
A Model-Driven Engineering Approach for the Service
Integration of IoT Systems

Darwin Alulema1,2 · Javier Criado2 · Luis Iribarne2 ·
Antonio Jesús Fernández-Garćıa2 · Rosa Ayala2

Received: date / Accepted: date

Abstract With the development of IoT devices and
web services, the objects of the real world are more in-

terconnected, which allows applications to extend their
characteristics in different fields, including industrial
or home environments, among other possible examples

such as health, trade, transport, or agriculture. How-
ever, this development highlights the challenge of inter-
operability, because devices are heterogeneous and use

different communication protocols and different data
formats. For this reason, we propose a model for point-
to-point integration in three-layer IoT applications: (a)
hardware, which corresponds to the physical objects

(controller, sensor and actuator), (b) communication,
which is the bridge that allows the exchange of data be-
tween a MQTT [36] queue and REST web services, and

(c) integration, which establishes a sequence of trans-
actions to coordinate the components of the system.
For this purpose, a metamodel, a graphic editor and
a code generator have been developed that allow the

developer to design IoT systems formed by heteroge-
neous components without having in-depth knowledge
of every hardware and software platform. In order to

Darwin Alulema
E-mail: doalulema@espe.edu.ec

Javier Criado
E-mail: javi.criado@ual.es

Luis Iribarne
E-mail: luis.iribarne@ual.es

Antonio Jesús Fernández-Garćıa
E-mail: ajfernandez@ual.es

Rosa Ayala
E-mail: rmayala@ual.es

1 Universidad de las Fuerzas Armadas ESPE, Sangolqúı,
Ecuador
2 Applied Computing Group, University of Almeŕıa, Spain

validate our proposal, a smart home scenario has been
developed, with a series of sensors and actuators that

combined show a complex behavior.

Keywords Model-Driven Engineering (MDE) ·
Domain-Specific Language (DSL) · Web Services ·
Integration Pattern · Internet of Things (IoT) · Smart
Home

1 Introduction

Nowadays, objects have greater processing, storage and
communication capabilities, among others [9,28], which

has allowed them to be integrated with traditional en-
terprise level services [30,34]. This development has a
very important role in the Internet of Things (IoT),

since it allows us to deal with the complexity of sys-
tems, increase the visibility of information and improve
production performance [13,35]. However, we face the
problem of interoperability, because IoT devices can
be heterogeneous, use different protocols (e.g., HTTP,
MQTT, DDS and CoA) and manage different data for-
mats (e.g., binary, XML, JSON and GIOP) [11,22].

From the wide diversity of devices and platforms,
two main challenges have emerged. Firstly, the hetero-
geneous nature of IoT information makes the task of

interpreting that information and detecting real-world
events more complex. Secondly, the delivery of sensory
information generates some problems, such as the lim-
ited resource consumption of IoT devices [2]. One sce-
nario that illustrates these challenges is that of a smart
home, such as Figure 1, in which a Passive Infrared
Sensor (PIR), a Light Dependent Resistor (LDR) and
a contact sensor for the alarm (Switch) have been de-
ployed. There are also some actuators such as a bulb

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

2 Darwin Alulema1,2 et al.

controlled by a relay (KY-019), a blind controlled by a
servo motor (SG-90) and a buzzer.

The proposed scenario presents several challenges.
Firstly, the design and subsequent implementation of
applications capable of using information from IoT de-
vices. For example, if a developer wants to add a device
that reports light intensity to their application, how
can they integrate their functionality into traditional
web services? Secondly, IoT applications are subject to
asynchronous events, the system must be reactive in the
presence of different events generated in the IoT envi-
ronment. For example, the homeowner arrives at night
and the lights must be turned on. Thirdly, there is the
difficulty of coordinating the actions of all the elements.
For example, if we want to turn on the light only if it
detects movement and the blind is closed.

An additional challenge when designing IoT applica-
tions, even for experienced developers, is understand-
ing the languages related to the hardware and software
platform, the application domain and requirements of
the business model and high-level rules [34]. In this

respect, the model-based approach (MDE) applied to
the IoT allows the automation of various tasks of the
development and operation phases [7,35]. In addition,

the principles of Resource Oriented Architecture (ROA)
are best suited for IoT applications [9], because it uses
the design philosophy of Representational State Trans-

fer (REST). Finally, in order to integrate services into
a business process, the orchestrator-based integration
pattern coordinates the execution of operations [17].

This article extends our preliminary studies in [3,4]

in several ways:

(a) We provide a description of the communication at-
tributes of the IoT nodes, specifically, the attributes
related to the publication and subscription in an
MQTT Broker [20] and the RESTful web services
[29]. These mechanisms are associated with each
sensor and actuator of the system to manage the

generated information, in a standardised way.
(b) We develop a communication mechanism that we

call Bridge that allows linking the MQTT messag-
ing of each sensor and actuator with the RESTful
web service. This mechanism allows the IoT nodes
to be considered as a web service which facilitates
their integration into traditional business systems

and within the scope of the WoT (Web of Things)
[16].

(c) We implement an integration pattern for IoT nodes
based on Orchestration [1], which coordinates each
web service. The business logic of the Orchestrator
is based on combinational functions that determine
the status for each actuator based on the current
states of the associated sensors.

(d) We standardise the format of the information for
IoT nodes through JSON objects. 6 fields with ID,
Date, Time, Location, Attribute, and Device infor-
mation were established.

(e) We develop a tool for modelling IoT nodes with
communication and integration capabilities. It con-
sists of a graphic editor and a code generator, which
generates software artefacts for Arduino (IoT Node)
devices, Node-Red (Bridge) and Ballerina (Orches-
trator, RESTful Web service).

The rest of this article is organized as follows. Sec-
tion 2 briefly discusses some concepts of MDE, REST-
ful services and integration patterns. Section 3 presents
the proposed service integration model for IoT. Section
4 then provides a test scenario for the proposal valida-
tion. A review of the related work is then presented in
Section 5. Finally, the conclusions and future work are
outlined in Section 6.

2 Fundamentals and background

The approach presented in this paper applies differ-
ent technologies belonging to three paradigms: Model-

Driven Engineering, Resource-Oriented Architectures
and Integration Patterns. With this aim, this section
describes the fundamentals and the main features re-
quired to understand our proposal.

2.1 Model-Driven Engineering paradigm (MDE)

Models provide a simplified or partial representation of

a reality, an abstraction that allows us to easily work
with the concepts, rules and the structure underlying it.
The reflection of a reality through a relevant selection
of its properties provides ideal conditions to address to

that reality according to some purposes or needs we
may have.

The Model-Driven Engineering (MDE) paradigm de-
fines software approaches to the definition of models,

transformation and development process [6]. This pa-
radigm helps us to achieve the main challenges that
we face in this work such us provide abstraction from
technologies improving the portability of IoT systems
and facilitating the interoperability between the differ-
ent components integrated in them or the automati-
zation of the generation of code from abstract models
drawn in our user interface that deals with specific com-
ponent itself, increasing the productivity and efficiency
as well as reducing errors and making the IoT system
flexible to foreseeable needs.

