter o el cloroformo, y poco solubles en agua, pero son arrastrados por el vapor de agua. Recién destilados son incoloros o ligeramente amarillos, pero se alteran fácilmente por la acción de la luz, cambiando a oscuros y modificando su perfume. Su densidad es inferior a la del agua y tienen un elevado índice de refracción entre 1,45 y 1,5.
La mayoría de las plantas contienen entre 0,01 a 10 % de aceites esenciales que son los responsables de sus aromas. En las plantas aromáticas el contenido de aceite esencial está alrededor de 1 a 2 %.

2.3.4. Características químicas.

La composición de los aceites esenciales se puede dividir en dos grupos: terpenos y no terpenoides.

- **Terpenos.**

Los terpenos son unos de los principales compuestos orgánicos en la naturaleza en plantas, animales y microorganismos, y son los constituyentes más importantes de los aceites esenciales. Están formados por varias unidades de isopreno, constituidos por el hidrocarburo \((C_5H_8)_n\), donde \(n\) es el número de unidades de isoprenos y sirve para clasificar los terpenos.

En los aceites esenciales encontramos principalmente monoterpenoides, sesquiterpenoides y diterpenoides.

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>FÓRMULA</th>
<th>UNIDADES ISOPRENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoterpenoides</td>
<td>(C_{10}H_{16})</td>
<td>2</td>
</tr>
<tr>
<td>Sesquiterpenoides</td>
<td>(C_{15}H_{24})</td>
<td>3</td>
</tr>
<tr>
<td>Diterpenoides</td>
<td>(C_{20}H_{32})</td>
<td>4</td>
</tr>
<tr>
<td>Sesterpenoides</td>
<td>(C_{25}H_{40})</td>
<td>5</td>
</tr>
<tr>
<td>Triterpenoides</td>
<td>(C_{30}H_{48})</td>
<td>6</td>
</tr>
<tr>
<td>Carotenoides</td>
<td>(C_{40}H_{64})</td>
<td>8</td>
</tr>
<tr>
<td>Resinoides</td>
<td>((C_5H_8)_n)</td>
<td>(n)</td>
</tr>
</tbody>
</table>

Tabla 5. Clasificación de terpenos según las unidades de isopreno por las que está formado.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Los monoterpenoides forman la mayoría de los aceites esenciales extraídos de flores, hojas y tallos de plantas aromáticas. Pueden ser de cadena abierta o acíclicos, monocíclicos, bicíclicos o tricíclicos, según el número de anillos presentes. Además, pueden ocurrir oxidaciones, reducciones y adiciones de oxígeno para dar lugar a alcoholes (-OH), cetonas (-CO), aldehídos (-CHO) y ésteres (-OCO-). Los monoterpenoides monocíclicos, con una estructura del tipo 1-metil-4-isopropilciclohexano (p-mentano) representan el grupo mayoritario.

Los sesquiterpenoides son productos del metabolismo secundario de las plantas que se encuentran en todos los aceites esenciales. Al tener más átomos de carbono que los monoterpenoides hace que éstos tengan una mayor diversidad estructural y estereoquímica. Son menos volátiles y tienen menos importancia en las propiedades sensoriales (Bramley, 1997). Al igual que los monoterpenoides pueden ser acíclicos, monocíclicos, bicíclicos o tricíclicos.

Los diterpenoides son moléculas relativamente grandes, poseen mayores puntos de ebullición que los sesquiterpenoides y solo se encuentran en aceites esenciales obtenidos por largas destilaciones (Pino, 2015). Dependiendo de su estructura pueden ser: acíclicos, monocíclicos, bicíclicos o tricíclicos.

- **No terpenoides.**

Además de los terpenoides, en los aceites esenciales se pueden encontrar otros compuestos de distinta naturaleza química, donde se incluyen compuestos alifáticos saturados e insaturados, así como compuestos aromáticos. Según la función química se encuentran alcoholes, fenoles, aldehídos, cetonas, ésteres, éteres e hidrocarburos.

Los fenoles se encuentran en pocas especies, pero son muy potentes e irritantes. Las propiedades antioxidantes y antimicrobianas de los aceites esenciales se atribuyen a la presencia de estos compuestos y sus derivados. Timol y carvacrol son los más importantes de este grupo y están presentes en especies de tomillo (*Thymus sp.*) y orégano (*Origanum sp.*). El eugenol es un potente bactericida, antiséptico y es empleado en odontología.
Los alcoholes son monoterpenoides oxigenados, tienen un grupo hidroxilo (-OH) unido al esqueleto C10. Suelen ser muy apreciados por su aroma. El linalol que tiene dos formas, el R-linalol, presente en el aceite esencial de rosa y lavanda, y componente mayoritario de la *Mentha arvensis*, y el S-linalol, presente en el aceite de lavanda, además le da sabor al té, tomillo y cardamomo. El mentol es el responsable del sabor y olor a menta, cuya esencia puede tener hasta un 50 % de este componente. El geraniol, del geranio de olor (*Pelargonium sp.*), el citronelol y el santalol del sándalo (*Santalum album*).

Los aldehídos (-CHO) también son monoterpenoides oxigenados, son abundantes en los cítricos y son los responsables de su olor característico, principalmente por los isómeros geranial (α-citral) y neral (β-citral), juntos conocidos como citral. Además de su aroma característico tienen propiedades antivirales, antimicrobianas y sedantes.

Las cetonas son monoterpenoides oxigenados que se producen por la oxidación de los alcoholes y formándose moléculas bastante estables. Carvona es una de ellas presente en la *Mentha spicata*. La tuyona (aislada por primera vez en la *Thuja occidentalis*) y pulegona (aislada por primera vez en *Mentha pulegium* y presente en *Artemisia absinthium* y *Salvia officinallis*) son bastante tóxicas.

Los ésteres u óxidos monoterpenoides son reactivos e inestables. El óxido de bisabolol presente en la manzanilla (*Matricaria chemomilla*) es un ejemplo de este compuesto. Es muy común el 1,8-cineol (también llamado eucaliptol) que es el principal componente del aceite esencial de eucalipto y tiene propiedades expectorantes y mucolíticas. Su aroma varía según el contenido en 1,8-cineol.

Los hidrocarburos son los compuestos más abundantes en los aceites esenciales y precursores de los más complejos, que son los terpenos oxidados. El limoneno, es el principal precursor de los principales componentes de la esencia de las mentas como carvona y mentol, que se encuentran también en cítricos y en el eneldo (*Anethum graveoleus*). También los compuestos α y β-pineno se encuentran ampliamente distribuidos en la naturaleza, especialmente en la esencia de trementina del género *Pinus*.
2.3.5. Clasificación de los aceites esenciales.

Los aceites esenciales se pueden clasificar según su consistencia, su origen o la naturaleza química de sus componentes mayoritarios.

- **Por su consistencia.**
 - Esencias fluidas: son líquidos muy volátiles a temperatura ambiente (romero, menta, salvia, limón, albahaca…).

 - Bálsamos: son de consistencia espesa, poco volátiles, contienen principalmente sesquiterpenoides y son propensos a polimerizarse. Se caracterizan por tener un alto contenido de ácido benzoico y cinámico (bálsamo de Copaiba, bálsamo de Perú, bálsamo de Tolú).

 - Oleoresinas: son líquidos muy viscosos o sustancias semisólidas, formados por mezclas homogéneas de resinas y aceites esenciales que se separan mediante destilación por arrastre de vapor.

- **Por su origen.**
 - Naturales: son aceites esenciales que se obtienen directamente de la planta y no son sometidos a ninguna modificación fisicoquímica o química. Suelen ser muy costosos y de composición variada.

 - Artificiales: se obtienen al enriquecer un aceite esencial natural con uno de sus componentes, también se pueden obtener mezclando varios aceites esenciales naturales extraídos de distintas plantas, como la mezcla de esencia de rosa, geranio y jazmín, o la esencia de anís enriquecida con anetol.

 - Sintéticas: son una mezcla de diversos productos obtenidos por procesos químicos, son más económicos y se usan mucho en preparación de substancias aromatizantes y saborizantes (vainilla, fresa, limón).

- **Por su naturaleza química.**

 Según la naturaleza química de los componentes mayoritarios en el aceite esencial que determinan su olor particular, se pueden dividir en tres grupos.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

principales:

- Monoterpenoides (linalool, nerol, 1,8-cineol, geraniol).
- Sesquiterpenoides: (farnesol, nerolidol).
- Compuestos oxigenados (alcoholes, aldehídos, cetonas).

2.3.6. Uso de los aceites esenciales.

Los aceites esenciales o sus subproductos son utilizados en un gran número de industrias:

- **Industria farmacéutica y dental.**

 Es una de las industrias que más aceites esenciales emplea. El origen de la mayoría de los medicamentos son los compuestos de plantas. También son utilizados como neutralizadores de sabores desagradables de muchos medicamentos (naranja y menta).

 Los aceites esenciales tienen actividad antiséptica, y, por ello, son muy usados para problemas de las vías respiratorias, infecciones urinarias, infecciones de la piel, en antisépticos bucales y en dentífricos. El eucaliptol es muy empleado en odontología.

 Además, tienen muchas propiedades saludables como las de ser antiinflamatorios, analgésicos, antibacterianos, antiespasmódicos, entre otros.

