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Abstract

The estimation of a finite population distribution function is considered when
there are missing data. Calibration adjustment is used for dealing with non-
response at the estimation stage. Several procedures are proposed and com-
pared. A numerical study is carried out to evaluate the performances of
estimators. Computational problems with the implementation of the pro-
posed calibration estimators are also considered.
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1. Introduction

Surveys are a common method of data collection in economics and social
sciences, but they often suffer from the problem of nonresponse which can
produce biases in estimations and an increase in sampling variance if missing
data follows any pattern. The standard statistical procedures developed for5

data with no missing values cannot be immediately and straightforwardly
applied for deducing inferences in this situation.

Weighting is widely applied in surveys to adjust for nonresponse. Many
different proposals for nonresponse weighting have been considered (see.eg.
[1],[3],[9],[10], [11], [14], [17], [12]) in the estimation of linear parameters10

as total or mean, but lesser effort has been devoted in the development of
efficient methods for estimating a population distribution. The distribution
function is a relevant tool when the variable of interest is a measure of wages
or income, since it is needed to calculate many poverty measures (the poverty
line, the low income proportion, the poverty gap ...) For these reasons,15

Preprint submitted to MCS December 19, 2023



estimation of the distribution function is an important issue in sample surveys
that has received much attention in the last years. On the contrary, to best
of our knowledge, its estimation in the presence of missing data is a issue
less investigated in the previous research. Whereas a extensive literature is
available on estimation of population mean under non-response, lesser effort20

has been devoted in the development of efficient methods for the estimation
of population distribution function.

The purpose of this paper is to estimate the distribution function in pres-
ence of missing data using the calibration method under a general sampling
design. To the best of our knowledge, this is the first time that calibration25

techniques have been employed to remove the bias of non response in the
estimation of the distribution function.

2. Estimating the distribution function when there are missing val-
ues

Given a finite population U = {1, . . . , N} with N different units and a
sampling design d defined in U with first-order inclusion probability πi ≥ 0
and di = π−1

i the sampling design-basic weight for unit i ∈ U . In the presence
of unit nonresponse, the character under study, say y, is observed for a subset
of the original sample s. Thus, if we assume missing data on the sample s,
it can be divided into the disjoint sets:

sr = {i ∈ s/i responds} and sm = {i ∈ s/i does not respond},

with sr, the respondent sample is of size r, and sm is of size n− r.30

Let yi be the value of the character under study, say y, for the ith popula-
tion unit. Our aim is to estimate the finite population distribution function
(f.d.f.) of the study variable y, given by

Fy(t) =
1

N

∑
k∈U

∆(t− yk),with ∆(t− yk) =

{
0 if t < yk
1 if t ≥ yk

The design-unbiased Horvitz-Thompson estimator of Fy(t) defined by

F̂Y (t) =
1

N

∑
k∈s

dk∆(t− yk).

is impossible to compute in the presence of unit nonresponse, and a naive35

estimator of Fy(t) is:
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F̂Y H(t) =
1

Nr

∑
k∈sr

dk∆(t− yk)

where Nr is the size of the population that would have responded if sampled,
a quantity that is very rarely known in practice. When Nr is not known, one
can use the Hajek estimator

F̂Y Ha(t) =

∑
k∈sr dk∆(t− yk)∑

k∈sr dk
.

These estimators may lead to biased estimates because certain specific40

groups can be substantially under-represented. These errors can be over-
come by the use of reweighting. When weighting is used, a set of weights is
determined with the aid of the available auxiliary information, and estima-
tion is carried out by applying the weights to the y-values for the responding
elements. Calibration adjustment, initially conceived for correcting sampling45

errors ([4]), is currently one of the most appealing techniques for nonresponse
adjustment ([19]).

We will use a twofold process: the sample s is first selected from the
population U , then the response set sr is realized as a subset of s. We assume
that elements respond independently and the response distribution has first-50

order response probabilities P (k ∈ sr/s) = pk, positives. These response
probabilities (whose true values are unknown) are estimated by p̂k and we
can obtain a two-phase nonresponse adjusted estimator of the distribution
function by replacing the original design weights by dok = (πkp̂k)

−1, that is:

F̂Y w(t) =
∑
k∈sr

dok∆(t− yk).

For it, we assume the existence of auxiliary information relative to several55

variables related to the main variable y, xk = (xk1, xk2, . . . , xkJ)
′. The values

x1,x2, . . . ,xN are known for the entire population but yk is known only if
the kth unit is selected in the sample sr.

