
Received: 13 July 2022 - Revised: 15 September 2022 - Accepted: 21 January 2023 - IET Software
DOI: 10.1049/sfw2.12121

OR I G INAL RE SEARCH

Bayesian Network analysis of software logs for data‐driven
software maintenance

Santiago del Rey1 | Silverio Martínez‐Fernández1 | Antonio Salmerón2

1Universitat Politècnica de Catalunya, Barcelona,
Spain

2Department of Mathematics & Center for the
Development and Transfer of Mathematical Research
to Industry (CDTIME), University of Almería,
Almería, Spain

Correspondence

Santiago del Rey
Email: santiago.del.rey@upc.edu

Funding information

Junta de Andalucía, Grant/Award Number: P20‐
00091; AEI, Grant/Award Number: PID2019‐
106758GB‐C32/AEI/10.13039/501100011033;
Spanish project, Grant/Award Number: PDC2021‐
121195‐I00; Spanish Program, Grant/Award
Number: BEAGAL18/00064

Abstract
Software organisations aim to develop and maintain high‐quality software systems. Due
to large amounts of behaviour data available, software organisations can conduct data‐
driven software maintenance. Indeed, software quality assurance and improvement
programs have attracted many researchers' attention. Bayesian Networks (BNs) are
proposed as a log analysis technique to discover poor performance indicators in a system
and to explore usage patterns that usually require temporal analysis. For this, an action
research study is designed and conducted to improve the software quality and the user
experience of a web application using BNs as a technique to analyse software logs. To this
aim, three models with BNs are created. As a result, multiple enhancement points have
been identified within the application ranging from performance issues and errors to
recurring user usage patterns. These enhancement points enable the creation of cards in
the Scrum process of the web application, contributing to its data‐driven software
maintenance. Finally, the authors consider that BNs within quality‐aware and data‐driven
software maintenance have great potential as a software log analysis technique and
encourage the community to deepen its possible applications. For this, the applied
methodology and a replication package are shared.

K E Y WO R D S
Bayes methods, software maintenance, software quality

1 | INTRODUCTION

Software quality management is a key activity for the mainte-
nance of software systems. Indeed, the budget that companies
invest in software quality management is estimated to increase in
the next years [1]. Software systems can generate large amounts
of data both from its internal state and from how it is being
used. The maintenance of such systems can benefit from the
analysis of the available data to get better insights of the system,
thus, performing data‐driven software maintenance. For
instance, companies can analyse the user experiences of their
software systems [2] in order to detect possible defects, such as
performance downgrades or unexpected errors. To improve the
user experience, it is key to understand the users' usage patterns
when navigating a software system. Understanding these pat-
terns enables companies the ability to enhance the design of

their software systems [3] as well as provide personalised in-
formation depending on the user [4]. In this regard, software
logs are a popular resource to monitor.

Developers place Application Programming Interface calls
to a logging framework (e.g., SLF4J [5] or Log4J [6]) to record
events that describe the internal state of the system as it runs in
production. The analysis of software logs has been proved
useful in improving system comprehension [7, 8], performance
analysis [9, 10], finding usage patterns [11, 12], and anomaly
detection [13, 14]. Nevertheless, this analysis is not free from its
own challenges [15].

Regarding software logs analysis, the introduction of
Bayesian Networks (BNs) based on behaviour data to improve
performance and users' experience has not been studied yet in
real‐life contexts. This is an opportunity that motivates our
research, as BNs have turned out to be a useful tool to achieve

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2023 The Authors. IET Software published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

268 - IET Soft. 2023;17:268–286. wileyonlinelibrary.com/journal/sfw2

https://doi.org/10.1049/sfw2.12121
https://orcid.org/0000-0003-4979-414X
https://orcid.org/0000-0001-9928-133X
https://orcid.org/0000-0003-4982-8725
mailto:santiago.del.rey@upc.edu
https://orcid.org/0000-0003-4979-414X
https://orcid.org/0000-0001-9928-133X
https://orcid.org/0000-0003-4982-8725
https://ietresearch.onlinelibrary.wiley.com/journal/17518814
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fsfw2.12121&domain=pdf&date_stamp=2023-02-14

actionable and interpretable results [16] and have been previ-
ously proposed in other SE areas [17]. The potential advantage
of BNs with respect to other software logs analysis techniques
is twofold. On one hand, BNs can be regarded as predictive
models like classification trees or artificial neural networks,
turning out to be competitive in terms of accuracy while
remaining significantly less costly in terms of model size and
learning time, which makes them especially appropriate in
high‐dimensional problems with large volumes of data. On the
other hand, BNs can also be employed as a means of extracting
knowledge from data. This is achieved by encoding the re-
lationships between the variables in the network structure in
such a way that just by exploring the structure of the learnt
model, it is possible to know if two variables are relevant to
one another in a given context with no need to carry out any
numerical analysis and regardless of the values of the estimated
parameters. In addition, we find that they provide very intuitive
results, which can be easily understood by non‐experts
compared to other approaches proposed in the literature [18,
19]. This can be beneficial in the industry where there can be
members without the knowledge of BNs. Moreover, by using
BNs, we are able to process a large amount of log data at a
relatively low computational cost compared to other tech-
niques, such as classification trees or Deep Neural Networks.

Therefore, to enable interpretable data‐driven software
maintenance activities like managing application performance
and usage patterns, we propose the BN analysis of software
logs. More specifically, we explore a data‐driven construction
of BNs, rather than expert‐based ones, as they are scarce but
possible with the huge amounts of behaviour data available. To
fix the scope of the study, we focus our research on the context
of log analysis in web applications. We hypothesise that BNs
constitute an appropriate tool for modelling and analysing web
performance and usage pattern issues due to their probabilistic
and temporal capabilities. More precisely, we propose the use
of BNs for representing the relationships between the variables
analysed. In this way, the uncertainty related to the interaction
between the variables is naturally represented by the factorised
probability distribution encoded by the network.

In this context, we have designed and conducted an action
research study in a web application project to study the
effectiveness of BN analysis of software logs for (a) evaluating
application performance and (b) discovering usage patterns. To
this aim, we create three models: (i) performance model, (ii)
error model, and (iii) temporal model.

In this paper, we show the potential of using BNs for
software log analysis to detect performance deficiencies, errors,
and usage patterns. The main contributions of this work are:

� We propose and show the use of BNs for software logs
analysis to detect performance deficiencies and errors in a
web application. With our approach, we are able to detect a
set of enhancement points, such as pages with irregular load
times or unexpected exceptions.

� We propose and show the use of BN analysis of software
logs to discover new usage patterns in a web application. By
doing so, we detect recurrent patterns that led to the
improvement of the user interface.

� We propose and show the usefulness of BN analysis of
software logs for data‐driven software maintenance. Specif-
ically, we show several Scrum cards created after performing
the BN analysis.

� A replication package of our study, whose objective is
twofold: to enable the reproducibility of the used BNs and
to support other researchers and practitioners to apply this
technique in other web applications.

This paper is structured as follows. Section 2 describes
related work. Section 3 presents the research methodology,
consisting of an action research, and a process to analyse
software logs with BNs. Section 4 presents the results of the
action research, together with the validation of the Bayesian
models, and the deployment into Scrum cards. Section 5 dis-
cusses the results of the study and lessons learnt. Section 6
reports threats to validity. Finally, Section 7 concludes the
paper and anticipates future work.

2 | RELATED WORK

In this section, we describe related work regarding managing
software quality and Bayesian analysis in Software Engineering
(SE).

2.1 | Managing software quality based on
software logs

Software quality assessment can be performed at almost all the
phases of software development – from project inception to
maintenance – and at different levels of granularity – from
source code to architecture. For data‐driven software quality
and maintenance, software logs are a good source of data due
to their capacity to inform about the state of a system. Indeed,
log analysis in web applications has grown in popularity among
the SE research community [20]. Current research ranges from
log analysis for performance and error detection to usage
patterns detection.

Log analysis for performance. Logging is a well‐known and
extended practice to obtain different types of performance
metrics. For instance, Nagaraj et al. propose DISTALYZER,
an automated tool to support the developer for the investi-
gation of performance issues in distributed systems. They use
machine learning (ML) techniques and the log data available to
present a set of patterns to help developers to detect the root
cause of the performance issues [9]. Syer et al. propose an
automated approach using hierarchical clustering that com-
bines performance counters and execution logs to diagnose
memory‐related performance issues [21]. Chow et al. use a
causal model to analyse the end‐to‐end performance in
distributed systems by observing log traces [22].

Log analysis for error detection. As web applications grow
in size and popularity, the number of errors occurring could also
grow due to a higher diversity of their usage (e.g., different
devices and locations). With thousands or millions of users
accessing every day, it is of utmost importance that developers

DEL REY ET AL. - 269

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

can quickly locate these errors and identify their source to
reduce the fixing time as much as possible. One way to achieve
this is to analyse the different logs that a web application gen-
erates. However, log files tend to grow rapidly in size and
contain irrelevant information making their manual exploration
an impossible task. For this reason, it is important to find other
methods that can extract for us the information needed without
much intervention. Indeed, this type of analysis has already been
explored for other topics like anomaly detection. Du et al.
propose DeepLog, which utilises a Long Short‐Term Memory
deep neural network to model a system log as a natural language
sequence [18]. Similarly, Zhang et al. utilize an attention‐based
Bi‐LSTM model to capture the contextual information in the
log sequences and automatically learn the importance of
different log events. In this way, they are able to handle unstable
log events and sequences for anomaly detection [23]. Yang et al.
propose PLELog, a semi‐supervised approach to log‐based
anomaly detection to get rid of time‐consuming manual label-
ling and incorporate the knowledge of historical anomalies via
probabilistic label estimation. PLELog is robust against unstable
logs via semantic embedding and detects anomalies by
leveraging the attention mechanism [19].