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 3

Fig. 1: Heterogeneous hardware systems in a Smart Home scenario

MDE impacts in the quality of the IoT systems by

making easier the management of the increasing com-
plexity of IoT systems. It helps to easy integrate differ-
ent technologies (or migrating to new ones), provides

adaptation to requirement changes as well as facilitate
maintenance and documentation.

2.2 Resource-Oriented Architecture (ROA)

The main characteristics of Resource-Oriented Archi-
tecture (ROA) is that, by definition, is ready to work

with interfaces that can be shared among all architec-
tural components, contributing to more reliable systems
where failures can be handled gracefully [24]. The ROA
architecture is designed following the philosophy that

services (resources) provides functionality to other ap-
plications through interfaces.

RESTful platforms enable the creation of ROAs. We
decided to use REST architecture against SOAP [31]
protocol, the most standardized, since IoT systems are
widely used in the industry, where REST is more preva-
lent because of its flexibility and simplicity [8,23]. In
general, REST has better performance and scalability,
and SOAP requires more bandwidth and resources than
REST. Besides, REST is widely used to connect cross-
platform applications and even adopted by systems that
allows end-user development using them [21].

2.3 Integration patterns: orchestration and
choreography

The implementation of service-oriented architectures re-
quires designing a workflow that enable the communi-
cation between services in real-time according to the

applications needs. Modern IoT systems have to be ca-

pable of orchestrating the different technologies and re-
source types available in modern network infrastruc-
tures. Orchestration systems are responsible to man-

age the heterogeneity between technologies and enable
autonomous and automated service deployment and
adaptation [26].

The concept of orchestration refers to selecting and
controlling services and resources with the aim to meet
the requirements defined by users and applications. All

of this in-time and with a certain level security and
consistency [32].

3 A model for the Integration of IoT systems

In order to solve the problem of interconnecting hetero-
geneous devices, we propose a model that includes:

– Hardware: Corresponds to hardware devices of IoT
systems. For example, a Smart Home can contain

several devices such as televisions, heating, air con-
ditioning, ovens, washing machines or doors, among
others, that need to be controlled locally or remotely.

– Control: Corresponds to communication, informa-
tion storage and hardware control in IoT systems.
For example, a traffic management system, where
hardware includes cars, traffic lights and sensors,

which are coordinated to organize the traffic, chang-
ing the lights according to the number of cars in each
direction of an intersection.

Figure 2 shows the proposed architecture, where in-
telligent objects (hardware) send and receive informa-
tion from a control component. However, these objects
pose the problem of unpredictability when interacting

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

4 Darwin Alulema1,2 et al.

with people, such as a motion sensor that detects when
a person gets out of bed at night to drink a glass of wa-
ter. In this case we are dealing with an asynchronous
event. For this reason, the control stage must admit
an asynchronous interaction. This is why we developed
a software device called Bridge, which allows commu-
nication between messaging-based mechanisms (publi-
cation/subscription) and distributed architectures (re-
quest/response). To illustrate how useful this device is,
let’s suppose that a software client wants to change the
state of a light bulb. To do this, this software client must
execute a POST method with the new state for the de-
vice, which is sent to the specific device queue. On the
other hand, if the software client wants to obtain the
information that describes the state of a motion sensor,
it must execute a GET method, from the device-specific
API REST, which extracts the last message from the
device queue.

The format for the information exchanged in the sys-

tem is a standardization proposal that arises as a mod-
ification of Zhou’s proposal [37] for processing complex
algebraic events for cyber-physical systems. The format

of the proposed information is standardized by means
of JSON objects, with the following structure:

– ID: Identifier of the event.
– Date: Date on which the event takes place.

– Time: Time on which the event takes place.
– Location: Physical location of the device.

Fig. 2: Architecture of Integration

– Attribute: Value represented by the event.
– Device: Identifier of the software or hardware device.

For the integration of all the services associated to
the components of the system, the Saga pattern [25]
has been considered, which is a sequence of local oper-
ations, each operation updating the information within
a single service. For this purpose, an orchestrator is es-
tablished that tells participants which local operations
they must execute. To illustrate how useful this device
is, let’s suppose that a person watches a video on their
SmartTV in their living room and the blind automati-
cally closes to avoid reflections on the screen and since
there is still sunlight, the bulb turns off. As can be seen
in the example, there are some simple events that have
been coordinated to make the experience of watching a
video more comfortable.

Within our example scenario, the Bridge receives in
a queue the messages from the luminosity sensor or the
motion sensor so that the Orchestrator coordinates op-
erations with the bulb and the blind to implement the

business logic. Messages from IoT devices or other ser-
vices comply with the information format standard and
can act as a Trigger for the Orchestrator. The Orches-

trator uses the Bridge of a particular IoT device to
send a message with the action to an actuator, if nec-
essary. In addition, due to the changing environments

of intelligent devices, our proposal deals not only with
a centralized execution (orchestration) but also with
a decentralized execution (choreography) for the busi-
ness process. The first controls the execution of the par-

ticipating services, while the second allows the expert
in the domain to design and define simultaneously the
communication between different processes.

3.1 Proposed metamodel

This subsection describes the metamodel for the inte-

gration of IoT systems following an approach based on
MDE, by means of the Ecore meta-model language us-
ing Eclipse Modeling Framework (EMF) [33]. The pro-
posal allows to define a set of attributes associated with
hardware nodes, web services and databases. Each ser-
vice has a set of operations (e.g., GET, POST, PUT,
DELETE) to access the resources created in databases

for each hardware node. The implementation of these
operations is created from properties of the devices (e.g.,
sensor, actuator and controller), such as the ID of the
event, date and time of occurrence, the location, the
value of the attribute and the device name, and prop-
erties associated with the service such as the name of
the selected object and the specific address of the ser-
vice. In addition, it allows to define the business logic

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 5

that coordinates different operations to define the busi-
ness logic.

As shown in Figure 3, the components of the IoT
system are mainly grouped into three main categories:

– Infrastructure: Corresponds to the meta-classes
that represent the characteristics of the necessary
requirements for application deployment, and cor-
responds to Web Server,Data Base Server, Acces
Point and Message Broker.

– Hardware: Corresponds to the meta-classes for the
design of the IoT Nodes. This is the case of Sensors,
Actuators andController, as well as the Communi-
cation meta-classes.

– Control: Corresponds to the meta-classes for the
integration of each device’s web services (sensor and
actuator) to define the business logic. In this case,
the Bridge and the IIntegration Pattern, with
the Orchestrator and Función and Status, that

represent the operating logic of the actuators ac-
cording to the states coming from the sensors in
real time.

Figure 3 shows the metamodel that describes the
Domain-Specific Language (DSL) [12] aimed to define
the hardware nodes built on a development platform

(e.g., Arduino). These nodes also have connectivity (e.g.,
serial, WiFi) to be linked or connected to other nearby
devices and services. The platform also allows to control
multiple types of analog or digital components (e.g.,

sensors and actuators). However, to simplify the defi-
nition of the components input and output, it is only
necessary to describe the ID of the Controller port to

which devices are connected.