3. Calibration weighting for the estimation of the distribution func-
tion with unit nonresponse.60

[8] and [18] use different ways to implement the calibration approach in
the estimation of the distribution function and the quantiles. The computa-
tionally simpler method proposed by [18] uses the calibration with respect
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to the predicted values of the variable of interest y. We use this method-
ology and we define a pseudo-variable ỹk = β̂Txk for k = 1, 2, ...N, where65

β̂ =

(∑
j∈sr djxjx

T
j

)−1

·
∑

j∈sr djxjyj.

Given a distance measure G(wk, dk), the calibration process consists in
finding the solution of the following minimization problem

min
wk

∑
sr

G(wk, dk) (1)

while respecting the calibration equation

1

N

∑
k∈sr

wk∆(t− ỹk) = Fỹ(t) (2)

where t = (t1, t2, . . . , tP
′), the term Fỹ(t) denotes the f.d.f. of the pseudo-70

variable ỹ evaluated at t (see [15]) and tj for j = 1, 2, . . . , P are points that
we choose arbitrarily and assume that t1 < t2 < . . . < tP .

We can define the calibration estimator

F̂cal(t) =
1

N

∑
k∈sr

wk∆(t− yk) (3)

What form should the weight take? It should reflect the known individual
characteristics of the element k ∈ r, summarized by the vector value ∆(t −75

ỹk). A common way to compute calibration weights is linearly (using the
chi-square distance, [14]) that produces the weights wk = dk(1 + λT∆(t −
ỹk)). The weights wk implicitly estimates the inverse response probability
1/pk, thus we acts as if πkpk is the true selection probability of element k.
Consequently this calibration approach has assumed a nonresponse model80

pk = 1/(1 + λT∆(t − βTxk)). This model is difficult to deal with since the
function is not differentiable on xk and assume that the response mechanism
depend on all auxiliary variables.

Now we consider a more flexible model and we propose a calibration
method that allows the variables modeling the response mechanism to be85

different from the benchmark variables in the calibration equation. Thus we
define this two-step calibration method:

Step 1: Adjusting the bias of nonresponse by linear calibration.
Consider the M vector of explanatory model variables, x∗

k which popula-

tion totals
∑

U x∗
k are know. The calibration under the restrictions

∑
sr
w

(1)
k x∗

k =90
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∑
U x∗

k yields the calibrations weights w
(1)
k = g

(1)
k ∗ dk, k = 1, . . . , sr. Then,

each unit in the sample has a weight that corrects the bias of lack of response.
Step 2: Adjusting the sample weights for the estimation of the f.d.f.
The auxiliary information of the calibration variables x is incorporated

through the calibrated weights w
(2)
k = g

(2)
k ∗w(1)

k obtained with the restrictions95 ∑
sr
w

(2)
k ∆(t− ỹk) = Fỹ(t).

The two step calibration estimator proposed is

F̂calTS(t) =
1

N

∑
sr

w
(2)
k ∆(t− yk) =

∑
sr

g
(2)
k g

(1)
k ∗ dk∆(t− yk) (4)

Note that the vector of model variables x∗
k and the vector of calibra-

tion variables x can be the same, can have some common component or be
completely different100

4. Calibration with model and calibration variables

In this section we consider a calibration approach similar to that used by
[10] and [11] for the estimation of the population total. We also allow the
variables modelling to be different from the calibration variables.

The probability of nonresponse can be modeled by pk = f(γTx∗
k) for some105

vector parameter γ, where h(·) = 1/f(·) is a known and everywhere mono-
tonic and twice differentiable function and the vector x∗

k is the vector with
the model variables. Some examples of usual models for the probability of re-

sponse are: pk =
1+exp(γTxk)

∗/u
l+exp(γTxk)∗

(the logit (l, u) method), pk =
1

exp(−γTx∗
k)

(the

raking model) and pk =
exp(γTx∗

k)

1+exp(γTx∗
k)

(the logistic-response model, a special110

case of logit (l, u) method, where u = ∞, c = 2 and l = 1 ([9])). The re-
sponse probability is assumed independent of the survey variable of interest,
which is known as missing at random (MAR) assumption.