Log analysis for usage patterns detection. Understanding
how users make use of a web application can be very useful
in the elicitation of new requirements. By detecting their
usage patterns, developers can detect multiple enhancement
points, such as unused or popular features and error‐inducing
sequences of actions. Wang et al. propose the use of a
compact path traversal graph to represent the web navigation
patterns and an efficient graph traverse algorithm to find
throughout‐surfing patterns [24]. Gadler et al. use Hidden
Markov Models to mine use logs and automatically model the
use of a system [25]. Barifah et al. explore the hidden usage
patterns of a large‐scale digital library by analysing log files
and classifying them by using K‐Means [26]. Pettinato et al.
propose a semi‐automated method for reconstructing se-
quences of tasks of a system [27]. Liu et al. analyse log
registries of an appstore‐service to understand usage patterns
with respect to aspects, such as app popularity, app man-
agement, and device‐specific preferences [12]. Jindal et al.
propose a pruning‐based Markov model called Pruned all‐
Kth Modified Markov Model (PKM3) for predicting web
navigation sequences [28].

de Sousa et al. provide an overview of 20 years of research
in BNs applied to software project management [29]. They
claim that most of the studies using BNs are performed in a
laboratory environment rather than in real contexts. Moreover,
to the best of our knowledge, there are no studies on how to
analyse software logs to detect multiple software quality de-
ficiencies while providing intuitive results. To address these
issues, we propose the use of BNs for log analysis to detect
performance issues, errors, and common usage patterns,
leveraging usage data and system logs of a web application
already in production. Ultimately, we want to provide a tool to
accurately detect multiple software quality deficiencies for large
volumes of data that is easy to understand for technical and
non‐technical users.

2.2 | Bayesian network analysis in software
engineering

Bayesian Networks [31] are a statistical technique able to
represent Bayesian hierarchical models. Besides the quantitative
modelling of the relationship between the variables under
analysis, BNs provide interpretable qualitative information
about the model structure. The Bayesian approach usually
comes along with flexible analysis techniques that yield results
that are intuitive and easy to interpret. The importance of
properly interpreting the results of statistical analysis is a topic
of interest within the statistical community, especially given the
misuse of statistical concepts like the p‐value when making
decisions [32].

Bayesian Networks are factorised representations of the
joint distribution over a set of random variables. Therefore, they
can be used in a wide variety of tasks, being one of the most
prominent ones in the classification task. From the point of view
of BNs, classification consists in determining the most probable
value of a so‐called class variable, given that the values of some
predictive variables are known. For instance, in a web applica-
tion, one can be interested in predicting whether a page is going
to show problems when loading given some information about
the user, like web browser, device, location etc. The perfor-
mance of BNs for classification, also called BN classifiers, has
been compared to other popular ML techniques in terms of
different measures, like the Area Under the Receiver Operating
Characteristic Curve and the H‐measure [33].

Bayesian Networks have already been applied to some
aspects of SE. Examples are the exploration of the relation-
ships between software metrics and defect proneness (dis-
tinguishing between the most and less effective metrics on
defect proneness) [34], defect causal analysis [35], and code
quality [36]. Other studies have focussed on assessing software
quality, particularly considering the prediction of quality stra-
tegic indicators [37], and the requirements engineering phase
[38–40]. They have also been used as a tool for making de-
cisions in evidence‐based [17] and value‐based [41] SE. In a
recent study, Russo et al. use Bayesian analysis to study the
relationship between software engineers' personality traits and
their tendency to engage in and enjoy effortful thinking. In
another recent study, Britto et al. use Bayesian analysis to
evaluate the impact of bug priority, code‐churn size in bug
fixing commits, and links between bug reports on the bug‐
fixing time [42].

In a previous work by Hassan et al., BNs were used to learn
and predict page categories visited in first N positions, type of
visit (short or long), and` rank of page categories visited in N
first positions [30]. We complement their study by applying
BNs not only to make user behaviour predictions but also to
assess application performance and detect errors.

We summarize related works regarding the application of
BNs in software log analysis in Table 1. In this study, we
propose the use of BNs to perform such analysis. We will
approach this goal through an action research oriented to
improving the software maintenance process of a web appli-
cation using BNs. In this paper, we introduce two novel

270 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

aspects: (i) the data‐driven construction of BNs from software
logs data and (ii) their use to reason about multiple quality
requirements like performance efficiency and usability.

3 | RESEARCH METHODOLOGY

In this section, we describe the goal and Research Questions
(RQs), the study design, the data collection and preparation
procedures, and the steps to construct BNs for analysing
software logs.

3.1 | Goal and research questions

To define the goal of our empirical study, we used the Goal
Question Metric approach [43]. Therefore, we firstly specified
the goal of the study, then traced those goals to the questions
that lead us to know if we meet those goals, and finally provide

a set of efficiency metrics that answer those questions. The
goal of our study is to:

Analyse BNs for software logs
for the purpose of maintaining software systems
with respect to its usefulness for detecting performance
problems, unexpected errors, and usage patterns
from the point of view of the developers
in the context of a web application.

Bearing this goal in mind, we define two RQs:

� RQ1: Is the BN analysis of software logs effective to
detect performance deficiencies and errors in a web
application?

By performance deficiencies, we refer to the quality
requirement of performance efficiency, that is, performance
relative to the number of resources used under stated

TABLE 1 Summary of relevant related works to our study.

Study
Open
data Analysis approach Description of the log analysis approach Aim of the study

[9] No Statistical tests and
dependency networks

Extract a small set of features from logs. Then, use statistical tests to
identify features that most distinguish two sets of logs. Next, use
dependency networks to learn the joint distribution among the
statistics and the performance. Finally, combine the last two steps
to automatically identify a set of interrelated variables that most
diverge across the logs and most affect overall performance.

Performance issues
detection

[22] No Causal models Generate a causal model from a collection of logged events that are
first transformed to a collection of segments. The model looks for
three types of relationships: Happens‐before, mutual exclusion, and
pipeline. Then, perform several performance analyses on the
model: Find the critical path, quantify slack for segments not on the
critical path, and detect performance anomalies

Performance issues
detection

[19] Yes Semi‐supervised learning First, obtain a semantic embedding of the logs in three steps: Log
parsing, word embedding, and TF‐IDF‐based aggregation. Then,
use probabilistic label estimation to estimate the labels of unlabelled
log sequences. Finally, build an anomaly detection model with an
attention‐based Gated Residual Unit neural network and train it
with the estimated labels.

Anomaly detection

[30] No Bayesian networks Learn Bayesian models by using maximum likelihood estimation on the
training data. To predict short and long visit sessions train a Naive
Bayes classifier. To find patterns in the sequence of pages visited,
the range of number of page views, and the ranking of the pages
visited train standard Bayes classifiers.

Web navigation patterns
detection

[25] No Hidden Markov models Build an Iteratively generated HMM (IHMM) by adding one hidden
state at each iteration, starting from a state containing all the event
symbols. Two approaches: An Interactively generated IHMM, in
which at each iteration a practitioner is asked for the symbols to add
from a given list and an automatically generated IHMM where the
top k θ‐interesting sequences generated by the current IHMM are
automatically selected.

System usage modelling

Ours Yes Bayesian networks Obtain a small set of features from multiple log sources. Then, train a
Naive Bayes classifier to predict performance issues and use a
standard BN to detect errors. To detect usage patterns, first,
transform the data into a sequence of actions. Then, train a BN to
detect the usage patterns.

Performance issues, error
and usage patterns
detection

Abbreviation: TF‐IDF, Term Frequency‐Inverse Document Frequency.

DEL REY ET AL. - 271

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

conditions. More precisely, we refer to the time behaviour sub‐
category, defined as the degree to which the response and
processing times and throughput rates of a product or system,
when performing its functions, meet the requirements [44].

With RQ1, we want to explore if BNs can help in small‐
sized software projects in answering questions about perfor-
mance deficiencies and error proneness since these are two key
quality attributes when maintaining a web application due to
their implications in the user experience, and in the end, in user
retention. To answer this question, we measure the performance
by using the page load time metric, which is divided into three
categories: high, medium, and low. In addition, we also measure
the effectiveness of BN analysis to identify the likelihood of a
type of error in the web application and the causing class.

� RQ2: Is the BN analysis of software logs effective to
detect users' usage patterns in a web application?

By detecting usage patterns, we aim at assessing the quality
requirement of usability, that is, the degree to which a product
or system can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction in a spec-
ified context of use. Specifically, we intend to evaluate the
learnability sub‐category, defined as the degree to which a
product or system can be used by specified users to achieve
specified goals of learning to use the product or system with
effectiveness, efficiency, freedom from risk, and satisfaction in
a specified context of use [44].

With RQ2, we want to study the use of BNs to help
practitioners detect anomalous usage patterns in web applica-
tions. For example, it is not uncommon for users to follow
unexpected or rare sequences of actions, under different
contexts (e.g., device and language) leading to errors in the
application. For this purpose, we created a system to collect
usage and error data to help us detect sequences of actions
leading to the error page as well as identify the most common
patterns of usage. To measure how well our findings fit the
previous question, we manually explore the generated model to
find patterns that can help us answer this question.

