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Abstract 15 

Agriculture under Plastic Covered Greenhouses (PCG) has represented a step 16 

forward in the evolution from traditional to industrial farming. However, PCG-17 

based agricultural model has been also criticized for its associated environmental 18 

impact such as plastic waste, visual impact, soil pollution, biodiversity degradation 19 

and local runoff alteration. In this sense, timely and effective PCG mapping is the 20 

only way to help policy-makers in the definition of plans dealing with the trade-off 21 

between farmers’ profit and environmental impact for the remaining inhabitants. 22 
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This work proposes a methodological pipeline for producing high added value 23 

3D geospatial products (Digital Surface Models (DSM) and Digital Terrain Models 24 

(DTM)) from VHR satellite imagery over PCG areas. The 3D information layer 25 

provided through the devised approach could be very valuable as a complement to 26 

the traditional 2D spectral information offered by VHR satellite imagery to improve 27 

PCG mapping over large areas. 28 

This methodological approach has been tested in Almeria (Southern Spain) 29 

from a WorldView-2 VHR satellite stereo-pair. Once grid spacing format DSM and 30 

DTM were built, their vertical accuracy was assessed by means of lidar data 31 

provided by the Spanish Government (PNOA Programme). 32 

Regarding DSM completeness results, the image matching method based on 33 

hierarchical semi-global matching yielded much better scores (98.87%) than the 34 

traditional image matching method based on area-based matching and cross-35 

correlation threshold (86.65%) when they were tested on the study area with the 36 

highest concentration of PCG (around 85.65% of PCG land cover). However, both 37 

image matching methods yielded similar vertical accuracy results in relation to the 38 

finally interpolated DSM, with mean errors ranging from 0.01 to 0.35m and random 39 

errors (standard deviation) between 0.56 and 0.82 m. The DTM error figures also 40 

showed no significant differences between both image matching methods, although 41 

being highly dependent on DSM-to- DTM filtering error, in turn closely related to 42 

greenhouse density and terrain complexity. 43 

KEYWORDS: Digital Elevation Model, Digital Surface Model, Greenhouse land cover, 44 

VHR satellite stereo imagery, Stereo image matching. 45 
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1. Introduction 46 

Since the first use of plastic film in agriculture in 1948 (Garnaud, 2000), plastic 47 

covering has been used extensively in the cultivation of vegetables around the world. 48 

Particularly, plastic covered greenhouses (PCG) can be considered a step forward in the 49 

evolution from traditional to industrial farming (i.e. from extensive to intensive farming). 50 

PCG present a cover made of transparent plastic film to control the environmental 51 

conditions and growth of the crops growing inside. This leads to a significant crop yield 52 

increasing under highly controlled growing conditions. For these reasons, greenhouse 53 

farming plays an increasing role in modern agriculture, becoming one of the most important 54 

agricultural activities in arid and semi-arid regions. Crops under PCG accounted for a total 55 

coverage of about 3019 million hectares worldwide in 2016, mainly located in Europe 56 

(Mediterranean areas), North Africa, the Middle East and China (Wu et al., 2016). In these 57 

areas, PCG increase day by day, thus obtaining timely and accurate information regarding 58 

their spatial distribution could make an important contribution to local agricultural 59 

management, environmental protection and land use/land cover (LULC) policy. 60 

LULC changes can directly affect the status and integrity of ecosystems. For instance, 61 

natural and multifunctional landscapes can be converted into areas of intensive farming, 62 

altering the main land-use type and natural character of a region. This is the case of Almeria, 63 

south-eastern Spain, a region that is currently hosting the largest concentration of 64 

greenhouses in the world, spread across more than 30000 hectares, and being locally known 65 

as “The Plastic Sea of Almeria” (Aguilar et al., 2015). The region has undergone major 66 

LULC changes over the preceding decades due to the expansion of intensive greenhouse 67 

horticulture, making the area one of the most economically prosperous in the country. 68 
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Furthermore, ecosystems in south-eastern Spain are high in biodiversity and are, because 69 

of their location in the driest region in continental Europe, vulnerable to global change 70 

impacts. In this sense, management decisions should promote a transition towards 71 

sustainable landscape strategies which result in human needs being satisfied while 72 

simultaneously maintaining important ecological processes responsible for the delivery of 73 

ecosystem services (Quintas-Soriano et al., 2016). This transition requires a thorough 74 

knowledge of PCG spatio-temporal distribution where remote sensing seems to be the only 75 

feasible approach for understanding its impacts on climate and eco-environment in a large 76 

geographic area. In fact, remote sensing can efficiently provide quantitative and qualitative 77 

information of great interest for the study of planning, land organization and sustainable 78 

development of this kind of extremely complex agro-systems (Aguilar et al., 2007). 79 

However, PCG spectral-based mapping from remote sensing turns out to be 80 

challenging because the spectral signature of the plastic-covered greenhouse can change 81 

drastically (Aguilar et al., 2015, 2014a; Tarantino and Figorito, 2012). In fact, different 82 

plastic materials with varying thickness, transparency, ultraviolet and infrared reflection 83 

and transmission properties, additives, age and colours are used in greenhouse coverings 84 

(M. A. Aguilar et al., 2016). Moreover, as plastic sheets are semi-transparent, the changing 85 

reflectance of the crops underneath them affects the greenhouse spectral signal reaching the 86 

sensor (Levin et al., 2007). Finally, such plastic materials occasionally yield specular 87 

reflections that create shiny spots that are particularly challenging for the extraction of their 88 

corresponding 3D surface geometry from overlapping digital images acquired from 89 

multiple views, a widely known computer vision approach named digital image matching.  90 

Regarding PCG mapping from remote sensing approaches, an increasing scientific 91 

literature has emerged during the last decade. A comprehensive literature review can be 92 
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found in Aguilar et al. (2015), M. A. Aguilar et al. (2016), Celik and Koc-San (2018), 93 