- **Industria alimentaria y licores.**

 Los aceites esenciales se encuentran en productos como aceites, vinagres y encurtidos, se usan para saborizar y aromatizar caramelos y chocolates y como condimentos de alimentos como embutidos, carnes y quesos. También se usan en la preparación de bebidas alcohólicas, refrescos y helados (naranjo, limón, menta, hinojo). Otro de sus usos es como aditivos naturales.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

- **Industria cosmética y perfumería.**

En la industria cosmética, los aceites esenciales no solo son usados para aromatizar, sino que también se aprovechan sus propiedades aromaterapéuticas. Se aprovechan sus propiedades antisépticas pudiendo producir desodorantes elaborados exclusivamente con aceites esenciales.

En perfumería, los aceites esenciales fueron los pilares básicos hasta la aparición de la química moderna a principios del siglo XX que permitió sintetizar la mayoría de las fragancias. Sobre el 85 % de las sustancias aromatizantes empleadas hoy día en cosmética y perfumería son productos de síntesis y se emplean en jabones, ambientadores y productos de baño. El 15 % restante corresponde a productos naturales o aceites vegetales extraídos de plantas aromáticas.

- **Industria fitosanitaria.**

Los aceites esenciales y los hidrolatos obtenidos durante el proceso de extracción de los aceites esenciales se utilizan para repeler y controlar plagas, con ellos se preparan herbicidas, insecticidas, fungicidas, nematicidas, acaricidas, desodorizantes, desinfectantes.

- **Industria productos uso veterinario.**

Los aceites esenciales son utilizados en alimentos para animales, aerosoles y desodorantes, medicamentos y preparaciones antiparásitos.

- **Otros usos.**

Los aceites esenciales también son usados en la industria del motor, en la elaboración de adhesivos, artículos quirúrgicos, compuestos a prueba de agua, artículos de goma para uso general, papelera, materiales de envoltura y utensilios de cocina. En la industria del petróleo, se usan en cremas desodorantes, solvents de la nafta, aceites lubricantes, destilados especiales del petróleo y ceras. En la elaboración de polímeros, pinturas y barnices. En la industria del cuero, materiales de tapicería, preparaciones de tintes y pigmentos en la industria textil. En la industria tabacalera se usa el mentol para la fabricación de cigarrillos mentolados.
3. MATERIAL Y MÉTODOS
3. MATERIAL Y MÉTODOS.

3.1. MATERIALES UTILIZADOS EN EL ENSAYO.

3.1.1. Medio de cultivo.

El medio de cultivo utilizado para el crecimiento micelial de los patógenos fue PDA (Agar Patata Dextrosa), comúnmente conocido como agar. Es un medio muy utilizado para el cultivo microbiológico en laboratorio y el más utilizado para el crecimiento de hongos y bacterias que atacan a las plantas vivas o materia en descomposición de plantas muertas. A este medio pueden ser añadido ácidos o antibióticos que inhiban el crecimiento de los patógenos.

El medio de cultivo PDA está compuesto por infusión de patata y dextrosa (glucosa), que fomentan el crecimiento de los patógenos, y como agente solidificante contiene agar. El agar es extraído de algunas algas rojas, como Gelidium, frecuentes en el Océano Atlántico, Pacífico e Índico y está compuesto por una mezcla compleja de sales de polisacáridos, fundamentalmente, galactósidos.

El medio de cultivo usado para la germinación de esclerocios fue un medio líquido PD (Patata Dextrosa). Es un medio de cultivo compuesto por infusión de patata y dextrosa (glucosa), que favorece el crecimiento de los patógenos.

3.1.2. Placas de Petri.

Se usaron placas de Petri de 9 cm de diámetro para el cultivo de los patógenos de los que se obtuvo el micelio para la realización del ensayo y para contener el ensayo de inhibición del crecimiento micelial. Las placas de Petri son unas pequeñas cajitas de plástico o vidrio, circulares, transparentes y compuestas por dos piezas (recipient y tapa) que permiten cultivar hongos, bacterias y otros microorganismos en condiciones controladas.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

3.1.3. Papel Whatman.

Se utilizaron discos de papel Whatman nº 1 de 5 milímetros de diámetro para añadir en él las soluciones de los distintos aceites esenciales. El papel Whatman es un filtro de papel usado en laboratorio.

3.1.4. Aceites esenciales.

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

3.1.5. Tubos Eppendorf.

Se usaron tubos Eppendorf de 1,5 ml para contener las diluciones a distintas concentraciones de los aceites esenciales y en la evaluación de la germinación de esclerocios. Son pequeños contenedores cilíndricos de plástico con el fondo cónico y con una tapa unida al cuerpo del tubo, comúnmente son usados para centrifugación y como contenedores de sustancias.

3.1.6. Cromatógrafo y espectrómetro.

La composición química de cada aceite esencial fue evaluada mediante cromatografía de gases y espectrometría de masas (GC-MS) con un cromatógrafo de gases Finnigan Trace-GC 2000 acoplado a un espectrómetro de masas de trampa iónica modelo Polaris-Q.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

La cromatografía es un proceso que se puede utilizar para separar los diversos componentes de una mezcla.

La espectrometría de masas es una técnica de análisis que permite determinar la distribución de las moléculas de una sustancia en función de su masa.

![Cromatógrafo de gases Finnigan Trace-GC 2000.](image)

Figura 18. Cromatógrafo de gases Finnigan Trace-GC 2000.

3.1.7. Microorganismos empleados.

El material patógeno fue tomado de la colección propia de patógenos de la Universidad de Almería (Departamento de Producción Vegetal, área de Protección). Los patógenos fueron:

- *Sclerotinia sclerotiorum* (micelio y esclerocios).
- *Rhizoctonia solani* (micelio).

3.1.8. Otros materiales.

Para la preparación y desarrollo del ensayo fueron utilizados otros instrumentos y materiales como:

- Autoclave para esterilizar todo el material usado.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

- Mechero Bunsen para crear un ambiente antiséptico.
- Lancetas y pinzas para manejar el material.
- Alcohol para desinfectar lancetas y pinzas.
- Sacabocados para repicar los discos de hongos.
- Micropipetas de 100, 200 y 1000 μl.
- Tweet 20, tensoactivo usado para que se diluya el aceite esencial en el agua.
- Lejía para desinfectar los esclerocios.
- Agitador Vortex-Genie 2 para mezclar las diluciones preparadas de cada aceite esencial.

3.2. UBICACIÓN DEL ENSAYO.

El ensayo se realizó en el laboratorio de Protección Vegetal de la Escuela Superior de Ingeniería de la Universidad de Almería, situada en La Cañada de San Urbano, Almería.

Figura 19: Laboratorios de Protección Vegetal de la Escuela Superior de Ingeniería de la Universidad de Almería.
3.3. MÉTODO DE DIFUSIÓN EN DISCO.

La actividad antifúngica de los aceites esenciales fue determinada usando el método de difusión de disco descrito por Soković y Griensven (2006), siguiendo los pasos detallados a continuación.

3.3.1. Preparación de placas madre para la obtención de micelio.

Una semana antes del comienzo de la preparación del ensayo se tomaron trozos de micelio de las placas de patógenos de Sclerotinia sclerotiorum y Rhizoctonia solani de la colección propia del departamento y se pusieron en placas de Petri que contenían 20 ml de medio de cultivo PDA, para obtener micelio para el ensayo.

![Figura 20: Detalle colocación trozo de micelio de Sclerotinia sclerotiorum de la colección en la placa madre que se utilizó para el replicado del micelio del ensayo.](image)

3.3.2. Preparación del medio de cultivo para microorganismos.

Para la preparación del medio de cultivo PDA se usó un preparado comercial en forma liofilizada. En nuestro caso utilizamos 35 g/l de preparado comercial.

Se prepararon 8 litros de medio de cultivo PDA en total, pesando 35 g/l del preparado comercial por cada litro de agua destilada. Una vez pesados los 35 g/l de
agua destilada se añadieron los 8 litros de agua destilada caliente previamente, se fue agitando enérgicamente y se dejó hervir durante un minuto para que se disolviese por completo.

Una vez preparada la disolución con el medio de cultivo, las botellas se colocaron en el autoclave a 121 ºC durante 20 minutos.

3.3.3. Preparación de las placas de Petri.

Una vez esterilizado el medio de cultivo se procedió a añadirlo las placas Petri cubriendo bien el fondo con 20 ml de PDA, en un ambiente antiséptico que se consiguió realizando la operación en las proximidades de la llama de un mechero Bunsen. Durante esta operación fue conveniente homogeneizar el medio de cultivo periódicamente para evitar que el agar se sedimentara en el fondo de la botella y no se distribuyese por igual en todas las placas.

Una vez añadido el medio de cultivo a las placas, éstas se tapaban rápidamente para evitar contaminaciones y se dejaron solidificar a temperatura ambiente durante 24 horas en el laboratorio.

Figura 21: Placas de Petri con medio de cultivo PDA solidificando.
3.3.4. Colocación de discos de papel Whatman.

Se cortaron discos de papel Whatman de 5 mm de diámetro cada uno y se esterilizaron en el autoclave a 120 ºC durante 1 hora. Una vez solidificado el PDA añadido a las placas, se colocaron 4 discos de papel por cada placa de Petri, con la ayuda de unas pinzas esterilizadas con alcohol y pasadas por la llama del mechero Bunsen, gracias, al cual también conseguimos un ambiente antiséptico. Los discos se colocaron de forma equidistante, quedando cada uno de ellos cerca del borde y formando una cruz.