3.2 | Study design: action research

At the inception of this study, we discussed the appropriate
empirical research method. We chose to design an action
research study, given the realistic research setting of our web
application [45]. Action research is the “empirical research that
investigates how an intervention, like the introduction of a
method or tool, affects a real‐life context” [46]. Its application
has been successful in other SE studies [47, 48]. Please note the
main difference between action research with case study
research, as in the former one, the investigator takes an active
role in the case. As defined by Wohlin [49], “A case study is an
empirical investigation of a case, using multiple data collection
methods, to study a contemporary phenomenon in its real‐life
context, and with the investigator(s) not taking an active role in
the case investigated”.

3.2.1 | Context: a web application

In this action research, we investigate how to improve the
software qualities of a web application named ChessLeague
[50]. We selected this case because it is developed and main-
tained by our research group and we can indeed conduct data‐
driven software maintenance (i.e., applying the intervention of
using Bayesian analysis of software logs to manage perfor-
mance and anomalous usage patterns). Chessleague is an on-
line chess game that simulates team competitions where the
users become managers of a chess club [51, 52]. Players need
to perform tasks, such as the management of their team lineup
or the buying and selling of chess players, to accumulate points
throughout the season to win the league. Currently, it has over
200 daily users.

The web application is built using Java EE 6 and is
deployed in a GlassFish 4.1.2 server. It is structured as a three‐
layer application, where the presentation layer is developed
using Java Servlet Pages, the business layer is implemented
using Enterprise Java Beans, and the database layer uses
MariaDB v10.4.19. This technology stack is a common choice
for enterprise software [53].

The web application is developed and maintained following
the Scrum methodology where we have sprints of 1 week.

3.2.2 | The action research cycle

Inside an action research project, we find different actors
involved. There is an action team, who is responsible for
planning, executing, and evaluating the research. In our study,
this team was composed of the first two authors. The first
author took the roles of both practitioner and researcher, while
the second took the role of a researcher. There is a reference
group that is responsible for the advice and feedback for the
action team. This group was composed of the third author.

Each action research cycle has five phases [45]. In Figure 1,
we can see an overview of the structure of this cycle in our study.
As inputs to the action research cycle, we have the goals we
wanted to achieve first as developers of the application and
second as researchers. In the same way, the outputs of the action
research project represent what we obtained after applying the
five phases during one cycle. We describe our action research
cycle below following the existing guidelines [45, 54]:

1. Diagnosing the problem: Since the action team included the
application developers, the diagnosing phase was completely
oriented towards the improvement of the application from a
software quality point of view. Thus, the action team iden-
tified the need of improving multiple software quality re-
quirements, such as performance efficiency and usability
(anomalous usage patterns). In other words, the developers
in the action team wanted to use log analysis to detect per-
formance deficiencies, run‐time errors, and usage patterns
inside the web application to improve the software quality.
As a result, we defined our goal and RQs, which have already
been described in Section 3.1.

272 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

2. Planning actions: To cope with the diagnosed problem in
the web application, we first started by reviewing the work
that had been done in the fields of software quality man-
agement based on logs and the BN analysis for SE. After
this step, we considered that what we intended to achieve
with this study had not been done yet. We planned our
actions following CRISP‐DM [55], which has been used in
SE projects [56]. First, we needed to understand the needs
of the product. This was already solved in the previous
phase. Second, we planned to collect the log data and un-
derstand it to be able to extract knowledge from it. Third,
we needed to process the data to avoid interferences such as
missing values or redundancy and to construct new features
from it. Fourth, we needed to apply the BN analysis to the
processed data to create three data‐driven models. Fifth, we
planned to validate the models created by using cross‐
validation and evaluating the accuracy. Finally, we inten-
ded to deploy the interpretations from the models into the
development process.

3. Taking actions: As stated in the planning, we first started by
collecting the data. For this, we used three different sources
that will be described in Section 3.3. After the data collec-
tion, we proceeded to its preparation in order to extract the
relevant features for our study. Finally, we produced three
BNs to analyse the data obtained to discover novel insights.

4. Evaluating actions: To evaluate our results, we took two
actions. First, we validated two of the three networks by
measuring their quality using their accuracy estimated by
cross‐validation. For the third one, we manually explored it
to search for useful patterns for our goal. Second, we
interpreted the BNs, finding out unknown performance
anomalies. From these insights, we derived actionable
Scrum cards.

5. Learning and theory building: After conducting the action
research in three sprints, the action team appreciated the
value of BN analysis of software to exploit implicit

feedback and improve the software quality. The team
identified a set of problems that were turned into cards in a
Scrum sprint [57]. The developers of the web application
decided to conduct this software quality management
periodically to discover and address performance efficiency
and usability issues.

Section 3.1 describes the first phase (diagnosis). Phase 2
(planned actions) is described in Sections 3.3, 3.4, and 3.5.
Finally, phases 3, 4, and 5 are described in Section 4.

3.3 | Data collection procedure and dataset

In order to cope with the aforementioned goal of this study, we
collected data from three different sources. First, we used the
usage logs to get the application performance and to see how
the application is being used. Second, we used Google Ana-
lytics (GA) behaviour data to extend the previous information
in order to gain better insights into what causes performance
deterioration. For this, we registered the browsers and devices
used by the users as well as the country from where they
connected. Third, we used the logs provided by the server to
get information about the errors occurring in the application.
The former one was created from scratch to carry out this
study and the two latter were available before this action
research.

Usage logs: To collect the usage data, we first defined the
list of variables needed to answer both RQ1 and RQ2. To keep
the usage logs simple and not overload them, we chose to
collect a reduced number of variables (see Table 2), which
provided us with all the necessary information to answer the
questions presented in Section 3.1. Since we were interested in
user interaction and page performance, we registered when a
page started and finished loading as well as some of the actions
a user could do on a page.

F I GURE 1 Action research in our study (adapted from [45]).

DEL REY ET AL. - 273

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Google Analytics behaviour data: GA offers a great
number of metrics and behaviour data from which we selected
a small relevant subset shown in Table 3. This data was then
used to enrich the usage logs to detect the causes of perfor-
mance deficiencies.

Server logs: The server itself provided us with logs
generated at runtime, which allowed us to answer the second
part of RQ1 by analysing the errors thrown by the application.
As in the previous case, we chose a subset of the variables we
considered relevant for our goal (see Table 4). Due to the
multiple formats used inside the server logs, we used Logstash
[58] to extract the relevant data and write it to a CSV file, which
we later used to build the models.

3.4 | Data preparation procedure

Before creating the different models, we needed to prepare the
raw data. To this end, we created a group of Python scripts
(available in the replication package) that have been evolving

through various iterations. These scripts were used to clean the
raw log data and engineer new variables. Moreover, we did not
use any type of random data during the study.

During the first iteration, we started by cleaning the usage
data. We performed the following cleaning activities. First,
duplicated rows were dropped in order to avoid redundancy.
(ii) Usernames were turned into a lower case since the same
user could appear with its username in upper and lower cases.
(iii) The user was unknown until it logged into the application,
so we back‐propagated the username to those rows that we
knew that belonged to a user. Once we had cleaned the data we
proceeded to construct new variables using the usage data. The
variables created were: day of the week, page load time, time on
page, and action duration. The variables representing durations
were obtained by grouping the data per session and calculating
the time difference with the previous row. The last step of the
first iteration was to integrate the usage data with the GA data.

During the second iteration, we modified the scripts to
create new variables that we thought could affect the page load
time. To this aim, we created a new dataset where we pivoted

TABLE 2 Variables obtained from the usage logs.

Variable Description Type # Levels Values (examples)

Timestamp Instant when the action is being done Timestamp – 2021‐03‐18T12:46:00.216Z

Language Language used to visualize the page Nominal 4 es, en, fr, de

Username User that does the action String – Santiago

Session ID Session ID where the action is being done String – 56693043c07c6016237def2f0620

Page Page where the action is done Nominal 47 Bid, Cron, Help, Play, Team, Start…

Action The action that is being done String – Load page

TABLE 3 Relevant variables obtained from Google Analytics (GA).

Variable Description Type # Levels Values (examples)

Session ID Session ID where the action is being done String – 56693043c07c6016237def2f0620

Timestamp Instant when the action is being done Timestamp – 2021‐03‐18T12:46:00.216Z

Country Country of the connection Nominal 12 Spain, Portugal, Germany…

Browser Browser used by the user Nominal 10 Chrome, Firefox, Safari, Edge, Samsung Internet…

Device category Category of the device used Nominal 3 Desktop, mobile, tablet

TABLE 4 Relevant variables obtained from the server logs.

Variable Description Type # Levels Values (examples)

Timestamp Instant when the log entry was registered Timestamp – 2021‐03‐18T12:46:00.216Z

Severity Severity of the entry Ordinal 3 SEVERE, WARNING, INFO

Message Detail of the entry String – Servlet.service() for servlet jsp threw exception

Thread name Name of the thread where the incidence occurs String – http‐listener

Error Error that has occurred String – java.lang.NullPointerException

Class Class that throws the error String – org.apache.jsp.ErrorPage_jsp

Method Method where the error has occurred String – _jspService

274 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the server logs using the error type and then computed the
number of errors every 5 seconds. This grouping was done due
to the difficulty of relating an error to a particular user since
the only common value they had is the timestamp. In addition,
we used the usage logs to compute the number of pages
accessed every 30 seconds. The final step of the second iter-
ation was the integration of the new data with the dataset from
the first iteration. This gave us an approximation of the
number of errors that were happening for every row. Addi-
tionally, we took the opportunity to change the granularity of
some variables that were too fine‐grained, such as the user-
name or the action.