Lanorte et al. (2017), Novelli et al. (2016) and Yang et al. (2017), showing that many 94 

researchers have tried to improve the accuracy of PCG mapping by applying both pixel-95 

based and object-based supervised image classification algorithms to high and medium 96 

resolution satellite imagery and by means of both static and multi-temporal approaches, 97 

reporting overall accuracies ranging between 85% and 94%. Nowadays it is difficult to 98 

overcome those scores without adding new information (i.e. in addition to spectral and 99 

texture features) to the features vector employed to feed the classifier. 100 

On the other hand, nowadays geospatial analysis headed up to mapping complex 101 

above-ground features (e.g. built-up areas) are emerging, usually requiring digital surface 102 

and terrain modelling to produce Digital Surface Models (DSM), which capture the natural 103 

and built-up features on the Earth’s surface, and Digital Elevation Models (DEM), which 104 

are able to characterize the topography or bare-earth elevation (Li et al., 2005). Both 105 

geospatial products have proven to be relevant in several agricultural applications (Celik 106 

and Koc-San, 2018; Mokarram and Hojati, 2017; Seeruttun and Crossley, 1997) . 107 

The so-called normalized digital surface model (nDSM) is generated by computing 108 

the difference between the DSM and the DEM. Since the nDSM excludes the influence of 109 

topography, it represents the height of all overlying objects on the terrain, such as buildings, 110 

trees and greenhouses. In this way, several researchers have proposed to incorporate this 111 

3D information as a raster layer to improve the overall accuracy classification and 112 

extraction of man-made features on built-up areas (Aguilar et al., 2014b; Luethje et al., 113 

2017; Weidner and Förstner, 1995; Zhang et al., 2015). Recently nDSM have been also 114 

used to derive the 3D properties of urban buildings, which represent the three-dimensional 115 

nature of living spaces and are needed in population estimation or urban planning (Tomas 116 
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et al., 2016). 117 

At the same time, the launching of many Very High Resolution (VHR) satellites 118 

capable of capturing panchromatic imagery with Ground Sample Distance (GSD) lower 119 

than 1 m has opened the greatest possibilities for cartographic applications based on the 120 

extraction of DSM and DEM. These products are generated by image matching strategies 121 

from VHR satellite imagery stereo pairs or stereo triplets. Current stereo capabilities of 122 

VHR satellites, together with their agile pointing ability, enable the generation of 123 

geometrically robust (in terms of base-to-height ratio) and radiometrically consistent along-124 

track stereo images which can be acquired for any place on Earth (Zhang and Gruen, 2006; 125 

Büyüksalih and Jacobsen, 2007a.; D’angelo et al., 2008; Dowman et al., 2012; Poli and 126 

Caravaggi, 2012; Aguilar et al., 2014b). In this sense, space-borne images provide a cost-127 

efficient alternative to aerial images and can be obtained regardless of various national 128 

over-flight restrictions. Furthermore, their appropriate stereo geometry and radiometric 129 

similarity allow obtaining high resolution DSM by i) carrying out an aerotriangulation and 130 

bundle adjustment process based on object-to-image geometry provided by the well-known 131 

rational polynomial coefficients (RPC) (Grodecki and Dial, 2003), and ii) generating a 132 

DSM from applying automatic stereo matching procedures over previously epipolarly 133 

rectified stereo images (e.g. Alobeid et al., 2010). Since RPC are generated without ground 134 

data, it is necessary to improve satellite imagery orientation for high accuracy applications 135 

by measuring ground control points (GCP) and computing bias-corrected RPC (Aguilar et 136 

al., 2013; Tong et al., 2010). Aguilar et al. (2017) have recently developed an approach for 137 

improving the initial direct geolocation accuracy of VHR satellite imagery based on the 138 

extraction of 3D GCP from freely available ancillary data at global coverage such as multi-139 

temporal information of Google Earth and the Shuttle Radar Topography Mission 30 m 140 
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digital elevation model. This approach can be very useful when ground surveyed control 141 

points are not available. 142 

There is available an abundant literature about the use of VHR satellite or aerial 143 

imagery for DSM generation. For instance, the reader can find a complete and 144 

comprehensive overview of the characteristics and use of VHR satellite and aerial images 145 

in (Dowman et al., 2012). Concerning the radiometric and geometric quality of VHR 146 

satellite imagery, while the earlier studies were based on slightly coarser spatial resolution 147 

(>0.5 m Ground Sample Distance (GSD)) (e.g. Büyüksalih and Jacobsen, 2007a; D ’angelo 148 

et al., 2008; Toutin, 2006a; Toutin et al., 2001; Zhang and Gruen, 2006), the last 149 

investigations have been mainly focused on VHR satellites with GSD even lower than 0.5 150 

m, such as GeoEye-1 and WorldView-1/2/3/4 (Åstrand et al., 2012; Barbarella et al., 2017; 151 

Capaldo et al., 2012b; Reinartz et al., 2014), and the capabilities of the PAN triplet product 152 

from Pléiades-1 to generate DSMs (Fratarcangeli et al., 2016; Poli et al., 2015; Tack et al., 153 

2009). Other works were more focused on testing image matching algorithms (Alobeid et 154 

al., 2010; Capaldo et al., 2012a; de Franchis et al., 2014; Di Rita et al., 2017; Ghuffar, 2016; 155 

Noh and Howat, 2015; Qin, 2016; Shean et al., 2016; Wenzel et al., 2013). There are also 156 

several works about DSM generation from VHR satellite imagery over different types of 157 

land cover, including urban areas (Arefi and Reinartz, 2013; Büyüksalih and Jacobsen, 158 

