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Summary

The calibration method1 has been widely used to incorporate auxiliary information
in the estimation of various parameters. Specifically,2 adapted this method to esti-
mate the distribution function, although their proposal is computationally simple,
its efficiency depends on the selection of an auxiliary vector of points. This work
deals with the problem of selecting the calibration auxiliary vector that minimize the
asymptotic variance of the calibration estimator of distribution function. The opti-
mal dimension of the optimal auxiliary vector is reduced considerably with respect
to previous studies3 so that with a smaller set of points the minimum of the asymp-
totic variance can be reached, which in turn allows to improve the efficiency of the
estimates.
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1 INTRODUCTION

In sample surveys, auxiliary population information is sometimes used in the estimation stage to increase the precision of the
estimators of a mean or total population. Previous literature has investigated the use of auxiliary information to improve the
estimation of a finite population mean, however, previous studies have considered to a lesser extent the development of efficient
methods to estimate the distribution function and the finite population quantiles by incorporating the auxiliary information.
The estimation of finite population distribution function is an important issue because the distribution function can be more
useful than means and totals4.Through the finite population distribution function, parameters such as population quantiles
can be obtained. More specifically, in economics, many indicators used in the poverty analisys are based on quantiles, since
they analyze variables with skewed distributions such as income, and in such cases the median is a more suitable location
measure than the mean. Moreover, poverty studies incorporate the analysis of wage inequality and income distribution thorugh
percentile ratios5,6,7.

In the last decade, the well-known calibration estimation method to estimate the population total1 has been employed to
develop new estimators which incorporates the auxiliary information available and it has become an important field of research
in survey sampling2,8,9,10,11.

Previous works2,12,13 use different implementations of the calibration approach to obtain estimators of the distribution function
and the quantiles. Under a general superpopulation model14 propose a model-calibrated estimators that is optimal under a chosen
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model with respect to the anticipated variance. Although14 considers a general sampling design, its proposal does not produce an
estimator with the properties of a genuine distribution function unless the weight system is obtained by using a point 𝑡0 for any 𝑡
value, which restricts the efficiency of the estimator to a neighborhood of 𝑡0. Additionally, the proposal14 requires the estimation
of certain superpopulation parameters that depend on the study variable, which may restrict its applicability in some cases and
also require additional conditions on the sampling design to maintain the asymptotic behavior of the proposed estimator15.

Nonparametric regression (16 and2), is also used for model-calibration estimation of the distribution function.17 propose a
new estimator for the distribution function that integrates ideas from model calibration and penalized calibration. The method2

is computationally simple and it employs the calibration method by minimizing the chi-square distance subject to calibration
equations that require the use of arbitrarily fixed values. One drawback of these estimators is that their efficiency depends on
selected points. Under simple random sampling, the problem of optimal selection points in order to obtain the best estimation
has been treated in previous works3,18,19,20. In fact, the work3 obtained the optimal dimension and the optimal auxiliary vector
for the estimator of the distribution function proposed in the work2 and although this proposal do not generate a unique weight
system that is optimal for each point 𝑡, it produces an estimator that is computationally simple and is a genuine distribution
function that can be used directly in the estimation of quantiles and poverty measures21.

In many situations, the optimal auxiliary vector has a very high dimension, which makes the calibration process difficult and
can also affect the efficiency of the estimator. Performing calibration with a high dimensional auxiliary dataset can be several
problems: the variance of the calibration estimator can be increases and the optimisation procedure may fail.22 showed that if too
many auxiliary variables are used, the bias of the calibrated estimator increases and can become nonnegligible compared to the
variance (over-calibration). Recently23 theoretically prove that over-calibration may deteriorate the efficiency of the estimates.
Various procedures have been suggested for variable selection.22 computed the mean squared error (MSE) for all possible subsets
of quantitative auxiliary variables and then chose the one producing the smallest MSE. Later,24 used forward and stepwise
selection based on the difference between the MSE of the prediction for two nested sets of variables. Alternatively, the least
absolute shrinkage and selection operator (LASSO) (25) might be considered for selecting the best subsets. Once the best set
of regressors has been selected, the calibration is performed on these variables alone. Another approach to consider is that of
penalised calibration (26), which takes account of auxiliary information by attaching more or less importance according to its
presumed explanatory power for the variable of interest. In a different way,27 and28 suggested applying principal component
analysis for quantitative auxiliary variables in order to achieve a strong dimension reduction. These works are oriented to the
estimation of linear parameters.

In this work, we intend to analyze whether it is possible to reduce the optimal dimension of the auxiliary vector proposed in
the previous work3. The remainder of the article is organized as follow. After introducing the problem of distribution function
estimation in Section 2 with the method proposed in research work2 and the optimal auxiliary vector proposed in the previous
work3, in Section 3 we will analyze the conditions under which we can reduce the dimension of the optimal auxiliary vector.
Then, Section 4 proposes a new calibration estimator based on the results of Section 3. Section 5 reports the results of an
extensive simulation study run on a set of synthetic and real finite populations in which the performance of the proposed class
of estimators is investigated for finite size samples. Section 6 provides some conclusions.

2 CALIBRATION ESTIMATION OF THE DISTRIBUTION FUNCTION AND OPTIMAL
AUXILIARY VECTOR

Let𝑈 = {1,… , 𝑁} a finite population composed of𝑁 different units and let 𝑠 = {1, 2,… , 𝑛} a random sample of size 𝑛 selected
using a specified sampling design 𝑝(⋅)with first and second-order inclusion probabilities 𝜋𝑘 > 0 and 𝜋𝑘𝑙 > 0 𝑘, 𝑙 ∈ 𝑈 respectively
and 𝑑𝑘 = 𝜋−1

𝑘 denotes the sampling design-basic weight for unit 𝑘 ∈ 𝑈 . Let 𝑦𝑘 be the study variable and 𝐱′

𝑘 = (𝑥1𝑘,… , 𝑥𝐽𝑘)
be a vector of auxiliary variables at unit 𝑘. We assume that value 𝐱𝑘 is available for all population units whereas the value 𝑦𝑘 is
available only for sample units. The distribution function 𝐹𝑦(𝑡) for the study variable 𝑦 is defined as follow:

𝐹𝑦(𝑡) =
1
𝑁

∑

𝑘∈𝑈
Δ(𝑡 − 𝑦𝑘) (1)

with
Δ(𝑡 − 𝑦𝑘) =

{

1 si 𝑡 ≥ 𝑦𝑘
0 si 𝑡 < 𝑦𝑘.



4 Martínez ET AL

A design-based estimator of the distribution function 𝐹𝑦(𝑡) is the Horvitz–Thompson estimator, defined by

𝐹𝑌𝐻𝑇 (𝑡) =
1
𝑁

∑

𝑘∈𝑠
𝑑𝑘Δ(𝑡 − 𝑦𝑘). (2)

The estimator 𝐹𝑌𝐻𝑇 (𝑡) is unbiased, but it does not incorporate the auxiliary information provided by the auxiliary vector 𝐱.
Several authors2,13,29,30 have incorporated the auxiliary information to obtain new estimators of 𝐹𝑦(𝑡) through the calibration

method1. The proposal2 applies the calibration procedure from a pseudo-variable

𝑔𝑘 = (𝛽)′𝐱𝑘 for 𝑘 = 1, 2, ...𝑁 (3)

𝛽 =

(

∑

𝑘∈𝑠
𝑑𝑘𝐱𝑘𝐱

′

𝑘

)−1

⋅
∑

𝑘∈𝑠
𝑑𝑘𝐱𝑘𝑦𝑘 (4)

With the variable 𝑔, the basic weights 𝑑𝑘 are replaced by new calibrated weights 𝜔𝑘 through the minimization of the chi-square
distance measure

Φ𝑠 =
∑

𝑘∈𝑠

(𝜔𝑘 − 𝑑𝑘)2

𝑑𝑘𝑞𝑘
(5)

subject to the calibration constrains
1
𝑁

∑

𝑘∈𝑠
𝜔𝑘Δ(𝑡𝑗 − 𝑔𝑘) = 𝐹𝑔(𝑡𝑗) 𝑗 = 1, 2,… , 𝑃 (6)

where 𝐹𝑔(𝑡𝑗) denotes the finite distribution function of the pseudo-variable 𝑔𝑘 evaluated at the points 𝑡𝑗 , 𝑗 = 1, 2,… , 𝑃 . We
assume, with no loss in generality, 𝑡1 < 𝑡2 < … 𝑡𝑃 . The values 𝑞𝑘 are known positive constants unrelated to 𝑑𝑘.
Following2, we assume that the matrix 𝑇 given by:

𝑇 =
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘Δ(𝐭𝐠 − 𝑔𝑘)Δ(𝐭𝐠 − 𝑔𝑘)′

is nonsingular. With this calibration procedure, the calibration estimator obtained is:

𝐹𝑦𝑐(𝑡) = 𝐹𝑌𝐻𝑇 (𝑡) +
(

𝐹𝑔(𝐭𝐠) − 𝐹𝐺𝐻𝑇 (𝐭𝐠)
)′

⋅ �̂�(𝐭𝐠) (7)

where
�̂�(𝐭𝐠) = 𝑇 −1 ⋅

∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘Δ(𝐭𝐠 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘)

and 𝐹𝐺𝐻𝑇 (𝐭𝐠) is the Horvitz-Thompson estimator of 𝐹𝑔(𝐭𝐠) evaluated at 𝐭𝐠 = (𝑡1,… , 𝑡𝑃 )
′ .

The calibration estimator 𝐹𝑦𝑐(𝑡) has the following asymptotic variance2:

𝐴𝑉 (𝐹𝑦𝑐(𝑡)) =
1
𝑁2

∑

𝑘∈𝑈

∑

𝑙∈𝑈
Δ𝑘𝑙(𝑑𝑘𝐸𝑘)(𝑑𝑙𝐸𝑙) (8)

where 𝐸𝑘 = Δ(𝑡 − 𝑦𝑘) − Δ(𝐭𝐠 − 𝑔𝑘) ⋅𝐷(𝐭𝐠), with

𝐷(𝐭𝐠) =
(

∑

𝑘∈𝑈
𝑞𝑘Δ(𝐭𝐠 − 𝑔𝑘)Δ(𝐭𝐠 − 𝑔𝑘)′

)−1

⋅

(

∑

𝑘∈𝑈
𝑞𝑘Δ(𝐭𝐠 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘)

)

. (9)

As a consequence, the behavior of the estimator 𝐹𝑦𝑐(𝑡) and its precision depends on the selection of the vector 𝐭𝐠.

Previous works3,19,20 treated, under simple random sampling without replacement and 𝑞𝑘 = 𝑐 for all 𝑘 ∈ 𝑈 , the optimal
selection of the vector 𝐭𝐠 in order to minimize the asymptotic variance (8). In fact,3 established the optimal dimension of 𝐭𝐠 and
its optimal value, for a given value 𝑡, through the definition of the sets:

𝐴𝑡 = {𝑔𝑘 ∶ 𝑘 ∈ 𝑈 ; 𝑦𝑘 ≤ 𝑡} = {𝑎𝑡1, 𝑎
𝑡
2,… , 𝑎𝑡𝑀𝑡

} with 𝑎𝑡ℎ < 𝑎𝑡ℎ+1 for ℎ = 1,… ,𝑀𝑡 − 1 (10)

where 𝑀𝑡 is the number of elements in the set 𝐴𝑡 and

𝐵𝑡 = {𝑏𝑡1, 𝑏
𝑡
2,… , 𝑏𝑡𝑀𝑡

} (11)

with
𝑏𝑡1 = max𝑙∈𝑈1

{𝑔𝑙} where 𝑈1 = {𝑙 ∈ 𝑈 ∶ 𝑔𝑙 < 𝑎𝑡1}
𝑏𝑡ℎ = max𝑙∈𝑈ℎ

{𝑔𝑙} where 𝑈ℎ = {𝑙 ∈ 𝑈 ∶ 𝑎𝑡ℎ−1 < 𝑔𝑙 < 𝑎𝑡ℎ} ℎ = 2, 3,… ,𝑀𝑡
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and 𝑏𝑡ℎ < 𝑏𝑡ℎ+1 for ℎ = 1,… ,𝑀𝑡 − 1.

Thus,3 established that the auxiliary vector 𝐭𝑔 has optimal dimension 𝑃 = 2𝑀𝑡 if 𝑏𝑡ℎ exists for ℎ = 1,… ,𝑀𝑡 and the optimal
value of 𝐭𝑔 is given by

𝐭𝐎𝐏𝐓(𝑡) = (𝑏𝑡1, 𝑎
𝑡
1,… , 𝑏𝑡𝑀𝑡

, 𝑎𝑡𝑀𝑡
). (12)

If there are some values 𝑗𝑡1, 𝑗
𝑡
2,… 𝑗𝑡𝑝𝑡 ∈ {1,… ,𝑀𝑡}; such as 𝑏𝑡𝑗ℎ does not exits for ℎ = 1, 2,… 𝑝𝑡 with 𝑝𝑡 ≤ 𝑀𝑡 and 𝑗𝑡ℎ ≠ 𝑗𝑡𝑞 if

ℎ ≠ 𝑞, the optimal dimension is given by 𝑃 = 2𝑀𝑡 − 𝑝𝑡 and the optimal auxiliary vector 𝐭𝐎𝐏 is:

𝐭𝐎𝐏(𝑡) = (𝑏𝑡1, 𝑎
𝑡
1 … , 𝑏𝑡𝑗1−1, 𝑎

𝑡
𝑗1−1

, 𝑎𝑡𝑗1 , 𝑏
𝑡
𝑗1+1

,… , 𝑏𝑡𝑗ℎ−1, 𝑎
𝑡
𝑗ℎ−1

, 𝑎𝑡𝑗ℎ , 𝑏
𝑡
𝑗ℎ+1

,… 𝑏𝑡𝑀𝑡
, 𝑎𝑡𝑀𝑡

). (13)

In the next section, we will analyze if the minimum of the asymptotic variance can be reached with a vector of less dimension
and we will establish conditions under which the dimension of the optimal vector 𝐭𝐎𝐏𝐓(𝑡), can be reduced under simple random
sampling without replacement.