![Figura 22: Discos de papel Whatman colocados en placa de Petri con PDA.](image)

3.3.5. Preparación diluciones de aceites esenciales.

Cada aceite esencial se identificó con un número del 1 al 12:

- Esencia 1: Mejorana (*Thymus mastichina*).
- Esencia 2: Menta (*Mentha piperita*).
- Esencia 3: Tomillo (*Thymus vulgaris*).
- Esencia 4: Manzanilla (Santolina chamaeyparissus).
- Esencia 5: Naranja (*Citrus sinensis*).
- Esencia 6: Romero (*Rosmarinus officinalis*).
- Esencia 7: Patchouli (*Pogostemon cablin*).
- Esencia 8: Lavanda (*Lavandula angustifolia*).
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

- Esencia 9: Geranio (Pelargonium graveolens).
- Esencia 10: Clavo (Syzygium aromaticum).
- Esencia 11: Ciprés (Cupressus sempervirens).
- Esencia 12: Eucalipto (Eucalyptus globulus).

Se prepararon 2 ml de dilución por cada aceite esencial en cinco concentraciones distintas: al 5, 10, 15, 20 y 30% (v/v) en tubos Eppendorf.

Todos los aceites esenciales fueron disueltos en 0,01% de Tween 20, y posteriormente mezclados con agua destilada y homogeneizados gracias a un agitador (Fig. 23).

![Figura 23: Detalle agitación del contenido del tubo Eppendorf.](image)

Se calculó la cantidad de aceite esencial y agua destilada a añadir en cada tubo Eppendorf para preparar las diluciones de la siguiente forma:

- Cantidad de aceite esencial:

\[
\text{concentración (5, 10, 15, 20, 30)} \times \frac{x \text{ ml aceite esencial}}{2 \text{ ml disolución}} = \frac{100}{100}
\]
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

- Cantidad de agua destilada:

 2 ml de disolución – x ml de aceite esencial = y ml de agua destilada

En la Tabla 6 se presentan las cantidades de aceite esencial y agua destilada necesarias para la preparación de las distintas diluciones de cada tratamiento.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>µl aceite esencial</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>ml agua destilada</td>
<td>1,9</td>
<td>1,8</td>
<td>1,7</td>
<td>1,6</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Tabla 6. Cantidad de aceite esencial (µl) y agua destilada (ml) a añadir para la preparación de las diluciones de cada tratamiento.

Se añadió la cantidad correspondiente de aceite esencial y agua destilada en cada tubo Eppendorf, y se marcó con un código para saber a qué aceite esencial y concentración o tratamiento correspondía cada tubo (Fig. 24), el primer número corresponde a la esencia y el segundo a la concentración.

Una vez colocados los discos de papel en las placas de Petri con el medio de cultivo PDA, se añadieron con la ayuda de la pipeta 8 µl de las diluciones preparadas para cada concentración de aceite a cada uno de los 4 discos de papel de cada placa (Fig. 25). Una vez añadida la dilución se etiquetaron las placas para identificar el tratamiento al que correspondía.
Figura 25. Detalle del aporte de dilución a cada disco de papel Whatman.

Para cada hongo patógeno y tratamiento de cada aceite esencial se prepararon 3 repeticiones. Además, se prepararon 3 placas control para cada patógeno, a las que solo se les añadió agua destilada con Tween 20, es decir, estas placas representaron la concentración 0%, y fueron usadas como comparativa de crecimiento.

En resumen:
- Se prepararon 5 concentraciones x 3 repeticiones = 15 placas/esencia
- 15 placas x 12 esencias = 180 placas + 3 placas control = 183 placas/patógeno
- 183 placas/patógeno x 2 patógenos = 366 placas totales ensayo

3.3.6. Repicado de hongos.

De las “placas madre” que se cultivaron una semana antes de comenzar el ensayo, se extrajeron con un sacabocados discos de 5 mm de diámetro de PDA y micelio del patógeno correspondiente, y con la ayuda de una lanceta esterilizada se fueron colocando en el centro de la placa de Petri, de modo que el micelio quedase en contacto con el PDA de la placa. Todo este proceso se realizó en un ambiente antiséptico.

Una vez colocada la porción de micelio se cerraron las placas y se etiquetaron (Fig. 26) y se dejaron a 25 ºC durante 7 días en el laboratorio para que el micelio se desarrollase.
3.4. PREPARACIÓN ENSAYO GERMINACIÓN DE ESCLEROCIOS.

3.4.1. Producción de esclerocios de *Sclerotinia sclerotiorum*.

Dos meses antes del comienzo de la preparación del ensayo para evaluar la germinación de los esclerocios se puso en un medio de cultivo PDA una porción del patógeno *Sclerotinia sclerotiorum* para que creciese el micelio y posteriormente diese lugar a los esclerocios del mismo modo que se realizó para obtener micelio para el método de difusión de disco comentado en el apartado 3.3.1. de este trabajo.

Una vez formados los esclerocios, estos fueron recogidos, lavados y desinfectados con lejía entre el 2,5 y 5%.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Figura 27. Esclerocios de *Sclerotinia sclerotiorum* recogidos, lavados y desinfectados.

3.4.2. Preparación aceites esenciales.

En este ensayo se utilizaron las mismas diluciones de aceites esenciales a distintas concentraciones preparadas para el método de difusión de discos, cuyo método de preparación está descrito en el apartado 3.3.5.

3.4.3. Preparación de tubos Eppendorf.

Para cada uno de los tratamientos de cada aceite esencial se realizaron 10 repeticiones. A cada tubo eppendorf se añadió un volumen total de 500 µl, de los cuales 450 µl eran de medio de cultivo PD y 50 µl de disolución a distintas concentraciones de aceite esencial. Todo este proceso se llevó a cabo en un ambiente antiséptico. Los tubos fueron etiquetados con un código para identificar a que aceite esencial y a que concentración correspondían cada uno (Fig. 28).

En resumen, se obtuvieron:
- 12 aceites esenciales x 10 repeticiones = 120 tubos/ concentración
- 120 tubos/concentración x 5 concentraciones = 600 tubos totales
- 600 tubos totales + 10 tubos control = 610 tubos Eppendorf totales ensayo
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

3.4.4. Colocación esclerocios.

Una vez añadidos los 500 μl de disolución, se agitó la mezcla en el agitador y se colocó dentro de cada tubo Eppendorf un esclerocio.

Los tubos con los esclerocios se dejaron durante 21 días a 25 ºC en el laboratorio.

Figura 28. Tubos Eppendorf preparados y marcados para los cinco tratamientos con aceite esencial de tomillo.

Figura 29. Tubo Eppendorf preparado con esclerocio de *Sclerotinia sclerotiorum*.
3.5. CROMATOGRAFÍA DE GASES Y ESPECTROMETRÍA DE MASAS.

Se disolvieron 4 gotas de cada uno de los aceites esenciales en 2 ml de diclorometano y se analizaron 2 µl de cada dilución. Se usó una columna capilar de sílice fundida Zebron Zb-5ms (30 m de longitud x 0.25 µm de espesor de fase). Se empleó helio como gas portador con un flujo de 1 ml/min. El análisis cromatográfico empezó a 50 ºC y se mantuvo esa temperatura durante 3 minutos. Posteriormente la temperatura se subió hasta 220 ºC a razón de 6 ºC/minuto y se mantuvo durante 20 minutos. La temperatura del inyector fue de 250 ºC con una razón de Split 20:1. Las temperaturas de la fuente de ionización y la línea de transferencia fueron 200 y 250 ºC, respectivamente. La energía iónica empleada fue de 70 eV y el rango de masas fue de 40-400 Da. Para la adquisición de datos y el procedimiento de los resultados se empleó el software Xcalibur 1.4.

3.6. DISEÑO EXPERIMENTAL.

3.6.1. Organización del ensayo.

El estudio se dividió en tres partes:

- Evaluación de la actividad antifúngica de 12 aceites esenciales distintos, sobre el crecimiento micelial de los patógenos *Rhizoctonia solani* y *Sclerotinia sclerotiorum*, de esta manera el ensayo se dividió en dos bloques, cada uno de ellos centrado en averiguar el mejor control del patógeno mediante aceites esenciales.

- Evaluación de la inhibición de la germinación de los esclerocios de *Sclerotinia sclerotiorum* de 12 aceites esenciales distintos, en este ensayo se intentó averiguar qué aceite esencial es capaz de inhibir la germinación de los esclerocios.

- Composición química de los aceites esenciales evaluados mediante cromatografía de gases y espectrometría de masas.
3.6.2. Toma de datos.

3.6.2.1. Crecimiento micelial.

Se realizó la medida del crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* a los 6 y 7 días de preparar el ensayo, respectivamente. En ambos casos se midió el radio de crecimiento en cm de todas las placas, obteniendo 4 medidas por cada placa, es decir, 12 medidas por cada aceite y tratamiento.

La distancia medida se tomó desde el centro de la placa, donde se colocó el hongo, hasta el borde del micelio (Fig. 30).

![Figura 30. Esquema toma medidas crecimiento micelial.](image)

Además, se tomaron fotografías de todas las placas de Petri para los distintos tratamientos de cada aceite esencial.

Con las medidas radiales del crecimiento micelial se calculó el porcentaje de inhibición del crecimiento radicular de acuerdo con la fórmula descrita por Abd-El-Khair y El-Gamal Nadia (2011):

\[
\text{Inhibición (\%)} = \left(\frac{C - T}{C} \right) \times 100
\]
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Donde C es la media de las cuatro medidas obtenidas del crecimiento radial en centímetros en la placa control y T es la media de las cuatro medidas obtenidas del crecimiento radial en centímetros obtenida en las placas de cada tratamiento.

3.6.2.2. Germinación esclerocios

Se observó la germinación de los esclerocios de *Sclerotinia sclerotiorum* a los 7, 15 y 21 días de preparar el ensayo y se tomaron fotografías.