3.5 | Construction of Bayesian networks for
analysing software logs

To facilitate the use of BN analysis in other web applications or
other software applications in general, we provide a detailed
explanation of how we built the BNs in our study.

In what follows, we will use uppercase letters to denote
random variables and lowercase letters to denote a value of a
random variable. In this context, the random variables will be
the variables of interest in our action research. For instance, page
load time, time on page, and action duration (see Section 3.4).
Boldfaced characters will be used to denote sets of variables. The
set of all possible combinations of values of a set of random
variablesX is denoted as ΩX. A BN [31] with variablesX = {X1,
…, Xn} is formally defined as a directed acyclic graph with n
nodes where each one corresponds to a variable in X. Attached
to each node Xi ∈ X, there is a conditional distribution of Xi,
given its parents in the network, Pa(Xi), so that the joint dis-
tribution of the random vector X factorises as

pðx1;…; xnÞ ¼∏
n

i¼1
pðxijpaðxiÞÞ; ð1Þ

where pa(xi) denotes a configuration of the values of the
parents of Xi.

An example of a BN representing the joint distribution of
the variables X = {X1, …, X5} is shown in Figure 2. It encodes
the factorisation

pðx1; x2; x3; x4; x5Þ ¼ pðx1Þpðx2jx1Þpðx3jx1Þpðx5jx3Þpðx4jx2; x3Þ:

One advantage of BNs is that the factorisation simplifies
the specification of large multivariate distributions that are
replaced by a set of smaller ones (with a lower number of
parameters to specify). For example, the factorisation encoded
by the network in Figure 2 replaces the specification of a joint
distribution over 5 variables with the specification of 5 smaller
distributions, each one of them with at most 3 variables.
Another advantage is that the network structure describes the
interaction between the variables in the model, in a way that
can be easily interpretable, according to the d‐separation cri-
terion [31]. As an example, the structure in Figure 2 determines

that variables X1 and X5 are independent if the value of X3 is
known, and likewise, X2 and X3 are independent if X1 is
known.

From the perspective of our study, by using BNs, we will be
able to model the probability distribution of the variables of
interest, given all the other available variables, and use it to make
predictions (for instance, predicting the load time of a given
page with the network in Figure 3). Besides the prediction ca-
pabilities, we will also be able to represent the interaction be-
tween the variables that determine that an error happens (see,
for instance, Figure 4).

The process of building a BN from data involves two tasks,
namely learning the network structure and then estimating the
conditional distributions corresponding to the selected struc-
ture. Assuming that all the variables in the network are discrete or
qualitative, the estimation of the conditional distributions can be
obtained from the relative frequencies in the data of each com-
bination of possible values of the variables involved, which
correspond to the so‐called maximum likelihood estimation.
The structure learning task is usually approached as an optimi-
zation problem, where the space of possible network structures
is traversed trying to maximize some score functions that mea-
sure howaccurately a given structure fits the data.More precisely,
we have used the Bayesian Information Criterion (BIC) score,
which is a typical choice in the literature [59], defined as

BICðMjDÞ ¼
XN

l¼1

ln p
�
xljθ̂
�

−
1
2
dln N ; ð2Þ

where D = {x1, …, xN} is the dataset, M is the network under
evaluation, and p

�
xljθ̂
�
is the joint distribution corresponding

to network M with parameters θ̂ estimated by maximum like-
lihood. The idea of using the BIC score is to obtain networks
that fit the data accurately, but at the same time, give prefer-
ence to simple networks. That is why the number of parame-
ters, d, necessary to specify the probability distributions in the
network, is used as a penalty factor. Other popular choices are
the Akaike Information Criterion (AIC) and Bayesian Dirichlet
equivalent (BDE) scores (we refer the reader to [59] for their
detailed definition).

Alternatively, it is also possible to choose a given network
structure beforehand and only estimate the conditional

F I GURE 2 An example of a Bayesian network (BN) structure with 5
variables.

DEL REY ET AL. - 275

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

distributions from data. This is particularly interesting if the
network is going to be used for prediction purposes, where one
is interested in the value of a target variable rather than in the
interactions between the other variables. An example of such a
fixed structure is the so‐called Naive Bayes (NB) [60], where
the variable whose value we want to predict is the root of the
network and the only existing links go from that variable to the
rest of the variables in the network (see Figure 3 for an
example of such structure).

Adopting an NB structure means a strong independence
assumption (all the variables are conditionally independent
given the root variable C), but in practice, it is compensated by
the low number of parameters that need to be estimated from
data. Notice that, in this case, the factorisation encoded by the
network results in

pðc; x1;…; xnÞ ¼ pðcÞ∏
n

i¼1
pðxijcÞ; ð3Þ

meaning that n one‐dimensional conditional distributions must
be specified instead of one n‐dimensional conditional
distribution.

The process we have adopted to build the BNs for soft-
ware logs is shown in Figure 5. Specifically, it involves the
following steps:

� Step 1: Collect the performance and error data from the
different sources and process it, if necessary, to extract the
relevant variables for the study and to integrate the different
datasets.

� Step 2: Load the data in the R statistical software [61] and
select the relevant variables for the model, and then
manually discretise the variables that need custom thresh-
olds or values. Next, transform all character values to

factors and all integers to numeric using, for example, the
dplyr [62] package. Finally, use the discretise function from
the bnlearn [63] package to discretise all numeric values.

� Step 3 (needed for temporal models): To simulate a tem-
poral model, use the fold_dt function from the dbnR [64]
package. However, when using this function, keep in mind
that to correctly simulate the sequence of actions we need to
previously have the data ordered in a descending action
order.

� Step 4: Learn the network structure from data, using the
function hc from the bnlearn package, and then use the bn.fit
function to estimate the conditional distributions corre-
sponding to the learnt structure. The function hc performs a
hill‐climbing search over the space of possible network
structures, attempting to optimise a score function as in
Eq. (2).

� Step 5 (needed for NB model validation): Randomly split
the data into K folds and go to step 7.

� Step 6 (needed for model comparison): We can use the bn.
cv function from the bnlearn package to obtain the Log‐
Likelihood loss, which we can use to compare the net-
works obtained from using different scores.

� Step 7 (needed for NB models): If instead of learning the
network structure we want to force the model to have an NB
structure, we can use the function naive.bayes from the
bnlearn package and then estimate the corresponding con-
ditional distributions using the bn.fit function onK− 1 folds.

� Step 8 (needed for NB models): We can use the model learnt
in step 6 to predict the performance of the data in the fold
reserved for testing. For this, we use the predict function
from bnlearn, which returns the corresponding perfor-
mance for each row. Then, we can compare the true labels
with the predicted ones and assess the model quality.

� Step 9 (needed for NB models): Repeat steps 7 and 8 for
each of the K folds.

� Step 10 (optional): We can plot the network structure using
the graphviz.plot function from the Rgraphviz [65] pack-
age. Also, we can use the bnlearn package to write the
network to a BIF, NET, DSC, or DOT file and then explore
it with a tool like Hugin [66].

The replication package, structured following Cook-
ieCutter Data Science [67], is available on https://doi.org/10.
5281/zenodo.6823268.

F I GURE 3 Structure of the performance network.

F I GURE 4 Structure of the error model learnt using the Bayesian
Dirichlet equivalent score.

276 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.6823268
https://doi.org/10.5281/zenodo.6823268

4 | RESULTS AND INTERPRETATION

In this section, we give a brief description of the process we
followed to create the models (applying the steps defined in
Section 3.5) used to answer each RQ and analyse the results.
We, respectively, answer RQ1 and RQ2. In Figure 6, we show a
summary schema of the study.

4.1 | RQ1: Is Bayesian network analysis of
software logs effective to detect performance
deficiencies and errors in a web application?

4.1.1 | Performance model

We created a model to analyse how the variables we had
collected affected the load page time. For this, we created a BN
following the procedure described in Section 3.5. We first

converted all the variables to factors or numerical values
depending on their type. Then, we discretised the numerical
variables since we wanted to know when their values exceeded
the performance thresholds that the action team had set rather
than their particular value. Among the discretised variables, we
highlight three of them: load_time, time_on_page, and
action_duration. For the load_time and action_duration, we
used the following categories: optimal, low, medium, and high.
And for the time_on_page, we used the categories: very low,
low, medium, and high.

After learning the network structure, we noticed that
contrary to our first thoughts, action was not connected to
any other variable. We suspected this due to the high
granularity of the variable since it captured too specific
actions. We also realised that the user and page were not
related, which went against our initial thoughts. To solve
these problems, we decided to group fine‐grained actions
into more general actions and to group users into two

F I GURE 5 Overview of the steps we take for the creation of the Bayesian Networks (BNs). Numbers in brackets refer to the steps described in Section 3.5.

DEL REY ET AL. - 277

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

categories depending on their role: admin and not admin.
Finally, we detected that the variables representing time
measures were not distributed in a balanced way since
almost all of their values fell below the first level (see
Figure 7a,b).