2007b; Dowman, 2000; Jacobsen, 2006; Muller et al., 1997; Sohn and Dowman, 2007; Tian 159 

et al., 2014), mountainous areas (Toutin, 2002), densely vegetated deciduous forest (DeWitt 160 

et al., 2017), glaciated regions (Noh and Howat, 2015) or over herb and grass land cover 161 

(Hobi and Ginzler, 2012). However, to the best of our knowledge, few works have been 162 

specifically focused on plastic covered greenhouse areas (Aguilar et al., 2014a; Celik and 163 

Koc-San, 2018; Aguilar et al., 2018). 164 
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The procedure for assessing digital elevation model (DEM) or DSM quality involves 165 

examination of the vertical accuracy and completeness (Butler et al., 1998; Höhle and 166 

Potuckova, 2006). Most of the current research uses highly accurate lidar information as 167 

ground truth to check the accuracy of DSMs generated from VHR satellite images (Capaldo 168 

et al., 2012a; Noh and Howat, 2017, 2015, Toutin, 2006b, 2006a). Considering that the 169 

automatic DSM cannot be obtained in all areas due to matching errors provoked by 170 

insufficient texture, occlusions or radiometric artifacts, DSM vertical accuracy should be 171 

complemented by DSM completeness, a DSM quality indicator defined as the percentage 172 

of correctly matched points over the working area (Höhle and Potuckova, 2006) 173 

The main goal of this study is to develop and test a methodological approach to 174 

produce high quality DSM and DEM from WorldView-2 along-track stereo pair headed up 175 

to obtain 3D geospatial features. These 3D features could complement 2D spectral features 176 

in PCG mapping over large areas, as it has been already reported by Aguilar et al. (2014a) 177 

and Celik and Koc-San (2018). In this sense two software packages, based on two clearly 178 

different stereo image matching approaches, were tested with respect to their ability to 179 

produce photogrammetrically derived DSM/DEM over dense greenhouse covered areas.   180 

The rest of this paper is organized as follows. The study area and datasets are 181 

described in the section 2. The third section outlines a detailed explanation of the 182 

methodological approach devised to produce high quality DSM and DEM from VHR 183 

satellite imagery and the pipeline used to assess the performance of the two stereo image 184 

matching approaches. The results corresponding to the completeness and characteristics of 185 

the residual populations for the stereo-photogrammetrically derived DSM and DEM are 186 

presented and discussed in the section 4. Conclusions are provided in the last section. 187 
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2. Study Site and Datasets 188 

2.1. Study area 189 

The study area is located in the province of Almeria (Southern Spain), housing the 190 

greatest concentration of greenhouses in the world. It comprised a rectangle area of about 191 

8000 ha centred on the WGS84 geographic coordinates of 36.7824°N and 2.6867°W (Fig. 192 

1). 193 

This pilot area presents an elevation ranging between 152.6 m and 214.8 m above 194 

mean sea level (Spanish orthometric heights EGM08-REDNAP), with a moderate north-195 

south mean slope of around 4.3%.  196 

Fig. 1. Location of the study site in the province of Almeria (Spain) and the four selected subareas as red 197 

rectangles. These subareas are characterized, in addition to PCG, by features such as dry ravines (1), vegetation 198 

(2) urban areas (3) and very high concentration of PCG (4). Coordinate System: WGS84 UTM Zone 30. 199 

Within the study area, four representative rectangular test areas of 920 m x 620 m 200 

were selected, including different land covers and features such as dry ravines and bare soil 201 

(test area 1), vegetation and bare soil (test area 2), urban areas (test area 3) and a variable 202 

density of PCG land cover which reaches the highest density in the fourth test area (test 203 

area 4) (Fig. 1).  204 

2.2. WorldView-2 stereo pair 205 

A WorldView-2 (WV-2) along-track stereo pair taken on July 5, 2015, was used. It 206 

consisted of 2 Level-2A images (ORS2A) format, dynamic range of 11-bit (without 207 

dynamic range adjustment) and 0.5 m GSD (PAN). The off-nadir angle for the two stereo 208 

pair images turned out to be 12.6° and 24.6° (Table 1). 209 
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Table 1 Characteristics of the panchromatic band for the WV-2 stereo pair. 210 

2.3. Ground truth lidar data 211 

The lidar data used as ground truth in this study were provided by the PNOA (National 212 

Plan of Aerial Orthophotography of Spain) as RGB coloured point cloud in LAS binary 213 

file, format v. 1.2, containing easting and northing coordinates (UTM ETRS89 30N) and 214 

orthometric elevations (geoid EGM08-REDNAP). It was taken on September 23, 2015, by 215 

means of a Leica ALS60 discrete return sensor with up to four returns measured per pulse 216 

and an average flight height of 2700 m. The nominal average point density of the lidar 217 

campaign was 0.7 points/m2, although the finally registered point density of the test area, 218 

considering overlapping, turned out to be 0.97 points/m2 (all returns). The nominal nadiral 219 

horizontal accuracy (RMSExy) and nominal vertical accuracy (RMSEz) after processing 220 

took values lower than 0.3 m and 0.2 m, respectively (Ministerio de Fomento de España, 221 

2015). The 131 GPS-RTK surveyed GCP were employed to check the nominal vertical 222 

accuracy of lidar data. The standard deviation of the computed lidar vertical error, only 223 

including open terrain GCP (Aguilar et al., 2008), took a value of 0.14 m, which mean a 224 

vertical accuracy higher than the 0.2 m nominal vertical error of PNOA lidar data. 225 