3.6.2.3. Composición química aceites esenciales

La composición de los aceites esenciales se realizó mediante cromatografía de gases y espectrometría de masas (GC-MS) en el Instituto de la grasa (CSIC, Sevilla). Los resultados de los cromatogramas fueron analizados según el tiempo de retención. Los componentes de los aceites esenciales fueron identificados según el tiempo de retención comparándolos con los valores estándar bajo las mismas condiciones. Así mismo, se determinó la concentración de los mismos según el área obtenida mediante el procesador Eurochrom 2000, expresado en porcentajes.

 Todos los componentes químicos de los doce aceites esenciales fueron presentados en una tabla.

3.6.3. Análisis estadístico

Los datos fueron analizados con análisis de la varianza (ANOVA), utilizando el software Statgraphics Centurion XVI para llevarlo a cabo. Este análisis descompone la variabilidad de los diferentes factores dentro de contribuciones esperadas a varios factores.

Los resultados del crecimiento radial se expresaron como valor promedio ± error estándar de la media. Los valores menores de 0.05 se consideran significativos. El método usado para discriminar entre las medias es el de las menores diferencias significativas de Fisher (LSD). En las tablas obtenidas se aplican comparaciones múltiples para determinar que medias son significativamente diferentes de otras. El cálculo de los valores medios para cada nivel (o grupo de niveles) se realizó en función
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

de la pertenencia de cada nivel a un grupo homogéneo o a la intersección entre varios grupos.

Se calculó la concentración mínima inhibitoria, concentración de aceite esencial que inhibe el 50% del crecimiento micelial, a partir de las tasas de inhibición a las concentraciones evaluadas para cada modelo biológico y se determinó el modelo de mejor ajuste a cada caso.
4. RESULTADOS Y DISCUSIÓN
4. RESULTADOS Y DISCUSIÓN.

4.1. RESULTADOS INHIBICIÓN CRECIMIENTO MICELIAL DE LOS PATÓGENOS.

4.1.1. Sclerotinia sclerotiorum.

En este apartado se presentan fotografías de algunas de las placas Petri de cada aceite y tratamiento, donde se puede observar la inhibición del crecimiento micelial, y la gráfica de porcentajes de inhibición del crecimiento micelial obtenida de las mediciones realizadas a dichas placas del patógeno Sclerotinia sclerotiorum.

El estudio muestra que los doce aceites esenciales estudiados tuvieron actividad fungicotóxica en el ensayo de difusión de disco. La actividad de los aceites esenciales dependió de la concentración y del tipo de aceite.
Esencia 1: Mejorana.

Figura 31. Mejorana 20%.

Figura 32. Mejorana 30%.

Figura 33. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de mejorana.

La esencia de mejorana tuvo un efecto positivo sobre la inhibición del crecimiento micelial de *Sclerotinia sclerotiorum*, como se puede observar en la gráfica (Fig. 33), a mayores concentraciones mayor fue el efecto inhibitorio del aceite sobre el crecimiento micelial, hasta el punto que a concentraciones del 30% la inhibición del
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

crecimiento micelial fue total y, por tanto, el hongo no se desarrolló. Se estimó un valor de la concentración mínima inhibitoria de 13,09%.

Esencia 2: Menta.

![Figura 34. Menta 15%](image1)
![Figura 35. Menta 30%](image2)

Figura 36. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de menta.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

En la gráfica (Fig. 36), se puede observar el aceite esencial de menta tuvo sobre el crecimiento micelial de *Sclerotinia sclerotiorum* un gran efecto, a bajas concentraciones, 7,75%, se inhibió un 50% el crecimiento micelial y a partir de concentraciones iguales o superiores al 20%, este, fue inhibido por completo, el desarrollo del micelio fue nulo.

Esencia 3: Tomillo.

![Figura 37. Tomillo 15%.

![Figura 38. Tomillo 30%.

![Figura 39. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de tomillo.](image)
El aceite esencial de tomillo tuvo un efecto positivo moderado sobre el crecimiento micelial de *Sclerotinia sclerotiorum*. Como se puede observar en la gráfica (Fig. 39), el efecto inhibitorio fue casi constante con las concentraciones entre 5 y 20% y alcanzó un 63.7% de inhibición al 30%. La concentración mínima inhibitoria estimada fue de 16.44%.

Esencia 4: Manzanilla.

![Figura 40. Manzanilla 20%.](image1)

![Figura 41. Manzanilla 30%.](image2)

Figura 42. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de manzanilla.

\[
y = 19.723\ln(x) + 77.68
\]

\[R^2 = 0.9983\]
El efecto inhibitorio del aceite esencial de manzanilla sobre el crecimiento micelial de *Sclerotinia sclerotiorum* fue positivo y moderado. Como se observa en la gráfica (Fig. 42), a mayor concentración del aceite mayor fue la inhibición del crecimiento micelial, alcanzando un 50% de inhibición a una concentración de 24,57% del aceite esencial.

Esencia 5: Naranja.

Esencia naranja frente *Sclerotinia sclerotiorum*

\[y = 12,29\ln(x) + 53,025 \]

\[R^2 = 0,9244 \]

Figura 43. Naranja 10%
Figura 44. Naranja 20%.

Figura 45. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de naranja.
El aceite esencial de naranja tuvo un leve efecto positivo sobre el crecimiento micelial de *Sclerotinia sclerotiorum*. Como se observa en la gráfica (Fig. 45), los efectos no fueron significativos, ya que ninguno de los tratamientos superó el 40% de inhibición. El 50% de inhibición se estimó a una concentración del 72,21% del aceite esencial.

Esencia 6: Romero.

![Figura 46. Romero 10%](image1)
![Figura 47. Romero 20%](image2)

Esencia romero frente Sclerotinia sclerotiorum

\[y = 36,556\ln(x) + 105,02 \]
\[R^2 = 0,5917 \]

![Figura 48. Gráfica % de inhibición del crecimiento micelial de Sclerotinia sclerotiorum para diferentes concentraciones del aceite esencial de naranja.](image3)
Como se observa en la gráfica (Fig. 48), el efecto del aceite esencial de naranja fue levemente positivo en las concentraciones entre 5 y 20%, ya que se inhibió el crecimiento micelial de *Sclerotinia sclerotiorum*, pero este no fue significativo ya el % de inhibición estuvo por debajo del 30%. Sin embargo, al 30% de concentración se obtuvo una inhibición muy significativa, de casi el 90 %. La concentración mínima inhibitoria se estimó en 22,19%.

Esencia 7: Patchouli.

![Figura 49. Patchouli 10%](image1)

![Figura 50. Patchouli 30%](image2)

Figura 51. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de patchouli.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

La esencia de naranja tuvo un efecto positivo en la inhibición del crecimiento micelial de *Sclerotinia sclerotiorum*. Como se observa en la gráfica (Fig. 51), excepto en la concentración más baja (5%) en la que el porcentaje de inhibición fue del 40%, en el resto de tratamientos, dicho porcentaje de inhibición estuvo entre el 80-90% aproximadamente. El 50% del crecimiento micelial se inhibió a una concentración de 5,30% del aceite esencial.

Esencia 8: Lavanda.

![Figura 52. Lavanda 10%.](image)

![Figura 53. Lavanda 30%.](image)

Esencia lavanda frente Sclerotinia sclerotiorum

\[y = 33,246\ln(x) + 100,88 \]

\[R^2 = 0,8741 \]

![Figura 54. Gráfica % de inhibición del crecimiento micelial de Sclerotinia sclerotiorum para diferentes concentraciones del aceite esencial de lavanda.](image)
El efecto del aceite esencial de lavanda sobre el crecimiento micelial de *Sclerotinia sclerotiorum* fue moderadamente positivo. En la gráfica (Fig. 54) se observa que a mayor concentración del aceite mayor fue el porcentaje de inhibición, pero sin que este fuese muy elevado, en la concentración más alta (30%) se obtuvo un porcentaje de inhibición en torno al 66%. El valor de la concentración mínima inhibitoria estimado fue de 21,64%.

Esencia 9: Geranio.

![Figura 55. Geranio 10%](image1)

![Figura 56. Geranio 30%](image2)

Figura 57. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de geranio.
La esencia de geranio tuvo un gran efecto positivo sobre la inhibición del crecimiento micelial de *Sclerotinia sclerotiorum*. Como se puede ver en la gráfica (Fig. 57), a mayor concentración mayor fue la inhibición del crecimiento micelial, alcanzando una inhibición total a una concentración del 30%, a la cual el hongo no se desarrolló. Se estimó un valor para la concentración mínima inhibitoria de 10,37%.

Esencia 10: Clavo.

![Figura 58. Clavo 10%.

![Figura 59. Clavo 30%.

![Figura 60. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de clavo.**
El efecto que tuvo la esencia de clavo sobre la inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* fue positivo. En la gráfica (Fig. 60) se observa que en todos los tratamientos el porcentaje de inhibición fue significativo, sobre todo a partir del 10% de concentración con la cual dicho porcentaje superó el 50%, y al 30% de concentración el porcentaje de inhibición fue de 84%. Se estimó una concentración mínima inhibitoria del 6,66% del aceite esencial.

Esencia 11: Ciprés.

![Imagen de ciprés 10%](image1)

![Imagen de ciprés 20%](image2)

Figura 61. Ciprés 10%.

Figura 62. Ciprés 20%.