3 DIMENSION REDUCTION OF THE OPTIMAL AUXILIARY VECTOR

In this section, we will analyze the conditions under which the dimension of the optimal vector 𝐭𝐎𝐏𝐓(𝑡) can be reduced, that is,
we will analyze the existence of a vector with a smaller dimension than 𝐭𝐎𝐏𝐓(𝑡) that allows obtaining the minimum value of the
asymptotic variance of the estimator 𝐹𝑦𝑐(𝑡).

For the minimization of the asymptotic variance (8), we consider it as a function of a vector 𝛄 = (𝛾1,… , 𝛾𝑃 ) of dimension 𝑃 :

𝐴𝑉 (𝐹𝑦𝑐(𝑡)) =
1
𝑁2

∑

𝑘∈𝑈

∑

𝑙∈𝑈
Δ𝑘𝑙(𝑑𝑘Γ𝑘)(𝑑𝑙Γ𝑙) (14)

with Γ𝑘 = Δ(𝑡 − 𝑦𝑘) − Δ(𝛄 − 𝑔𝑘) ⋅𝐷(𝛄), with 𝐷(𝛄) given by (9).

Following20, under simple random sampling without replacement and 𝑞𝑘 = 𝑐 for all units in the population, the minimization
of (14) is equivalent to the minimization of the function:

𝑄𝑡(𝛄) = 𝑄𝑡(𝛾1,… , 𝛾𝑃 ) = 2𝑁𝐹𝑦(𝑡) ⋅𝐾𝑡(𝛾𝑃 ) −
𝑃
∑

𝑗=1

(

𝐾𝑡(𝛾𝑗) −𝐾𝑡(𝛾𝑗−1)
)2

(𝐹𝑔(𝛾𝑗) − 𝐹𝑔(𝛾𝑗−1))
−
(

𝐾𝑡(𝛾𝑃 )
)2 (15)

with 𝐾𝑡(𝛾𝑗) =
∑

𝑘∈𝑈
Δ(𝛾𝑗 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘), where we suppose that 𝐹𝑔(𝛾0) = 0 and 𝐾𝑡(𝛾0) = 0.

As mentioned above,3 established the optimal dimension 𝑃 and the minimum of (14) is reached at 𝛄 = 𝐭𝐎𝐏(𝑡). However, there
are cases where the optimal dimension has a high value so the calibration procedure has a plenty of constraints which raises the
computational cost for calculating the estimator. For example, if we consider 𝑡 = 𝑦𝑚𝑎𝑥 where

𝑦𝑚𝑎𝑥 = max
𝑘∈𝑈

𝑦𝑘

the optimal auxiliary vector 𝐭𝐎𝐏(𝑡) = (𝑎1, 𝑎2,… , 𝑎𝑀 ) can be reduced to the auxiliary vector 𝛄 = (𝑎𝑀 ) (see Appendix A.1).
Consequently, the optimal dimension can be reducted from 𝑀 to 1.

In a similar way, we try to reduce the dimension of the auxiliary vector to reach the minimum of 𝑄𝑡(𝛄). For it, given a value 𝑡
for which we want to estimate 𝐹𝑦(𝑡), we consider the sets 𝐴𝑀 , 𝐴𝑡 and 𝐵𝑡 given by (A1); (10) and (11) respectively and for each
𝑎𝑖 ∈ 𝐴𝑀 we define:

𝑟𝑖 = Frequency of the 𝑎𝑖
For the value 𝑡, we have:

𝐴𝑡 = {𝑎𝑡1, 𝑎
𝑡
2,… , 𝑎𝑡𝑀𝑡

} = {𝑎𝑓 𝑡
1
, 𝑎𝑓 𝑡

2
,… , 𝑎𝑓 𝑡

𝑀𝑡
}

where
{𝑓 𝑡

1, 𝑓
𝑡
2,… , 𝑓 𝑡

𝑀𝑡
} ⊆ {1, 2,… ,𝑀} and 𝑓 𝑡

1 < 𝑓 𝑡
2 < ⋯ < 𝑓 𝑡

𝑀𝑡
.

Similarly, we consider the following set:

𝐶𝑡 = {𝑔𝑘 ∶ 𝑘 ∈ 𝑈 ; 𝑦𝑘 > 𝑡} = {𝑐𝑡1, 𝑐
𝑡
2,… , 𝑐𝑡𝑆𝑡

} = {𝑎𝑙𝑡1 , 𝑎𝑙𝑡2 ,… , 𝑎𝑙𝑡𝑆𝑡 }
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with
{𝑙𝑡1, 𝑙

𝑡
2,… , 𝑙𝑡𝑆𝑡

} ⊆ {1, 2,… ,𝑀} and 𝑙𝑡1 < 𝑙𝑡2 < ⋯ < 𝑙𝑡𝑆𝑡
.

It is clear that 𝐴𝑡 ∪ 𝐶𝑡 = 𝐴𝑀 and since for two different units 𝑘 and 𝑗 can be possible that 𝑔𝑗 = 𝑔𝑘 = 𝑎𝑖 and 𝑦𝑘 > 𝑡 and 𝑦𝑗 < 𝑡,
not necessarily 𝐴𝑡 ∩ 𝐶𝑡 = ∅. For the sets 𝐴𝑡 and 𝐶𝑡 we define:

𝑝𝑡𝑖=Frequency of the 𝑎𝑡𝑖 in 𝐴𝑡
𝑞𝑡𝑖=Frequency of the 𝑐𝑡𝑖 in 𝐶𝑡.

Next, we consider the following sets:
𝐷𝑡 = {𝑐𝑖 ∈ 𝐶𝑡 ∶ 𝑞𝑡𝑖 = 𝑟𝑖} (16)

𝑍𝑡 = {𝑎𝑡𝑖 ∈ 𝐴𝑡 ∶ 𝑞𝑡𝑖 = 0} = {𝑎𝑡𝑖 ∈ 𝐴𝑡 ∶ 𝑎𝑡𝑖 ∉ 𝐶𝑡} = 𝐴𝑡 − 𝐶𝑡 (17)
𝐹𝑡 = {𝑎𝑡𝑖 ∈ 𝐴𝑡 ∶ 0 < 𝑞𝑡𝑖 < 𝑟𝑖}. (18)

It is easy to see that 𝐷𝑡 = 𝐴𝑀 − 𝐴𝑡 and consequently 𝐴𝑡 ∩𝐷𝑡 = ∅. Futhermore, 𝐵𝑡 ⊆ 𝐷𝑡; 𝐴𝑡 = 𝑍𝑡 ∪ 𝐹𝑡 and 𝑍𝑡 ∩ 𝐹𝑡 = ∅.

Firstly, if we suppose that 𝐷𝑡 = 𝐴𝑀 , we have 𝐴𝑡 = ∅ and consequently 𝑦𝑘 > 𝑡, ∀𝑘 ∈ 𝑈 . In this case 𝐹𝑦(𝑡) = 0 and we can
calibrate with any auxiliary vector since

𝐹𝑦𝑐(𝑡) =
1
𝑁

∑

𝑘∈𝑠
𝜔𝑘Δ(𝑡 − 𝑦𝑘) = 0

regardless of the auxiliary vector, so we can calibrate with 𝐭𝐎𝐏(𝑡) = 𝑎𝑀 with dimension 1.

Secondly, if we suppose that 𝐷𝑡 = ∅, then 𝐵𝑡 = ∅ and 𝐴𝑡 = 𝐴𝑀 . In this case, following3 the optimal auxiliary vector
𝐭𝐎𝐏(𝑡) = (𝑎1, 𝑎2,… , 𝑎𝑀 ).

Since 𝐴𝑡 = 𝑍𝑡 ∩ 𝐹𝑡 = 𝐴𝑀 , if we suppose that 𝑍𝑡 = 𝐴𝑡 = 𝐴𝑀 then 𝑡 > 𝑦𝑘 ∀𝑘 ∈ 𝑈 and this case is like the case where
𝑡 = 𝑦𝑚𝑎𝑥 and although the optimal auxiliary vector is 𝐭𝐎𝐏(𝑡) = (𝑎1, 𝑎2,… , 𝑎𝑀 ), we can reach the minimum value of 𝑄𝛾 (𝑡) with
the auxiliary vector 𝛾 = (𝑎𝑀 ).

On the other hand, if we consider that 𝑍𝑡 = ∅ and 𝐹𝑡 = 𝐴𝑀 there is not reduction in the optimal auxiliary vector 𝐭𝐎𝐏(𝑡) (see
Appendix A.2).

Next, if we suppose that 𝑍𝑡 ≠ 𝐴𝑡 = 𝐴𝑀 and 𝐹𝑡 ≠ 𝐴𝑡 = 𝐴𝑀 then there is a set 𝐼𝐹𝑡
= {𝑗1, 𝑗2,… , 𝑗𝑙} ⊆ {1, 2,…𝑀} such that

𝑎𝑗𝑖 ∈ 𝐹𝑡 and therefore 𝑞𝑡𝑗𝑖 ≠ 0 for 𝑖 = 1, 2,… , 𝑙.

Now, if we consider that 𝑗1 > 1; 𝑗𝑖 − 1 > 𝑗(𝑖−1) for all 𝑖 = 2,… 𝑙 and 𝑗𝑙 < 𝑀 ; then for ℎ = 1,… 𝑗1 − 1; 𝑞𝑡ℎ = 0 and we have:

𝐾𝑡(𝑎1) =
∑

𝑘∈𝑈
Δ(𝑎1 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎1)

⋮
𝐾𝑡(𝑎(𝑗1−1)) =

∑

𝑘∈𝑈
Δ(𝑎𝑗1−1 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑗1−1).

Similarly, for 𝑗𝑖,… 𝑗𝑖+1 − 1 with 𝑖 = 1, 2,… 𝑙 − 1 we have:

𝐾𝑡(𝑎𝑗𝑖) =
∑

𝑘∈𝑈
Δ(𝑎𝑗𝑖 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑗𝑖) −

𝑖
∑

ℎ=1
𝑞𝑡𝑗ℎ

⋮

𝐾𝑡(𝑎(𝑗(𝑖+1)−1)) =
∑

𝑘∈𝑈
Δ(𝑎(𝑗(𝑖+1)−1) − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎(𝑗(𝑖+1)−1)) −

𝑖
∑

ℎ=1
𝑞𝑡𝑗ℎ

and finally, for 𝑗𝑙,… ,𝑀

𝐾𝑡(𝑎𝑗𝑙 ) =
∑

𝑘∈𝑈
Δ(𝑎𝑗𝑙 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑗𝑙 ) −

𝑙
∑

ℎ=1
𝑞𝑡𝑗ℎ

⋮

𝐾𝑡(𝑎𝑀 ) =
∑

𝑘∈𝑈
Δ(𝑎𝑀 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑀 ) −

𝑙
∑

ℎ=1
𝑞𝑡𝑗ℎ = 𝑁𝐹𝑦(𝑡).
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The minimum of 𝑄𝑡(𝛾) reached at the optimum auxiliary vector 𝐭𝐎𝐏(𝑡) is given by:

𝑄𝑡(𝐭𝐎𝐏(𝑡)) = (𝑁𝐹𝑦(𝑡))2 −
𝑀
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗 −𝐾𝑡(𝑎𝑗−1))
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
=

= (𝑁𝐹𝑦(𝑡))2 −𝑁2 ⋅
𝑀
∑

𝑗=1
𝑗∉{𝑗1,…,𝑗𝑙}

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1))
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
−

∑

𝑗∈{𝑗1,…,𝑗𝑙}

(

𝑁𝐹𝑔(𝑎𝑗) −𝑁𝐹𝑔(𝑎𝑗−1)) − 𝑞𝑡𝑗
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)

= (𝑁𝐹𝑦(𝑡))2 −𝑁2 ⋅
𝑀
∑

𝑗=1
𝑗∉𝐼𝐹𝑡

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1))
)

−𝑁2 ⋅
∑

𝑗∈𝐼𝐹𝑡

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)) + 2𝑁
∑

𝑗∈𝐼𝐹𝑡

𝑞𝑡𝑗 −
∑

𝑗∈𝐼𝐹𝑡

(

𝑞𝑡𝑗)
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
=

= (𝑁𝐹𝑦(𝑡))2 −𝑁2 ⋅
𝑀
∑

𝑗=1

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1))
)