A local maxima filter algorithm with 2 m neighbourhood size to search for maximum 226 

height was applied to the lidar point cloud to obtain the corresponding lidar-derived point 227 

cloud DSM. Additionally, a lidar-derived point cloud DEM was produced by automatically 228 

filtering ground points using the Improved Progressive TIN Densification (IPTD) filtering 229 

algorithm proposed by Zhao et al. (2016). The corresponding IPTD set of parameters was 230 

optimized for each test area. The automatically classified ground points were manually 231 

edited to achieve a final high-quality point cloud DEM. 232 
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The lidar-derived point cloud DSM and DEM were finally interpolated to 1 m grid 233 

spacing by using the Gaussian Markov Random Field (GMRF) algorithm, following the 234 

procedure and the mathematical framework described and tested by F. J. Aguilar et al. 235 

(2016). (The cited paper and the GMRF interpolation method code are freely available at 236 

https://github.com/3DLAB-UAL/dem-gmrf Link to code). In this work the GMRF 237 

interpolation method was tested in the same study area providing good results. As an 238 

advantage, the GMRF mathematical framework makes possible to both retrieve the 239 

estimated uncertainty for every interpolated elevation point and include break lines or 240 

terrain discontinuities between adjacent cells to produce high-quality DEMs. 241 

The lidar-derived grid format DSM and DEM depicted in Fig. 2 were employed as 242 

ground truth for the vertical accuracy assessment of the stereo-photogrammetrically 243 

extracted DSM and DEM corresponding to the four test areas.  244 

Fig. 2. Lidar-derived grid format DSM and DEM for the four test areas. Left column: Lidar-derived DSM. Right 245 

column: Lidar-derived DEM. The red line (DEM test area 1 in the first row on the right) corresponds to the 246 

location of the profile represented in Fig. 7). 247 

3. Methods 248 

The methodological pipeline proposed in this work to provide 3D information 249 

potentially useful to improve PCG mapping over large areas from VHR satellite stereo 250 

imagery is described in this section. It consisted of the steps shown below. 251 

3.1.  Step 1: Stereo photogrammetrically derived DSM 252 

Two different software packages, based on two clearly different types of image 253 

matching approaches, were used to stereo-photogrammetrically generate the DSM from 254 

https://github.com/3DLAB-UAL/dem-gmrf
https://github.com/3DLAB-UAL/dem-gmrf
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WV-2 imagery. 255 

PCI Geomatics v. 2016 (PCI Geomatics, Richmond Hill, ON, Canada) was the first 256 

software tested. This software has been chosen in several studies and works (i.e. Barbarella 257 

et al., 2017; Capaldo et al., 2012a; Di Rita et al., 2017a) as benchmark for others software 258 

packages in comparison tests. 259 

PCI Geomatics (PCI henceforth) implements a photogrammetric tool called 260 

OrthoEngine devised to produce geospatial products. The OrthoEngine matching algorithm 261 

is based on cross-correlation where an automated area-based matching procedure is 262 

performed on quasi-epipolar images. Specifically, this procedure is based on a hierarchical 263 

(seven steps) sub-pixel mean normalized cross correlation matching method that generates 264 

correlation coefficients between zero and one for each matched pixel, meaning zero a total 265 

mismatch and one a perfect match. When the correlation coefficient of a matched point is 266 

lower than 0.5, this point is rejected, and its height is not computed, meaning a gap and 267 

reducing the DSM completeness. Finally, a second-order surface is then fitted around the 268 

maximum correlation coefficients to find the match position to sub-pixel accuracy (Cheng, 269 

2015). 270 

The other tested software was RPC Stereo Processor (RSP), initially developed by 271 

Qin, (2014) for 3D change detection and land cover classification studies. It was further 272 

refined as a standalone software package that performs stereo matching on RPC modelled 273 

space-borne images producing mapping products such as DSM and orthophoto (Qin, 2016). 274 

RSP implements a hierarchical semi-global matching (SGM) approach based on the widely 275 

known algorithm proposed by Hirschmuller, (2008) to generate the disparity maps after 276 

applying an epipolar rectification process to the original stereo images. Note that the classic 277 

SGM creates a raster file to store the aggregated cost for each disparity value, thus requiring 278 
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a lot of memory for computation. Hence RSP provides a hierarchical solution based on 279 

running the classic SGM algorithm through pyramid image layers. At the same time, RSP 280 

restrains the disparity search in the original resolution within a given range (e.g. [-1000, 281 

1000]) in order to retain high resolution in the coarsest layer of the pyramids (Qin, 2016). 282 

The initial vendor supplied RPC set, derived from satellite ephemeris and star tracker 283 

observations, usually contains bias that should be corrected for precise epipolar image 284 

generation. A first order affine transformation (six parameters) on the image space was used 285 

to obtain bias-corrected RPC at the RPC-based satellite image orientation stage both in the 286 

case of PCI and RSP pipelines. Following the recommendations of Åstrand et al., (2012) 287 

and Aguilar et al., (2013), 7 GPS-RTK ground points evenly distributed over the working 288 

area were selected as GCP. The remaining 124 ground points were used as Independent 289 

Check Point (ICP). The planimetric accuracy (RMSE2D) of the image orientation phase 290 

measured at those ICPs was 0.45 m. It is important to keep in mind that the GCP were only 291 

marked once on the image space of the PCI project, being later exported to be automatically 292 

marked in the RSP project to assure the same conditions at the satellite image orientation 293 

phase.  294 

After carrying out the sensor orientation phase, 1 m grid spacing DSM was stereo-295 

photogrammetrically extracted from each one of the two tested approaches. In the case of 296 

PCI, hilly terrain and without filling blanks (no interpolation) parameters were chosen. In 297 

the case of the RSP software, the DSM was also extracted without filling blanks. 298 