We used the second iteration to solve all the aforemen-
tioned problems. In particular, we redefined the thresholds for
the distribution of the variables load_time and action_dura-
tion. To define the new intervals, we decided to use the values
of the median and the third quarter as reference points. The
new distributions can be seen in Figure 7c,d. Additionally, two
more variables were added: the number of errors and weekly
sessions per user. To discretise the number of errors, we used
the following categories: none, low, medium, and high. The

weekly sessions per user were used to divide the users into the
following categories: occasional, regular, active, and very active.

As a result of this second iteration, we obtained the
network shown in Figure 3. Since we wanted to analyse the
application performance and how all the variables affected it,
we decided to use an NB structure, which focusses on a var-
iable of interest, in this case, the load_time, forcing the crea-
tion of a tree structure with the load_time as the root and the
other variables as its children. With this structure, we can then
fix the value of load_time and see how the probabilities in all
the other variables change. In the same way, we can fix the
value for one or more leaf nodes (e.g. action_duration, page,
…) and see how these combinations affect the value of the
load_time.

F I GURE 6 Schema of the empirical study.

F I GURE 7 Data distribution for the features load_time and action_duration. (a) and (b) are the distributions obtained from the first iteration, while (c) and
(d) are the distributions obtained after the second iteration. The categories are represented as follows: high (1.0), medium (2.0), low (3.0), and optimal (4.0).

278 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In order to validate the accuracy of the model, we per-
formed 10‐fold cross‐validation and computed the average
accuracy. We obtained an average accuracy of 0.75. The best
model reached an accuracy of 0.76. We show the confusion
matrix of the best model in Figure 8 after column normal-
isation. We see how the model achieves a True Positive Rate
over 75% on the low and optimal instances. However, its
performance downgrades on instances belonging to the high
and medium classes. Moreover, they tend to be mislabelled as
low. In Table 5, we show the per‐class accuracy. Here, we see
how the model achieves very good values of accuracy for
each class. In particular, we observe that the model is able to
discern instances belonging to the high class very well. This is
critical in our context since we are most interested in
detecting pages with high load times to find the web appli-
cation bottleneck. Note that we do not have a base model to
compare with in terms of accuracy. We attempted to build a
classification tree [68] using R package rpart [69], but after
several hours of computation, no result was obtained. This
shows how the BN approach can efficiently process huge
amounts of data more efficiently than other common
approaches.

4.1.2 | Error model

The purpose of this model was to analyse the errors occurring
in the server so that it allowed us to locate the classes where
the error was most probable to be thrown and their main
cause. To this end, we used the following variables from the
server logs: error, class, method, severity and thread name.

To learn the model structure, we used four different scores:
AIC, BDE, log‐likelihood, and BIC. The reason to use four

scores was to compare the different structures generated and
check their similarities to select the most appropriate one.

The most similar structures are the ones learnt using AIC
and BDE as can be seen in Figures 4 and 9. In both structures,
the root is the class, which has a direct dependency with the
method, as we would normally expect, and then the method
forms a divergent connection with error and thread_name,
and additionally with the severity in the BDE. This implies that
once we know the method, the class is not relevant for
knowing which error has been thrown as well as the severity, or
the thread name. The main difference between these two
structures is that for the one learnt with AIC, the error, and the
severity become independent once we know the method.
However, for the structure learnt using BDE, it is the error and
the thread name that are independent when knowing the
method, and the error and severity are always influencing each
other.

Figure 10 displays the structure learnt using the log‐
likelihood score. In this case, the overall structure resembles
the two previous ones. However, instead of having the class as
the root, we have the error, which directly influences the class.
Then, we have that the remaining variables (i.e. method,
severity, and thread_name) are d‐separated by the class. This
implies that once we know the class, these three variables
become independent.

The most dissimilar structure is the one learnt using the
BIC score. As shown in Figure 11, there is a dependency
relation between the error and the method that throws it as we
would expect. The interesting thing is that the method does
not directly imply the class where the error is thrown, but
conditions the error severity, and it is this that gives us infor-
mation about the class throwing the error as well as the thread
name.

F I GURE 8 Confusion matrix for the load time normalised by
columns.

TABLE 5 Per‐class accuracy.

High Medium Low Optimal

Accuracy 0.987 0.796 0.836 0.896

F I GURE 9 Structure of the error model learnt using the Akaike
Information Criterion score.

F I GURE 1 0 Structure of the error model learnt using the log‐
likelihood score.

DEL REY ET AL. - 279

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In order to select the most appropriate network, we used
10‐fold cross‐validation to compare how well each of them
fitted our data. As seen in Table 6, the network using the BIC
score was the one performing worst among the four. The other
three obtained very similar results. Our final decision was to
use the network learnt with BDE since it performed slightly
better than the others.

4.1.3 | Deployment

Once the two models were created and validated, we incor-
porated them into the agile development process of the web
application. During the duration of one sprint [57], we used the
models to increase the software quality of the application. The
models were presented to the action team through the Hugin
software. By exploring and interpreting the resulting models,
the action team discovered several issues in the web applica-
tion. As a result, eight Scrum cards were created from the use
of these models.

From the performance model, we created cards, such as
the improvement of the performance of the Start, Market, and
ViewOffers pages, since they were the most probable pages to
suffer from bad performance. With the error model, we

detected several unexpected exceptions. For example, we
created a card (Figure 12) to solve the NullPointerExceptions
appearing in the ErrorPage.

Answer to RQ1. With the creation of the two data‐
driven BN models described in this section, we have
been able to efficiently detect multiple points of bad
performance in the application. By using the perfor-
mance model, we are now able to predict the web
application performance, with an average accuracy of
0.75, based on the collected data. Furthermore, the
manual exploration of the error model has enabled us
to detect the most frequent errors in the application
and its sources.

4.2 | RQ2: Is Bayesian network analysis of
software logs effective to detect users' usage
patterns in a web application?

4.2.1 | Temporal model

The purpose of this model was to analyse the behaviour of the
users inside the application throughout multiple temporal in-
stants. In particular, we wanted to get an idea of the sequence
of pages the users visit inside the application so that we could
discover specific patterns leading to errors or performance
deficiencies.

To keep the model simple and easy to understand at first
sight, while having the necessary data to fulfil our goal, we
decided to select a small subset of variables from the usage
logs. The variables selected were: page, page load time, time on
page, and number of sessions per week. The latter was used to
define the type of user depending on how many times they
accessed the application during the week, which was then
assigned to each row belonging to the corresponding user.

The first step was to discretise the numerical variables
using the same intervals as in the performance model. The

F I GURE 1 1 Structure of the error model learnt using the Bayesian
Information Criterion score.

TABLE 6 Log‐Likelihood loss of the four error models created
obtained from cross‐validation.

AIC BDE Log‐likelihood BIC

Log‐likelihood loss 1.145 1.144 1.146 1.183

Abbreviations: AIC, Akaike Information Criterion; BDE, Bayesian Dirichlet equivalent;
BIC, Bayesian Information Criterion.

F I GURE 1 2 Jira card extracted from the analysis of the error model.

280 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

next step was to create the variables representing the different
temporal measures. Given that the number of events collected
per session varied from one another, we decided to consider all
the available data as a unique session and replicate this data to
represent the different instants. For this, we used the R package
dbnR [64]. We only need to specify the number of temporal
measurements and the package performs the data replication
as many times as we specify. Note, however, that the generated
replications are not identical, but instead, they are shifted by
one row as described in Table 7. Hence, to have the accesses
correctly arranged, we had to reorder the dataset by session ID,
which ensured that all consecutive accesses belonged to the
same session, and then by the descending order of access to
ensure that after the replication, we had the correct sequence
of actions.

Finally, we learnt the network structure using the Hill‐
Climbing method, which resulted in the network seen in
Figure 13 in the appendix. As we can see, the network has a
clear structure. On one hand, we see how all the variables of
the same type follow a serial connection in their natural order,
except for the load time that is reversed. On the other hand, we
see how the page creates a divergent connection with the rest
of the variables in the same temporal instant; this means that,
for the same temporal instant, the variables load_time,
time_on_page, and user_type are conditionally independent
given page.

The two connections mentioned above give raise to a series
of convergent connections, where all the variables, except for
the page, from t1 onward work as an intermediate node con-
necting the same variable in the previous instant with the page
that works as the nexus in the divergent connection. It should
be noted that this process is reversed for the load time. This
implies that whenever we know the value of an intermediate
node or any of its children, both their parents become
dependent. In Figure 14, we can see an example of one of
these convergent connections. In this example, the variables
time_on_page_t_0 and page_t_1 are independent unless we

know the value of time_on_page_t_1 or any of its children, in
which case they would become dependent.

4.2.2 | Deployment:

As with the models described in Section 4.1, we deployed this
model into the development process for the duration of one
sprint. Again, we presented the model to the action team who
used the Hugin software to explore and interpret the model.
After this process, the action team was able to create four
Scrum cards that were incorporated into the Product Backlog.
These cards referred to the detection of common usage pat-
terns and anomalous patterns previously unknown. For
example, we detected that the most accessed page after logging
in was the Results page. Thus, we added a new card (Figure 15)
to include the results of the last match on the Start page. Also,
we detected a short sequence of pages, starting from Offer-
Player that led to the error page. Consequently, we created a
new card to investigate this issue.