3.2 Proposed graphic editor

The proposed DSL allows the creation of software tools
that can then be used by IoT application developers.
In our case, we have developed two tools according to
DSL semantics. The first consists of a graphical edi-
tor created with Sirius1, which provides a palette of
tools to model IoT scenarios (Figure 4). The second
defined software tool that complies with DSL is a trans-
formation engine, implemented in Acceleo2, that allows
model-to-text (M2T) transformations to generate code
for both client and server.

Figure 4.a shows the editor’s VSM (Viewpoint Spec-
ification Model) and Figure 4.b displays the generated
tool palette. The graphic editor specification process
considered the following activities: (a) creation of a

1Sirius website – https://www.eclipse.org/sirius/
2Acceleo website – https://www.eclipse.org/acceleo/

Viewpoint Specification Project, (b) specification of a
Viewpoint, (c) specification of the type of representa-
tion (Diagram), (d) mapping between the graphic ele-
ments of the diagram with the elements of the meta-
model and (e) specification of the editor toolbar ele-
ments (Palette).

The VSM allows you to set up classes and their re-
lationships, and to specify which objects are displayed
and how they are displayed. The VSM includes: nodes
(WebServer, DBServer, AccesPoint, MessageBroker,
OutputBridge, InputBridge, ExternlAPI), containers
(WebService, IntegrationPattern, IoTNode), subn-
odes (Orchestrator, Function, Actuator, Controller,
REST, Sensor), edge nodes (Status, Communication,
InputOrchestrator, OutputOrchestrator, OutPort,
InputPortcontroller) and tool options to create sys-
tem elements and the connections between them.

The graphic editor created has two sections: (a) Can-
vas, is the area destined to show and edit the diagram
of the IoT application, and (b) Tool palette, is the area

that displays the components to draw the visual rep-
resentation. The palette groups the components of the
IoT system into:

– Infrastructure, which shows the tools available to
specify the infrastructure to be used in the IoT ap-
plication (WebServer, DBServer, Message, Broker,

Bridge, AccesPoint), for interconnecting all the
components of the IoT system.

– Control, which shows the tools available for design-
ing the REST services associated with each sensor

and actuator to access its resources. In addition,
it allows the specification of the business logic by
means of orchestrators that coordinate a certain se-

quence of calls to the REST services, according to
a logical function that describes the behavior of the
system. It is composed of logical operators expressed
in canonical form as a sum of Minterms, equal to
that used in digital electrical systems.

– Hardware, which shows the tools available for the
design of the IoT Nodes. It allows the developer to
configure the controller (e.g., ESP8266 Node MCU)
by setting the input or output ports, whether they
are digital or analog. It allows to select the sen-
sors (e.g., CO2, Light, Button, HumidityG, Vibra-
tion, Temperature, Movement, Contact, TempHum)
or actuators (e.g., Buzzer, Led, Relay, Servo, LCD)

that are connected to the controller. In addition, it
allows to configure the connection to Internet by
means of the AccesPoint and the Server of Mes-
saging to establish the scheme of publication and
subscription in a queue of messages.

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

6 Darwin Alulema1,2 et al.

Fig. 3: Meta-model for integration

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 7

Fig. 4: Screen capture of the Viewpoint in Sirius and the tool palette created

3.3 Transformation Engine

The code generator is the second software tool defined.

To build the generator, a model-to-text (M2T) trans-
formation engine is implemented. In our case, the Ac-
celeo tool has been used for code generation. In the fol-
lowing code fragments, we present a summarized code
fragment for the M2T transformation that is done ac-
cording to the DSL to generate instances of the Web
Service, Bridge, Orchestrator and IoT Node.

The first rule to be defined is the Template, because
it must create an instance of the system, aSystem in
this case. Sequentially the following rules are: (a) defin-
ing a file for the Hardware, Infrastructure and Control,
(b) defining configuration for the hardware connections
and (c) defining the infrastructure characteristics, and
(d) defining RESTful characteristics, Bridge character-

istics and IntegrationPattern characteristics for the de-
vice control.

To define the transformation rules, the Arduino plat-
form was considered due to its ease of use. WiFi was
considered for connections and Node-Red was used for
Bridge, due to its simplicity to create publication/sub-
scription flows with MQTT Topics of the IoT Nodes,
REST clients to consume POST methods to store in-
formation coming from the Nodes, and REST services
to allow communication with the Orchestrators. Balle-
rina was chosen for the services and the orchestrator,

because of its parallel service call capabilities. These
platforms were chosen because they reduce the amount
of code needed for configuration, which is best suited to
Acceleo. The transformation process generates Arduino
code files (.ino) for the Controller, code that repre-
sents the flows for Node-Red (.json) for the Bridge,
and Ballerina code (.bal) for REST services and the
Orchestrator.

The platform chosen for IoT Node design is the ESP

8266 Node MCU, due to its ability to receive and send
information over the Internet [5]. The structure of the

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

8 Darwin Alulema1,2 et al.

Arduino programs that will run on the platform are di-
vided into three sections that can be seen in the code
fragment shown in Listing 1: (a) Statement of con-
stants associated with sensors and actuators, and the
pin port of the controller board, which can be analog
or digital and referenced to libraries ESP8266WiFi.h,
EP8266HTTPClient.h and PubSubClient.h that allow
WiFi connectivity and sending and receiving MQTT
messages, (b) wifi(), mqtt(), sensors(), actuators()
and setup() functions, where all initial connectivity
parameters and sensor and actuator configuration as-
sociated with a variable with the name of the specific
topic for the device are initialized, and (c) the loop()

function, which will be executed continuously.

[for (node : IoTNode | aSystem . iotnode)]
[for (c o n t r o l l e r : Con t ro l l e r | nodo . dev i ce)]
[f i l e (c o n t r o l l e r . name . toS t r ing () . concat (' . ino '

↪→) , false , ' UTF -8 ')]
. . .
[for (acces : AccesPoint | c o n t r o l l e r .

↪→ communication . a cc e spo in t)]
void w i f i () { . . . }

[/ for]
[for (mess : MessageBroker | c o n t r o l l e r .

↪→ communication . messagebroker)]
void mqtt () { . . . }

[/ for]
void ac tuato r s (S t r ing aux) { . . . }
void s en so r s () { . . . }
void setup () {
. . .
[for (acces : AccesPoint | c o n t r o l l e r .

↪→ communication . a cc e spo in t)]
w i f i () ;

[/ for]
[for (mess : MessageBroker | c o n t r o l l e r .

↪→ communication . messagebroker)]
mqtt () ;

[/ for]
}
void loop () {
S e r i a l . f l u s h () ;
i f (c l i e n t . loop ()){ s en so r s () ; }
else{ }

}
[/ f i l e]

[/ for]
[/ for]

Listing 1: M2T transformation for the generation of
Arduino code to implement the IoT nodes

Node-Red was used to implement the bridges, due to
its simplicity to create publication/subscription flows
with MQTT topics of the IoT nodes, REST clients
to consume POST methods to store the information
coming from the nodes, and REST services (GET and

POST methods) to allow communication with the rest
of orchestrators.

There are two types of Node-Red programs that will
run on the platform: (a) OutputBridge, which allows
to send information from a sensor MQTT message to
an external web service via a REST client and (b)
InputBridge, which allows to send information from
an API REST to an actuator via an MQTT message
coming from an external REST client. In addition, the
two components consume the methods of the REST

web services associated with each sensor or actuator.
The structure of the Node-Red programs that will run

in three sections can be seen in the code fragment of
Listing 2: (a) Statement of the OutputBridge, and (b)
Statement of the InputBridge.