3.2. Step 2: DSM outlier removal 299 

Potential outliers were automatically removed from the original DSM (presenting 300 

blank areas) by adapting the parametric statistical method for DEM error detection 301 
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published by Felicísimo, (1994). This algorithm takes advantage of probabilistic criteria to 302 

apply a parametric procedure based on the assumption that differences between the height 303 

of every point and its corresponding neighbourhood mean height follows a normal 304 

distribution. In our case, the neighbourhood size was set to 1.5 times the DSM grid spacing. 305 

Once potential outliers were removed (outlier-corrected DSM), the GMRF 306 

interpolation method described in F. J. Aguilar et al. (2016) was employed to fill the blank 307 

areas and produce a continuous 1 m grid spacing DSM (GMRF DSM) . 308 

3.3. Step 3: Automatic DEM extraction from the outlier-corrected DSM 309 

It is beyond the scope of this work to compare the results provided by the various 310 

available algorithms focused on 3D data filtering to automatically convert a DSM into a 311 

bare-earth DEM because of most of these algorithms have been developed to deal with high 312 

vertical accuracy lidar point clouds. Therefore, their performance on photogrammetrically 313 

derived 3D point clouds from VHR satellite imagery should be carefully tested. In this way, 314 

the easy-to-use algorithm (only two parameters to tune) called DSM2DTM, implemented 315 

in PCI Geomatics, was employed to automatically extract the corresponding DEM from the 316 

outlier-corrected DSM obtained in the step 2. This algorithm is able to convert a DSM into 317 

a bare-earth DEM by obtaining local area minimum/maximum values and then operating a 318 

moving polynomial function utilizing the local values in the specified object size parameter 319 

(PCI Geomatics, 2016). 320 

The DSM2DTM algorithm was launched by using an iterative python code with two 321 

varying parameters to search for an optimal output DEM in each test area. Those parameters 322 

were the following: 323 

i) Object size, with values ranging from 50 m to 200 m depending on the morphology 324 
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of each test area and the image matching algorithm. It specifies the size of the 325 

filters which are used to remove surface features. Typically, the size should be as 326 

large as the largest feature (e.g. greenhouse) that should be removed. 327 

ii) Gradient percentage threshold (slope), with values ranging from 5% to 35% 328 

depending on the morphology of each test area and the image matching algorithm. 329 

Features with slopes less than this threshold will be treated as natural features and 330 

will not be removed. The type of terrain selected was “Hilly” in all cases.  331 

Finally, a 1 m grid spacing DEM was built from the automatically filtered terrain points 332 

provided by the DSM2DTM algorithm by applying the GMRF interpolation method (F. J. 333 

Aguilar et al., 2016). 334 

3.4. Quality assessment of the extracted GMRF DSM and DEM 335 

The quality of the extracted GMRF DSM and the derived DEM was assessed by 336 

computing their completeness and vertical accuracy. In order to study the influence of the 337 

dominant land cover on the aforementioned quality indicators, the quality assessment was 338 

carried out over the four test areas previously described and depicted in Fig. 1. In each case, 339 

the corresponding lidar-derived DSM and DEM were used as ground truth, computing 340 

residuals as photogrammetric height minus lidar height.  341 

The completeness of every DSM was computed for every test area as the ratio between 342 

the blank areas (number of missing image matching points) and all the DSM 1 m grid 343 

spacing points which should have been potentially extracted. 344 

The vertical accuracy statistics of each GMRF DSM and DEM were separately 345 

computed for each test area after applying the widely known 3σ rule (Daniel and Tennant, 346 

2001) to remove blunder errors from the residuals populations (z-residuals). In this way, 347 
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several statistics such as mean value, standard deviation and 90th (LE90) and 95th (LE95) 348 

percentile linear error were computed. 349 

4. Results and discussion 350 

4.1. DSM Completeness 351 

The completeness scores of the DSM produced from PCI and RSP methods were 352 

significantly different. In fact, Fig. 3 depicts that the RSP-derived DSM showed a less 353 

number of missing image matching points than the one obtained from PCI, especially in 354 

those test areas where urban and PCG land cover were more abundant (test areas 3 and 4, 355 

respectively. See Fig. 1 and Fig. 3).  356 

Fig. 3. Stereo photogrammetrically derived DSM corresponding to the four test areas generated from PCI (left 357 

column) and RSP (right column).  358 

In the test area 1 (Fig. 3), containing bare soil and dry ravines as the more 359 

representative features, the RSP software reached a completeness higher than 99% 360 

compared to around 93% achieved by PCI (Table 2). In the case of the test area 2, which 361 

mainly presents bare soil and vegetation land covers, the completeness took values of 362 

99.57% and 94.42% for the RSP and PCI methods, respectively. Regarding the test area 3, 363 

predominantly covered by PCG, urban areas and bare soil, the completeness reached a 364 

value of 99.25% in the case of the RSP method, offering a significantly lower value of 365 

88.13% in the case of the PCI approach. In the very dense greenhouse covered area labelled 366 

as the test area 4, the completeness score of 98.87% provided by the RSP method clearly 367 

exceeded the value of 86.65% performed by the PCI method. 368 



Computers and Electronics in Agriculture 

 17 

Table 2 PCG landcover density and completeness values for the DSM extracted from applying the RSP and PCI 369 

stereo-matching approaches. 370 

From comparing the completeness results obtained in the four test areas, it can be 371 

stated that the higher the PCG landcover density, the lower the completeness score, 372 

especially in the case of PCI results. Indeed, the RSP method provided better results than 373 

the PCI one for the four test areas. The difference in completeness scores between RSP and 374 

PCI DSM reached the highest value (around 12%) in the test area 4, which had the biggest 375 

concentration of greenhouse landcover.  376 

It is worth nothing that there is a clear relationship between missing matching points 377 