Answer to RQ2. With the creation of the data‐driven
temporal BN model, we have been able to explore the
different sequences of pages the users follow inside
the application. By manually exploring the model, we
have detected several sequences of pages that end in
the error page, which have proved useful to detect
errors in the application. Furthermore, we have been
able to detect common patterns of usage, which hel-
ped us to understand how the application was being
used.

5 | DISCUSSIONS

As seen in this action research, BNs have great potential to
become powerful analytic techniques in data‐driven software
maintenance. Although there is a need to explore the models
manually, if done by a domain expert (e.g., development or
operations team members), they can provide valuable insights
into the application that can help in the decision‐making
process in agile practices. Another strong point of BNs as an
analytic technique is their capability to represent sequences of
actions over time, which can help us discover usage patterns.
This is especially useful when looking for sequences of actions
leading to errors since software testing can only help in the
measure of what the developers expect to be the possible se-
quences of actions a user can make. However, users often take
developers by surprise by trying to use the application in un-
expected ways. It is in situations like this that BNs are useful
since they represent these anomalous behaviours, enabling
developers to analyse such patterns to perform data‐driven
software maintenance. As an example, in this action research,

TABLE 7 Example of the replication of a table using dbnR to
represent three temporal instants.

DEL REY ET AL. - 281

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

we exploited this characteristic to improve the user interface of
the Start page and the performance of several pages.

In previous works, we have seen other approaches for
detecting performance issues, errors, and usage pattern be-
haviours' leveraging software logs, such as semi‐supervised
learning [19], causal models [22], or dependency networks
[9]. However, all these approaches only focussed on detecting

one of the three problems mentioned. In this work, we have
observed the flexibility that BNs provide for solving multiple
problems of the same domain without requiring additional
effort apart from the need for data preparation, which is
required for any other approach. Furthermore, we agree with
Hassan et al. in that BNs provide more intuitive results
compared to other more complex approaches [30]. This allows

F I GURE 1 3 Structure of the temporal model.

282 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

results obtained from BNs to be more easily interpreted by
non‐expert users, such as stakeholders, which can be beneficial
in the industry. Moreover, we observe that our performance
model obtains very similar accuracy to the one used by Hassan
et al. for detecting long and short sessions [30]. Both try to
model how much time is spent in the web application although
at different levels of granularity, ours at the page level, and
theirs at the session level. By modelling the time at the page
level, we are able to detect bottlenecks in the web application.

Also, we would like to discuss what is needed for a soft-
ware team to apply the BN analysis of software logs for data‐
driven maintenance of web applications. First, we consider that
there must be a domain expert who can interpret the analysis
results and their implications in the development process.
Second, we believe that knowledge in data processing (e.g., data
cleaning) is of utmost importance since is one of the key
factors when creating a reliable model. Third, it would be
advisable that at least one member of the team is familiar with
BNs to understand their structure and how to analyse them.
However, if this is not possible we find that the book by
Nagarajan [70] is a good starting point to understand and
implement a simple BN in R to have a base model running.

Finally, we would like to give our thoughts about the action
research methodology. After applying it to our small project,
we consider that this methodology fits quite appropriate for
small‐sized projects that want to combine research and agile
development methodologies. Since both share a cyclic struc-
ture that repeats over several iterations, it becomes easy to
adapt one to the other. This brings the possibility of

introducing small research teams that communicate with the
development and management teams to improve different
aspects of the development process, such as the introduction
of new techniques or tools to increase productivity.

6 | THREATS TO VALIDITY

This section explores the main threats to validity of the action
research. As global mitigation action, we have considered in
our study the Association for Computing Machinery SIG-
SOFT Empirical Standards [46]. In particular, we have ensured
to comply with all the 12 essential specific attributes for action
research. In Section 3.2, we cover the first 6 attributes (e.g.
describe the context). We also explain the different phases
throughout this work as explained in Section 3.2. Attributes
from 8 to 11 are explained in Section 4. Finally, in this section,
we cover the last attribute by exploring the possible threats to
validity of our work. In addition, we have ensured to avoid the
four anti‐patterns that apply to action research (e.g., forcing
interventions that are not acceptable to participants).

Construct validity: To avoid investigating only one aspect
of the usefulness of BNs for software logs analysis, we apply
the BN analysis to three different problems: performance is-
sues detection, error detection, and usage patterns detection.
Moreover, we meticulously defined our RQs and how we
planned to measure our results to avoid vague definitions of
the constructs.

Conclusion validity: To ensure the reliability of the anal-
ysis, the analysis procedure was documented in detail, including
a replication package. Furthermore, for the BNs analysis, we
involved three researchers, being one of them external to the
software implementation of the web application. Also, to avoid
low statistical power, we used three different software log
sources. Each one adds new knowledge to our analysis.

Internal validity: The main threats remain in the web
application used and the logging frameworks we used. To
mitigate the first one, we tried to generalize as much as possible
without forgetting that we worked with a single project that
was not representative of the entire software industry. For the
second one, we used popular libraries in the softwareF I GURE 1 4 An example of a convergent connection.

F I GURE 1 5 Jira card extracted from the analysis of the temporal model.

DEL REY ET AL. - 283

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

community. Furthermore, we identify two confounding fac-
tors: traffic generated by bots and the appearance of usage
patterns due to an exploration phase. To mitigate the first one,
we use a reCAPTCHA in the sign‐up process and the users are
required to access the web application using a password. The
second confounding factor is mitigated by collecting data over
several months. This gives the users enough time to learn how
the application works and makes almost negligible the number
of patterns generated due to an exploratory phase of the
application. In addition, several errors and performance issues
of the web application identified with the BNs were addressed
as cards in our Scrum development. Therefore, we could
explore the relationship between using this analysis with soft-
ware quality. However, an in‐depth study continuously updat-
ing and monitoring the BNs remains future work.

External validity: Although most of the data used in this
study should be present in almost every web application, it
differs greatly from one another. Consequently, the model
structures resulting from this action research cannot be
generalized to other applications since they have been learnt
from the data generated by the application used in this study.
Therefore, we described the setting of the action research and
the process for creating the models. Our results are tied to the
context of our web application. However, we prepared a
replication package that can be executed in other web appli-
cations with a similar context, leading to new data‐driven BNs
to address performance efficiency and usability.

7 | CONCLUSIONS AND FUTURE
WORK

We have explored the use of BNs as a log analysis technique to
discover indicators of poor performance in a system and to
explore usage patterns that cannot be found without a tem-
poral analysis. We have done this in the context of a web
application developed and maintained by our research groups.
In this context, we have presented an action research where we
used BNs as a technique to analyse software logs to improve
the software quality. We show in a demo video, available on
https://youtu.be/X2bnexyIqZM, examples of new cards in
Scrum elicited by exploring and interpreting the BNs.

The results show that using BNs we can detect indicators
of performance deficiencies and errors in a web application.
We believe that the information gained from these models can
have a beneficial impact on the data‐driven software mainte-
nance process by helping developers to detect users' usage
patterns leading to errors in the application that could be hard
to discover by other means (e.g., testing). Indeed, in this action
research, the identified issues ended up in cards in the product
backlog for the development process.

Although the preparation process for the construction of a
BN requires considerable effort, mainly due to the need to
generate, collect, and process the data that will be the base to
learn the model, we consider that its benefits outweigh its
disadvantages. For example, they can reveal hidden relations

between different variables that may not be apparent at first
sight, which can help developers to better understand how the
application behaves. Furthermore, we could use these networks
to simulate different situations and observe how an application
would perform, allowing the developers to detect issues that
otherwise could remain hidden for a long time. For this reason,
we believe that BNs have the potential to become powerful
techniques to understand how an application operates and
encourages the rest of the community, both researchers and
practitioners, to deepen their possible applications in the SE
field.

Moreover, we describe an action research in a small‐size
software project in order to improve the software quality of
a web application. The application of action research was
positive in this study, and we encourage others to perform it in
small software projects as well.

Future work spreads in several directions. First, we plan to
enhance the data collection with software quality data by static
analysis of the code repositories. Then, we plan to study the
correlation of these software quality metrics with usage errors
from logs. We also plan to update the described networks with
continuous monitoring and software log collection. Further-
more, we plan on studying the economic benefits and Return
on Investment of applying this technique in the long term.
Finally, we are working on hands‐on materials to help practi-
tioners to create and enhance the BNs for data‐driven software
maintenance, building on top of the replication package.

AUTHOR CONTRIBUTION
Santiago del Rey: Conceptualisation, Methodology, Data
Curation, Formal Analysis, Investigation, Resources, Software,
Validation, Visualisation, andWriting – Original Draft, writing –
Review and Editing. Silverio Martínez‐Fernández: Con-
ceptualisation, Methodology, Funding Acquisition, Project
Administration, Resources, Supervision, Validation, andWriting
– Original Draft, writing – Review and Editing. Antonio Sal-
merón: Conceptualisation, Methodology, Funding Acquisition,
Formal Analysis, Resources, Supervision, Validation, and
Writing – Original Draft, writing – Review and Editing.

ACKNOWLEDGEMENTS
This research is funded by the Junta de Andalucía, grant P20‐
00091, the Spanish project PDC2021‐121195‐I00, and the
“Beatriz Galindo” Spanish Program BEAGAL18/00064. This
research is part of Project PID2019‐106758GB‐C32 funded by
MCIN/AEI/10.13039/ 501100011033, FEDER “Una manera
de hacer Europa” funds.

CONFLICTS OF INTEREST STATEMENT
All authors declare that they have no conflicts of interest.