We denote as zk = ∆(t− ỹk). We will use the vector zk in the benchmark.
Now, we generate calibrated weights by imposing the functional form wk =115

dk
f(γ̂Tx∗

k)
zk. The calibration equation is given by:

1

N

∑
sr

dk
f(γ̂Tx∗

k)
zk =

1

N

∑
sr

dkh(γ̂
Tx∗

k)zk = Fỹ(t) (5)
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where γ̂ is a consistent estimator of vector γ and the resulting calibration
estimator is given by

F̂calI(t) =
1

N

∑
sr

dk
1

p̂k
∆(t− yk) =

1

N

∑
sr

dkh(γ̂
Tx∗

k)∆(t− yk).

Some considerations about the number of variables in the non-response
model M and the number of calibration restrictions P should be taken into
account to obtain the estimator F̂calI(t). In [5], the number of model and
calibration variables needed to be the same, that is M = P . This issue may120

limit the number of calibration restrictions in practice. We denote by F̂calID

the estimator F̂calI when we use the same number of model and calibration
variables.

[11] extended the Deville’s weighting approach to the case where there
are more calibration variables than model variables (P > M)through two125

alternatives. For it, their first extension does not look for an estimation γ̂
that satisfies the calibration equation (5), but it looks for an estimation γ̂
that minimizes vTQv for some symmetric and positive definite matrix Q
with dimension P , where

v =
1

N

(∑
sr

dkh(γ̂
Tx∗

k)zk −
∑
s

dkz̃k

)
This minimization problem implies the reformulated calibration equation:130

1

N

∑
sr

w
(3)
k z̃k =

1

N

∑
sr

dkh(γ̂
Tx∗

k)z̃k =
1

N

∑
s

dkz̃k (6)

where z̃k = A · zk with A =

[
1
N

∑
sr
dih

′
(γ̂Tx∗

i )x
∗
i z

T
i Q

]
.

Thus, the first alternative in [11] considers iterative process to find an
estimation γ̂ and Q that satisfied equation (6) such that Q = H−1 with

H =
1

N

∑
sr

dkh
′
(γ̂Tx∗

k)zk(zk)
T (7)

In this alternative, each variable included in the vector z̃k is a prediction for
the corresponding variable in x∗

k.135
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The second alternative proposed in [11] is a variant of the component
reduction technique based on equation (6) with z̃k = A0 · zk where

AT
0 =

(∑
sr

zj(zj)
T

)−1∑
sr

zj(x
∗
j)

T

Consequently, this alternative does not require iteration or even rely on fin-
ding a matrix Q.

The estimator F̂calI based on the first alternative of Kott and Liao ap-140

proach ([11]) is denoted by F̂calIKL1 and the estimator F̂calI based on second
alternative, is denoted by F̂calIKL2.

5. Properties of the calibrated estimators of the distribution func-
tion.

For an estimator F̂ (t) of F (t) to be a genuine distribution function it145

should verify:

i. F̂cal(t) is continuous on the right,

ii. F̂cal(t) is monotone nondecreasing,

iii. a) lim
t→−∞

F̂cal(t) = 0 and b) lim
t→+∞

F̂cal(t) = 1.

It’s easy to verify that conditions i) and iii.a) are satisfied for all the150

proposed estimators. F̂calTS(t) meet the condition iii. b) if we take tP such
that Fỹ(tP ) = 1 (see [18]) but in general this estimator is not monotone non-
decreasing. With respect to the calibration estimators based on model and
calibration variables F̂calID, F̂calIKL1 and F̂calIKL2, the calibration weights
ωk ≥ 0 for logit, raking and logistic methods and therefore, the estimators155

are nondecreasing. Like the previous case, for F̂calID, if we take tP such that
Fỹ(tP ) = 1, then limt→+∞ F̂calID(t) = 1. On the other hand, for the esti-

mators F̂calIKL1 and F̂calIKL2, Theorem 1 establish the conditions to satisfy
limt→+∞ F̂y(t) = 1.
Theorem 1: If a component of the vector x∗

k contains all 1’s and tP should be160

sufficiently large, the estimators F̂calIKL1 and F̂calIKL2 satisfy the condition
iii. b).
Proof:

We denote ∆(t − ỹk)
T =

(
∆(t1 − ỹk), . . . ,∆(tP−1 − ỹk),∆(tP − ỹk)

)
=

(∆T
P−1, 1) and (x∗

k)
T = (1, x2k, . . . , xMk) =

(
1, (x◦

k)
T
)
.165
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For the estimator F̂calIKL1(t), the calibration weights ωk satisfies (6) with
Q given by (7). It is clear that the matrix Q and Q−1 can be expressed by