(low local DSM completeness) and the local radiometric dissimilarity over greenhouse 378 

plastic cover between the two overlapping satellite images. This finding can be made out 379 

in Fig. 4, where the DSM produced in the test area 4 from using PCI and RSP software 380 

packages are depicted together with the two VHR WV-2 PAN satellite images. The blue 381 

ellipses highlight greenhouses presenting important radiometric changes due to glint effect 382 

in one of the stereo pair images, thus causing matching problems in DSM production (red 383 

colour). However, when greenhouses presented extreme values of digital number because 384 

of they are painted white in summer to protect crops from excessive radiation and reduce 385 

the heat inside, the matching algorithm worked usually well. These painted greenhouses 386 

are marked by mean of yellow ellipses in Fig. 4, not presenting visible radiometric changes 387 

between the two stereo pair images. 388 

Fig. 4. Influence of local radiometric dissimilarity on greenhouse plastic cover in relation to DSM completeness 389 

over the test area 4. The PAN images from WV2 stereo pair are shown above. DSM produced by PCI and RSP 390 

software packages are shown below. Blue ellipses highlight greenhouses presenting glint changes while yellow 391 

ellipses mark two greenhouses painted white. Matching problems in both DSM are presented in red colour. 392 
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4.2. Vertical accuracy 393 

4.2.1. GMRF DSM vertical accuracy assessment 394 

Table 3 shows the results for the GMRF DSM vertical accuracy assessment 395 

corresponding to each test area. In general, and regarding random errors assessment, the 396 

two tested satellite image matching methods performed quite similar, providing standard 397 

deviation and L95 values ranging from 0.56 to 0.82 m and 1.34 to 2.10 m, respectively. The 398 

poorest vertical accuracies in terms of DSM random errors were obtained in the case of the 399 

test area 4, which presented the highest concentration of PCG. 400 

In relation to systematic errors, the RSP approach showed a higher positive bias than 401 

the PCI one, thus slightly overestimating the reference z-values given by the lidar-derived 402 

DSM in all the test areas, but especially in the test areas 3 and 4 which housed the highest 403 

density of PCG (Table 2). In terms of linear error computed at 90% and 95% percentiles 404 

(L90 and L95), the results provided by both RSP and PCI approaches can be considered as 405 

significantly similar, also rising with the increase of greenhouse land cover density. 406 

Provided that RSP presented a higher completeness in DSM generation than PCI, their 407 

similar results from the vertical accuracy assessment in terms of random errors and a 408 

slightly higher bias in the case of RSP seem to point to the fact that RSP is incurring a 409 

commission error when working on difficult to match image areas (e.g. glint effect 410 

mentioned above). In other words, PCI matching method turns out to be more reluctant to 411 

accept pairs of matching points with weak similarity (measured through cross-correlation 412 

coefficient), therefore tending to leave more blank areas and so reducing completeness. On 413 

the contrary, RSP can compute the 3D position of those weak matching points, so 414 

improving the visual appearance of the compiled DSM but also increasing the probability 415 
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of incurring vertical error. It is important to highlight that the GMRF interpolation 416 

algorithm was able to properly fill the DSM gaps left by PCI method, especially in 417 

greenhouse land cover areas, without significantly affecting the final vertical accuracy 418 

results, a finding already reported by F. J. Aguilar et al. (2016). 419 

The spatial distribution of GMRF DSM errors is depicted in Fig. 5. The error 420 

distribution of RSP and PCI compiled GMRF DSM presented a similar pattern, with the 421 

highest vertical error mainly localized along manmade features edges. Most of errors are 422 

positive, i.e. stereo-photogrammetrically derived DSM slightly overestimated the true z-423 

values provided by the lidar reference DSM. This was expected since photogrammetric 424 

points could be considered as the features visual envelope. Finally, most of the working 425 

area presented absolute errors lower than 1 m, which can be deemed an adequate result.  426 

Table 3 Vertical accuracy assessment results for the GMRF DSM produced by the PCI and RSP stereo 427 

matching methods. Units expressed in meters. 428 

Fig. 5. Spatial distribution of residuals for the GMRF DSM corresponding to the four test areas generated from 429 

PCI (left column) and RSP (right column). 430 

4.2.2.  DEM vertical accuracy assessment  431 

With regards to the automatically filtered and GMRF interpolated DEM, the random 432 

errors, measured in terms of standard deviation, were similar for all the test areas and 433 

between the two image matching methods tested for DSM production (Table 4). As 434 

expected, the computed DEM standard deviation was consistently higher than that 435 

estimated in the case of GMRF DSM, ranging from 1.16 to 2.28 m. Indeed, now there are 436 

two concomitants sources of error, DSM original error and DSM-to-DEM error (DSM 437 

filtering error). However, the test area 1 showed the highest random error value, mainly due 438 
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to the presence of two relatively deep dry ravines running from North to South. 439 

Also note that the systematic errors depicted a different behaviour in the test area 1 440 

compared to those observed in the other test areas. In fact, the mean error in the test area 1 441 

presented a negative bias, thus underestimating the true elevation provided by the lidar 442 

derived DEM data. Just the opposite happened in the other test areas. This bias effect was 443 

again more pronounced in those DEM filtered from the DSM produced by RSP method, 444 

probably because RSP assumes more risk in image matching over cumbersome areas. In 445 

the vertical profile shown in Fig. 7, it can be appreciated that the filtered DEM extracted 446 

from the corresponding PCI generated DSM (similar behaviour was observed in the case 447 

of the RSP derived DEM) resulted in an excessively smooth surface along the dry ravine, 448 

producing a noticeable decrease in slope on its originally steep flanks and a subsequent 449 

underestimation of the elevations provided by the lidar-derived DEM. This undesirable 450 

effect was due to the way in which the algorithm DSM2DTM, implemented in PCI 451 

Geomatics, automatically converts a DSM into a bare-earth DEM by applying a series of 452 

filtering steps that remove features such as buildings, greenhouses and vegetation stands 453 

and, at the same time, maintain natural terrain features under a previously set slope 454 

threshold. Likely, the slope threshold parameter selected for the test area 1 (35%) should 455 

be increased to avoid filtering out the steep gully flanks. In any case, it is beyond the scope 456 

of this article to conduct an in-depth study about the optimization of the available DSM-to-457 