Esencia ciprés frente *Sclerotinia sclerotiorum*

\[y = 5,6521\ln(x) + 29,062 \]

\[R^2 = 0,0951 \]

Figura 63. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de ciprés.
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

El aceite de ciprés no tuvo un efecto significativo sobre el crecimiento micelial de *Sclerotinia sclerotiorum*. Como se observa en la gráfica (Fig. 63), aunque se produjo inhibición del crecimiento micelial, el porcentaje de este siempre estuvo por debajo del 30%.

Esencia 12: Eucalipto.

![Figura 64. Eucalipto 10%](image1)

![Figura 65. Eucalipto 30%](image2)

Figura 66. Gráfica % de inhibición del crecimiento micelial de *Sclerotinia sclerotiorum* para diferentes concentraciones del aceite esencial de eucalipto.

\[
y = 22,648 \ln(x) + 111,24 \\
R^2 = 0,9501
\]
El aceite esencial de eucalipto tuvo un efecto positivo sobre la inhibición del crecimiento micelial de Sclerotinia sclerotiorum. En la gráfica (Fig. 66) se puede ver que en todos los tratamientos el porcentaje de inhibición fue significativo, a mayor concentración mayor inhibición del crecimiento micelial, sobre todo a partir del 10% de concentración con la cual dicho porcentaje superó el 50%, y al 30% de concentración el porcentaje de inhibición fue del 84%. Se estimó una concentración mínima inhibitoria del 6,69%.

4.1.2. Rhizoctonia solani.

En este apartado se presentan algunas fotografías por aceite esencial y tratamiento de las placas de Petri y la gráfica de porcentajes de inhibición del crecimiento micelial obtenida de las mediciones realizadas a dichas placas del patógeno Rhizoctonia solani, de la misma manera que se efectuaron en el apartado anterior.

El presente trabajo muestra que los aceites esenciales de mejorana, menta, romero, patchouli, lavanda, geranio y clavo tuvieron actividad fungitóxica en el ensayo de difusión de disco. La actividad de estos aceites esenciales dependió de la concentración y del tipo de aceite. Las esencias de tomillo, manzanilla, naranja, ciprés y eucalipto no produjeron inhibición del crecimiento micelial, en todos los tratamientos con cada uno de estos aceites esenciales el crecimiento del micelio cubrió la placa completamente. Por lo tanto, no se presentan fotografías ni gráficas de estos casos al no ser relevantes.

Figura 67. Placa control Rhizoctonia solani 0%.
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Esencia 1: Mejorana.

Figura 68. Mejorana 15%.

Figura 69. Mejorana 30%.

![Esencia mejorana frente a *Rhizoctonia solani*](image)

\[
y = 25,974 \ln(x) + 71,274 \\
R^2 = 0,8515
\]

Figura 70. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de mejorana.

El aceite esencial de mejorana tuvo un efecto leve en la inhibición del crecimiento micelial de *Rhizoctonia solani*. Como se observa en la gráfica (Fig. 70), para concentraciones del 5 y 10% no se produjo inhibición y el hongo ocupó completamente las placas, a partir del 15% de concentración se produjo inhibición,
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocíos de *Sclerotinia sclerotiorum* alcanzando su máximo al 30% de concentración, el cual inhibió un 45% el crecimiento micelial. Se estimó un valor de concentración mínima inhibitoria de 44,08%.

Esencia 2: Menta.

![Figura 71. Menta 15%](image1)

![Figura 72. Menta 30%](image2)

Figura 73. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de menta.

El efecto del aceite esencial de menta sobre el crecimiento micelial de *Rhizoctonia solani* fue positivo. Como se observa en la gráfica (Fig. 73), a
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

concentraciones bajas, 5-10%, no se produjo inhibición del crecimiento micelial y dicho micelio ocupó toda la placa. A concentraciones de 15-20% el porcentaje de inhibición fue moderado, entre 32 y 30%, respectivamente. Al 30% de concentración el porcentaje de inhibición del crecimiento micelial fue significativo y se obtuvo un valor del 74,5%. Se estimó un valor de concentración mínima inhibitoria de 23,79%.

Esencia 6: Romero.

![Figura 74. Romero 20%.
Figura 75. Romero 30%.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>0%</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>% DE INHIBICIÓN</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

y = 14,625ln(x) + 36,167

R² = 0,4232

Figura 76. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de romero.
Como se puede observar en la gráfica (Fig. 80), el aceite esencial de romero solo produjo una moderada inhibición del crecimiento micelial a una concentración del 30%, en el resto de los tratamientos no se produjo inhibición y el micelio ocupó toda la placa.

Esencia 7: Patchouli.

Figura 77. Patchouli 10%.

Figura 78. Patchouli 30%.

Figura 79. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de patchouli.

\[y = 15,334 \ln(x) + 53,443 \]

\[R^2 = 0,8112 \]
El aceite esencial de patchouli tuvo un leve efecto positivo sobre el crecimiento micelial de *Rhizoctonia solani*. Como se puede observar en la gráfica (Fig. 79), a mayor concentración mayor porcentaje de inhibición del crecimiento micelial, pero en ninguno de los casos se superó el 40% de inhibición del crecimiento micelial.

Esencia 8: Lavanda.

Figura 80. Lavanda 15%.

Figura 81. Lavanda 30%.

Figura 82. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de lavanda.
El aceite esencial de lavanda tuvo un efecto leve positivo sobre el crecimiento micelial de *Rhizoctonia solani*. Como se observa en la gráfica (Fig. 82), concentraciones bajas no tuvieron ningún efecto inhibitorio sobre el hongo, en el resto de tratamientos el porcentaje de inhibición fue moderado, sin embargo, en ninguno de los tratamientos se superó el 40%. Se estimó un valor de concentración mínima inhibitoria de 74,47%.

Esencia 9: Geranio.

Figura 83. Geranio 20%.

Figura 84. Geranio 30%.

Figura 85. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de geranio.
El efecto del aceite de geranio sobre el crecimiento micelial de *Rhizoctonia solani* fue positivo. Como se observa en la gráfica (Fig. 85), a mayor concentración mayor fue el porcentaje de inhibición del crecimiento micelial, alcanzando un 87,8% de inhibición a una concentración del 30%. La concentración mínima inhibitoria estimada fue de 17,42%.

Esencia 10: Clavo.

![Figura 86. Clavo 15%](image1)

![Figura 87. Clavo 30%](image2)

Figura 88. Gráfica % de inhibición del crecimiento micelial de *Rhizoctonia solani* para diferentes concentraciones del aceite esencial de clavo.

\[
y = 24,229\ln(x) + 67,059
\]

\[R^2 = 0,8661\]
El aceite esencial de clavo tuvo un leve efecto positivo sobre el crecimiento micelial de *Rhizoctonia solani*. Como se observa en la gráfica (Fig. 88), a bajas concentraciones (5 y 10%) no hubo inhibición del crecimiento micelial del hongo ocupando este la placa por completo, en el resto de tratamientos ocurrió inhibición del crecimiento micelial pero muy leve, en ninguno de los casos se superó el 40% de inhibición.

4.2. RESULTADOS GERMINACIÓN DE ESCLEROCIOS.

Se observó si se producía la germinación de los esclerocios de *Sclerotinia sclerotiorum* a los 7, 15 y 21 días después de comenzar el ensayo. No se obtuvo ningún dato concluyente, ya que ni en los tubos control ni en ninguno de los tratamientos de los distintos aceites esenciales se produjo la germinación de los esclerocios.

4.3. COMPOSICIÓN QUÍMICA ACEITES ESENCIALES.

En la siguiente tabla se presentan los resultados obtenidos tras realizar el análisis de cromatografía de gases y espectrometría de masas a cada aceite esencial. Se representan los principales componentes de cada aceite, el tiempo de retención y el porcentaje de cada uno de los componentes.
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Familia</th>
<th>Principales componentes</th>
<th>Tiempo de retención (min)</th>
<th>Porcentajes principales componentes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clavo</td>
<td>Syzygium aromaticum</td>
<td>Myrtaceae</td>
<td>Eugenol</td>
<td>20.67</td>
<td>86.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Cariofileno</td>
<td>22.03</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Humeleno</td>
<td>22.77</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Óxido de cariofileno</td>
<td>25.44</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ-Cadineno</td>
<td>23.98</td>
<td>0.29</td>
</tr>
<tr>
<td>Geranio</td>
<td>Pelargonium graveolens</td>
<td>Geraniaceae</td>
<td>Citronelol</td>
<td>17.49</td>
<td>31.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Formiato de citronelina</td>
<td>18.48</td>
<td>15.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ-Selineno</td>
<td>26.25</td>
<td>11.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mentona</td>
<td>15.95</td>
<td>7.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linalool</td>
<td>14.15</td>
<td>7.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Desconocido</td>
<td>19.05</td>
<td>5.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ-Cadineno</td>
<td>23.98</td>
<td>4.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mentona</td>
<td>15.69</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geraniol</td>
<td>18.03</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Burboneno</td>
<td>21.16</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Cariofileno</td>
<td>21.98</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Óxido de rosa</td>
<td>14.40</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Copaeno</td>
<td>20.95</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Óxido de cariofileno</td>
<td>25.41</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Pineno</td>
<td>9.59</td>
<td>0.56</td>
</tr>
<tr>
<td>Lavanda</td>
<td>Lavandula angustifolia</td>
<td>Lamiaceae</td>
<td>Acetato de linalilo</td>
<td>17.92</td>
<td>42.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linalool</td>
<td>14.20</td>
<td>18.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acetato de lavandulilo</td>
<td>18.66</td>
<td>8.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trans-Ocimeno</td>
<td>12.67</td>
<td>7.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Cariofileno</td>
<td>22.00</td>
<td>7.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cis-Ocimeno</td>
<td>12.37</td>
<td>5.93</td>
</tr>
</tbody>
</table>