Q =

(
Q(P−1)×(P−1) D(P−1)×1

T1×(P−1) C1×1

)
; Q−1 =

(
Γ(P−1)×(P−1) Ψ(P−1)×1

(Ψ(P−1)×1)
T Υ1×1

)
with Ψ(P−1)×1 = 1

N

∑
sr
dkh

′
(γ̂Tx∗

k)∆P−1; Υ1×1 = 1
N

∑
sr
dkh

′
(γ̂Tx∗

k) and
Γ(P−1)×(P−1) is given by equation (7) based on ∆P−1. From Q−1 ·Q = IP×P ,
we have170

(Ψ(P−1)×1)
TQ(P−1)×(P−1) +Υ1×1T1×(P−1) = 01×(P−1) (8)

(Ψ(P−1)×1)
TD(P−1)×1 +Υ1×1C1×1 = 1. (9)

From (8) and (9),we have:

A =

(
1

N

∑
sr

dih
′
(γ̂Tx∗

i )x
∗
i∆(t− ỹk)

TQ

)
=

(
01×(P−1) 1

A(M−1)×(P−1) B(M−1)×1

)
with B(M−1)×1 = (Φ(P−1)×(M−1))

TD(P−1)×1 + χ(M−1)×1C1×1

A(M−1)×(P−1) = (Φ(P−1)×(M−1))
TQ(P−1)×(P−1) + χ(M−1)×1T1×(P−1)

(Φ(P−1)×(M−1))
T =

1

N

∑
sr

dih
′
(γ̂Tx∗

i )x
◦
i∆

T
P−1 ; χ(M−1)×1 =

1

N

∑
sr

dih
′
(γ̂Tx∗

i )x
◦
i

Consequently, z̃k is given by z̃k = A∆(t− ỹk) =

(
1

Z(M−1)×1

)
with175

Z(M−1)×1 = A(M−1)×(P−1)∆P−1 +B(M−1)×1

and the property iii. b) is fullfilled.

For the F̂calIKL2 estimator, matrixA0 can be expressed byA0 =

(
A01

A0(M−1)

)
where

A01 =

(∑
sr

∆(t− ỹk)
T

)(∑
sr

∆(t− ỹk)∆(t− ỹk)
T

)−1

A0(M−1) =

(∑
sr

x0
k∆(t− ỹk)

T

)(∑
sr

∆(t− ỹk)∆(t− ỹk)
T

)−1

9



For tP sufficiently large, ∆(tP − ỹk) = 1 for all k ∈ U and we have180

A01 =

(∑
sr

∆(tP−ỹk)∆(t−ỹk)
T

)(∑
sr

∆(t−ỹk)∆(t−ỹk)
T

)−1

=
(
01×(P−1) 1

)

Therefore, the vector z̃k is given by z̃k = A0·∆(t−ỹk) =

(
1

A0(M−1) ·∆(t− ỹk)

)
and then F̂calIKL2(t) satisfies property iii. b).

The property ii) could be achieved by the procedure described in [16].

This procedure, for a general estimator F̂y, is defined in the following way:

F̃y(y[1]) = F̂y(y[1]), F̃y(y[i]) = max{F̂y(y[i]), F̃y(y[i−1])} i = 2, . . . , r. (10)

On the other hand, ([12]) established sufficient conditions for consistency185

of estimators based on model and calibration variables. Thus, under these
conditions, the estimators F̂calID, F̂calIKL1 and F̂calIKL2 meet consistency.
Regarding this issue, the conditions required to fulfill the properties of dis-
tribution function are not contradictory with respect to the conditions given
in ([12]) and they are less restrictive than conditions from ([12]). In fact,190

the condition iv) of Assumption 4 from ([12]) requires E(|zj,k|) < ∞ for all
components of zk. If tP is sufficiently large, the last component of zk meets
the condition iv). Also, under the conditions established by Theorem 1, the

first component of z̃k (for F̂calIKL1 and for F̂calIKL2) meets the condition iv).
The same occurs for the condition ii) of Assumption 5 from ([12]).195

6. Simulation study

We have performed a Monte Carlo simulation study where we compare the
precision of the proposed estimators with others estimators of the distribution
function. All the estimators included are programmed by routines in R.