[for (broker : MessageBroker | aSystem .
↪→ messagebroker)]

[for (out : OutputBridge | aSystem . messagebroker
↪→ . b r idge)]

[f i l e (out . s enso r . name . t oS t r ing () . concat (' . j s o n
↪→ ') , false , ' UTF -8 ')]

[' [' /]
. . .
{
" id " : " 5 3 9 5 f f 7 4 . 0 4 2 a3 " ,
" t y p e " : " m q t t in " ,
" z " : " 2 f d 0 2 f e b .4 b 8 1 c " ,
" n a m e " : " M Q T T IN " ,
. . .

}
. . .
{
" id " : " 3 e 9 1 c 7 0 0 . 0 0 3 2 9 a " ,
" t y p e " : " h t t p r e q u e s t " ,
" z " : " 2 f d 0 2 f e b .4 b 8 1 c " ,
" n a m e " : " P O S T API R E S T f u l " ,
" m e t h o d " : " P O S T " ,
. . .

}
[for (u r i : S t r ing | out . i npu to r che s t r a t o r .URI)]

,
{
" id " : " 268 b e 4 8 c . b b 6 8 0 [i /] " ,
" t y p e " : " h t t p r e q u e s t " ,
" z " : " 2 f d 0 2 f e b .4 b 8 1 c " ,
" n a m e " : " P O S T O R Q U E S T A T O R " ,
" m e t h o d " : " P O S T " ,
. . .
[/ for]

. . .
['] ' /]

[/ f i l e]
[/ for]
[for (input : InputBridge | aSystem .

messagebroker . br idge)]
[f i l e (input . actuator . name . toS t r i ng () .

concat (' . j s o n ') , false , ' UTF -8 ')]
[' [' /]
. . .
{
" id " : " d 9 8 a 9 e 5 d . a 1 3 0 c " ,
" t y p e " : " h t t p in " ,
" z " : " 2 f d 0 2 f e b .4 b 8 1 c " ,
" n a m e " : " API R E S T (P O S T) " ,
. . .

}
. . .
{
" id " : " 707 f e 9 8 0 . d e 2 8 c 8 " ,
" t y p e " : " h t t p r e q u e s t " ,
" z " : " 2 f d 0 2 f e b .4 b 8 1 c " ,
" n a m e " : " P O S T API R E S T f u l " ,
" m e t h o d " : " P O S T " ,
. . .

}
,
{
" id " : " a f d 7 5 f 2 7 . 4 1 2 b8 " ,
" t y p e " : " m q t t out " ,
" z " : " 2 f d 0 2 f e b .4 b 8 1 c " ,
" n a m e " : " M Q T T OUT " ,
. . .

}
. . .

['] ' /]
[/ f i l e]

[/ for]
[/ for]

Listing 2: M2T transformation for the generation of
Node-Red code to implement the bridges

Ballerina was chosen for the creation of API RESTful

services for each of the sensors or actuators. The struc-
ture of the services consists of three sections that can
be seen in the code fragment of Listing 3: (a) Statement
of the service URI, (b) Defining POST methods, record-
ing information, GET/{id}, searching by ID, GET/all,

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 9

searching all records, GET/last, returning the last re-
cord, PUT/{id}, updating a record by ID, and DELETE/

{id}, deleting a record by ID, and (c) Functions for
Database management.

[for (webserv ice : WebService | aSystem .
↪→ webserv ice)]

[for (r e s t : REST | aSystem . webserv ice . r e s t)]
[f i l e (r e s t . dev i ce . name . toS t r ing () . concat (' . bal

↪→ ') , false , ' UTF -8 ')]
. . .
@http : Se rv i c eCon f i g {
basePath : " /[r e s t . URI /] " }

s e r v i c e LedData on ht tpL i s t ene r {
@http : ResourceConf ig {
methods : [' [' /] " P O S T " ['] ' /] ,
path : " /[r e s t . d e v i c e . n a m e /]/ " }

. . .
@http : ResourceConf ig {
methods : [' [' /] " GET " ['] ' /] ,
path : " /[r e s t . d e v i c e . n a m e /] / { id } " }

. . .
@http : ResourceConf ig {
methods : [' [' /] " GET " ['] ' /] ,
path : " /[r e s t . d e v i c e . n a m e /]/ all / " }

. . .
@http : ResourceConf ig {
methods : [' [' /] " GET " ['] ' /] ,
path : " /[r e s t . d e v i c e . n a m e /]/ l a s t / " }

. . .
@http : ResourceConf ig {
methods : [' [' /] " PUT " ['] ' /] ,
path : " /[r e s t . d e v i c e . n a m e /] / { id } " }

. . .
@http : ResourceConf ig {
methods : [' [' /] " D E L E T E " ['] ' /] ,
path : " /[r e s t . d e v i c e . n a m e /] / { id } " }

pub l i c function createTable () {
s t r i n g s q l S t r i n g = " C R E A T E T A B L E [r e s t .

↪→ d e v i c e . n a m e /] (id int A U T O _ I N C R E M E N T ,
↪→ d a t e v a r c h a r (2 0) , t i m e v a r c h a r (2 0) ,
↪→ l o c a t i o n v a r c h a r (2 0) , a t t r i b u t e int ,
↪→ a r t e f a c t v a r c h a r (2 0) , P R I M A R Y KEY (id
↪→)) ; " ;

var r e t = deviceDB−>update (s q l S t r i n g) ;
}
. . .

[/ f i l e]
[/ for]

[/ for]

Listing 3: M2T transformation for the generation of
Ballerina code to implement the web services

The structure of the Orchestrators developed in Bal-
lerina is observed in the code fragment of Listing 4,
in which the program execution order is observed: (a)

Declaring the URI of the Orchestrator; (b) Declaring
the URI of the participating services; (c) Obtaining the
information of the participating services; (d) Evaluat-
ing the logical function of the Orchestrator with the
participants’ information; and (e) Publishing the new
state of the actuator or destination service.

[for (i n t e g r a t i o n : In t eg ra t i onPat t e rn | aSystem .
↪→ i n t e g r a t i onpa t t e rn)]

[for (o r ch e s t r a t o r : Orchest rator | i n t e g r a t i o n .
↪→ o r ch e s t r a t o r)]

[f i l e (o r ch e s t r a t o r . name . toS t r ing () . concat (' .
↪→ bal ') , false , ' UTF -8 ')]

. . .
@http : Se rv i c eCon f i g { basePath : " /[

↪→ o r c h e s t r a t o r . n a m e /] " }
s e r v i c e AsyncInvoker on asyncServiceEP {
[for (func : Function | o r ch e s t r a t o r . function

↪→)]
@http : ResourceConf ig {
methods : [' [' /] " P O S T " ['] ' /] ,
consumes : [' [' /] " a p p l i c a t i o n / j s o n " ['] ' /] ,
produces : [' [' /] " a p p l i c a t i o n / j s o n " ['] ' /]

}
r e sou r c e function [func . i npu to r che s t r a t o r .