Sonia Peinado Maldonado 88
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

<table>
<thead>
<tr>
<th>Aceite esencial</th>
<th>% Inhibición</th>
<th>Efecto</th>
<th>Aceite esencial</th>
<th>% Inhibición</th>
<th>Efecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans-Cariofileno</td>
<td>22.51</td>
<td>3.52</td>
<td>4-Terpineol</td>
<td>16.33</td>
<td>2.13</td>
</tr>
<tr>
<td>Óxido de cariofileno</td>
<td>25.45</td>
<td>0.93</td>
<td>Mirceno</td>
<td>11.09</td>
<td>0.80</td>
</tr>
<tr>
<td>Germacrreno D</td>
<td>23.31</td>
<td>0.61</td>
<td>Alcanfor</td>
<td>15.51</td>
<td>0.56</td>
</tr>
<tr>
<td>α-Pineno</td>
<td>9.59</td>
<td>0.08</td>
<td>Ciprés Cupressus semprevirens</td>
<td>α-Pineno</td>
<td>9.65</td>
</tr>
<tr>
<td>δ-3-Careno</td>
<td>11.71</td>
<td>26.15</td>
<td>D-Limoneno</td>
<td>12.25</td>
<td>5.28</td>
</tr>
<tr>
<td>2-Careno</td>
<td>20.22</td>
<td>3.71</td>
<td>Cimeno</td>
<td>12.14</td>
<td>3.57</td>
</tr>
<tr>
<td>4-Terpineol</td>
<td>16.33</td>
<td>2.17</td>
<td>Sabineno</td>
<td>10.67</td>
<td>1.89</td>
</tr>
<tr>
<td>β-Pineno</td>
<td>10.84</td>
<td>1.67</td>
<td>Mirceno</td>
<td>11.09</td>
<td>1.59</td>
</tr>
<tr>
<td>Canfeno</td>
<td>10.02</td>
<td>1.30</td>
<td>α-Thujene</td>
<td>9.36</td>
<td>0.74</td>
</tr>
<tr>
<td>δ-Cadineno</td>
<td>24.00</td>
<td>0.66</td>
<td>Mentha Mentha piperita</td>
<td>L-Mentol</td>
<td>16.40</td>
</tr>
<tr>
<td>p-Mentona</td>
<td>15.79</td>
<td>28.83</td>
<td>Eucaliptol</td>
<td>12.37</td>
<td>7.12</td>
</tr>
<tr>
<td>Isometil acetato</td>
<td>18.89</td>
<td>5.96</td>
<td>Mentofurano</td>
<td>15.97</td>
<td>5.62</td>
</tr>
<tr>
<td>D-Limoneno</td>
<td>12.26</td>
<td>2.72</td>
<td>Pulegona</td>
<td>17.77</td>
<td>2.11</td>
</tr>
<tr>
<td>β-Cariofileno</td>
<td>21.99</td>
<td>1.74</td>
<td>Isomentol</td>
<td>16.06</td>
<td>1.57</td>
</tr>
<tr>
<td>β-Pineno</td>
<td>10.85</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

<table>
<thead>
<tr>
<th>Manzanilla</th>
<th>Santolina chamaecyparissus</th>
<th>Compositae</th>
<th>Eucaliptol</th>
<th>n-Pineno</th>
<th>n-Pineno</th>
<th>Linalool</th>
<th>Mirceno</th>
<th>Acetato de linalino</th>
<th>Alcanfor</th>
<th>n-Pineno</th>
<th>D-Limoneno</th>
<th>Germacreno D</th>
<th>Sabineno</th>
<th>n-Terpineol</th>
<th>Óxido de cariofileno</th>
<th>AR Curcumeno</th>
<th>Longipinene</th>
<th>Verbenona</th>
<th>Cimeno</th>
<th>trans-Ocimeno</th>
<th>4-Terpineol</th>
<th>n-Caripenilo</th>
<th>Canfenó</th>
<th>γ-Terpineno</th>
<th>Acetato lavandulilo</th>
<th>δ-Cadineno</th>
<th>n-Terpineol</th>
<th>n-Thujene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.03</td>
<td>17.50</td>
<td>9.25</td>
<td>7.94</td>
<td>6.79</td>
<td>4.99</td>
<td>4.52</td>
<td>3.77</td>
<td>3.24</td>
<td>3.00</td>
<td>2.62</td>
<td>1.94</td>
<td>1.93</td>
<td>1.81</td>
<td>1.34</td>
<td>1.30</td>
<td>1.29</td>
<td>1.27</td>
<td>1.22</td>
<td>1.21</td>
<td>1.06</td>
<td>0.68</td>
<td>0.58</td>
<td>0.56</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

<table>
<thead>
<tr>
<th>Naranja</th>
<th>Citrus sinensis</th>
<th>Rutaceae</th>
<th>D-Limoneno</th>
<th>12.41</th>
<th>97.88</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mirceno</td>
<td>11.09</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Pineno</td>
<td>9.59</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabineno</td>
<td>10.69</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patchouli</th>
<th>Pogostemon cablin</th>
<th>Lamiaceae</th>
<th>Alcohol patchouli</th>
<th>27.35</th>
<th>33.40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guaiadieno (isómero)</td>
<td>23.72</td>
<td>19.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Guaieño</td>
<td>22.27</td>
<td>15.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seicheleno</td>
<td>22.73</td>
<td>9.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans Bisaboleno</td>
<td>22.97</td>
<td>6.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Patchouleno</td>
<td>21.22</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Cariofileno</td>
<td>21.97</td>
<td>3.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guaiadieno (isómero)</td>
<td>23.55</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Gurjuneno</td>
<td>23.03</td>
<td>2.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Óxido de cariofileno</td>
<td>25.41</td>
<td>1.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mejorana</th>
<th>Thymus mastichina</th>
<th>Lamiaceae</th>
<th>Eucaliptol</th>
<th>12.43</th>
<th>43.26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linalool</td>
<td>14.24</td>
<td>36.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acetato linalilo</td>
<td>17.85</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Terpineol</td>
<td>16.72</td>
<td>3.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Pineno</td>
<td>10.84</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Pieneo</td>
<td>9.58</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabineno</td>
<td>10.67</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Cariofileno</td>
<td>21.99</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Óxido de cariofileno</td>
<td>25.43</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D-Limoneno</td>
<td>12.17</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mirceno</td>
<td>11.08</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Terpineol</td>
<td>16.33</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alcanfor</td>
<td>15.51</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

<table>
<thead>
<tr>
<th>Tomillo</th>
<th>Thymus vulgaris</th>
<th>Lamiaceae</th>
<th>Eucalipto</th>
<th>Lamiaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eucalipto</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.44</td>
<td>37.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alcanfor</td>
<td>15.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Canfeno</td>
<td>10.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Terpineol</td>
<td>16.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Pineno</td>
<td>9.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ-Cadineno</td>
<td>23.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mirceno</td>
<td>11.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Pineno</td>
<td>10.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guaiadieno (isómero)</td>
<td>23.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Cariofileno</td>
<td>21.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linalool</td>
<td>14.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D-Limoneno</td>
<td>12.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Óxido de cariofileno</td>
<td>25.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-Terpineol</td>
<td>16.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-Ocimeno</td>
<td>12.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acetato de bornilo</td>
<td>18.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>γ-Terpineno</td>
<td>13.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabineno</td>
<td>10.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Germacreno D</td>
<td>23.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Terpineno</td>
<td>11.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Thujene</td>
<td>9.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eucalipto</th>
<th>Eucalyptus globulus</th>
<th>Myrtaceae</th>
<th>Eucalipto</th>
<th>Myrtaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eucalipto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.50</td>
<td>84.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cimeno</td>
<td>12.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>γ-Terpineno</td>
<td>13.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Pineno</td>
<td>9.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mirceno</td>
<td>11.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Terpineol</td>
<td>16.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-Pineno</td>
<td>10.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>α-Felandreno</td>
<td>11.62</td>
</tr>
</tbody>
</table>
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

<table>
<thead>
<tr>
<th>Romero</th>
<th>Rosmarinus officinalis Lamiaceae</th>
<th>Eucaliptol</th>
<th>12.39</th>
<th>23.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcanfor</td>
<td></td>
<td></td>
<td>15.56</td>
<td>20.94</td>
</tr>
<tr>
<td>α-Pineno</td>
<td></td>
<td></td>
<td>9.60</td>
<td>17.02</td>
</tr>
<tr>
<td>Canfeno</td>
<td></td>
<td></td>
<td>10.08</td>
<td>7.77</td>
</tr>
<tr>
<td>D-Limoneno</td>
<td></td>
<td></td>
<td>12.26</td>
<td>6.33</td>
</tr>
<tr>
<td>β-Cariofileno</td>
<td></td>
<td></td>
<td>22.00</td>
<td>5.33</td>
</tr>
<tr>
<td>Cimeno</td>
<td></td>
<td></td>
<td>12.14</td>
<td>3.46</td>
</tr>
<tr>
<td>Mirceno</td>
<td></td>
<td></td>
<td>11.08</td>
<td>2.83</td>
</tr>
<tr>
<td>Verbenona</td>
<td></td>
<td></td>
<td>17.03</td>
<td>1.91</td>
</tr>
<tr>
<td>α-Terpinol</td>
<td></td>
<td></td>
<td>16.72</td>
<td>1.88</td>
</tr>
<tr>
<td>α-Humuleno</td>
<td></td>
<td></td>
<td>22.79</td>
<td>1.87</td>
</tr>
<tr>
<td>Acetato de bornilo</td>
<td></td>
<td></td>
<td>18.81</td>
<td>1.36</td>
</tr>
<tr>
<td>4-Terpineol</td>
<td></td>
<td></td>
<td>16.33</td>
<td>1.17</td>
</tr>
<tr>
<td>β-Pineno</td>
<td></td>
<td></td>
<td>10.84</td>
<td>1.14</td>
</tr>
<tr>
<td>γ-Terpineno</td>
<td></td>
<td></td>
<td>13.03</td>
<td>0.97</td>
</tr>
<tr>
<td>α-Terpineno</td>
<td></td>
<td></td>
<td>11.90</td>
<td>0.91</td>
</tr>
<tr>
<td>α-Felandreno</td>
<td></td>
<td></td>
<td>11.61</td>
<td>0.73</td>
</tr>
<tr>
<td>Óxido de cariofileno</td>
<td></td>
<td></td>
<td>25.46</td>
<td>0.32</td>
</tr>
<tr>
<td>α-Thujene</td>
<td></td>
<td></td>
<td>9.28</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Tabla 7: Porcentajes relativos de los principales componentes de los aceites esenciales determinados por análisis de cromatografía de gases y espectrometría de masas.