6.1. Some computational aspects200

The calibration estimator F̂calTS is programmed with routines based on
the “calib” function of the package “sampling” ([20]). The “gencalib” func-
tion of the package sampling is used for obtain the calibrated weights in
F̂calID. The raking and logit (l, u) methods are available in the ”gencalib”
function and we have obtained two versions of this estimator based on the205

10



available methods. For the estimator F̂calIK1, we have programmed a rou-
tine that develops the Newthon-Rhapson method described in [3] and we
have also obtained two versions (raking and logit (l, u)). With respect to the
estimator F̂calIK2, we have also obtained two versions and for this we only
needed to program a routine for the reduction of components and directly210

apply the original function ”gencalib”. For all versions of estimators based
on logit (l, u) method, we used the following parameters u = 10; l = 0 and
c = 1. Initially, a version of the estimators for the logistic-response model
was considered in the simulation study but we finally decided to exclude it
because of in many cases, this method did not converge.215

6.2. Data

A fictitious population was simulated. The population size is N = 5000
and six variables were included in the study: age, nationality (native/non-
native), gender, weight, access to the Internet (yes/no). These variables
are generated to make its similar to the Spanish population pyramid. The220

study variable y is given by yk = 3 + 5 · Internet + Age/5 + εk where εk
are independent identically distributed random variables with distribution
εk ∼ N(0, 0.1).

First we considered a raking non-response mechanism given by pk =
1

exp(−0.1−Internet)
. Thus, we consider (x∗

k)
T = (1, Internet) and the vector of225

calibration variables is (zk)
T = (1, Internet,Weight). Next, we consider a lo-

gistic non-response model based on the variable “Age”: pk =
exp(−3+0.1·Age)

1+exp(−3+0.1·Age)
.

In this case, (zk)
T = (1, Age,Weight).

It is important to note that in both cases, the target variable is not
directly related to the non-response mechanism, but this mechanism can230

be explained by some auxiliary variables configuring a Missing At Random
(MAR) situation. We have not considered mechanism Missing Completely At
Random (MCAR) since in these situations the estimators are asymptotically
unbiased.

6.3. Results235

The estimators considered are the Horvitz-Thompson estimator F̂HT (t),

the Chamber-Dunstan estimator F̂CD(t) ([2]), the ratio estimator F̂r(t) and

the Rao, Kovar and Mantel estimator F̂RKM(t) ([16]) based on the respondent

sample sr. The Chamber-Dunstan estimator F̂CD(t) and the Rao, Kovar and
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Mantel estimator F̂RKM(t) are model-based estimator based on the following240

superpopulation model:

yk = κxk + v(xk)uk k = 1, . . . , N (11)

where κ is an unknown parameter, v is a known, strictly positive function and
uk are independent and identically distributed random variables with zero
mean. See ([2]) and ([16]) respectively for further details. In the simulation
study, we considered in the superpopulation model (11) that v(xk) = 1 for245

all unit k.
We drawn 10000 samples with several sizes by simple random sampling

without replacement (see Table 1), both for the raking and for the logistic
non-response mechanism. For each sample and for each estimator, estimates
of the distribution function F (t) were calculated for 11 different values of t,250

namely all deciles and quartiles Qy(0.25) and Qy(0.75). The performance of
all the estimators is measured by means of the average relative bias (avrb)
and the average relative efficiency (avre), given respectively by

avrb(F̂ ) =
B−1

11

11∑
q=1

∣∣∣∣ B∑
b=1

F̂ (tq)b − Fy(tq)

Fy(tq)

∣∣∣∣, avre(F̂ ) =
1

11

11∑
q=1

MSE[F̂ (tq)]

MSE[F̂HT (tq)]

where b indexes the bth simulation run, F̂ is an estimator for the distribu-
tion function, MSE[F̂ (t)] = B−1

∑B
b=1[F̂ (t)b −Fy(t)]

2 is the empirical mean255

square error for F̂ (t).
Table 1 provides the values avrb and avre for the population with two

non-response mechanism considered. From results, it is observed that the
usual estimators F̂HT (t), F̂CD(t), F̂r(t) and F̂RKM(t) have a considerable
bias for all sample sizes.The proposed calibration estimators significantly260

reduce the bias, especially the estimators F̂calTS, and the different versions of
F̂calIKL1 and F̂calIKL2. In a similar way estimators F̂CD(t), F̂r(t) and F̂RKM(t)

suffer an important loss in efficiency compared to the F̂HT (t) estimator for the
raking mechanism. All the proposed calibration estimators exhibit greater
efficiency than these estimators. F̂calTS, and the different versions of F̂calIKL1265

and F̂calIKL2 show the best performance. There is no significant difference
between the two versions of the estimators (raking and logit methods) in
terms of efficiency although the raking method produces the estimators with
fewer errors in most cases. There is no estimator that is uniformly better
than the rest in terms of bias and error.270
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Table 1: Average relative bias (avrb) and the average relative efficiency (avre) of compared estimators.
The lowest value is denoted in bold