DEM filtering algorithms. Only note that the use of spatially adapted parameters could 458 

notably improve the results regarding DEM accuracy.  459 

Table 4 Vertical accuracy assessment results for the DEM extracted from the DSM produced by the PCI and 460 

RSP stereo matching methods. Units expressed in meters. 461 
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The spatial distribution of DEM residuals is shown in Fig. 6. As explained above, the 462 

test area 1 depicts a general underestimation of the true elevation values mainly located 463 

along the two steep flanks of the dry ravines. An opposite situation can be seen in the other 464 

test areas, where the general tendency would be more prone to overestimate DEM 465 

elevations, especially in greenhouse built-up areas. In fact, the higher the greenhouse 466 

density, the higher the positive bias in signed DEM residuals (Table 4). In the main, the 467 

DSM-to-DEM algorithm produced an insufficient removal of built-up features, especially 468 

greenhouses, as compared to the lidar derived DEM which may even register some last 469 

laser returns onto the greenhouse floor, thus contributing to a better definition of the bare-470 

earth DEM.  471 

Fig. 6. Spatial distribution of residuals for the DEM corresponding to the four test areas derived from PCI DSM 472 

(left column) and RSP DSMs (right column). 473 

Fig. 7. Vertical profile crossing one of the dry ravines located at the test area 1(the red line in Fig. 2 indicates the 474 

location of this profile). The points represented in magenta correspond to the lidar-derived DEM (see section 2.3), 475 

while the red points take part of the DEM filtered from the PCI DSM (see section 3.3). 476 

Conclusions 477 

In this work it is proposed a methodological pipeline to automatically produce 478 

valuable 3D information (DSM and bare-earth DEM geospatial products) from VHR stereo 479 

imagery in order to potentially improve PCG mapping over large areas. Lidar derived DSM 480 

and DEM were used to carry out the vertical accuracy assessment of the stereo 481 

photogrammetrically generated products. Note that, to the best of our knowledge, this is the 482 

first work that addresses the challenge of the generation of DSM and DEM products in 483 

dense PCG areas from VHR satellite imagery. The way to merge this 3D geospatial 484 
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information and the traditional 2D spectral-based information will be faced in further 485 

works.  486 

With regards to DSM completeness, the RSP approach yielded significantly better 487 

scores than PCI, above all in high dense PCG areas, demonstrating that semi-global 488 

matching can extract image matching points even over radiometrically difficult-to-match 489 

image patches (e.g. some greenhouse roofs with a pronounced glint effect). This advantage 490 

turns out to be very relevant when dealing with generating DSM in very dense PCG areas.  491 

Concerning vertical accuracy of the GMRF DSM, both PCI and RSP methods yielded 492 

similar vertical accuracy results in terms of random errors, with standard deviations ranging 493 

from 0.56 to 0.82 m. It must be underlined that a slightly higher positive bias (height 494 

overestimation) was detected in the case of RSP as compared to PCI, likely because RSP 495 

can incur a commission error when working on difficult to match image patches to achieve 496 

higher completeness scores than PCI.  497 

The DEM error figures also showed no significant differences between the two tested 498 

approaches regarding random errors, presenting standard deviations ranging from 1.16 to 499 

2.28 m. In relation to the systematic errors, they were much higher than those obtained in 500 

the case of GMRF DSM production, again RSP method showing a slightly higher bias than 501 

PCI. Summing up, the computed DEM error figures were highly dependent on DSM-to-502 

DEM filtering error, in turn closely related to greenhouse density and terrain complexity. 503 

Concerning DSM-to-DEM automatic filtering, the PCI algorithm DEM2DTM usually 504 

yielded reasonable results, especially considering that only two parameters were tuned 505 

during a trial and error process. However, more spatially adapted parameters would be 506 

required to improve the final DSM-to-DEM filtering results. In this sense, it can be 507 

concluded that more research should be devoted to improving the filtering tools available 508 
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to automatically convert a stereo photogrammetrically derived DSM into a bare-earth DEM 509 

in the case of PCG areas. 510 

The 3D information provided through the methodological pipeline described in this 511 

work could be very valuable as a complement to the traditional 2D spectral information 512 

offered by VHR satellite imagery to improve PCG mapping and monitoring over large 513 

areas. This might be accomplished, for example, by computing the normalized digital 514 

surface model from the difference between the GMRF DSM and the corresponding DEM 515 

to obtain a georeferenced raster layer containing the height of all overlying objects on the 516 

terrain, such as buildings, trees and greenhouses. 517 
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Table 1 Characteristics of the panchromatic band for the WV-2 stereo pair. 751 

Product WV-2 Stereo Pair 

Images WV-2 Image 1 WV-2 Image 2 

Acquisition Date  July 5, 2015 July 5, 2015 

Acquisition Time (GTM) 11:02 11:03 

Off-nadir View Angle 12.6° 24.6° 

Collection Azimuth 59.2° 172.7° 

Collected Col GSD (m) 0.488 0.519 

Collected Row GSD (m) 0.480 0.584 

Product Pixel Size (m) 0.5 0.5 

 752 
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Table 2 PCG landcover density and completeness scores for the DSM extracted from applying the RSP and PCI 754 
stereo-matching approaches. 755 
 756 

 PCG landcover (%) 
Completeness (%)  

RSP stereo-matching 
Completeness (%) 