DATA AVAILABILITY STATEMENT
We provide a demo video of the Bayesian analysis of software
logs, available at https://youtu.be/X2bnexyIqZM. Addition-
ally, we provide an open package in https://doi.org/10.5281/
zenodo.6823268.

284 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://youtu.be/X2bnexyIqZM
https://youtu.be/X2bnexyIqZM
https://doi.org/10.5281/zenodo.6823268
https://doi.org/10.5281/zenodo.6823268

ORCID
Santiago del Rey https://orcid.org/0000-0003-4979-414X
Silverio Martínez-Fernández https://orcid.org/0000-0001-
9928-133X
Antonio Salmerón https://orcid.org/0000-0003-4982-8725

REFERENCES
1. Oriol, M., et al.: Data‐driven and tool‐supported elicitation of quality

requirements in agile companies. Software Qual. J. 28(3), 931–963 (2020).
https://doi.org/10.1007/s11219‐020‐09509‐y

2. Feng, L., Wei, W.: An empirical study on user experience evaluation and
identification of critical ux issues. Sustainability 11(8), 2432 (2019).
Available from:. https://doi.org/10.3390/su11082432 https://www.
mdpi.com/2071‐1050/11/8/2432

3. Verma, N., Singh, J.: Improved web mining for e‐commerce website
restructuring. In: 2015 IEEE International Conference on Computa-
tional Intelligence & Communication Technology, pp. 155–160 (2015)

4. Moreno, M.N., et al.: Web mining based framework for solving usual
problems in recommender systems. a case study for movies’ recom-
mendation. Neurocomputing 176, 72–80 (2016). https://doi.org/10.
1016/j.neucom.2014.10.097

5. QOS. CH: SLF4J (2022). https://www.slf4j.org/
6. The Apache Software Foundation: Log4j – Apache Log4j 2 (2022).

https://logging.apache.org/log4j/2.x/
7. Wieman, R., et al.: An experience report on applying passive learning in a

large‐scale payment company. In: 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 564–573 (2017)

8. Harty, J., et al.: Logging practices with mobile analytics: an empirical study
on firebase. In: 2021 IEEE/ACM 8th International Conference onMobile
Software Engineering and Systems (MobileSoft), pp. 56–60 (2021)

9. Nagaraj, K., Killian, C., Neville, J.: Structured comparative analysis of
systems logs to diagnose performance problems. In: 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), pp. 353–366. USENIX Association, San Jose (2012). https://www.
usenix.org/conference/nsdi12/technical‐sessions/presentation/nagaraj

10. Yao, K., et al.: Log4perf: suggesting logging locations for web‐based sys-
tems’ performance monitoring. In: Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering, pp. 127–138
(2018)

11. GalOz, N., Gonen, Y., Gudes, E.: Mining meaningful and rare roles from
web application usage patterns. Comput. Secur. 82, 296–313 (2019).
https://doi.org/10.1016/j.cose.2019.01.005

12. Liu, X., et al.: Understanding diverse usage patterns from large‐scale
appstore‐service profiles. IEEE Trans. Software Eng. 44(4), 384–411
(2017). https://doi.org/10.1109/tse.2017.2685387

13. Xu, W., et al.: Detecting large‐scale system problems by mining console
logs. In: Proceedings of the ACM SIGOPS 22nd Symposium on Oper-
ating Systems Principles. SOSP ’09., pp. 117–132. Association for
Computing Machinery, New York (2009). https://doi.org/10.1145/
1629575.1629587

14. Fu, Q., et al.: Execution anomaly detection in distributed systems through
unstructured log analysis. In: 2009 Ninth IEEE International Conference
on Data Mining, pp. 149–158 (2009)

15. Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log
analysis. Commun. ACM 55(2), 55–61 (2012). https://doi‐org.recursos.
biblioteca.upc.edu/10.1145/2076450.2076466

16. Mihaljević, B., Bielza, C., Larrañaga, P.: Bayesian networks for inter-
pretable machine learning and optimization. Neurocomputing 456,
648–665 (2021). https://doi.org/10.1016/j.neucom.2021.01.138

17. Tosun, A., Bener, A.: Bayesian networks for evidence‐based decision‐
making in software engineering. IEEE Trans. Software Eng. 40(6),
533–554 (2014). https://doi.org/10.1109/tse.2014.2321179

18. Du, M., et al.: DeepLog. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM (2017)

19. Yang, L., et al.: Semi‐supervised log‐based anomaly detection via prob-
abilistic label estimation. In: 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), pp. 1448–1460 (2021)

20. Cândido, J., Aniche, M., van Deursen, A.: Log‐based software moni-
toring: a systematic mapping study. PeerJ Computer Science 7, e489
(2021). https://doi.org/10.7717/peerj‐cs.489

21. Syer, M.D., et al.: Leveraging performance counters and execution logs to
diagnose memory‐related performance issues. In: 2013 IEEE Interna-
tional Conference on Software Maintenance, pp. 110–119 (2013)

22. Chow, M., et al.: The mystery machine: end‐to‐end performance analysis
of large‐scale internet services. In: 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pp. 217–231.
Broomfield, CO: USENIX Association (2014). https://www.usenix.org/
conference/osdi14/technical‐sessions/presentation/chow

23. Zhang, X., et al.: Robust log‐based anomaly detection on unstable log
data. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ESEC/FSE 2019, pp. 807–817. Association for
Computing Machinery, New York (2019). https://doi.org/10.1145/
3338906.3338931

24. Wang, Y.T., Lee, A.J.T.: Mining web navigation patterns with a path
traversal graph. Expert Syst. Appl. 38(6), 7112–7122 (2011). https://doi.
org/10.1016/j.eswa.2010.12.058 https://www.sciencedirect.com/science/
article/pii/S0957417410014211

25. Gadler, D., et al.: Mining logs to model the use of a system. In: 2017
ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). IEEE (2017)

26. Barifah, M., Landoni, M.: Exploring usage patterns of a large‐scale digital
library. In: 2019 ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pp. 67–76 (2019)

27. Pettinato, M., et al.: Log mining to re‐construct system behavior: an
exploratory study on a large telescope system. Inf. Software Technol. 114,
121–136 (2019). https://doi.org/10.1016/j.infsof.2019.06.011

28. Jindal, H., Sardana, N.: Pkm3: an optimal markov model for predicting
future navigation sequences of the web surfers. Pattern Anal. Appl. 24(1),
263–281 (2021). https://doi.org/10.1007/s10044‐020‐00892‐7

29. de Sousa, A.L.R., de Souza, C.R.B., Reis, R.Q.: A 20‐year mapping of
Bayesian belief networks in software project management. IET Softw.
16(1), 14–28 (2022). https://ietresearch.onlinelibrary.wiley.com/doi/abs/
10.1049/sfw2.12043

30. Hassan, M.T., Junejo, K.N., Karim, A.: Learning and predicting key web
navigation patterns using Bayesian models. In: Gervasi, O., et al. (eds.)
Computational Science and its Applications – ICCSA 2009, pp. 877–887.
Springer Berlin Heidelberg, Berlin (2009)

31. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan‐
Kaufmann (San Mateo) (1988)

32. Wasserstein, R.L., Lazar, N.A.: The asa statement on p‐values: context,
process, and purpose. Am. Statistician 70(2), 129–133 (2016). https://
doi.org/10.1080/00031305.2016.1154108

33. Dejaeger, K., Verbraken, T., Baesens, B.: Toward comprehensible soft-
ware fault prediction models using bayesian network classifiers. IEEE
Trans. Software Eng. 39(2), 237–257 (2013). https://doi.org/10.1109/
tse.2012.20

34. Okutan, A., Yildiz, O.T.: Software defect prediction using Bayesian net-
works. Empir. Software Eng. 19(1), 154–181 (2014). https://doi.org/10.
1007/s10664‐012‐9218‐8

35. Kalinowski, M., Mendes, E., Travassos, G.H.: An industry ready
defect causal analysis approach exploring Bayesian networks. In:
International Conference on Software Quality, pp. 12–33. Springer
(2014)

36. Furia, C.A., Torkar, R., Feldt, R.: Applying Bayesian analysis guidelines to
empirical software engineering data: the case of programming languages
and code quality. ACM Trans. Software Eng. Methodol. 31(3), 1–38
(2022). https://doi‐org.recursos.biblioteca.upc.edu/10.1145/3490953

37. Manzano, M., et al.: A method to estimate software strategic indicators
in software development: an industrial application. Inf. Software
Technol. 129, 106433 (2021). https://doi.org/10.1016/j.infsof.2020.
106433

38. del Águila, I.M., del Sagrado, J.: Bayesian networks for enhancement of
requirements engineering: a literature review. Requir. Eng. 21(4), 461–480
(2016). https://doi.org/10.1007/s00766‐015‐0225‐3