En los doce aceites esenciales fueron identificados 58 compuestos primarios diferentes. En general, están formados por una mezcla de distintos componentes, entre 4 y 25, dependiendo del aceite, de los cuales 2 ó 3 son componentes principales que se encuentran en mayor porcentaje y el resto se encuentran en porcentajes bajos o trazas.
4.4. DISCUSIÓN DE RESULTADOS.

Todos los aceites esenciales mostraron actividad parcial o completa contra Sclerotinia sclerotiorum y siete de ellos tuvieron actividad moderada o parcial sobre Rhizoctonia solani.

Los aceites esenciales más efectivos sobre Sclerotinia sclerotiorum mostrando una elevada actividad antifúngica fueron el de mejorana, menta, patchouli y geranio presentando un porcentaje de inhibición del crecimiento micelial del 100% en los tratamientos del 30% de concentración. Los niveles de concentración mínima inhibitoria fueron de 13,09, 7,75, 5,30 y 10,37%, respectivamente. El aceite esencial de menta y geranio mostraron la mayor actividad antifúngica con un 100% de inhibición en concentraciones de 15 a 30%. Contra Rhizoctonia solani ningún aceite esencial tuvo una actividad antifúngica tan elevada, pero las tasas más altas de inhibición del crecimiento micelial se alcanzaron con los aceites esenciales de geranio y menta, 87,8% y 74,5%, respectivamente, a concentraciones del 30% y la concentración mínima inhibitoria de ambos aceites se estimó en 23,79 y 17,42, respectivamente. El aceite esencial de patchouli y mejorana tuvo un leve efecto inhibitorio del crecimiento micelial de Rhizoctonia solani, que en ninguno de los tratamientos superaron el 50% de inhibición. La concentración mínima inhibitoria para el aceite esencial de mejorana se estimó en 44,08%.

Varios autores han demostrado que el aceite esencial de geranio es antimicrobiano. Tanovic et al., 2009, demostraron la eficacia del aceite esencial de geranio contra Cladobotryum mycophillum y otros micopatógenos. Estudios realizados por Juárez, Bach, Sánchez-Arreola, Bach y Hernández (2016) y Džamić et al. (2014), entre otros, analizaron la actividad antimicrobiana del aceite esencial de geranio e identificaron el geraniol como componente principal. Sin embargo, en los estudios realizados por Lu, Han, Xu y Yao (2013) el geraniol fue un componente menor y los principales componentes del aceite esencial de geranio fueron el citronelol y el formiato de citronelina, al igual que en el presente trabajo en el que el aceite estaba formado por 15 componentes. Por lo tanto, su eficacia no puede atribuirse únicamente al geraniol.
El efecto fungicida del aceite esencial de menta ha sido estudiado para Sclerotinia sclerotiorum (Diniz et al., 2008; Edris y Farrag, 2003) y Rhizoctonia solani (Khaledi, Taheri y Tarighi, 2014) y se ha demostrado que el aceite es capaz de inhibir el crecimiento micelial de dichos hongos. En este trabajo, el componente principal del aceite esencial de menta fue el mentol, y su concentración fue mayor que en otros estudios (Bupesh et al., 2007; Derwich, Benziane, Taouil, Senhaji y Touzani, 2010). En varios estudios se ha demostrado que el mentol fue el responsable del efecto antifúngico contra los hongos estudiados en este trabajo (Edris y Farrag, 2003; Khaledi, Taheri y Tarighi, 2014).

El aceite esencial de patchouli mostró gran actividad antifúngica contra Sclerotinia sclerotiorum. Diversos trabajos han descrito el aceite esencial de patchouli como antimicrobiano (Karimi, 2014; Vieira-Brock, Vaughan y Vollmer, 2017). Kusama y Mahful (2017) analizaron la composición del aceite obtuvieron que estaba formado por una mezcla de 19 compuestos, cuyo componente principal era el alcohol de patchouli, al igual que en el presente trabajo, aunque la concentración fue mayor en nuestro caso.

La actividad antifúngica de otros aceites esenciales no alcanzó el 100% de inhibición contra Sclerotinia sclerotiorum. Sin embargo, las tasas de inhibición fueron altas para romero, clavo y eucalipto y la concentración mínima inhibitoria se estimó en 22,19, 6,66 y 6,69%, respectivamente. Para Rhizoctonia solani el aceite esencial de romero y clavo tuvieron un leve efecto inhibitorio, aunque en ninguno de los tratamientos se superó el 40% de inhibición y el efecto del aceite esencial de eucalipto fue nulo.
Muchos estudios destacan la relación entre los componentes más abundantes de aceites esenciales y su actividad microbiana (Caccioni, Guizzardi, Biondi, Renda y Ruberto, 1998; Mehrparvar, Goltapeha, Safaiea, Ashkanib y Hedesh, 2016). Por lo tanto, la alta actividad antifúngica mostrada por el aceite esencial de clavo podría ser el resultado de su alto contenido de eugenol, aunque su eficacia debe determinarse por separado para confirmarlo. Se ha encontrado que el eugenol es activo contra especies de hongos filamentosos y de levaduras (Barrera-Necha, Garduno-Pizana y García-Barrera, 2009; Kamatou, Vermaak y Vilijoen, 2012; Paranagama, 1991; Ranasinghe, Javawardena y Abeywickrama, 2002). De Oliveira, Mendez y De Oliveira (2013) mostraron que el eugenol actúa sobre las membranas celulares mediante un mecanismo que parece implicar la inhibición de la biosíntesis de ergosterol, que interfiere con la membrana celular. Al-Taisan, Bahkali, Elgorban y El-Metwally (2014) obtuvieron que el aceite esencial de clavo inhibió por completo el crecimiento micelial de Sclerotinia sclerotiorum. Aunque en este caso el efecto inhibitorio del crecimiento micelial del aceite esencial de clavo no superó el 40% en ninguno de los tratamientos, contra Rhizoctonia solani hay estudios como el de Costa et al. (2011) en el que el aceite produjo una inhibición total del crecimiento micelial.

En diversos estudios queda demostrado el efecto antifúngico del aceite esencial de romero sobre hongos patógenos (Ferdes, Al Juhaime, Özcan y Ghafoor, 2017; Hanana et al., 2017; Matusinsky, Zouhar, Pavela y Novy, 2015; Özcan y Chalchat, 2008). Sclerotinia sclerotiorum fue muy sensible al aceite esencial de romero en el trabajo realizado por Pitarokili, Tzakou y Loukis (2008). Sin embargo, en otros estudios se obtuvieron resultados distintos, en los cuales, el aceite mostró una débil actividad antimicrobiana y antifungicida (Angioni et al., 2004). En cuanto a la composición química del aceite esencial, al igual que en el presente trabajo podemos encontrar estudios en los que los componentes principales del aceite son el eucaliptol (1,8-cineol), alcanfor y α-Pineno (Elansary et al., 2018) en proporciones similares a los resultados obtenidos.

Davari y Ezazi (2017) mostraron una actividad antifúngica moderada del aceite esencial de eucalipto sobre algunos hongos, entre los que se encontraba Sclerotinia sclerotiorum. En el estudio de Lakshman, Chauhan, Pandey y Choudhury (2017) el aceite esencial de eucalipto fue un potente inhibidor del crecimiento micelial de
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Rhizoctonia solani y en el trabajo de Elgorban, Bahkali, El-Metanwally, Elsheshtawi y Abdel-Wahab (2015) el aceite inhibió completamente el crecimiento micelial de *Sclerotinia sclerotiorum* y *Rhizoctonia solani*, concluyendo que el aceite esencial de eucalipto podría usarse como biofungicida alternativo a los fungicidas sintéticos contra hongos fitopatógenos. El componente principal del aceite esencial de eucalipto es el eucaliptol (1,8-cineol) (Atmani-Merabet et al., 2018; Davari y Ezazi, 2017). Debido al alto porcentaje en que se encuentra el eucaliptol en dicho aceite, sería evidente afirmar que es el responsable de su efecto antifúngico, pero para poder afirmarlo es necesario realizar ensayos con dicho componente.