PCI stereo-matching 

Test area 1 16.43 99.42 93.19 

Test area 2 27.51 99.57 94.42 

Test area 3 49.32 99.25 88.13 

Test area 4 85.65 98.87 86.65 
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Table 3 Vertical accuracy assessment results for the GMRF DSM produced by the PCI and RSP stereo matching 758 
methods. Units expressed in meters.  759 
Test areas Test area 1 Test area 2 Test area 3 Test area 4 

Method RSP  PCI   RSP  PCI   RSP  PCI   RSP  PCI   

Mean error 0.15 0.05 0.19 0.06 0.28 0.01 0.32 0.35 

Standard deviation 0.62 0.65 0.59 0.56 0.78 0.72 0.80 0.82 

Maximum error 3.43 3.68 3.15 2.92 3.68 3.13 3.53 4.11 

Minimum error -3.15 -3.58 -2.64 -2.68 -3.10 -3.04 -2.92 -3.38 

L95 1.35 1.55 1.35 1.34 1.97 1.86 1.96 2.10 

L90 0.88 0.84 0.90 0.79 1.26 1.16 1.34 1.37 

 760 
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Table 4 Vertical accuracy assessment results for the DEM extracted from the DSM produced by the PCI and RSP 762 
stereo matching methods. Units expressed in meters. 763 
Test area Test area 1 Test area 2 Test area 3 Test area 4 

DEM derived from RSP PCI RSP PCI RSP PCI RSP PCI 

Mean error -1.28 -1.26 0.46 0.27 0.97 0.61 1.78 1.60 

Standard deviation 2.28 2.00 1.41 1.36 1.16 1.21 1.35 1.44 

Maximum error 6.20 5.61 5.22 4.72 4.73 4.57 5.84 5.95 

Minimum error -8.62 -8.08 -4.34 -4.16 -2.30 -3.28 -2.30 -3.74 

L95 5.81 5.10 3.59 3.19 3.27 3.01 3.83 3.92 

L90 4.90 4.13 2.90 2.72 2.83 2.54 3.51 3.46 
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Fig. 1. 766 
Location of the study site in the province of Almeria (Spain) and the four selected subareas as red rectangles. 767 
These subareas are characterized, in addition to PCG and bare soil, by dry ravines (1), vegetation (2) urban areas 768 
(3) and very high concentration of PCG (4). Coordinate System: WGS84 UTM Zone 30. 769 

Fig. 2.  770 

Lidar-derived grid format DSM and DEM for the four test areas. Left column: Lidar-derived DSM. Right 771 
column: Lidar-derived DEM. The red line (DEM test area 1 in the first row on the right) corresponds to the 772 
location of the profile represented in Fig. 7). 773 

Fig. 3.  774 
Stereo photogrammetrically derived DSM corresponding to the four test areas generated from PCI (left column) 775 
and RSP (right column). 776 

 777 
Fig. 4. Influence of local radiometric dissimilarity on greenhouse plastic cover in relation to DSM completeness 778 
over the test area 4. The PAN images from WV2 stereo pair are shown above. DSM produced by PCI and RSP 779 
software packages are shown below. Blue ellipses highlight greenhouses presenting glint changes while yellow 780 

ellipses mark two greenhouses painted white. Matching problems in both DSM are presented in red colour. 781 

Fig. 5.  782 
Spatial distribution of residuals for the GMRF DSM corresponding to the four test areas generated from PCI (left 783 
column) and RSP (right column). 784 

Fig. 6.  785 
Spatial distribution of residuals for the DEM corresponding to the four test areas derived from PCI DSM (left 786 
column) and RSP DSM (right column). 787 

Fig. 7.  788 
Vertical profile crossing one of the dry ravines located at the test area 1(the red line in Fig. 2 indicates the 789 
location of this profile). The points represented in magenta correspond to the lidar-derived DEM (see section 790 
2.3), while the red points take part of the DEM filtered from the PCI DSM (see section 3.3). 791 
  792 
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 793 
Fig. 1. Location of the study site in the province of Almeria (Spain) and the four selected subareas as red 794 

rectangles. These subareas are characterized, in addition to PCG and bare soil, by dry ravines (1), vegetation (2) 795 
urban areas (3) and very high concentration of PCG (4). Coordinate System: WGS84 UTM Zone 30. 796 
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  798 
Fig. 2. Lidar-derived grid format DSM and DEM for the four test areas. Left column: Lidar-derived DSM. Right 799 

column: Lidar-derived DEM. The red line (DEM test area 1 in the first row on the right) corresponds to the 800 
location of the profile represented in Fig. 7). 801 
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 803 

 804 
Fig. 3. Stereo photogrammetrically derived DSM corresponding to the four test areas generated from PCI (left 805 

column) and RSP (right column). 806 
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 808 

Fig. 4. Influence of local radiometric dissimilarity on greenhouse plastic cover in relation to DSM completeness 809 
over the test area 4. The PAN images from WV2 stereo pair are shown above. DSM produced by PCI and RSP 810 
software packages are shown below. Blue ellipses highlight greenhouses presenting glint changes while yellow 811 

ellipses mark two greenhouses painted white. Matching problems in both DSM are presented in red colour. 812 
 813 
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 815 
Fig.5. Spatial distribution of residuals for the GMRF DSM corresponding to the four test areas generated from 816 

PCI (left column) and RSP (right column). 817 
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 819 

 820 
Fig. 6. Spatial distribution of residuals for the GMRF DEM corresponding to the four test areas derived 821 

from PCI DSM (left column) and RSP DSM (right column). 822 
  823 
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 824 
Fig. 7. Vertical profile crossing one of the dry ravines located at the test area 1(the red line in Fig. 2 825 

indicates the location of this profile). The points represented in magenta correspond to the lidar-derived DEM 826 
(see section 2.3), while the red points take part of the DEM filtered from the PCI DSM (see section 3.3). 827 
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