↪→ URI/]

(http : Ca l l e r c a l l e r , http : Request inRequest)
r e tu rns e r r o r ? {
. . .
[for (r e s t : REST | o r ch e s t r a t o r . r e s t)]
[for (ws : WebService | aSystem . webserv ice

↪→)]
[for (r e s t 1 : REST | ws . r e s t)]
[i f (r e s t 1 . dev i ce . name = r e s t . dev i ce .

↪→ name)]
future<http : Response | er ror>
fx [r e s t . dev i ce . name/]= s t a r t [r e s t . dev i ce

↪→ . name/]
EP−>get (" / l a s t ") ;

[/ i f]
[/ for]

[/ for]
[/ for]
. . .
boolean [o r ch e s t r a t o r . name/]Function=[func .

↪→ expr e s s i on /] ;
boolean [o r ch e s t r a t o r . name/]Break=[func .

↪→ break . e xp r e s s i on /] ;
. . .
i f (! [o r ch e s t r a t o r . name/]Break) { . . . }
. . .

}
[/ for]

}
[/ f i l e]

[/ for]
[/ for]

Listing 4: M2T transformation for the generation of

Ballerina code to implement the orchestrators

4 A case study scenario

In order to test the functioning of our proposal, we will

use the scenario presented for the introduction of the ar-
ticle motivation that is described in more detail in the
smarthome Figure 5 that has been modeled with our

tool. The scenario is implemented with two Controllers:
a) One for the sensors of Light, Movement, Alarm, and
b) One for the actuators, Light, Blind, and Sound. Six
RESTful services have been created, one for each sen-

sor and actuator. In addition, 3 InputBridge have been
created for the sensors and 3 OutputBridge for the ac-
tuators. There are also 3 Orchestrators, one for each
actuator, which establish the operating logic. Figure 6
shows the diagrams of the electrical circuit that is im-
plemented for the IoT Nodes, in which the sensors in
the 6.a and the actuators in the 6.b have been arranged.

In order to determine all possible cases, a truth ta-
ble has been represented which shows the behavior of
actuators when activated or deactivated (on/off) and
sensors when it detects changes in the environment. Ta-

ble 1 illustrates the conditions for the control of Light
and Blind. The logical function of Light depends on
the current status of the actuator and the latest status
of the Alarm and LightSensor sensors. MovementSen-
sor events act as a trigger to initiate the Orchestrator’s
operation. In the case of the Blind logic function, it de-
pends on the current status of the actuator, and the
latest status of the LightSensor sensor and the Light
actuator. The events of the MovementSensor and the

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

10 Darwin Alulema1,2 et al.

Fig. 5: System architecture for Smart Home

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 11

(a) Microcontroller 1
(b) Microcontroller 2

Fig. 6: Electronic circuit (Sensors and Actuators)

B L A LS MS FL SL FB SB

1 1 1 1 1 0 1 0 1
1 1 1 1 0 0 1 0 1
1 1 1 0 1 0 1 0 1
1 1 1 0 0 0 1 0 1
1 1 0 1 1 0 0 0 1
1 1 0 1 0 0 0 0 1
1 1 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1
0 0 1 1 1 1 0 1 0
0 0 1 1 0 1 0 0 1
0 0 1 0 1 1 0 0 1
0 0 1 0 0 1 0 0 1
0 0 0 1 1 0 1 1 0
0 0 0 1 0 0 1 0 1
0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 1 0 1

Table 1: Blind and Light control function (1: True, 0:
False, B: Blind, L: Light, A: Alarm, LS: Light Sensor,
MS: Movement Sensor, FL: Function Light Control,

SL: Status Light Control, FB: Function Blind Con-
trol, SB: Status Blind Control)

S A FS SS

1 1 0 1
1 0 0 0
0 1 1 0
0 0 0 1

Table 2: Sound function (1: True, 0: False, S: Sound,
A: Alarm, FS: Function Sound, SS: Status Sound)

Orchestrator for the Light control act as triggers to ini-
tiate the operation of the Orchestrator.

Table 2 illustrates the conditions for Sound control.
The function depends on the current status of the ac-
tuator and the last status of the alarm. Alarm events
act as a trigger to initiate the Orchestrator operation.

The expressions resulting from analyzing the truth
tables are entered as parameters to the DSL meta-
class Function, that algebraically represents the system
behavior and Status meta-class, that represents when

information should not be sent to the actuator. The
Logic Function corresponds to the sum (OR) of prod-
ucts (AND) of the input functions according to the fol-

lowing expressions. According to the same logical func-
tion criteria, the statements for Status are determined
according to the truth table. This statement allows you
to determine whether the Orchestrator should send the

information resulting from the evaluation of the logical
function. Table 3 presents the three expressions for the
business logic of the actuators.

BlindControlFunction = (!Blind * Light *

LightSensor * MovementSensor) + (!Blind * !Light

* LightSensor * MovementSensor) + (!Blind * !Light

* !LightSensor * MovementSensor)

LightControlFunction = (!Light * Alarm *

LightSensor * MovementSensor) + (!Light * Alarm *

LightSensor * !MovementSensor) + (!Light * Alarm *

!LightSensor * MovementSensor) + (!Light * Alarm *

!LightSensor * !MovementSensor) + (!Light * !Alarm

* !LightSensor * MovementSensor)

SoundControlFunction = (!Sound * Alarm)

Table 3: Business logic of the actuators

Figure 5 shows how Orchestrators control operation
sequences. In this case the Bridge (InputBridge, Out-
putBridge) are the intermediaries with the MQTT mes-
sage queues. In the case of the Light Control Orches-

trator, the OutputBridge of the motion, light intensity
and alarm sensors are the triggers that initiate the pro-
cess and the new state resulting from evaluating the
logic function is sent to the Light InputBridge. In the
case of Blind Control, the trigger is the OutputBridge of

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

12 Darwin Alulema1,2 et al.

the light intensity sensor or the Light Orchestrator that
starts the process and the new state resulting from eval-
uating the logic function is sent to Blind InputBridge.
In the end the Sound control only depends on the Alarm
InputBridge to determine the new state that is sent to
the InputBridge Sound.

Let’s imagine the motion sensor is activated (true).
At that time, the status of the bulb is checked through
the GET method of the API of the actuator (false).
In addition, the state of the light sensor is checked to
see if it is darkening (false). As a result, the user will
observe that the blinds are opened (true) and that the
bulb is turned on (true), because the new information
is sent to change the actuator status. This scenario can
be checked in the penultimate case of Table 1 or by
evaluating the logical function of Light and Blind.

To make it easier to understand, the article has de-
scribed the behavior of the devices using logical expres-
sions and truth tables. However, all the behaviors of the
case study included in this proposal have been defined
using Business Process Model and Notation (BPMN)
diagrams. Figure 7 shows briefly the behavior in charge

of controlling the blind from the information obtained
from: (1) the state of the light, (2) the light sensor and
(3) the motion sensor. The rest of the BPMN material

is available at the website of the research project that
supports this proposal3.