Raking non-response mechanism

avrb avre avrb avre avrb avre avrb avre avrb avre

n = 125 n = 135 n = 145 n = 155 n = 165

F̂HT 0.315 1.000 0.313 1.000 0.316 1.000 0.314 1.000 0.319 1.000

F̂CD 0.367 2.444 0.372 2.695 0.370 2.807 0.372 3.013 0.367 2.796

F̂r 0.359 2.318 0.363 2.502 0.360 2.623 0.360 2.725 0.358 2.525

F̂RKM 0.339 2.242 0.344 2.431 0.340 2.535 0.344 2.717 0.340 2.515

F̂calTS 0.002 0.270 0.002 0.256 0.002 0.247 0.007 0.243 0.001 0.211

F̂calIDra 0.016 0.369 0.012 0.354 0.008 0.323 0.005 0.328 0.008 0.278

F̂calIDlo 0.016 0.369 0.012 0.354 0.008 0.323 0.005 0.328 0.008 0.278

F̂calIKL1ra 0.002 0.264 0.004 0.254 0.003 0.241 0.008 0.238 0.003 0.210

F̂calIKL1lo 0.003 0.277 0.002 0.266 0.001 0.252 0.006 0.250 0.001 0.221

F̂calIKL2ra 0.005 0.287 0.003 0.275 0.001 0.262 0.004 0.259 0.002 0.229

F̂calIKL2lo 0.005 0.287 0.003 0.275 0.001 0.262 0.004 0.259 0.002 0.229

Logistic non-response mechanism

avrb avre avrb avre avrb avre avrb avre avrb avre

n = 125 n = 135 n = 145 n = 155 n = 165

F̂HT 0.340 1.000 0.341 1.000 0.337 1.000 0.342 1.000 0.340 1.000

F̂CD 0.181 0.278 0.185 0.279 0.181 0.276 0.186 0.281 0.184 0.274

F̂r 0.191 0.401 0.197 0.404 0.195 0.399 0.199 0.396 0.199 0.395

F̂RKM 0.181 0.318 0.184 0.317 0.180 0.314 0.185 0.316 0.184 0.310

F̂calTS 0.040 0.101 0.035 0.091 0.032 0.088 0.036 0.083 0.036 0.079

F̂calIDra 0.034 0.102 0.029 0.093 0.026 0.089 0.030 0.084 0.031 0.079

F̂calIDlo 0.035 0.103 0.030 0.093 0.027 0.089 0.031 0.084 0.032 0.080

F̂calIKL1ra 0.036 0.098 0.030 0.089 0.029 0.085 0.033 0.080 0.032 0.078

F̂calIKL1lo 0.037 0.098 0.031 0.089 0.030 0.086 0.034 0.080 0.033 0.079

F̂calIKL2ra 0.036 0.098 0.031 0.089 0.030 0.085 0.033 0.080 0.032 0.078

F̂calIKL2lo 0.038 0.099 0.032 0.089 0.031 0.086 0.034 0.081 0.033 0.079
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7. Conclusion

This paper describes how calibration weighting can be used to adjust the
design weights to increase the efficiency of finite distribution function for a
sample survey when there is unit nonresponse. We propose two calibration
methods to reduce the non-response bias. The first method is based on275

two-step calibration weighting. The first calibration is designed to remove
the non-response bias. The second one to decrease the sampling error in
the estimation of the distribution function. This method allows different
variables to be used in each phase, since the model for non-response and
the predictive model can be very different. This estimator given by (4) is280

computationally simple. The last method is based on model and calibration
variables. The calibration is done in a single stage, but different variables
are also used to model the lack of response and for the calibration equation.
Different model are also proposed to model the nonresponse. The problem
with this methodology is the difficulty in solving the calibration equation.285

Various iterative methods are proposed to obtain the weights.
Our limited simulation study clearly shows the gain in reduction of bias

and precision achieved when calibration is used for nonresponse that is not
missing completely at random. There is no estimator that is uniformly better
than the rest in terms of bias and error. The F̂calIKL1 and F̂calIKL2 estimators290

produce the best estimates in terms of the least error in most cases. The
computational simplicity of the estimator in two stages F̂calTS is noteworthy.
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