DEL REY ET AL. - 285

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4979-414X
https://orcid.org/0000-0003-4979-414X
https://orcid.org/0000-0001-9928-133X
https://orcid.org/0000-0001-9928-133X
https://orcid.org/0000-0001-9928-133X
https://orcid.org/0000-0003-4982-8725
https://orcid.org/0000-0003-4982-8725
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.3390/su11082432
https://www.mdpi.com/2071-1050/11/8/2432
https://www.mdpi.com/2071-1050/11/8/2432
https://doi.org/10.1016/j.neucom.2014.10.097
https://doi.org/10.1016/j.neucom.2014.10.097
https://www.slf4j.org/
https://logging.apache.org/log4j/2.x/
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/nagaraj
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/nagaraj
https://doi.org/10.1016/j.cose.2019.01.005
https://doi.org/10.1109/tse.2017.2685387
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1145/1629575.1629587
https://doi-org.recursos.biblioteca.upc.edu/10.1145/2076450.2076466
https://doi-org.recursos.biblioteca.upc.edu/10.1145/2076450.2076466
https://doi.org/10.1016/j.neucom.2021.01.138
https://doi.org/10.1109/tse.2014.2321179
https://doi.org/10.7717/peerj-cs.489
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1016/j.eswa.2010.12.058
https://doi.org/10.1016/j.eswa.2010.12.058
https://www.sciencedirect.com/science/article/pii/S0957417410014211
https://www.sciencedirect.com/science/article/pii/S0957417410014211
https://doi.org/10.1016/j.infsof.2019.06.011
https://doi.org/10.1007/s10044-020-00892-7
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/sfw2.12043
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/sfw2.12043
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1109/tse.2012.20
https://doi.org/10.1109/tse.2012.20
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1007/s10664-012-9218-8
https://doi-org.recursos.biblioteca.upc.edu/10.1145/3490953
https://doi.org/10.1016/j.infsof.2020.106433
https://doi.org/10.1016/j.infsof.2020.106433
https://doi.org/10.1007/s00766-015-0225-3
https://orcid.org/0000-0003-4979-414X
https://orcid.org/0000-0001-9928-133X
https://orcid.org/0000-0003-4982-8725

39. del Sagrado, J., del Águila, I.M.: Stability prediction of the software re-
quirements specification. Software Qual. J. 26(2), 585–605 (2018).
https://doi.org/10.1007/s11219‐017‐9362‐x

40. Wiesweg, F., Vogelsang, A., Mendez, D.: Data‐driven risk management
for requirements engineering: an automated approach based on Bayesian
networks. In: 2020 IEEE 28th International Requirements Engineering
Conference (RE), pp. 125–135. IEEE (2020)

41. Mendes, E., et al.: Using bayesian network to estimate the value of de-
cisions within the context of value‐based software engineering: a multiple
case study. Int. J. Software Eng. Knowl. Eng. 29(11n12), 1629–1671
(2019). https://doi.org/10.1142/s0218194019400151

42. Britto, R., Souza, L.: Bayesian analysis of bug‐fixing time using report
data. In: ESEM ’22: Empirical Software Engineering International Week
(2022)

43. Basili, V., Caldiera, G., Rombach, H.D.: The Goal Question Metric
Approach (1994)

44. ISO/IEC 25010:2011: Systems and Software Engineering — Systems
and Software Quality Requirements and Evaluation (SQuaRE) — System
and Software Quality Models. International Organization for Standardi-
zation, Geneva (2011)

45. Staron, M.: Action Research in Software Engineering. Springer (2020)
46. Ralph, P., et al.: Empirical Standards for Software Engineering Research

(2021)
47. Braun, S., et al.: Tackling consistency‐related design challenges of

distributed data‐intensive systems: an action research study. In: Pro-
ceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 1–11
(2021)

48. Choraś, M., et al.: Measuring and improving agile processes in a small‐
size software development company. IEEE Access 8, 78452–78466
(2020). https://doi.org/10.1109/access.2020.2990117

49. Wohlin, C.: Case study research in software engineering—it is a case, and
it is a study, but is it a case study? Inf. Software Technol. 133, 106514
(2021). https://doi.org/10.1016/j.infsof.2021.106514

50. Martínez Fernández, S.: Chessleague.es, juego en línea de simulación de
ligas de ajedrez’ (2022). https://www.chessleague.es

51. Martínez Fernández, S.: Chessleague [Manuscrito]: juego en línea de
simulación de ligas de ajedrez (2010). https://indaga.ual.es/permalink/
34CBUA_UAL/1fi96lk/alma991001193459704991

52. del Rey, S.: Desarrollo dirigido por datos: Un ejemplo práctico
con ChessLeague. [B.S. thesis]. Universitat Politècnica de Catalunya
(2021)

53. Daschner, S.: Architecting Modern Java EE Applications: Designing
Lightweight, Business‐Oriented Enterprise Applications in the Age of
Cloud, Containers, and Java EE 8. Packt Publishing Ltd (2017)

54. DosSantos, P.S.M., Travassos, G.H.: Action research can swing the bal-
ance in experimental software engineering. In: Advances in Computers,
pp. 205–276. Elsevier (2011)

55. Chapman, P., et al.: CRISP‐DM 1.0: Step‐by‐step Data Mining Guide,
vol. 9, pp. 13. SPSS inc (2000)

56. Ebert, C., et al.: Data science: technologies for better software. IEEE
software 36(6), 66–72 (2019). https://doi.org/10.1109/ms.2019.2933681

57. Deemer, P., et al.: The Scrum Primer (2012). https://www.infoq.com/
minibooks/Scrum{_}Primer/

58. Elastichsearch: Logstash (2022). https://www.elastic.co/logstash/
59. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall (2003)
60. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers.

Mach. Learn. 29(2/3), 131–163 (1997). https://doi.org/10.1023/a:1007
465528199

61. R Core Team: R: A Language and Environment for Statistical
Computing. Vienna (2021). https://www.R‐project.org/

62. Wickham, H., et al.: dplyr: A Grammar of Data Manipulation (2022).
https://dplyr.tidyverse.org

63. Scutari, M.: Learning Bayesian networks with the bnlearn R package. J.
Stat. Software 35(3), 1–22 (2010). https://doi.org/10.18637/jss.v035.i03

64. Quesada, D.: dbnr: Dynamic Bayesian Network Learning and Inference
(2022). r package version 0.7.5. https://CRAN.R‐project.org/package=dbnR

65. Hansen, K.D., et al.: Rgraphviz: Provides Plotting Capabilities for R
Graph Objects (2022). https://bioconductor.org/packages/release/
bioc/html/Rgraphviz.html

66. Hugin Expert (2022). https://www.hugin.com/
67. DrivenData: Coockiecutter Data Science (2022). https://drivendata.

github.io/cookiecutter‐data‐science/
68. Breiman, L., et al.: Classification and Regression Trees. Chapman & Hall/

CRC (1984)
69. Therneau, T., Atkinson, B.: Rpart: Recursive Partitioning and Regression

Trees (2019). r package version 4.1‐15. https://CRAN.R‐project.org/
package=rpart

70. Nagarajan, R., Scutari, M., Lèbre, S.: Bayesian Networks in R: With
Applications in Systems Biology. Use R!. Springer‐Verlag (2013)

How to cite this article: del Rey, S., Martínez‐
Fernández, S., Salmerón, A.: Bayesian Network analysis
of software logs for data‐driven software maintenance.
IET Soft. 17(3), 268–286 (2023). https://doi.org/10.
1049/sfw2.12121

286 - DEL REY ET AL.

 17518814, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12121 by U
niversidad de A

lm
eria, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s11219-017-9362-x
https://doi.org/10.1142/s0218194019400151
https://doi.org/10.1109/access.2020.2990117
https://doi.org/10.1016/j.infsof.2021.106514
https://www.chessleague.es
https://indaga.ual.es/permalink/34CBUA_UAL/1fi96lk/alma991001193459704991
https://indaga.ual.es/permalink/34CBUA_UAL/1fi96lk/alma991001193459704991
https://doi.org/10.1109/ms.2019.2933681
https://www.infoq.com/minibooks/Scrum%7B_%7DPrimer/
https://www.infoq.com/minibooks/Scrum%7B_%7DPrimer/
https://www.elastic.co/logstash/
https://doi.org/10.1023/a:1007465528199
https://doi.org/10.1023/a:1007465528199
https://www.R-project.org/
https://dplyr.tidyverse.org
https://doi.org/10.18637/jss.v035.i03
https://CRAN.R-project.org/package=dbnR
https://bioconductor.org/packages/release/bioc/html/Rgraphviz.html
https://bioconductor.org/packages/release/bioc/html/Rgraphviz.html
https://www.hugin.com/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
https://doi.org/10.1049/sfw2.12121
https://doi.org/10.1049/sfw2.12121

	Bayesian Network analysis of software logs for data‐driven software maintenance
	1 | INTRODUCTION
	2 | RELATED WORK
	2.1 | Managing software quality based on software logs
	2.2 | Bayesian network analysis in software engineering

	3 | RESEARCH METHODOLOGY
	3.1 | Goal and research questions
	3.2 | Study design: action research
	3.2.1 | Context: a web application
	3.2.2 | The action research cycle

	3.3 | Data collection procedure and dataset
	3.4 | Data preparation procedure
	3.5 | Construction of Bayesian networks for analysing software logs

	4 | RESULTS AND INTERPRETATION
	4.1 | RQ1: Is Bayesian network analysis of software logs effective to detect performance deficiencies and errors in a web a ...
	4.1.1 | Performance model
	4.1.2 | Error model
	4.1.3 | Deployment

	4.2 | RQ2: Is Bayesian network analysis of software logs effective to detect users' usage patterns in a web application?
	4.2.1 | Temporal model
	4.2.2 | Deployment:

	5 | DISCUSSIONS
	6 | THREATS TO VALIDITY
	7 | CONCLUSIONS AND FUTURE WORK
	AUTHOR CONTRIBUTION
	ACKNOWLEDGEMENTS
	CONFLICTS OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