+ 2𝑁
∑

𝑗∈𝐼𝐹𝑡

𝑞𝑡𝑗 −
∑

𝑗∈𝐼𝐹𝑡

(

𝑞𝑡𝑗
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
=

= (𝑁𝐹𝑦(𝑡))2 −𝑁2 + 2𝑁
∑

𝑗∈𝐼𝐹𝑡

𝑞𝑡𝑗 −
∑

𝑗∈𝐼𝐹𝑡

(

𝑞𝑡𝑗
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
. (19)

The same value can be reached with the auxiliary vector 𝛾 = (𝑎(𝑗1−1), 𝑎𝑗1 ,… 𝑎(𝑗𝑙−1), 𝑎𝑗𝑙 , 𝑎𝑀 ). To see it, if we set 𝑎𝑗0 such as
𝐹𝑔(𝑎𝑗0) = 0 and we replace the vector 𝛾 in (15), we have:

𝑄𝑡(𝛾) = (𝑁 ⋅ 𝐹𝑦(𝑡))2 −
𝑙

∑

ℎ=1

(

𝑁𝐹𝑔(𝑎(𝑗ℎ−1)) −𝑁𝐹𝑔(𝑎𝑗(ℎ−1))
)2

𝐹𝑔(𝑎(𝑗ℎ−1)) − 𝐹𝑔(𝑎𝑗(ℎ−1))
−

𝑙
∑

ℎ=1

(

𝑁𝐹𝑔(𝑎𝑗ℎ) −𝑁𝐹𝑔(𝑎(𝑗ℎ−1)) − 𝑞𝑡𝑗ℎ)
)2

𝐹𝑔(𝑎𝑗ℎ) − 𝐹𝑔(𝑎(𝑗ℎ−1))

−

(

𝑁𝐹𝑔(𝑎(𝑀 ) −𝑁𝐹𝑔(𝑎𝑗𝑙 )
)2

𝐹𝑔(𝑎𝑀 ) − 𝐹𝑔(𝑎𝑗𝑙 )
= (𝑁 ⋅ 𝐹𝑦(𝑡))2 −𝑁2

𝑙
∑

ℎ=1
𝐹𝑔(𝑎(𝑗ℎ−1)) − 𝐹𝑔(𝑎𝑗(ℎ−1)) −𝑁2

𝑙
∑

ℎ=1
𝐹𝑔(𝑎𝑗ℎ) − 𝐹𝑔(𝑎(𝑗ℎ−1))

+2𝑁
𝑙

∑

ℎ=1
𝑞𝑡𝑗ℎ −

𝑙
∑

ℎ=1

(

𝑞𝑡𝑗ℎ
)2

𝐹𝑔(𝑎𝑗ℎ) − 𝐹𝑔(𝑎(𝑗ℎ−1))
−𝑁2(𝐹𝑔(𝑎𝑀 ) − 𝐹𝑔(𝑎𝑗𝑙 ))

= 2𝑁
𝑙

∑

ℎ=1
𝑞𝑡𝑗ℎ −

𝑙
∑

ℎ=1

(

𝑞𝑡𝑗ℎ
)2

𝐹𝑔(𝑎𝑗ℎ) − 𝐹𝑔(𝑎(𝑗ℎ−1))
and the auxiliary vector 𝛾 , with less dimension than 𝐭𝐎𝐏(𝑡), attain the minimum of 𝑄𝑡(𝛾).

Previously, we suppose that 𝑎𝑗1 > 𝑎1 and 𝑎𝑗𝑙 < 𝑎𝑀 . If 𝑎𝑗1 = 𝑎1 then it is easy to see that the minimum can be obtain at
𝛾 = (𝑎1, 𝑎(𝑗2−1), 𝑎𝑗2 ,… 𝑎(𝑗𝑙−1), 𝑎𝑗𝑙 , 𝑎𝑀 ) that has less dimension than in the case 𝑎𝑗1 > 𝑎1. In a similar way, if 𝑎𝑗𝑙 = 𝑎𝑀 the
minimum can be attained at 𝛾 = (𝑎𝑗1 , 𝑎(𝑗1−1), 𝑎𝑗2 ,… 𝑎(𝑗𝑙−1), 𝑎𝑀 ).
Finally, we have assumed that 𝑗𝑖 − 1 > 𝑗(𝑖−1) for all 𝑖 = 2,… 𝑙. If there is a ℎ ∈ {1, 2,… 𝑙} that 𝑗ℎ − 1 = 𝑗(ℎ−1) it is easy to see
that the minimum value of 𝑄𝑡(𝛾) is reached at 𝛾 = (𝑎(𝑗1−1), 𝑎𝑗1 ,… 𝑎𝑗(ℎ−1) , 𝑎𝑗ℎ ,… , 𝑎(𝑗𝑙−1), 𝑎𝑗𝑙 , 𝑎𝑀 ) with less dimension than in the
case 𝑗𝑖 − 1 > 𝑗(𝑖−1) for all 𝑖 = 2,… 𝑙. Therefore, if 𝐷𝑡 = ∅ we can reduce the optimal dimension when 𝐹𝑡 ≠ 𝐴𝑡 = 𝐴𝑀 .

Next, we consider the case where 𝐷𝑡 ≠ ∅ and 𝐷𝑡 ≠ 𝐴𝑀 . Because 𝐴𝑡 = 𝐴𝑀 −𝐷𝑡, we have 𝐴𝑡 ≠ ∅ and 𝐴𝑡 ≠ 𝐴𝑀 . Therefore:

𝐴𝑡 = {𝑎𝑡1, 𝑎
𝑡
2,… , 𝑎𝑡𝑀𝑡

} = {𝑎𝑓 𝑡
1
, 𝑎𝑓 𝑡

2
,… , 𝑎𝑓 𝑡

𝑀𝑡
}

where {𝑓 𝑡
1, 𝑓

𝑡
2,… , 𝑓 𝑡

𝑀𝑡
} ⊆ {1, 2,…𝑀}.

In this case, if we suppose that 𝐵𝑡 = ∅ then 𝑓 𝑡
1 = 1,… , 𝑓 𝑡

𝑀𝑡
= 𝑀𝑡 and

𝐴𝑡 = {𝑎1, 𝑎2,… 𝑎𝑀𝑡
} ; 𝐷𝑡 = {𝑎𝑀𝑡+1,… , 𝑎𝑀}.

To see it, if we suppose that 𝑓 𝑡
1 > 1 then 𝑎𝑓 𝑡

1
> 𝑎(𝑓 𝑡

1−1)
≥ 𝑎1 and consequently the set

𝑈1 = {𝑙 ∈ 𝑈 ∶ 𝑔𝑙 < 𝑎𝑡1} = {𝑙 ∈ 𝑈 ∶ 𝑔𝑙 < 𝑎𝑓 𝑡
1
} ≠ ∅

and 𝑏𝑡1 = 𝑎(𝑓 𝑡
1−1)

. Thus, 𝐵𝑡 ≠ ∅ (Contradiction). As a consequence, 𝑎𝑓 𝑡
1
= 𝑎1.
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If we suppose that for 𝑖 ∈ {2,… ,𝑀𝑡} such as 𝑓 𝑡
(𝑖−1) = 𝑖 − 1 and we suppose that 𝑓 𝑡

𝑖 > 𝑖 then 𝑎𝑓 𝑡
(𝑖−1)

= 𝑎(𝑖−1) and 𝑎𝑓 𝑡
𝑖
> 𝑎𝑖 >

𝑎(𝑖−1) = 𝑎𝑓 𝑡
(𝑖−1)

. The set 𝑈𝑖 is given by:

𝑈𝑖 = {𝑙 ∈ 𝑈 ∶ 𝑎𝑡(𝑖−1) < 𝑔𝑙 < 𝑎𝑡𝑖} = {𝑙 ∈ 𝑈 ∶ 𝑎𝑓(𝑖−1) < 𝑔𝑙 < 𝑎𝑓𝑖} ≠ ∅

and 𝑏𝑡𝑖 = 𝑎(𝑓 𝑡
𝑖−1)

. Thus, 𝐵𝑡 ≠ ∅ (Contradiction again). As a consequence, if 𝑓 𝑡
(𝑖−1) = 𝑖 − 1 implies that 𝑓 𝑡

𝑖 = 𝑖 for 𝑖 ∈ {2,… ,𝑀𝑡}
and we have:

𝐴𝑡 = {𝑎1, 𝑎2,… 𝑎𝑀𝑡
}

If 𝑀𝑡 = 𝑀 it is clear that 𝐴𝑡 = 𝐴𝑀 and 𝐷𝑡 = ∅ (Contradiction again). Therefore, 𝑀𝑡 < 𝑀 and

𝐷𝑡 = 𝐴𝑀 − 𝐴𝑡 = {𝑎(𝑀𝑡+1), 𝑎(𝑀𝑡+2),… 𝑎𝑀}

The optimal auxiliary vector is given by 𝐭𝐎𝐏(𝑡) = (𝑎1,… , 𝑎𝑀𝑡
) and in a similar way that in the previous cases, we can proof that

if 𝐹𝑡 = 𝐴𝑡, there is not a reduction in the optimal dimension. If 𝑍𝑡 = 𝐴𝑡, then we can attain the minimum of 𝑄𝑡(𝛾) at 𝛾 = (𝑎𝑀𝑡
).

Finally, if 𝑍𝑡 ≠ 𝐴𝑡 and 𝐹𝑡 ≠ 𝐴𝑡, and we suppose that

𝐹𝑡 = {𝑎𝑗1 , 𝑎𝑗2 ,… 𝑎𝑗𝑙}

we can reached the minimum value of 𝑄𝛾 (𝑡) at 𝛾 = (𝑎(𝑗1−1), 𝑎𝑗1 ,… , 𝑎(𝑗𝑙−1), 𝑎𝑗𝑙 , 𝑎𝑀𝑡
).

Next, under the assumption𝐷𝑡 ≠ ∅ and𝐷𝑡 ≠ 𝐴𝑀 , we consider𝐵𝑡 ≠ ∅. If we assume that 𝑏𝑡ℎ exists for ℎ = 1,… ,𝑀𝑡, following
the proposal3, the optimal auxiliary vector 𝐭𝑂𝑃𝑇 (𝑡) is given by (12) and there is not a possible reduction in the dimension. On
the other hand, if there are some values 𝑗𝑡1, 𝑗

𝑡
2,… 𝑗𝑡𝑝𝑡 ∈ {1,… ,𝑀𝑡}; such as 𝑏𝑡𝑗ℎ does not exits for ℎ = 1, 2,… 𝑝𝑡 with 𝑝𝑡 ≤ 𝑀𝑡

and 𝑗𝑡ℎ ≠ 𝑗𝑡𝑞 if ℎ ≠ 𝑞, the optimal dimension is given by 𝑃 = 2𝑀𝑡 − 𝑝𝑡 and the optimal auxiliary vector 𝐭𝐎𝐏 is given by (13).
Analogously, there are 𝑝1, 𝑝2,… , 𝑝𝑙𝑡 ∈ {1, 2,… ,𝑀𝑡} such as 𝑏𝑡𝑓𝑝ℎ

exists and following3 there is not a reduction between the
points 𝑏𝑡𝑓𝑝ℎ

and 𝑎𝑡𝑓𝑝ℎ
. Alternatively, the optimal auxiliary vector 𝐭𝐎𝐏(𝑡) can be expressed as follows

𝐭𝐎𝐏(𝑡) = (𝑎𝑓 𝑡
1
,… , 𝑎𝑓 𝑡

(𝑝1−1)
, 𝑏𝑓 𝑡

𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝑎𝑓 𝑡

(𝑝1+1)
,… , 𝑎𝑓 𝑡

(𝑝ℎ−1)
, 𝑏𝑓 𝑡

𝑝ℎ
, 𝑎𝑓 𝑡

𝑝ℎ
, 𝑎𝑓 𝑡

(𝑝ℎ+1)
,… , 𝑎𝑓 𝑡

𝑀𝑡
) (20)

If we suppose that 𝑝1 = 1 then the value 𝑏𝑡𝑓1 exists and consequently:

𝑈1 = {𝑙 ∈ 𝑈 ∶ 𝑔𝑙 < 𝑎𝑡1} = {𝑙 ∈ 𝑈 ∶ 𝑔𝑙 < 𝑎𝑓 𝑡
1
} ≠ ∅

then, 𝑎𝑓 𝑡
1
> 𝑎1 and 𝑓 𝑡

1 > 1. As a consequence 𝑎𝑖 ∉ 𝐴𝑡 with 𝑖 = 1,… 𝑓 𝑡
1 − 1 and {𝑎1,… 𝑎(𝑓 𝑡

1−1)
} ⊆ 𝐷𝑡 which implies that

𝑏𝑓 𝑡
1
= 𝑎(𝑓 𝑡

1−1)
. In this case, we have:

𝐾𝑡(𝑏𝑓 𝑡
1
) =

∑

𝑘∈𝑈
Δ(𝑏𝑓 𝑡

1
− 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 0

𝐾𝑡(𝑎𝑓 𝑡
1
) =

∑

𝑘∈𝑈
Δ(𝑎𝑓 𝑡

1
− 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑓 𝑡

1
) −

𝑓 𝑡
1−1
∑

ℎ=1
𝑟ℎ − 𝑞𝑡1 = 𝑁𝐹𝑔(𝑎𝑓 𝑡

1
) −𝐻 𝑡

1

and following3 there is no possibility to reduce the number of points here.