Las esencias de tomillo, lavanda y manzanilla tuvieron actividad antifúngica contra *Sclerotinia sclerotiorum*, pero con las concentraciones estudiadas en el presente trabajo solo aparece inhibición de crecimiento micelial entre un 60-70%, por ello, sería necesario realizar otros estudios para comprobar su efectividad con concentraciones mayores ya que, la concentración mínima inhibitoria de éstos aparecería añadiéndolos a mayores concentraciones de las utilizadas (16,44, 21,64 y 24,57%, respectivamente). Los aceites esenciales de tomillo y manzanilla no tuvieron ningún efecto antifúngico contra *Rhizoctonia solani*, en cambio, el aceite esencial de lavanda tuvo un leve efecto inhibitorio del crecimiento micelial, aunque no superó el 40% de inhibición a la mayor concentración.

En estudios en los que se ha evaluado la actividad fungicida del aceite esencial de tomillo se ha demostrado que tiene un gran efecto antifúngico (Matusinsky et al., 2015; Santana et al., 2012). Debido a este elevado efecto inhibitorio el aceite esencial de tomillo puede representar una alternativa natural para controlar hongos patógenos en cosecha, post-cosecha o para alargar la vida útil de los productos agrícolas (Santamaría et al., 2017). Podemos encontrar estudios en los que ha sido evaluada la actividad antifúngica del aceite esencial de tomillo contra *Sclerotinia sclerotiorum* y *Rhizoctonia solani* y en los que se ha obtenido que el aceite es capaz de inhibir el crecimiento micelial de dichos hongos (Diniz, Utumi, Bonzanini y Bueno, 2005; Khaledi et al., 2014; Lee et al., 2007; Zambonelli, D'Aurelio, Bianchi y Albasini, 1996). Que en el presente trabajo el aceite esencial no tuviese ningún efecto sobre *Rhizoctonia solani* podría ser causado a diferencias en la raza del hongo.
La composición química del aceite esencial de tomillo ha sido analizada en diversos estudios y la mayoría describen el timol como el componente principal del aceite (Lee et al., 2007; Lu et al., 2013; Santamaría et al., 2017). Zambonelli et al. (2004) atribuyeron al timol la actividad antifúngica del aceite ya que dicho componente tuvo efectos inhibitorios parecidos a los del propio aceite esencial. Sin embargo, en otros análisis de la composición química del aceite se obtuvo que el componente principal fue el linalool (Ballester-Costa et al., 2013), el p-cimeno y carvacrol (Santana et al., 2012). A la vista de nuestros resultados no podríamos atribuir la actividad antifúngica a ninguno de los componentes anteriores ya que no aparecen el análisis de componentes químicos.

El aceite esencial de lavanda ha mostrado actividad antifúngica contra varios hongos patógenos (Maietti et al., 2013; Zakaria y Nawras, 2014). Para *Sclerotinia sclerotiorum* podemos encontrar trabajos en los que el aceite no mostró datos de inhibición notables e, incluso, mejoró su crecimiento (Santamaría et al., 2017) o en los que el aceite tuvo actividad antifúngica y sus autores sugieren que puede ser útil en tratamientos contra infecciones fúngicas causadas por este hongo (Moon, Cavanagh y Wilkinson, 2007). El linalool ha sido descrito como componente principal en diversos estudios (Al-Younis, Al-Nazer y Al-Hakim, 2015; Blažeković et al., 2015; Santana et al., 2012), y algunos autores han atribuido a dicho componente la actividad antifúngica del aceite (Maietti et al., 2013; Zakaria y Nawras, 2014). En el presente trabajo el linalool no fue el componente principal de este aceite y no tuvo actividad antifúngica significativa.

En el estudio de Ruíz-Navajas, Viuda-Martos, Sendra, Pérez-Álvarez y Fernández-López (2013) se demostró que el aceite esencial de manzanilla presentaba actividad antifúngica. Al igual que en el presente trabajo, el componente principal del aceite esencial de manzanilla en el análisis realizado por Salah-Fatnassi et al. (2017) fue el eucaliptol (1,8-cineol).

Las esencias que peores resultados obtuvieron contra *Sclerotinia sclerotiorum* son las de naranja y ciprés que no superaron el 40% de inhibición del crecimiento micelial. Según los datos obtenidos sobre la concentración mínima inhibitoria no sería viable su uso como métodos de control frente a dicho patógeno. Contra *Rhizoctonia*
El efecto antifúngico de estos aceites esenciales fue nulo, ya que no produjeron ninguna inhibición sobre el crecimiento micelial.

El aceite esencial de naranja tiene actividad antifúngica contra hongos asociados al deterioro de los alimentos (Messgo-Moumene et al., 2015; Viuda-Martos et al., 2008). Sin embargo, Elgorban et al. (2015) no obtuvieron inhibición del crecimiento micelial para *Sclerotinia sclerotiorum* y *Rhizoctonia solani*. En los análisis realizados en diversos estudios se obtuvo que el componente principal del aceite esencial de naranja es el D-limoneno (Ben Miri, Arino y Djenane, 2018; Ruiz-Pérez et al., 2016; Velázquez-Núñez, Ávila-Sosa, Palou y López-Malo, 2013), al igual que en el presente trabajo.

La actividad antimicrobiana del aceite esencial de ciprés fue moderada en el estudio llevado a cabo por Mazari, Bendimerad, Bekhechi y Fernández (2010). Al igual que en el presente trabajo, Selim, Adam, Hassan y Albalauwi (2014) analizaron el aceite esencial de ciprés y obtuvieron que los componentes principales son α-pineno, δ-3-careno y D-limoneno.

Existe abundante literatura sobre la actividad antifúngica de los aceites esenciales (Kalemba y Kunicka, 2003; Lang y Buchbauer, 2012). En nuestro trabajo la actividad antifúngica no se podría atribuir a un solo componente del aceite esencial, sino que fue el resultado de los efectos sinérgicos entre todos los componentes, formando mezclas complejas. Algunos autores sugieren que los aceites esenciales son significativamente más efectivos que sus componentes principales, mientras que otros presentan resultados contradictorios (Santamaría, Roselló, Sempere, Giménez y Blázquez, 2015).

En general, se ha encontrado que las composiciones de los aceites esenciales difieren en porcentaje e incluso en componentes principales dentro de la literatura mencionada anteriormente. La cantidad y calidad de los componentes disponibles en los aceites esenciales pueden verse afectados por varios factores, como el genotipo de la planta, la condición geográfica, la estación y la condición agronómica (Piccaglia et al., 1991). Además, los resultados pueden variar de acuerdo con cada método de extracción debido a la naturaleza volátil e hidrofóbica de los aceites esenciales que requieren un surfactante en este trabajo (Lang y Buchbauer, 2012). Se cree que la
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Sonia Peinado Maldonado

La naturaleza lipófila de los aceites esenciales facilita la penetración de la membrana fúngica de la bicapa lipídica y provoca la alteración de la membrana (Lambert, Skandamis, Coote y Nychas, 2001; Ultee, Slump, Steging y Smid, 2000).

Como se ha comentado anteriormente, no se obtuvieron datos significativos en cuanto a la germinación de los esclerocios, ya que, no se produjo germinación de éstos. Esto pudo ser debido a que el método elegido para su evaluación no fue el más idóneo o a las condiciones ambientales que no favorecieron la germinación. Por otro lado, también pudo ser debido a que los esclerocios seleccionados no estuviesen suficientemente maduros o fuesen demasiado pequeños, ya que en otros estudios los esclerocios seleccionados tenían un tamaño mayor de entre 1-2 cm (Allori et al, 2016; Taylor et al., 2018). En estudios en los que se ha evaluado el efecto de aceites esenciales sobre la germinación de los esclerocios se ha obtenido que los aceites esenciales inhibían dicha germinación (Ma et al., 2016). Soylu, Yigitbas, Soylu y Kurt (2007) concluyeron que la reducción de la germinación de los esclerocios producida por los aceites esenciales de orégano e hinojo reducían en gran medida la fuente del inóculo del patógeno y esto influye en la tasa de desarrollo de la enfermedad.

Aunque se debe tener en cuenta el costo y la efectividad de la aplicación del aceite, este trabajo justifica una mayor investigación sobre el uso práctico de los aceites esenciales para el control de estos dos importantes hongos patógenos en horticultura intensiva.

Es importante realizar estudios in vivo de su eficacia en sistemas de producción agrícola y para reducir la dependencia actual de los fertilizantes y protección fitosanitaria para el control de enfermedades, aspectos cada vez más valorados por consumidores y cadenas de suministro alimentarias.
5. CONCLUSIONES
Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

5. CONCLUSIONES

Los aceites esenciales de mejorana, menta, patchouli, geranio, clavo y eucalipto han mostrado un gran efecto inhibidor del crecimiento micelial de *Sclerotinia sclerotiorum* in vitro, en todos los casos la concentración mínima inhibitoria se ha estimado cercana o por debajo del 10%, 13,09%, 7,75%, 5,30%, 10,37%, 6,66% y 6,69%, respectivamente.
6. BIBLIOGRAFÍA
6. BIBLIOGRAFÍA.

Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

actividades de aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complementary and Alternative Medicine, 18(1), 214.

Guerrero, A. (2012). Evaluación de aceites esenciales de Lippia origanoides en el control de hongos fitopatógenos (Fusarium sp. y Colletotrichum) en el cultivo
Efecto *in vitro* de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

de aji cayena Capsicum annaum. Tesis doctoral, Universidad Nacional de Colombia, Colombia.

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de Rhizoctonia solani y Sclerotinia sclerotiorum y la germinación de esclerocios de Sclerotinia sclerotiorum

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*

Efecto in vitro de doce aceites esenciales sobre el crecimiento micelial de *Rhizoctonia solani* y *Sclerotinia sclerotiorum* y la germinación de esclerocios de *Sclerotinia sclerotiorum*
