Show simple item record

dc.contributor.authorCarmona Tapia, José
dc.contributor.authorArcoya, David
dc.contributor.authorMartínez-Aparicio, Pedro J.
dc.date.accessioned2012-01-03T09:43:42Z
dc.date.available2012-01-03T09:43:42Z
dc.date.issued2011-01-20
dc.identifier.citationArcoya, David , Carmona, José and Martínez-Aparicio, Pedro J.(2011) 'Bifurcation for Quasilinear Elliptic Singular BVP', Communications in Partial Differential Equations, 36: 4, 670 — 692es_ES
dc.identifier.issn0360-5302
dc.identifier.urihttp://hdl.handle.net/10835/576
dc.description.abstractFor a continuous function $g\geq 0$ on $(0,+\infty)$ (which may be singular at zero), we confront a quasilinear elliptic differential operator with natural growth in $\nabla u$, $-\Delta u +g(u)|\nabla u|^{2}$, with a power type nonlinearity, $\lambda u^{p}+ f_{0}(x)$. The range of values of the parameter $\lambda$ for which the associated homogeneous Dirichlet boundary value problem admits positive solutions depends on the behavior of $g$ and on the exponent $p$. Using bifurcations techniques we deduce sufficient conditions for the boundedness or unboundedness of the cited range.es_ES
dc.language.isoenes_ES
dc.publisherTaylor & Francises_ES
dc.titleBifurcation for quasilinear elliptic singular BVPes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1080/03605302.2010.501835es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record