On the other hand, if we suppose that 𝑝1 > 1, for 𝑖 ∈ {1, 2,… 𝑝1 − 1} the value 𝑏𝑡𝑓𝑖 does not exist and:

𝑈1 = {𝑙 ∈ 𝑈 ∶ 𝑔𝑙 < 𝑎𝑡1} = {𝑙 ∈ 𝑈 ∶ 𝑔𝑙 < 𝑎𝑓 𝑡
1
} = ∅

𝑈𝑖 = {𝑙 ∈ 𝑈 ∶ 𝑎𝑡(𝑖−1) < 𝑔𝑙 < 𝑎𝑡𝑖} = {𝑙 ∈ 𝑈 ∶ 𝑎𝑓 𝑡
(𝑖−1)

< 𝑔𝑙 < 𝑎𝑓 𝑡
𝑖
} = ∅ for 𝑖 = 2,… , 𝑝1 − 1

therefore 𝑎𝑓 𝑡
1
= 𝑎1 and 𝑎𝑓 𝑡

𝑖
= 𝑎(𝑓(𝑖−1)+1) for 𝑖 = 2,… , 𝑝1 − 1 and then:

𝑎𝑓 𝑡
1
= 𝑎1; 𝑎𝑓 𝑡

2
= 𝑎2;… ; 𝑎𝑓 𝑡

(𝑝1−1)
= 𝑎(𝑝1−1).

Thus, if 𝑝1 > 1 we have {𝑎1,… , 𝑎(𝑝1−1)} ⊆ 𝐴𝑡 and consequently the optimal auxiliary vector 𝐭𝐎𝐏(𝑡) given by (20) can be
expressed as follows:

𝐭𝐎𝐏(𝑡) = (𝑎1,… , 𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅) =

where 𝐭𝑅 denotes
𝐭𝑅 = (𝑎𝑓 𝑡

(𝑝1+1)
,… , 𝑎𝑓 𝑡

(𝑝ℎ−1)
, 𝑏𝑓 𝑡

𝑝ℎ
, 𝑎𝑓 𝑡

𝑝ℎ
, 𝑎𝑓 𝑡

(𝑝ℎ+1)
,… , 𝑎𝑓 𝑡

𝑀𝑡
).
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On the contrary, for 𝑝1 we have

𝑈𝑝1 = {𝑙 ∈ 𝑈 ∶ 𝑎𝑡(𝑝1−1) < 𝑔𝑙 < 𝑎𝑡𝑝1} = {𝑙 ∈ 𝑈 ∶ 𝑎𝑓 𝑡
(𝑝1−1)

< 𝑔𝑙 < 𝑎𝑓 𝑡
𝑝1
} =

= {𝑙 ∈ 𝑈 ∶ 𝑎(𝑝1−1) < 𝑔𝑙 < 𝑎𝑓 𝑡
𝑝1
} ≠ ∅

and then 𝑎𝑓 𝑡
𝑝1
> 𝑎𝑝1 and 𝑓 𝑡

𝑝1
> 𝑝1 which implies that

{𝑎𝑝1 , 𝑎(𝑝1+1),… 𝑎(𝑓 𝑡
𝑝1
−1)} ⊆ 𝐷𝑡.

We consider the following sets:
𝐴𝑝1 = {𝑎1,… , 𝑎(𝑝1−1)} (21)

𝑍𝑝1 = {𝑎𝑖 ∈ 𝐴𝑝1 ∶ 𝑞𝑡𝑖 = 0} (22)
𝐹𝑝1 = {𝑎𝑖 ∈ 𝐴𝑝1 ∶ 0 < 𝑞𝑡𝑖 < 𝑟𝑖} (23)

Similarly to the previous cases, if we suppose that 𝑍𝑝1 = 𝐴𝑝1 and 𝐹𝑝1 = ∅, it is easy to see that we can delete 𝑎𝑖 for
𝑖 = 1, 2,… 𝑝1 − 2 from the optimal auxiliary vector 𝐭𝐎𝐏(𝑡) and we can calibrate only with the value 𝑎(𝑝1−1). To see it, it is clear
that:

𝐾𝑡(𝑎1) =
∑

𝑘∈𝑈
Δ(𝑎1 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎1)

⋮
𝐾𝑡(𝑎(𝑝1−1)) =

∑

𝑘∈𝑈
Δ(𝑎𝑗1−1 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎(𝑝1−1)).

Because {𝑎𝑝1 , 𝑎(𝑝1+1),… 𝑎(𝑓𝑝1−1)} ⊆ 𝐷𝑡 it is easy to see that:

𝐾𝑡(𝑏𝑓 𝑡
𝑝1
) =

∑

𝑘∈𝑈
Δ(𝑏𝑓 𝑡

𝑝1
− 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝐾𝑡(𝑎(𝑝1−1)) = 𝑁𝐹𝑔(𝑎(𝑝1−1))

𝐾𝑡(𝑎𝑓 𝑡
𝑝1
) =

∑

𝑘∈𝑈
Δ(𝑎𝑓 𝑡

𝑝1
− 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑓 𝑡

𝑝1
) −

𝑓𝑝1−1
∑

ℎ=𝑝1

𝑟ℎ − 𝑞𝑡𝑓𝑝1
= 𝑁𝐹𝑔(𝑎𝑓 𝑡

𝑝1
) −𝐻 𝑡

𝑝1
.

The minimum value of 𝑄𝑡(𝛾) at 𝐭𝐎𝐏(𝑡) can be expressed as follows:

𝑄𝑡(𝐭𝐎𝐏(𝑡)) = 𝑄𝑡(𝑎1,… , 𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅) =

= 𝑄𝑡(𝐭𝑅) −
𝑝1−1
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗) −𝐾𝑡(𝑎𝑗−1)
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
−

(

𝐾𝑡(𝑏𝑓 𝑡
𝑝1
) −𝐾𝑡(𝑎(𝑝1−1))

)2

𝐹𝑔(𝑏𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑎(𝑝1−1))

−

(

𝐾𝑡(𝑎𝑓 𝑡
𝑝1
) −𝐾𝑡(𝑏𝑓 𝑡

𝑝1
)
)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

=

= 𝑄𝑡(𝐭𝑅) −𝑁2
𝑝1−1
∑

𝑗=1

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
)

−

(

𝑁𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) −𝑁𝐹𝑔(𝑎(𝑝1−1)) −𝐻 𝑡

𝑝1

)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

=

= 𝑄𝑡(𝐭𝑅) −𝑁2𝐹𝑔(𝑎(𝑝1−1)) −

(

𝑁𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) −𝑁𝐹𝑔(𝑎(𝑝1−1)) −𝐻 𝑡

𝑝1

)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

.

If we calibrate with the auxiliary vector 𝛾 = (𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅), we obtain the same value:

𝑄𝑡(𝛾) = 𝑄𝑡(𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅) =

= 𝑄𝑡(𝐭𝑅) −
(

𝐾𝑡(𝑎(𝑝1−1)))
)2

𝐹𝑔(𝑎(𝑝1−1))
−

(

𝐾𝑡(𝑏𝑓 𝑡
𝑝1
) −𝐾𝑡(𝑎(𝑝1−1))

)2

𝐹𝑔(𝑏𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑎(𝑝1−1))

−

(

𝐾𝑡(𝑎𝑓 𝑡
𝑝1
) −𝐾𝑡(𝑏𝑓 𝑡

𝑝1
)
)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

=

= 𝑄𝑡(𝐭𝑅) −𝑁2𝐹𝑔(𝑎(𝑝1−1)) −

(

𝑁𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) −𝑁𝐹𝑔(𝑎(𝑝1−1)) −𝐻 𝑡

𝑝1

)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

.

Thus, if 𝑍𝑝1 = 𝐴𝑝1 we can reduce the dimension of the auxiliary vector to attain the minimum value of 𝑄𝑡(𝛾).

Now, if we suppose that 𝐹𝑝1 = 𝐴𝑝1 and 𝑍𝑝1 = ∅, as in the previous cases, we cannot reduce the dimension of the subvector
(𝑎1,… , 𝑎(𝑝1−1)) in the auxiliary vector (𝐭𝐎𝐏(𝑡)).
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Next, if we suppose that 𝑍𝑝1 ≠ 𝐴𝑝1 and 𝐹𝑝1 ≠ 𝐴𝑝1 then there is a set 𝐼𝐹𝑝1
= {𝑗11 , 𝑗

2
2 ,… , 𝑗1𝑙1} ⊆ {1, 2,… 𝑝1 − 1} such that

𝑎𝑗1ℎ ∈ 𝐹𝑝1 and therefore 𝑞𝑡
𝑗1ℎ
≠ 0 for ℎ = 1, 2,… , 𝑙1.

Now, if we consider that 𝑗11 > 1; 𝑗1ℎ − 1 > 𝑗1(ℎ−1) for all ℎ = 2,… 𝑙1 and 𝑗1𝑙1 < 𝑝1 − 1; then for 𝑣 = 1,… 𝑗11 − 1; 𝑞𝑡𝑣 = 0 and we
have:

𝐾𝑡(𝑎1) =
∑

𝑘∈𝑈
Δ(𝑎1 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎1)

⋮
𝐾𝑡(𝑎(𝑗11−1)) =

∑

𝑘∈𝑈
Δ(𝑎𝑗11−1 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑗11−1)

Similarly, for 𝑗1ℎ,… 𝑗1ℎ+1 − 1 with ℎ = 1, 2,… 𝑙1 − 1; we have:

𝐾𝑡(𝑎𝑗1ℎ ) =
∑

𝑘∈𝑈
Δ(𝑎𝑗1ℎ − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑗1ℎ ) −

ℎ
∑

𝑣=1
𝑞𝑡𝑗1𝑣

⋮

𝐾𝑡(𝑎(𝑗1(ℎ+1)−1)) =
∑

𝑘∈𝑈
Δ(𝑎(𝑗1(ℎ+1)−1) − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎(𝑗1(ℎ+1)−1)) −

ℎ
∑

𝑣=1
𝑞𝑡𝑗1𝑣

and finally, for 𝑗1𝑙1 ,… , 𝑝1 − 1

𝐾𝑡(𝑎𝑗1𝑙1
) =

∑

𝑘∈𝑈
Δ(𝑎𝑗1𝑙1

− 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑗1𝑙1
) −

𝑙11
∑

𝑣=1
𝑞𝑡𝑗1𝑣

= 𝑁𝐹𝑔(𝑎𝑗1𝑙1
) − 𝐿𝑡

1

⋮

𝐾𝑡(𝑎(𝑝1−1)) =
∑

𝑘∈𝑈
Δ(𝑎(𝑝1−1) − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎(𝑝1−1)) −

𝑙11
∑

𝑣=1
𝑞𝑡𝑗1𝑣

= 𝑁𝐹𝑔(𝑎(𝑝1−1)) − 𝐿𝑡
1.

Again, because {𝑎𝑝1 , 𝑎(𝑝1+1),… 𝑎(𝑓𝑝1−1)} ⊆ 𝐷𝑡 we have:

𝐾𝑡(𝑏𝑓 𝑡
𝑝1
) =

∑

𝑘∈𝑈
Δ(𝑏𝑓 𝑡

𝑝1
− 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝐾𝑡(𝑎(𝑝1−1)) = 𝑁𝐹𝑔(𝑎(𝑝1−1)) − 𝐿𝑡

1

𝐾𝑡(𝑎𝑓 𝑡
𝑝1
) =

∑

𝑘∈𝑈
Δ(𝑎𝑓 𝑡

𝑝1
− 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁𝐹𝑔(𝑎𝑓 𝑡

𝑝1
) − 𝐿𝑡

1 −
𝑓𝑝1−1
∑

ℎ=𝑝1

𝑟ℎ − 𝑞𝑡𝑓𝑝1
= 𝑁𝐹𝑔(𝑎𝑓 𝑡

𝑝1
) − 𝐿𝑡

1 −𝐻 𝑡
𝑝1

The minimum of 𝑄𝑡(𝛾) at (𝐭𝐎𝐏(𝑡)) is given by:

𝑄𝑡(𝐭𝐎𝐏(𝑡)) = 𝑄𝑡(𝑎1,… , 𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅) =

= 𝑄𝑡(𝐭𝑅) −
𝑝1−1
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗) −𝐾𝑡(𝑎𝑗−1)
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
−

(

𝐾𝑡(𝑏𝑓 𝑡
𝑝1
) −𝐾𝑡(𝑎(𝑝1−1))

)2

𝐹𝑔(𝑏𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑎(𝑝1−1))

−

(

𝐾𝑡(𝑎𝑓 𝑡
𝑝1
) −𝐾𝑡(𝑏𝑓 𝑡

𝑝1
)
)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

=

= 𝑄𝑡(𝐭𝑅) −𝑁2
𝑝1−1
∑

𝑗=1

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
)

+ 2𝑁 ⋅ 𝐿𝑡
1 −

𝑙11
∑

𝑣=1

(

𝑞𝑡𝑗1𝑣
)2

𝐹𝑔(𝑎𝑗1𝑣 ) − 𝐹𝑔(𝑎(𝑗𝑣1−1))
−

(

𝑁𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) −𝑁𝐹𝑔(𝑎(𝑝1−1)) −𝐻 𝑡

𝑝1

)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

=

= 𝑄𝑡(𝐭𝑅) −𝑁2𝐹𝑔(𝑎(𝑝1−1)) + 2𝑁 ⋅ 𝐿𝑡
1 −

𝑙11
∑

𝑣=1

(

𝑞𝑡𝑗1𝑣
)2

𝐹𝑔(𝑎𝑗1𝑣 ) − 𝐹𝑔(𝑎(𝑗1𝑣−1))
−

(

𝑁𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) −𝑁𝐹𝑔(𝑎(𝑝1−1)) −𝐻 𝑡

𝑝1

)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

.