Our approach allows the design of scenarios in dif-
ferent fields, such as Smart Agro, Industry 4.0, Intel-
ligent Transportation, among others. To exemplify the
first mentioned field, we can consider an irrigation sys-

tem that incorporates a series of sensors that monitor
environmental conditions to determine when irrigation
valves or ventilation shutters should be opened. In the

second scenario, for example, sensors can be incorpo-
rated into a bottling plant in which the conveyor belts
are controlled to monitor the stage in which the bot-
tles are going and what process should be carried out,
such as the entry of the order, the oven, the cooling
and packaging. Finally, in the third area, modules can
be designed that are incorporated into public transport

units to monitor the opening of doors, number of pas-
sengers, location, whose information can feed an App
that informs users.

4.1 Evaluation by function point estimation

Due to the nature of the proposed tool, what we need
is to evaluate and validate the software devices gen-
erated by implementing the scenario proposed in the
Introduction. In this case, a total of 3640 code lines

3http://acg.ual.es/projects/cosmart/si4iot

have been generated in the following software devices:
2 Arduino programs with 369 code lines for the IoT
Nodes, 6 Node-Red programs with 586 code lines for
the Bridge, 6 Ballerina programs with 2100 code lines
for the RESTful services and 3 Ballerina programs with
585 code lines for the Orchestrators.

To know the time that a single developer needs to
implement the scenario, a first estimate has been made
with a small group of experts (5 people) that on av-
erage have taken 2.5 hours for designing and building
the scenario, without taking into account the deploy-
ment time. However, since at this stage no evaluation
process has been done with a large team, a comparison
has been made with Function Points (FPA) [27], which
measures the functional size of the software from the
customer’s point of view.

For scenario analysis, the following is considered: (a)
Sensor reading (EI, 3*6PF), (b) Actuator writing (EO,
3*5PF), (c) Database query with web services (EQ,
6*11PF), (d) Business logic file “Orchestrator” (ILF,
3*10PF). With these requirements the unadjusted func-
tion points is 129, with an adjustment factor of 17 (Data

Communication: 4, Distributed Processing: 4, Online
Data Entry: 5, Complex Processing: 1, Code Reusabil-
ity: 1, Ease of Implementation: 1, Ease of Operation:

1). Finally, the value of the adjusted function points
is 105 (129*(0.65+(0.01*17))). According to the values
obtained, the number of man-hours required to imple-
ment the scenario with fourth-generation languages is

840 hours (105*8), and the estimated number of code
lines is 2100 (105*20).

Therefore, the estimated time to implement the test
scenario using our proposal is reduced to 0.29% of the
value calculated with the Function Points. This means

the scenario implementation can be done in 2.5 hours
unlike the estimated 840 hours to perform the imple-
mentation manually. This is the main advantage of us-
ing MDE techniques that reduce the development time.

4.2 Performance and loading of the web services

To determine the performance of the RESTful web ser-
vices created, Gatling4 has been used, which is a load
and performance test framework [18]. For the evalua-
tion, 4 scenarios with 1,000, 2,000, 5,000 and 10,000

concurrent users have been proposed. In each scenario,
each user makes 6 queries, one for each of the methods
implemented (i.e., GET /uri/last, GET /uri/{id},
GET /uri/all, POST /uri, PUT /uri/{id}, DELETE

/uri/{id}) and each query separated by an interval of
5 seconds. Listing 5 shows the scenarios evaluated.

4Gatling official website – https://gatling.io

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 13

Fig. 7: Fragment of the BPMN diagram that describes the behavior of the blinds in the case study

import s c a l a . concurrent . durat ion .
import i o . g a t l i n g . core . Predef .
import i o . g a t l i n g . http . Predef .
import i o . g a t l i n g . jdbc . Predef .
class Test1 extends Simulat ion {

val httpProtoco l = http
. baseUrl (" . . . [h o s t] . . . ")
. acceptHeader (" */* ")
. acceptEncodingHeader (" gzip , d e f l a t e ")
. acceptLanguageHeader (" es - ES , es ; q =0.8 , en - US ; q

↪→ =0.5 , en ; q = 0 . 3 ")
. userAgentHeader (" M o z i l l a / 5 . 0 (W i n d o w s NT

↪→ 1 0 . 0 ; W i n 6 4 ; x64 ; rv : 7 3 . 0) G e c k o
↪→ / 2 0 1 0 0 1 0 1 F i r e f o x / 7 3 . 0 ")

val headers 1 = Map(" Content - T y p e " −> " t e x t /
↪→ p l a i n ; c h a r s e t = UTF -8 ")

val scn = sc ena r i o (" T e s t 1 ")
. exec (http (" r e q u e s t _ 0 ")

. get (" / . . . [uri] . . . / l a s t "))
. pause (5)
. exec (http (" r e q u e s t _ 1 ")

. post (" / . . . [uri] . . . ")

. headers (headers 1)

. body (RawFileBody (" / t e s t 1 / 0 0 0 1 _ r e q u e s t . txt "
↪→)))

. pause (5)

. exec (http (" r e q u e s t _ 2 ")
. get (" / . . . [uri] . . . / all "))

. pause (5)

. exec (http (" r e q u e s t _ 3 ")
. put (" / . . . [uri] . . . / 6 6 ")
. headers (headers 1)
. body (RawFileBody (" / t e s t 1 / 0 0 0 3 _ r e q u e s t . txt "

↪→)))
. pause (5)
. exec (http (" r e q u e s t _ 4 ")

. get (" / . . . [uri] . . . / 6 6 "))
. pause (5)
. exec (http (" r e q u e s t _ 5 ")

. d e l e t e (" / . . . [uri] . . . / 6 6 ")

. headers (headers 1)

. body (RawFileBody (" / t e s t 1 / 0 0 0 5 _ r e q u e s t . txt "
↪→)))

setUp (scn . i n j e c t (atOnceUsers (. . . [#] . . .))) .
↪→ p ro t o co l s (ht tpProtoco l)

}

Listing 5: Gatling load test code

Figure 8 shows the result in each scenario, in terms of
failed answers, and response times. The RESTful API
created and implemented in a VPS (Virtual Private

Server) with Windows Server 2012 is capable of han-
dling more than 1,000 concurrent users without losing
any requests. In the case of request 2, from Listing 5,
it takes the longest to complete with a minimum delay

of 1.8s and a maximum of 36.2s. In addition, 29% of
queries are lost for the scenario with 2,000 users, while
for the scenario with 5,000 users the losses increase to

71% and with 10,000 users this value rises to 85%. Even
when query losses increase, communication is not com-
pletely lost. This is important in scenarios that have
many users such as IoT, in which there are a large num-

ber of objects (sensors and actuators) connected.

5 Related Work

The presence of IoT systems in our surrounding is not
just a trend, they are going to stay more prominently
with us. This fact entails the need for developing proper

structures that deal with the level of interoperability,
integration, and communication that they require.