If we calibrate with the following auxiliary vector:

𝛾 =
(

𝑎(𝑗11−1), 𝑎𝑗11 ,… , 𝑎(𝑗1𝑙1−1)
, 𝑎𝑗1𝑙1

, 𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅

)

in a similar way to the previous cases, it is easy to see that:

𝑄𝑡

(

𝑎(𝑗11−1), 𝑎𝑗11 ,… , 𝑎(𝑗1𝑙1−1)
, 𝑎𝑗1𝑙1

, 𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅

)

=
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= 𝑄𝑡(𝐭𝑅) −𝑁2𝐹𝑔(𝑎(𝑝1−1)) + 2𝑁 ⋅ 𝐿𝑡
1 −

𝑙11
∑

𝑣=1

(

𝑞𝑡𝑗1𝑣
)2

𝐹𝑔(𝑎𝑗1𝑣 ) − 𝐹𝑔(𝑎(𝑗1𝑣−1))
−

(

𝑁𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) −𝑁𝐹𝑔(𝑎(𝑝1−1)) −𝐻 𝑡

𝑝1

)2

𝐹𝑔(𝑎𝑓 𝑡
𝑝1
) − 𝐹𝑔(𝑏𝑓 𝑡

𝑝1
)

.

Then, if 𝑍𝑝1 ≠ 𝐴𝑝1 and 𝐹𝑝1 ≠ 𝐴𝑝1 again we can reduce the dimension of the optimal vector 𝐭𝐎𝐏(𝑡).

Finally, we have assumed that 𝑗11 > 1; 𝑗1ℎ − 1 > 𝑗1(ℎ−1) for all ℎ = 2,… 𝑙1 and 𝑗1𝑙1 < 𝑝1 − 1. If there is a ℎ ∈ {1, 2,… 𝑙} that
𝑗1ℎ − 1 = 𝑗1(ℎ−1) it is easy to see that the minimum value of 𝑄𝑡(𝛾) is reached at

𝛾 =
(

𝑎(𝑗11−1), 𝑎𝑗11 ,… 𝑎𝑗1(ℎ−1) , 𝑎𝑗1ℎ ,… , 𝑎(𝑗1𝑙1−1)
, 𝑎𝑗1𝑙1

, 𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅

)

with less dimension than in the case 𝑗1ℎ − 1 > 𝑗1(ℎ−1) for all ℎ = 2,… 𝑙1. Similarly, if we suppose that 𝑗11 = 1 then the minimum
is obtained with

𝛾 =
(

𝑎𝑗11 , 𝑎(𝑗12−1), 𝑎𝑗12 ,… 𝑎𝑗1(ℎ−1) , 𝑎𝑗1ℎ ,… , 𝑎(𝑗1𝑙1−1)
, 𝑎𝑗1𝑙1

, 𝑎(𝑝1−1), 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅

)

again, with less dimension than in the case 𝑗11 > 1. In a similar way, if 𝑗1𝑙1 = 𝑝1 − 1, the minimum of 𝑄𝑡(𝛾) is reached at

𝛾 =
(

𝑎(𝑗11−1), 𝑎𝑗11 ,… 𝑎𝑗1(ℎ−1) , 𝑎𝑗1ℎ ,… , 𝑎(𝑗1𝑙1−1)
, 𝑎𝑗1𝑙1

, 𝑏𝑓 𝑡
𝑝1
, 𝑎𝑓 𝑡

𝑝1
, 𝐭𝑅

)

again, with less dimension than in the case 𝑗1𝑙1 < 𝑝1 − 1.

Now, if we consider 𝑝𝑖 with 𝑖 = 2,… , 𝑙𝑡, we can extend the analysis for the dimension reduction of the optimal auxiliary
vector in a similar way to the case 𝑝1.(see Appendix A.3).

4 THE NEW OPTIMAL ESTIMATOR WITH THE NEW OPTIMAL VECTOR

In the previous section we have theoretically demonstrated that the optimal vector 𝐭𝐎𝐏𝐓(𝑡) proposed in3 can be reduced in its
dimension and we can minimize the variance given by (8) with a new optimal vector 𝐭𝐍𝐄𝐖𝐎𝐏𝐓(𝑡) of lower dimension. As with
the original optimal vector 𝐭𝐎𝐏𝐓(𝑡), the new vector 𝐭𝐍𝐄𝐖𝐎𝐏𝐓(𝑡) depends on unknown population values and therefore needs to be
estimated. For it, in the same way as in3, from the sample versions of the sets 𝐴𝑡, 𝐵𝑡, 𝐶𝑡, 𝐷𝑡, 𝑍𝑡 and 𝐹𝑡 and the sample version
of the function 𝑄𝑡(𝛾), an estimate �̂�𝐍𝐄𝐖𝐎𝐏𝐓(𝑡) of the vector 𝐭𝐍𝐄𝐖𝐎𝐏𝐓(𝑡) can be obtained and we can define a new calibrated
estimator 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) for the distribution function 𝐹𝑦(𝑡), given by:

𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) = 𝐹𝑌𝐻𝑇 (𝑡) +
(

𝐹𝑔 (̂𝐭𝐍𝐄𝐖𝐎𝐏𝐓(𝑡)) − 𝐹𝐺𝐻𝑇 (̂𝐭𝐍𝐄𝐖𝐎𝐏𝐓(𝑡))
)′

⋅ �̂�
(

�̂�𝐍𝐄𝐖𝐎𝐏𝐓(𝑡)
)

(24)

where
�̂�
(

�̂�𝐍𝐄𝐖𝐎𝐏𝐓(𝑡)
)

= 𝑇 −1 ⋅
∑

𝑘∈𝑠
𝑑𝑘𝑞𝑘Δ(̂𝐭𝐍𝐄𝐖𝐎𝐏𝐓(𝑡) − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘)

5 SIMULATION STUDY

In this section, a simulation study was conducted to compare the performance of the proposed optimal estimator with other
alternative estimators for the distribution function 𝐹 (𝑡). The simulation study was programmed in R software [version 4.1.0]
and it was necessary to develop a new code to calculate the estimators included in the simulation study. The precision of the
proposed new optimal calibration estimator 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) was compared with the following estimators, the Horvitz Thomp-
son estimator, 𝐹𝐻𝑇 , the difference estimator31, 𝐹𝐷(𝑡) , the ratio estimator31 𝐹𝑅(𝑡), the Chambers-Dunstan estimator32 𝐹𝐶𝐷(𝑡),
the Rao-Kovar-Mantel estimator31 𝐹𝑅𝐾𝑀 (𝑡), the calibration estimator2 with 𝑡1 = 𝑄𝑔(0.5), the population median, as point for
calibration, 𝐹𝐶𝐴𝐿(𝑡), the calibration estimator2 with three points 𝑡1 = 𝑄𝑔(0.25), 𝑡2 = 𝑄𝑔(0.5) and 𝑡3 = 𝑄𝑔(0.75), the population
quartiles, as points for calibration, 𝐹𝐶𝐴𝐿.3(𝑡), the calibration estimator with one optimal point18, 𝐹𝐶𝐴𝐿𝑀𝐴𝑋(𝑡) and finally the
previous optimal calibration estimator3 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡).

Both real populations and simulated populations were considered for the simulation study. Specifically, we considered a real
population included in The R Datasets Package called DNase that provides data collected from an ELISA assay for recombinant
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DNase protein in rat serum with population size 𝑁 = 176. In addition, two simulated population called Simh and Simser were
considered. The first one, Simh, is a population of size 𝑁 = 5000 generated from the following superpopulation model:

𝑦𝑘 = 8 − 7.82∕𝑥𝑘 + 𝜖𝑘
where 𝑥 is a sample from a discrete uniform distribution in {1, 2,… , 100} and 𝜖𝑘’s are i.i.d. random variables from𝑁(0, 0.5∕𝑥𝑘).

The simulated population Simser is a population of size 𝑁 = 5882 generated from the following superpopulation model:

𝑦𝑘 = 𝑥2𝑘 + 𝜖𝑘
where 𝑥 is a sample from a discrete uniform distribution in {−100,−99,… , 100} and 𝜖𝑘’s are i.i.d. random variables from
𝑁(0, 10).

For each population included in the simulation study, we drawn by simple random sampling without replacement 1000 samples
of several sizes. For each sample, we estimated the distribution function 𝐹 (𝑡) through all the estimators considered in the study
at 11 different values of 𝑡, namely the quantiles 𝑄𝑦(𝛼) for 𝛼=0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and 0.9.

To measure the performance of each estimator included in the study, we considered the average relative bias (AVRB) and the
average relative efficiency (AVRE), defined as follow:

AVRB(𝑡) = 1
11

11
∑

𝑞=1
|RB(𝑡𝑞)|, AVRE(𝑡) = 1

11

11
∑

𝑞=1
RE(𝑡𝑞)

where RB and RE are defined as

RB(𝑡) = 1
𝐵

𝐵
∑

𝑏=1

𝐹 (𝑡)𝑏 − 𝐹𝑦(𝑡)
𝐹𝑦(𝑡)

and RE(𝑡) =
𝑀𝑆𝐸[𝐹 (𝑡)]

𝑀𝑆𝐸[𝐹𝐻𝑇 (𝑡)]
, (25)

where 𝑏 indexes the 𝑏th simulation run,𝐹 (𝑡) is an estimator for the distribution function,𝑀𝑆𝐸[𝐹 (𝑡)] = 𝐵−1 ∑𝐵
𝑏=1[𝐹 (𝑡)𝑏−𝐹𝑦(𝑡)]2

is the empirical mean square error for 𝐹 (𝑡) and 𝑀𝑆𝐸[𝐹𝐻𝑇 (𝑡)] is similarly defined for the Horvitz-Thompson estimator.
Given that the new estimator proposal 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) and the estimator 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) are based on the minimization of (15),

it is possible that their behavior in terms of efficiency is similar and therefore it is necessary to analyze their behavior in greater
detail. A reduced dimensionality in the auxiliary information set may reduce numerical issues in optimization procedures and
also avoid the presence of unstable calibration weights (both negative weights and huge weights). Therefore, for each of the
eleven estimation points 𝑡𝑞 , we compared the dimension of the optimum auxiliary vector used in each estimators 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡)
and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡). For it, we considered the mean dimension and the variance of the dimension:

MD(𝐹 (𝑡𝑞)) =
1
𝐵

𝐵
∑

𝑏=1
DIM(𝐭𝐪𝐨𝐩𝐭), VD(𝐹 (𝑡𝑞)) =

1
𝐵

𝐵
∑

𝑏=1

(

DIM(𝐭𝐪𝐨𝐩𝐭) − MD𝑡𝑞
)2

where 𝐹 can be 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) or 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡), 𝐭𝐪𝐨𝐩𝐭 denote the optimum auxiliary vector used with the point 𝑡𝑞 and DIM(𝐭𝐪𝐨𝐩𝐭)
denote the dimension of (𝐭𝐪𝐨𝐩𝐭).

Additionally, because a limited number of variables may reduce the execution time to resolve the calibration procedure, we
compared for each estimation point the execution time in calculating the estimators using the following measure:

RT(𝑡) =
TIME(𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡))

TIME(𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡))

where TIME(𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡)) and TIME(𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡)) denote the running time for calculating 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡)
respectively.

For the population DNase, Table 1 gives the values of AVRB and AVRE whereas Table 2 gives the values of MD; VD and
RT. With respect to the results obtained for the bias and efficiency analysis, the estimators 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡)
show the same behavior. Thus, both estimators present an adequate bias value, although for all sample sizes there are estimators
that present a lower bias. In relation to efficiency, both estimators are clearly the most efficient. From results in Table 2 , as
expected, the estimator 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) always presents a smaller dimension of the auxiliary vector used, but this reduction is
quite modest for all sample sizes and therefore the reduction obtained in the execution time is also quite modest. This may be
because the set 𝐹𝑡 has a cardinal similar to the set 𝐴𝑡 or the set 𝐵𝑡 also has a cardinal similar to the set 𝐴𝑡. Consequently, the new
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proposal 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) only achieves small reductions in the dimension of the auxiliary information used with respect to
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡), that produces slight improvements in execution time and it is not considerable enough to improve the asymptotic
behavior23, although it does not deteriorate it either.

TABLE 1 Average relative bias (AVRB) and average relative efficiency (AVRE) of the estimators compared. Population: DNase.