Many researchers work in that sense. In [14], the au-

thors have already implemented and evaluated four in-
teroperable standards for the Internet of Things (OGC
PUCK over Bluetooth, TinySOS, SOS over CoAP, and
OGC SensorThings API) and, summarizing, each of the
protocols discussed has its own negative and positive at-

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

14 Darwin Alulema1,2 et al.

T1 T2 T3 T4

0

1,000

2,000

3,000 2,900

400

2,700

0

N
u

m
b

er
of

re
q
u

es
ts

Requests

(a) 1000 users

T1 T2 T3 T4

0

2,000

4,000

6,000

8,000

900

100

7,400

3,600

N
u

m
b

er
of

re
q
u

es
ts

Requests

(b) 2000 users

T1 T2 T3 T4

0

0.5

1

1.5

2

·104

0 500

8,000

21,500

N
u

m
b

er
of

re
q
u

es
ts

Requests

(c) 5000 users

T1 T2 T3 T4

0

1

2

3

4

5

·104

0 0

9,000

51,000

N
u
m

b
er

of
re

q
u
es

ts

Requests

(d) 10000 users

Fig. 8: Summary of results in all scenarios. (T1: t<800ms, T2: 800ms<t<1200ms, T3: t>1200ms, T4: Failed)

tributes. There is a huge scope of progress in this field
that many researchers are addressing.

In works such as [10,15], the authors work with the
goal of provide an (resource-oriented) architecture that

allows the different components of IoT systems to work
together to capitalize the computational units of smart
agents providing orchestration to manage sensors, ac-
tuators, controllers in a coordinated manner in [10] and
to execute operations of building, operating, and main-
taining the IoT systems in [15].

In order to modelling the architecture some authors
use BPMN (Business Process Model Notation) nota-
tion. In [19], the authors use BPMN as a general neutral

platform to generate portable code, that allows user ab-
stract from the hardware. In [9] the proposal relies on a
Research Oriented Architecture (ROA) to provide uni-
form and structured communication with IoT devices
using the BPMN notation to implement the processes
without knowing much technical details.

The research oriented approach is widely used by
IoT Systems, as previously seen in [15] and [9]. Other
works, such as [2,34,35] make use as well of ROA ar-
chitectures. In [35], the authors propose the use of mi-
croservices to improve traditional manufacturing envi-
ronments to an IoT-based one (Industry 4.0), combin-
ing effectively MDE with IoT and the microservice ar-

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 15

Research Work IoT-CPS Services Integration MDE CEP BPMN

[10] [Darabseh et al., 2019]

[15] [Kathiravelu et al., 2019]

[19] [Martins et al., 2017]

[35] [Thramboulidis et al., 2019]

[34] [Teixeira et al., 2017]

[2] [Al-Osta et al., 2018]

Our Proposal

Table 4: Summary of the main features covered by the approaches of the related work

chitectural paradigm. In [34], the authors make a study
of the works that pursue the simplification of the code-
generation process, concluding that most of the pro-
posals are based on MDE. In [2], the authors propose a
decentralized architecture for IoT data through a two-
layer data processing approach that employs Complex
Event Processing (CEP) and Semantic Web techniques.

Model-Driven Engineering, present in our proposal,
is also used in previously commented works such as [34,

35], always in connection with Service-Oriented Archi-
tectures but in [11], the authors make use of MDE to re-
duce the interoperability problem and reduce the devel-

opment efforts towards ensuring that complex heteroge-
neous software systems interoperate with one another.
It is important to highlight that in our proposal we use
technologies, architectures, and tools widely accepted

by the scientific community and fellow researchers. At
the same time, none of the mentioned works propose
a whole strategy including the definition of a Service-

Oriented Architecture, Model-Driven Engineering, and
Software-Defined Networking that deals with integra-
tion, complex events processing and interoperability in
IoT and Cyber-Physical Systems.

In addition, a graphic editor has been designed and
implemented that making use of Model to Text Trans-
formations automatically generates code that provides
compatibility with heterogeneous IoT devices such as
sensors, actuators and controllers, providing an abstrac-
tion layer to developers that helps the maintenance of
the systems, the integration of new technologies and in-
crease the productivity and efficiency reducing errors.

Table 4 summarizes the main features investigated in
our work in comparison with other similar approaches.

6 Conclusions and Future Work

This article proposes an approach to improve the design
and implementation of services related to IoT devices.
The main contributions of the approach are mainly re-

lated to the integration of these services and can be
summarized as follows:

(a) We extend the capabilities of IoT nodes to allow
communication based on publication and subscrip-
tion in message queues.

(b) We propose a component that allows the connection
between message queues and web services.

(c) We standardize the information format for IoT nodes
by means of JSON objects.

(d) We associate the concept of RESTful web services
to the IoT Nodes.

(e) We propose the integration of the IoT nodes by

means of Orchestration patterns.

For that purpose, two software tools have been built,

a graphic editor and an M2T transformation for the
generation of code based on MDE in IoT systems. To
achieve this goal, we have expanded the functionalities

and capabilities of several of our tools introduced in
previous work to make it easier to create applications,
thus developers do not have to dig deeper into specific
aspects of programming languages.

The approach allows developers to define the sys-
tem using a graphical tool to standardize the struc-

ture of the IoT nodes, the links to the web services,
the bridge to the MQTT protocol and the orchestrator
to describe the business logic. As a result, we obtain a
semi-automatic process for the generation of Ballerina

code for RESTful web services and the orchestrator,
and Arduino code for the deployment of IoT nodes.

The methodology includes a manual step before exe-
cuting the application that involves the developer hav-
ing to dispose of the infrastructure with the parameters
used in the design, compilation and execution of the

software devices created in each of the platforms. In
addition, it must make the electrical connections of the
components (sensors and actuators) in the controller.

For future work, the following lines of research have
been identified: (a) extending the DSL to include pos-
sible errors in the operation flows in the web services,
(b) integrating the digital TV and SmartPhone plat-
forms in the IoT system, for the Front End, (c) apply
load balancing strategies to handle large numbers of
concurrent users, and (d) testing the operation of the

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

16 Darwin Alulema1,2 et al.

tool with users from different degrees and levels related
to computer science studies.

Acknowledgments

This work has been funded by the EU ERDF and the
Spanish Ministry MINECO under the research project
CoSmart TIN2017-83964-R and by the regional project
(CEIJ-C01.2) coordinated from UAL-UCA and funded
by CEIMAR consortium.

References

1. Ahmad, S., DoHyeun, K.: A Multi-Device Multi-Tasks
Management and Orchestration Architecture for the De-
sign of Enterprise IoT Applications. Future Generation
Computer Systems 106:482–500. Elsevier (2020).

2. Al-Osta, M., Bali, A., Gherbi, A.: Event Driven and Se-
mantic based Approach for Data Processing on IoT Gate-
way Devices. Journal of Ambient Intelligence and Hu-
manized Computing, pp. 1–16. Springer (2018).

3. Alulema, D., Criado, J., Iribarne, L.: A Model-Driven
Approach for the Integration of Hardware Nodes in the
IoT. 7th World Conference on Information Systems and
Technologies (CIST’2019), pp. 801-811 (2019).

4. Alulema, D., Criado, J., Iribarne, L.: RESTIoT. A Model-
based Approach for Building RESTful Web Services in
IoT Systems. XXIV Jornadas de Ingenieŕıa del Software
y Bases de Datos (JISBD), Pages 4. SISTEDES (2019).

5. Badamasi, Y.: The Working Principle of an Arduino. 11th
International Conference on Electronics, Computer and
Computation (ICECCO), pp. 1–4, IEEE (2014).

6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven
Software Engineering in Practice.Morgan & Claypool
Publishers, pp. 2019-2031 (2017).