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE

𝑛 = 30 𝑛 = 32 𝑛 = 35 𝑛 = 37

𝐹𝐻𝑇 0.0064 1 0.0063 1 0.0037 1 0.0030 1
𝐹𝐷 0.0136 0.4898 0.0219 0.4867 0.0173 0.4642 0.0153 0.4703
𝐹𝑅 0.0083 0.4412 0.0040 0.4343 0.0061 0.4247 0.0024 0.4335
𝐹𝐶𝐷 0.1869 0.8930 0.1878 0.9150 0.1814 0.9441 0.1783 0.9749
𝐹𝑅𝐾𝑀 0.0032 0.4128 0.0103 0.4124 0.0063 0.4023 0.0055 0.4068
𝐹𝐶𝐴𝐿 0.0066 0.8575 0.0090 0.8377 0.0029 0.8881 0.0012 0.8436
𝐹𝐶𝐴𝐿3 0.0046 0.3401 0.0035 0.3468 0.0053 0.3322 0.0015 0.3261
𝐹𝐶𝐴𝐿𝑀𝐴𝑋 0.0057 0.2102 0.0079 0.2247 0.0052 0.1981 0.0050 0.1991
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 0.0047 0.1895 0.0059 0.1928 0.0030 0.1676 0.0024 0.1629
𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 0.0047 0.1895 0.0059 0.1928 0.0030 0.1676 0.0024 0.1629

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE

𝑛 = 40 𝑛 = 42 𝑛 = 45 𝑛 = 47

𝐹𝐻𝑇 0.0056 1 0.0032 1 0.0044 1 0.0052 1
𝐹𝐷 0.0160 0.4620 0.0102 0.4670 0.0089 0.4675 0.0108 0.4481
𝐹𝑅 0.0018 0.4241 0.0033 0.4380 0.0045 0.4389 0.0041 0.4160
𝐹𝐶𝐷 0.1759 1.0417 0.1703 1.0957 0.1625 1.1100 0.1598 1.1054
𝐹𝑅𝐾𝑀 0.0076 0.4012 0.0023 0.4070 0.0011 0.4136 0.0017 0.4014
𝐹𝐶𝐴𝐿 0.0049 0.8386 0.0032 0.8394 0.0034 0.9319 0.0034 0.8700
𝐹𝐶𝐴𝐿3 0.0008 0.3397 0.0024 0.3466 0.0033 0.3442 0.0022 0.3273
𝐹𝐶𝐴𝐿𝑀𝐴𝑋 0.0043 0.1833 0.0028 0.1938 0.0031 0.1962 0.0036 0.1972
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 0.0022 0.1530 0.0013 0.1582 0.0011 0.1557 0.0019 0.1516
𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 0.0022 0.1530 0.0013 0.1582 0.0011 0.1557 0.0019 0.1516

Tables 3 and 4 provide the results obtained for the Simh population. From the results of Table 3 (AVRB and AVRE) we
can again observe that 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) have the same behavior and they are the most efficient estimators
for all sample sizes. Also, they also present a less bias for most of sample sizes. Additionally, we can highlight the bias and
efficiency problems of 𝐹𝐶𝐷(𝑡) because this estimator is biased when the relationship between 𝑦 and 𝑥 is not linear. As in the
previous case, the dimension reduction analysis (Table 4 ) is essential to find out if 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) is a better alternative than
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡). In this case, from the results of Table 4 , we can verify that again there is a slight reduction in the optimal vector
used in 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) for the smalls and medium quantiles. On the contrary, there is a moderate reduction for the higher
quantiles where the dimension of the optimal vector used in 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) has a value between 10 and 20 while the dimension
for 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) remains between 2 and 5 for all sample sizes. Due to this reduction, the new estimator 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡)
provides a considerable benefit in execution time, especially in the higher quantiles but as in the previous case, this moderate
reduction in the dimension of the auxiliary information used in the calibration procedure does not allow an improvement in the
asymptotic efficiency. Probably, in this case we have a considerable cardinal for the set 𝑍𝑡, although the set 𝐹𝑡 is not empty.
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TABLE 2 Average dimension(MD), variance dimension (VD) and comparison of execution time (RT) of the estimators 𝐹𝐶𝐴𝐿𝑂𝑃𝑇
and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 . Population: DNase.

𝑛 = 30 𝑛 = 32

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 1 1 0 0 1 1 1 0 0 1
𝑡2 1.929 1.698 0.257 0.459 0.875 1.920 1.742 0.271 0.438 0.556
𝑡3 1.976 1 0.153 0 0.600 1.978 1 0.147 0 0.217
𝑡4 2.781 1.738 0.419 0.440 0.846 2.807 1.761 0.405 0.427 0.467
𝑡5 3.658 1.668 0.499 0.471 0.813 3.665 1.670 0.491 0.470 0.895
𝑡6 3.951 1 0.225 0 0.238 3.960 1 0.196 0 0.412
𝑡7 4.915 1.515 0.286 0.500 0.375 4.939 1.530 0.244 0.499 0.849
𝑡8 5.883 1.739 0.343 0.439 0.579 5.897 1.763 0.307 0.425 0.261
𝑡9 5.921 1 0.288 0 0.556 5.938 1 0.241 0 0.600
𝑡10 6.723 1.733 0.476 0.443 0.571 6.765 1.756 0.452 0.430 0.909
𝑡11 7.502 1.573 0.580 0.495 0.536 7.578 1.632 0.541 0.483 0.950

𝑛 = 35 𝑛 = 37

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 1 1 0 0 1 1 1 0 0 0.187
𝑡2 1.951 1.816 0.216 0.388 0.972 1.960 1.815 0.196 0.388 0.974
𝑡3 1.989 1 0.104 0 0.379 1.990 1 0.100 0 0.250
𝑡4 2.853 1.803 0.357 0.398 0.762 2.876 1.847 0.330 0.360 0.941
𝑡5 3.714 1.714 0.465 0.452 0.650 3.749 1.742 0.438 0.438 0.615
𝑡6 3.977 1 0.150 0 0.375 3.986 1 0.118 0 0.833
𝑡7 4.962 1.608 0.196 0.488 0.524 4.971 1.572 0.168 0.495 0.773
𝑡8 5.936 1.817 0.249 0.387 0.515 5.948 1.803 0.231 0.398 0.599
𝑡9 5.969 1 0.173 0 0.125 5.975 1 0.162 0 0.471
𝑡10 6.823 1.810 0.382 0.392 0.769 6.865 1.864 0.353 0.343 0.905
𝑡11 7.650 1.671 0.494 0.470 0.667 7.654 1.677 0.497 0.468 0.714

𝑛 = 40 𝑛 = 42

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 1 1 0 0 1 1 0 0 1
𝑡2 1.983 1.862 0.129 0.345 0.760 1.982 1.889 0.133 0.314 0.982
𝑡3 1.998 1 0.0447 0 0.818 1.996 1 0.063 0 0.353
𝑡4 2.898 1.871 0.303 0.335 0.706 2.920 1.895 0.271 0.307 0.753
𝑡5 3.793 1.789 0.405 0.408 0.278 3.782 1.781 0.413 0.414 0.647
𝑡6 3.996 1 0.063 0 0.346 3.993 1 0.083 0 0.500
𝑡7 4.989 1.613 0.104 0.487 0.615 4.989 1.665 0.104 0.472 0.698
𝑡8 5.974 1.869 0.159 0.338 0.587 5.979 1.880 0.143 0.325 0.440
𝑡9 5.991 1 0.094 0 0 5.992 1 0.089 0.403 0.214
𝑡10 6.909 1.882 0.291 0.323 0.814 6.893 1.875 0.309 0.331 0.692
𝑡11 7.731 1.735 0.446 0.441 0.773 7.750 1.756 0.433 0.430 0.400

𝑛 = 45 𝑛 = 47

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 1 1 0 0 1 1 1 0 0 1
𝑡2 1.989 1.905 0.104 0.293 0.991 1.993 1.920 0.083 0.271 0.882
𝑡3 1.998 1 0.045 0 0.467 1.999 1 0.032 0 0.600
𝑡4 2.929 1.914 0.257 0.281 0.793 2.937 1.929 0.243 0.257 0.733
𝑡5 3.834 1.829 0.372 0.377 0.882 3.863 1.863 0.347 0.344 0.805
𝑡6 3.994 1 0.077 0 0.083 3.997 1 0.055 0 0.556
𝑡7 4.990 1.698 0.100 0.459 0.786 4.995 1.705 0.071 0.456 0.529
𝑡8 5.981 1.908 0.137 0.289 0.450 5.982 1.920 0.133 0.271 0.857
𝑡9 5.993 1 0.083 0 0.136 5.995 1 0.071 0 0.368
𝑡10 6.928 1.919 0.262 0.273 0.875 6.931 1.918 0.254 0.275 0.615
𝑡11 7.790 1.794 0.415 0.405 0.782 7.782 1.784 0.416 0.412 0.643
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TABLE 3 Average relative bias (AVRB) and average relative efficiency (AVRE) of the estimators compared. Population: Simh.

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE

𝑛 = 75 𝑛 = 100 𝑛 = 125 𝑛 = 150

𝐹𝐻𝑇 0.0066 1 0.0018 1 0.0036 1 0.0034 1
𝐹𝐷 0.0075 0.5584 0.0016 0.5648 0.0027 0.5809 0.0041 0.5616
𝐹𝑅 0.0078 1.2980 0.0018 1.2368 0.0031 1.2648 0.0041 1.2889
𝐹𝐶𝐷 0.3645 9.9689 0.3708 13.4606 0.3662 16.9590 0.3651 19.7880
𝐹𝑅𝐾𝑀 0.0080 0.3990 0.0055 0.3822 0.0038 0.3990 0.0044 0.3789
𝐹𝐶𝐴𝐿 0.0059 0.9369 0.0012 0.8205 0.0016 0.8794 0.0037 0.8845
𝐹𝐶𝐴𝐿3 0.0028 0.3639 0.0015 0.3642 0.0008 0.3749 0.0037 0.3545
𝐹𝐶𝐴𝐿𝑀𝐴𝑋 0.0012 0.2112 0.0008 0.1961 0.0016 0.1924 0.0009 0.1862
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 0.0030 0.1800 0.0012 0.1591 0.0006 0.1555 0.0010 0.1441
𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 0.0030 0.1800 0.0012 0.1591 0.0006 0.1555 0.0010 0.1441

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE

𝑛 = 175 𝑛 = 200 𝑛 = 250 𝑛 = 300

𝐹𝐻𝑇 0.0025 1 0.0037 1 0.0026 1 0.0015 1
𝐹𝐷 0.0025 0.5626 0.0032 0.5822 0.0013 0.5593 0.0011 0.5653
𝐹𝑅 0.0023 1.3001 0.0044 1.2704 0.0021 1.3077 0.0009 1.2659
𝐹𝐶𝐷 0.3653 23.6861 0.3743 26.3930 0.3659 32.5335 0.3632 38.7995
𝐹𝑅𝐾𝑀 0.0040 0.3886 0.0024 0.3926 0.0020 0.3770 0.0011 0.3891
𝐹𝐶𝐴𝐿 0.0021 0.8935 0.0048 0.8732 0.0011 0.8603 0.0012 0.8778
𝐹𝐶𝐴𝐿3 0.0020 0.3780 0.0022 0.3721 0.0011 0.3480 0.0007 0.3598
𝐹𝐶𝐴𝐿𝑀𝐴𝑋 0.0007 0.1920 0.0008 0.1853 0.0008 0.1758 0.0006 0.1725
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 0.0003 0.1486 0.0007 0.1438 0.0008 0.1303 0.0005 0.1313
𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 0.0003 0.1486 0.0007 0.1438 0.0008 0.1303 0.0005 0.1313

For the Simser population, Tables 5 and 6 provide the results of the simulation study. In this case, Table 5 shows that
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) do not present the same behavior and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) is the one with the least bias and the
best efficiency of all the estimators included in the simulation study and it produce a considerable improvement in efficiency
with respect to 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡). For some of the estimators included in the simulation study, we can observe a worse efficiency than
𝐹𝐻𝑇 (𝑡), which may be caused by the absence of a linear relationship between 𝑦 and 𝑥. Regarding dimension reduction analysis
and efficiency in execution time, Table 6 shows that for all quantiles, the optimal vector of 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡) increase its size when
the sample size increases, especially in the larger quantiles, where we can observe very high dimensional optimal vectors. On
the other hand, the dimension of the optimal vector for 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) remains stable for all sample sizes and it always shows
a value below 7 and in most cases its value is between 3 and 5. It represents a quite considerable reduction of the dimension that
causes a quite remarkable improvement in execution, especially in the high quantiles and according to previous studies23 this
remarkable reduction allows 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) to achieve an improvement in efficiency with respect to 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡). In this case,
the cardinal of the set 𝑍𝑡 is probably very high and it is similar to the cardinal of the set 𝐴𝑡, which implies that the set 𝐹𝑡 has
few elements.
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TABLE 4 Average dimension(MD), variance dimension (VD) and comparison of execution time (RT) of the estimators 𝐹𝐶𝐴𝐿𝑂𝑃𝑇
and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 . Population: Simh.

𝑛 = 75 𝑛 = 100

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 2.355 0.543 1.395 0.489 0.557 2.471 0.527 1.489 0.500 0.780
𝑡2 4.168 0.529 1.44 0.584 0.400 4.313 0.503 1.597 0.655 0.299
𝑡3 5.18 0.560 1.55 0.639 0.710 5.341 0.522 1.739 0.676 0.541
𝑡4 6.289 0.616 1.73 0.697 0.364 6.47 0.551 1.91 0.696 0.335
𝑡5 8.552 0.657 2.277 0.739 0.519 8.769 0.533 2.471 0.675 0.343
𝑡6 10.509 0.702 2.416 0.795 0.504 10.78 0.633 2.681 0.811 0.327
𝑡7 12.514 0.863 2.831 0.998 0.367 12.833 0.769 3.162 0.956 0.388
𝑡8 14.475 0.822 2.923 0.956 0.242 14.807 0.645 3.239 0.877 0.351
𝑡9 15.664 0.928 3.1 1.0213 0.359 16.087 0.811 3.5 0.944 0.294
𝑡10 16.71 0.978 3.375 1.143 0.249 17.163 0.923 3.827 1.140 0.273
𝑡11 18.704 0.969 3.519 1.187 0.337 19.178 0.750 3.934 1.163 0.294

𝑛 = 125 𝑛 = 150

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 2.605 0.493 1.608 0.488 0.620 2.652 0.477 1.651 0.477 0.516
𝑡2 4.392 0.493 1.695 0.671 0.610 4.471 0.501 1.841 0.692 0.291
𝑡3 5.414 0.500 1.852 0.709 0.554 5.492 0.500 1.981 0.704 0.627
𝑡4 6.58 0.5018 2.041 0.714 0.488 6.673 0.469 2.224 0.687 0.659
𝑡5 8.883 0.456 2.64 0.628 0.339 8.961 0.414 2.775 0.573 0.409
𝑡6 10.928 0.541 2.865 0.734 0.488 11.058 0.517 3.033 0.717 0.377
𝑡7 12.988 0.658 3.415 0.892 0.343 13.092 0.621 3.578 0.876 0.342
𝑡8 14.95 0.586 3.412 0.824 0.208 15.09 0.520 3.657 0.812 0.275
𝑡9 16.277 0.753 3.698 0.936 0.308 16.394 0.708 3.862 0.896 0.304
𝑡10 17.42 0.809 4.127 1.096 0.353 17.526 0.810 4.293 1.031 0.241
𝑡11 19.438 0.641 4.333 1.089 0.262 19.532 0.584 4.564 1.087 0.278

𝑛 = 175 𝑛 = 200

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 2.719 0.450 1.719 0.450 0.602 2.763 0.426 1.763 0.426 0.603
𝑡2 4.507 0.500 1.929 0.699 0.711 4.581 0.494 1.991 0.688 0.613
𝑡3 5.551 0.498 2.056 0.712 0.450 5.588 0.492 2.167 0.701 0.277
𝑡4 6.714 0.454 2.288 0.657 0.466 6.776 0.417 2.431 0.634 0.674
𝑡5 9 0.364 2.858 0.508 0.372 9.022 0.360 2.901 0.485 0.366
𝑡6 11.062 0.500 3.088 0.685 0.473 11.117 0.494 3.211 0.727 0.328
𝑡7 13.178 0.617 3.74 0.848 0.440 13.214 0.631 3.846 0.835 0.355
𝑡8 15.136 0.542 3.765 0.795 0.299 15.191 0.495 3.897 0.754 0.310
𝑡9 16.474 0.694 4.003 0.859 0.303 16.576 0.667 4.209 0.830 0.326
𝑡10 17.632 0.806 4.514 0.981 0.340 17.726 0.799 4.652 1.021 0.260
𝑡11 19.617 0.524 4.747 1.021 0.268 19.652 0.523 4.891 1.009 0.227

𝑛 = 250 𝑛 = 300

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 2.832 0.374 1.832 0.374 0.702 2.894 0.308 1.894 0.308 0.763
𝑡2 4.659 0.474 2.135 0.691 0.522 4.714 0.452 2.29 0.668 0.519
𝑡3 5.675 0.469 2.319 0.668 0.537 5.758 0.429 2.517 0.588 0.610
𝑡4 6.858 0.349 2.596 0.563 0.480 6.93 0.255 2.712 0.479 0.336
𝑡5 9.069 0.304 3.01 0.387 0.408 9.115 0.346 3.09 0.385 0.369
𝑡6 11.178 0.465 3.319 0.685 0.453 11.242 0.467 3.392 0.702 0.297
𝑡7 13.312 0.635 4.061 0.844 0.349 13.405 0.621 4.209 0.817 0.297
𝑡8 15.268 0.490 4.056 0.702 0.272 15.357 0.506 4.211 0.699 0.325
𝑡9 16.67 0.649 4.365 0.786 0.330 16.797 0.664 4.582 0.787 0.322
𝑡10 17.897 0.766 4.914 0.980 0.310 18.041 0.735 5.179 0.904 0.304
𝑡11 19.777 0.419 5.157 0.902 0.323 19.821 0.386 5.317 0.892 0.294
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TABLE 5 Average relative bias (AVRB) and average relative efficiency (AVRE) of the estimators compared. Population: Simser.

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE

𝑛 = 75 𝑛 = 100 𝑛 = 125 𝑛 = 150

𝐹𝐻𝑇 0.0042 1 0.0049 1 0.0042 1 0.0032 1
𝐹𝐷 0.0038 0.9963 0.0039 1.0008 0.0056 1.0022 0.0027 0.9999
𝐹𝑅 0.0832 3.0296 0.0687 3.0130 0.0659 2.8977 0.0564 3.0535
𝐹𝐶𝐷 0.0305 0.8968 0.0215 0.9234 0.0196 0.9374 0.0117 0.9409
𝐹𝑅𝐾𝑀 0.0177 1.0419 0.0106 1.0246 0.0196 1.0530 0.0110 1.0252
𝐹𝐶𝐴𝐿 0.0271 1.5805 0.0199 1.5456 0.0274 1.5784 0.0201 1.5548
𝐹𝐶𝐴𝐿3 0.0110 0.8375 0.0104 0.7839 0.0090 0.8138 0.0075 0.7860
𝐹𝐶𝐴𝐿𝑀𝐴𝑋 0.0174 0.6580 0.0146 0.6495 0.0229 0.6857 0.0177 0.6580
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 0.0732 0.4007 0.0537 0.2894 0.0417 0.2307 0.0327 0.1799
𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 0.0028 0.1516 0.0017 0.1143 0.0015 0.0985 0.0016 0.0787

AVRB AVRE AVRB AVRE AVRB AVRE AVRB AVRE

𝑛 = 175 𝑛 = 200 𝑛 = 250 𝑛 = 300

𝐹𝐻𝑇 0.0029 1 0.0026 1 0.0011 1 0.0023 1
𝐹𝐷 0.0037 1.0033 0.0022 0.9988 0.0013 1 0.0029 1.0016
𝐹𝑅 0.0547 3.0697 0.0461 3.0468 0.0449 3.0664 0.0418 3.0488
𝐹𝐶𝐷 0.0094 0.9427 0.0139 0.9404 0.0127 0.9603 0.0121 0.9651
𝐹𝑅𝐾𝑀 0.0129 1.0307 0.0072 1.0161 0.0079 1.0221 0.0090 1.0152
𝐹𝐶𝐴𝐿 0.0215 1.5860 0.0143 1.4787 0.0160 1.5565 0.0169 1.5472
𝐹𝐶𝐴𝐿3 0.0079 0.8379 0.0071 0.8280 0.0051 0.7523 0.0042 0.7902
𝐹𝐶𝐴𝐿𝑀𝐴𝑋 0.0191 0.6812 0.0138 0.6426 0.0155 0.6591 0.0163 0.6747
𝐹𝐶𝐴𝐿𝑂𝑃𝑇 0.0266 0.1529 0.0228 0.1248 0.0169 0.0900 0.0128 0.0733
𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 0.0010 0.0714 0.0007 0.0577 0.0007 0.0476 0.0004 0.0424

6 DISCUSSION AND CONCLUSIONS

In recent years, the calibration technique has attracted significant attention in survey sampling research and survey applications.
The calibration method allows obtaining more reliable estimates for a finite population by incorporating auxiliary information
available in the population.

In this article, we investigate whether the optimal estimator in the proposal3 (that can be applied direclty in the estimation of
qunatile and poverty measures21) based on the calibration method for estimating the distribution function can be improved by
reducing the dimension of the optimal vector used in the calibration process. Working with a reduced number of variables may
reduce numerical problems related to optimization procedures and also limit the presence of negative, very large and unstable
calibration weights. To do this, we have theoretically established the conditions under which a reduction in the dimension of the
optimal vector is possible and through an extensive simulation study we have verified how the new estimator 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡)
can avoid the problems associated with a high-dimensional auxiliary data and allows to improve the execution time maintaining
(DNase and Simh) or even improving the efficiency23 (Simser). Therefore, the new proposal is a more reliable option when
carrying out real analyzes where large population sizes can lead to high-dimensional optimal vectors for 𝐹𝐶𝐴𝐿𝑂𝑃𝑇 (𝑡), while
𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 (𝑡) can lead to a considerable reduction in this optimal dimension.

Further research is needed regarding the dimension reduction on calibration for the distribution function as our study presents
certain limitations. Our paper is restricted to a simple random sampling design. The determination of the optimal vector for cali-
bration (and its dimension) can be extended relatively easily to the case of self-weighted samples (for example, stratified samples
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TABLE 6 Average dimension(MD), variance dimension (VD) and comparison of execution time (RT) of the estimators 𝐹𝐶𝐴𝐿𝑂𝑃𝑇
and 𝐹𝐶𝐴𝐿𝑁𝐸𝑊𝑂𝑃𝑇 . Population: Simser.

𝑛 = 75 𝑛 = 100

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 7.807 2.355 3.036 0.277 1.152 9.846 2.589 3.084 0.376 0.779
𝑡2 14.767 3.192 3.013 0.122 0.431 18.586 3.430 3.029 0.200 0.516
𝑡3 18.115 3.395 3.006 0.077 0.449 23.052 3.825 3.022 0.166 0.443
𝑡4 21.519 3.554 3.007 0.083 0.378 27.492 3.990 3.005 0.071 0.427
𝑡5 28.379 3.778 3.002 0.045 0.418 36.322 4.225 3.002 0.045 0.39
𝑡6 35.189 4.032 3.005 0.071 0.4 45.339 4.389 3.013 0.113 0.318
𝑡7 42.003 4.073 3.015 0.122 0.296 54.139 4.445 3.005 0.071 0.283
𝑡8 48.955 3.807 3 0 0.305 63.065 4.240 3.006 0.077 0.294
𝑡9 52.367 3.655 3.003 0.055 0.338 67.537 4.076 3.009 0.094 0.237
𝑡10 55.801 3.565 3.004 0.063 0.246 71.983 3.950 3.002 0.089 0.248
𝑡11 62.753 3.023 2.948 0.363 0.228 80.714 3.531 2.982 0.289 0.268

𝑛 = 125 𝑛 = 150

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 11.934 3.145 2.664 0.471 0.946 13.766 2.767 3.141 0.455 0.762
𝑡2 22.63 3.046 3.697 0.241 0.331 26.001 3.740 3.066 0.303 0.453
𝑡3 27.879 3.023 3.967 0.169 0.42 32.224 4.073 3.027 0.185 0.337
𝑡4 33.406 3.014 4.195 0.118 0.348 38.628 4.411 3.013 0.113 0.379
𝑡5 44.154 3.011 4.626 0.122 0.325 51.218 4.853 3.008 0.090 0.287
𝑡6 54.934 3.011 4.893 0.104 0.283 63.845 5.074 3.026 0.159 0.259
𝑡7 65.748 3.01 4.875 0.010 0.253 76.315 5.219 3.019 0.137 0.243
𝑡8 76.511 3.01 4.815 0.010 0.191 88.878 5.144 3.006 0.077 0.19
𝑡9 81.862 3.01 4.695 0.010 0.255 95.292 5.014 3.013 0.113 0.212
𝑡10 87.184 3.013 4.555 0.113 0.192 101.589 4.937 3.02 0.140 0.218
𝑡11 98.008 3 4.022 0.219 0.208 114.415 4.415 3.027 0.180 0.195

𝑛 = 175 𝑛 = 200

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 15.496 3.036 2.927 0.277 0.855 16.921 2.936 3.258 0.631 0.663
𝑡2 29.729 3.013 3.853 0.122 0.434 32.618 3.922 3.089 0.351 0.367
𝑡3 36.67 3.006 4.144 0.077 0.438 40.25 4.137 3.058 0.277 0.26
𝑡4 43.817 3.007 4.441 0.083 0.335 48.197 4.458 3.037 0.189 0.276
𝑡5 58.001 3.002 4.757 0.045 0.268 63.872 4.957 3.012 0.109 0.26
𝑡6 72.284 3.005 5.065 0.071 0.227 79.743 5.293 3.033 0.179 0.234
𝑡7 86.505 3.015 5.062 0.122 0.25 95.683 5.487 3.061 0.239 0.209
𝑡8 100.946 3 5.083 0 0.219 111.761 5.488 3.011 0.104 0.191
𝑡9 108.154 3.003 4.976 0.055 0.194 119.62 5.366 3.022 0.147 0.195
𝑡10 115.308 3.004 4.883 0.063 0.18 127.542 5.398 3.031 0.173 0.171
𝑡11 129.69 2.948 4.693 0.363 0.175 143.597 5.105 3.056 0.230 0.149

𝑛 = 250 𝑛 = 300

MD VD RT MD VD RT

𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇 𝑂𝑃𝑇 𝑁𝐸𝑊𝑂𝑃𝑇
𝑡1 20.073 3.438 3.111 0.787 0.552 22.612 3.533 3.117 0.860 0.646
𝑡2 38.419 3.173 4.275 0.491 0.294 43.526 3.193 4.048 0.484 0.381
𝑡3 47.492 3.091 4.653 0.342 0.29 53.736 3.131 4.393 0.387 0.323
𝑡4 57.048 3.054 5.007 0.226 0.288 64.659 3.072 4.745 0.259 0.301
𝑡5 75.652 3.015 5.438 0.122 0.25 85.713 3.026 5.212 0.177 0.206
𝑡6 94.572 3.058 5.786 0.234 0.204 107.232 3.081 5.639 0.273 0.191
𝑡7 113.331 3.058 5.855 0.234 0.186 128.379 3.094 5.858 0.292 0.177
𝑡8 132.281 3.024 5.856 0.153 0.174 149.69 3.035 5.987 0.184 0.15
𝑡9 141.666 3.035 5.778 0.184 0.156 160.366 3.036 6.071 0.186 0.136
𝑡10 150.953 3.043 5.768 0.203 0.14 171.005 3.067 6.076 0.250 0.135
𝑡11 169.593 3.083 5.433 0.276 0.124 192.424 3.096 5.887 0.295 0.132
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with proportional allocation). However, the case of sampling with unequal probabilities is more complex and the methodology
to be used is not the same. In future research we try to extend the results of this paper from SRSWOR to complex sampling
designs.