7. Ciccozzi, F., Spalazzese, R.: MDE4IoT. Supporting the
Internet of Things with Model-driven Engineering. Inter-
national Symposium on Intelligent and Distributed Com-
puting, pp. 67-76. Springer (2016).

8. Costa, B., Pires, P. F., Delicato, F. C., Merson,
P.: Evaluating REST Architectures. Approach, Tool-
ing and Guidelines. Journal of Systems and Software,
112(February):156-180. Elsevier (2016).

9. Dar, K., Taherkordi, A., Baraki, H., Eliassen, F., Geihs,
K.: A Resource Oriented Integration Architecture for
the Internet of Things. A Business Process Perspective.
Pervasive and Mobile Computing, 20:145–159. Elsevier
(2015).

10. Darabseh, A., Freris, N.: A Software-defined Architecture
for Control of IoT Cyberphysical Systems. Cluster Com-
puting, pp. 1-16, on-line. Springer (2019).

11. Grace, P., Pickering, B., Surridge, M.: Model-driven
Interoperability. Engineering Heterogeneous IoT Sys-
tems. Annals of Telecommunications, 71(3–4):141–150.
Springer (2016).

12. Gronback, R. C.: Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Pearson Education,
pages 736 (2009).

13. Hwang, G., Lee, J., Park, J., Chang, T. W.: Developing
Performance Measurement System for Internet of Things
and Smart Factory Environment. International Journal
of Production Research, 55(9):2590-2602. Taylor & Fran-
cis (2017).

14. Jazayeri, M., Liang, S., Huang, C.: Implementation and
Evaluation of Four Interoperable Open Standards for
the Internet of Things. Sensors, 15-9:1424-8220. MDPI
(2015).

15. Kathiravelu, P., Van Roy, P., Veiga, L.: SD-CPS.
Software-defined Cyber-physical Systems. Taming the
challenges of CPS with workflows at the edge. Cluster
Computing, 22(3):661–677. Spriger (2018).

16. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi,
T., Toumura, K., Kajimoto, K.: Web of Things (WoT)
Architecture, W3C Recommendation (2020).

17. Limon, X., Guerra-Hernandez, A., Sanchez-Garcia, A.
J., Perez Arriaga, J.: SagaMAS. A Software Framework
for Distributed Transactions in the Microservice Archi-
tecture. 6th International Conference in Software En-
gineering Research and Innovation (CONISOFT’2018),
pp. 50–58. IEEE (2019).

18. Maila-Maila, F., Intriago-Pazmiño, M., Ibarra-Fiallo, J.:
Evaluation of Open Source Software for Testing Perfor-
mance of Web Applications. Advances in Intelligent Sys-
tems and Computing, 931:75–82. Springer (2019).

19. Martins, F., Domingos, D.: Modelling IoT Behaviour
within BPMN Business Processes. Procedia Computer
Science, 121:1014–1022. Elsevier (2017).

20. Martin-Lopo, M., Boal, J. Sánchez-Miralles, A.:A litera-
ture review of IoT energy platforms aimed at end users.
Computer Networks, 17:1-19. Elsevier (2020).

21. Mesfin, G., Gronli, T.-M., Midekso, D., Ghinea, G.: To-
wards end-user Development of REST Client Applica-
tions on Smartphones. Computer Standards & Interfaces,
44:205-219. Elsevier (2016).

22. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A
Gap Analysis of Internet-of-Things Platforms. Computer
Communications, 89:5-16. Elsevier (2016.)

23. Muehlen, M., Nickerson, J., Midekso, D., Ghinea, G.:
Developing Web Services Choreography Standards. The
Case of REST vs. SOAP. Decision Support Systems,
40(1):9-29. Elsevier (2005).

24. Pautasso, C., Wilde, E., Alarcon, R.: REST: Advanced
Research Topics and Practical Applications. Pages 222.
Springer New York (2014).

25. Richardson, C.: Microservices Patterns. Manning Publi-
cations Co.. Pages 520 (2018).

26. Rotsos, C., King, D., Farshad, A., Bird, J., Fawcett, L.,
Georgalas, N., Gunkel, M., Shiomoto, K., Wang, A., Mau-
the, A., Race, N., Hutchison, D.: Network Service Orches-
tration Standardization: A Technology Survey. Computer
Standards & Interfaces, 54:203-215. Elsevier (2017).

27. Shah, J., Kama, N.: Extending Function Point Analy-
sis Effort Estimation Method for Software Development
Phase. 7th International Conference on Software and
Computer Applications ICSCA, pp. 77–81. ACM (2018).

28. Sharma, S., Chang, V., Tim, U. S., Wong, J., Gadia, S.:
Cloud and IoT-based Emerging Services Systems. Cluster
Computing, 22(1):71-91. Springer (2019)

29. Silva, B., Murad, K., Kyuchang, L., Yongtak, Y., Diyan,
M., Jihun, H., Kijun, H.: RESTful Web of Things for
Ubiquitous Smart Home Energy Management. Interna-
tional Conference on Computing, Networking and Com-
munications, ICNC 2020, pp. 176–180. IEEE (2020).

30. Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R.
M.: Enterprise IoT: Strategies and Best Practices for
Connected Products and Services. O’Reilly Media, Inc.,
Pages 474 (2015)

31. SOAP (Simple Object Access Protocol) W3C Standard.
2007. https://www.w3.org/TR/soap12/. Online: last ac-
cessed September 2019.

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

A Model-Driven Engineering Approach for the Service Integration of IoT Systems 17

32. de Sousa, N. F. S., Perez, D. A. L., Rosa, R. V., Santos,
M. A., Rothenberg, C. E.: Network Service Orchestra-
tion: A Survey. Computer Communications, 142/143:69-
94. Elsevier (2019).

33. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.:
EMF. Eclipse Modeling Framework. Pearson Education,
Pages 749 (2009).

34. Teixeira, S., Agrizzi, B. A., Filho, J. G. P., Rossetto, S.,
Baldam, R. de L.: Modeling and Automatic Code Gen-
eration for Wireless Sensor Network Applications using
Model-driven or Business Process Approaches. A System-
atic Mapping Study. Journal of Systems and Software,
132:50–71. Elsevier (2017).

35. Thramboulidis, K., Vachtsevanou, D. C., Kontou, I.:
CPuS-IoT. A Cyber-Physical Microservice and IoT-based
Framework for Manufacturing Assembly Systems. An-
nual Reviews in Control, 47:237-248. Elsevier (2019).

36. Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., Al-
Hatmi, R.: Internet of Things. Survey and Open Issues of
MQTT Protocol. International Conference on Engineer-
ing & MIS (ICEMIS), pp. 1-6. IEEE (2017).

37. Zhou, C., Feng, Y., Yin, Z.: An Algebraic Complex Event
Processing Method for Cyber-physical System. Cluster
Computing, 3:1–9. Springer (2018).

D. Alulema, J. Criado, L. Iribarne, A.J. Fernández-García, R. Ayala.(2020)A model-driven engineering approach for the service integration of IoT systems.
Cluster Computing 23:1937–1954, Springer.ISSN: 1386-7857.

http://doi.org/10.1007/s10586-020-03150-x