Another limitation of our work is that the estimator considered is based on a pseudo-variable 𝑔𝑘 that assumes a linear relation-
ship between variable 𝑦 and the covariates. The selection of the optimal auxiliary vector for the estimators based on a non-linear
model should be considered in future studies.
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APPENDIX

A SUPPLEMENTARY CASES FOR SECTION 3

A.1 Dimension reduction of the optimal auxiliary vector for 𝐭 = 𝐲𝐦𝐚𝐱

If we consider 𝑡 = 𝑦𝑚𝑎𝑥 where
𝑦𝑚𝑎𝑥 = max

𝑘∈𝑈
𝑦𝑘

the set 𝐴𝑡 is given by
𝐴𝑡 = {𝑔𝑘 ∶ 𝑘 ∈ 𝑈 ; 𝑦𝑘 ≤ 𝑡} = {𝑎1, 𝑎2,… , 𝑎𝑀} = 𝐴𝑀 (A1)

with 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑀 and 𝑀 denotes the total number of different values that the pseudo variable 𝑔 can take in the population
𝑈 . As a consequence, 𝐵𝑡 = ∅, the optimal dimension 𝑃 = 𝑀 is the highest value and the optimal vector is given by:

𝐭𝐎𝐏(𝑡) = (𝑎1, 𝑎2,… , 𝑎𝑀 ).

Our purpose is to analyze the possibility of obtaining the minimum value of (14) by means of a lower-dimensional auxiliary
vector. Firstly, if we consider the value 𝑡 = 𝑦𝑚𝑎𝑥, we have:

𝐾𝑡(𝑎𝑗) =
∑

𝑘∈𝑈
Δ(𝑎𝑗 − 𝑔𝑘)Δ(𝑦𝑚𝑎𝑥 − 𝑦𝑘) = 𝑁 ⋅ 𝐹𝑔(𝑎𝑗) 𝑗 = 1,… ,𝑀

and where we set 𝑎0 so that 𝐹𝑔(𝑎0) = 0 and 𝐾𝑡(𝑎0).
The value of 𝑄𝑡(𝛄) at 𝛄 = 𝐭𝐎𝐏(𝑡) is given by:

𝑄𝑡(𝐭𝐎𝐏(𝑡)) = 𝑄𝑡(𝑎1, 𝑎2 … , 𝑎𝑀 ) = 2𝑁𝐹𝑦(𝑦𝑚𝑎𝑥) ⋅𝐾𝑡(𝑎𝑀 ) −
𝑀
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗) −𝐾𝑡(𝑎𝑗−1)
)2

(𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1))
−
(

𝐾𝑡(𝑎𝑀 )
)2 =

= 2𝑁𝐹𝑦(𝑦𝑚𝑎𝑥) ⋅𝑁 ⋅ 𝐹𝑔(𝑎𝑀 ) −
𝑀
∑

𝑗=1

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
)2

(𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1))
−
(

𝑁 ⋅ 𝐹𝑔(𝑎𝑀 )
)2 =

= 2𝑁𝐹𝑦(𝑦𝑚𝑎𝑥) ⋅𝑁 ⋅ 𝐹𝑔(𝑎𝑀 ) −
𝑀
∑

𝑗=1
𝑁2 ⋅ (𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)) −

(

𝑁 ⋅ 𝐹𝑔(𝑎𝑀 )
)2 = 2𝑁2𝐹𝑦(𝑦𝑚𝑎𝑥) ⋅ 𝐹𝑔(𝑎𝑀 ) −

(

𝑁 ⋅ 𝐹𝑔(𝑎𝑀 )
)2.
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Since 𝐹𝑦(𝑦𝑚𝑎𝑥) = 𝐹𝑔(𝑎𝑀 ) = 1, it is clear that 𝑄𝑡(𝐭𝐎𝐏(𝑡)) = 0 and consequently the minimum value of 𝑄𝑡(𝛄) for 𝑦𝑚𝑎𝑥 is equal to 0.

On the other hand, if we consider 𝛄 = (𝑎𝑀 ) then

𝑄𝑡(𝑎𝑀 ) = 2𝑁𝐹𝑦(𝑦𝑚𝑎𝑥) ⋅𝐾𝑡(𝑎𝑀 ) −

(

𝐾𝑡(𝑎𝑀 )
)2

(𝐹𝑔(𝑎𝑗))
−
(

𝐾𝑡(𝑎𝑀 )
)2 =

𝑄𝑡(𝑎𝑀 ) = 2𝑁2𝐹𝑦(𝑦𝑚𝑎𝑥) ⋅ 𝐹𝑔(𝑎𝑀 ) − 2𝑁2(𝐹𝑔(𝑎𝑀 )
)2 = 0.

Thus, with the auxiliary vector 𝛄 = (𝑎𝑀 ) the minimum value of 𝑄𝑡(𝛄) is reached and the optimal dimension can be reducted
from 𝑀 to 1. With the auxiliary vector 𝛄 = (𝑎𝑀 ), the resulting calibration constraint is given by:

1 = 𝐹𝑔(𝑎𝑀 ) = 1
𝑁

∑

𝑘∈𝑠
𝜔𝑘Δ(𝑎𝑀 − 𝑔𝑘) =

1
𝑁

∑

𝑘∈𝑠
𝜔𝑘 (A2)

Under simple random sampling without replacement, the minimization of (5) subject to the condition (A2) results in 𝑑𝑘 = 𝜔𝑘
since the basic weights 𝑑𝑘 associated with the simple random sampling without replacement satisfy the condition (A2). There-
fore, the minimum value of 𝑄𝑡(𝛄) for 𝑦𝑚𝑎𝑥 is equal to 0.

A.2 Dimension reduction of the optimal auxiliary vector when 𝐃𝐭 = ∅; 𝐙𝐭 = ∅ and 𝐅𝐭 = 𝐀𝐭 = 𝐀𝐌

If we consider the case where 𝐷𝑡 = ∅; 𝑍𝑡 = ∅ and 𝐹𝑡 = 𝐴𝑡 = 𝐴𝑀 there is not reduction in the optimal auxiliary vector 𝐭𝐎𝐏(𝑡).
To see it, it is clear that 𝑞𝑡𝑖 ≠ 0 ∀𝑎𝑖 ∈ 𝐴𝑀 and consequently:

𝐾𝑡(𝑎𝑖) =
∑

į𝑛𝑈
Δ(𝑎𝑖 − 𝑔𝑘)Δ(𝑡 − 𝑦𝑘) = 𝑁 ⋅ 𝐹𝑔(𝑎𝑖) −

𝑖
∑

𝑗=1
𝑞𝑡𝑗 for 𝑖 = 1, 2,… ,𝑀.

Specifically, for 𝑖 = 𝑀 we have:

𝐾𝑡(𝑎𝑀 ) = 𝑁 ⋅ 𝐹𝑔(𝑎𝑀 ) −
𝑖

∑

𝑗=1
𝑞𝑡𝑗 = 𝑁𝐹𝑦(𝑡).

The minimum value of 𝑄𝑡(𝛾) is reached at 𝛾 = 𝐭𝐎𝐏(𝑡) and is given by:

𝑄𝑡(𝐭𝐎𝐏(𝑡)) = 2𝑁𝐹𝑦(𝑡) ⋅𝐾𝑡(𝑎𝑀 ) −
𝑀
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗) −𝐾𝑡(𝑎𝑗−1)
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
−
(

𝐾𝑡(𝑎𝑀 )
)2.

Since (𝐾𝑡(𝑎𝑗) −𝐾𝑡(𝑎𝑗−1) = 𝑁 ⋅ 𝐹𝑔(𝑎𝑗) −𝑁 ⋅ 𝐹𝑔(𝑎𝑗−1) − 𝑞𝑡𝑗 , 𝑄𝑡(𝐭𝐎𝐏(𝑡)) takes the following expression:

𝑄𝑡(𝐭𝐎𝐏(𝑡)) = (𝑁𝐹𝑦(𝑡))2 −
𝑀
∑

𝑗=1

(

𝑁 ⋅ 𝐹𝑔(𝑎𝑗) −𝑁 ⋅ 𝐹𝑔(𝑎𝑗−1) − 𝑞𝑡𝑗
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
=

(𝑁𝐹𝑦(𝑡))2 −𝑁2 ⋅
𝑀
∑

𝑗=1

(

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
)

+ 2𝑁 ⋅
𝑀
∑

𝑗=1
𝑞𝑡𝑗 −

𝑀
∑

𝑗=1

(𝑞𝑡𝑗)
2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
=

(𝑁𝐹𝑦(𝑡))2−𝑁2 ⋅𝐹𝑔(𝑎𝑀 )+2𝑁 ⋅
𝑀
∑

𝑗=1
𝑞𝑡𝑗 −

𝑀
∑

𝑗=1

(𝑞𝑡𝑗)
2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
= (𝑁𝐹𝑦(𝑡))2−𝑁2+2𝑁 ⋅

𝑀
∑

𝑗=1
𝑞𝑡𝑗 −

𝑀
∑

𝑗=1

(𝑞𝑡𝑗)
2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
. (A3)

If we consider an auxiliary vector where we delete some value 𝑎𝑖 ≠ 𝑎𝑀 , i.e 𝛾 = (𝑎1,… 𝑎𝑖−1, 𝑎𝑖+1,… , 𝑎𝑀 ), we can obtain in a
similar way that

𝑄𝑡(𝛾) = 2𝑁𝐹𝑦(𝑡) ⋅𝐾𝑡(𝑎𝑀 ) −
𝑖−1
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗) −𝐾𝑡(𝑎𝑗−1)
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
−

𝑀
∑

𝑗=𝑖+1

(

𝐾𝑡(𝑎𝑗) −𝐾𝑡(𝑎𝑗−1)
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
−

(

𝐾𝑡(𝑎𝑖+1) −𝐾𝑡(𝑎𝑖−1)
)2

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖−1)
−
(

𝐾𝑡(𝑎𝑀 )
)2 =

= (𝑁𝐹𝑦(𝑡))2 −𝑁2 + 2𝑁 ⋅
𝑀
∑

𝑗=1
𝑗≠𝑖,𝑖+1

𝑞𝑡𝑗 + 2𝑁(𝑞𝑡𝑖 + 𝑞𝑡𝑖+1) −
𝑀
∑

𝑗=1
𝑗≠𝑖,𝑖+1

(𝑞𝑡𝑗)
2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
−

(𝑞𝑡𝑖 + 𝑞𝑡𝑖+1)
2

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖−1)
.
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As a consequence, 𝑄𝑡(𝐭𝐎𝐏(𝑡)) −𝑄𝑡(𝛾) is given by

𝑄𝑡(𝐭𝐎𝐏(𝑡)) −𝑄𝑡(𝛾) = −
(𝑞𝑡𝑖)

2

𝐹𝑔(𝑎𝑖) − 𝐹𝑔(𝑎𝑖−1)
−

(𝑞𝑡𝑖+1)
2

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖)
+

(𝑞𝑡𝑖 + 𝑞𝑡𝑖+1)
2

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖−1)
=

= −
(𝑞𝑡𝑖)

2(𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖)
)

(

𝐹𝑔(𝑎𝑖) − 𝐹𝑔(𝑎𝑖−1)
)(

(𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖−1)
) −

(𝑞𝑡𝑖+1)
2(𝐹𝑔(𝑎𝑖) − 𝐹𝑔(𝑎𝑖−1)

)

(

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖−1)
)(

(𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖)
) +

2𝑞𝑡𝑖 ⋅ 𝑞
𝑡
𝑖+1

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖−1)
=

= Γ ⋅
[

− (𝑞𝑡𝑖)
2(𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖)

)2 − (𝑞𝑡𝑖+1)
2(𝐹𝑔(𝑎𝑖) − 𝐹𝑔(𝑎𝑖−1)

)2 + 2𝑞𝑡𝑖 ⋅ 𝑞
𝑡
𝑖+1

(

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖)
)(

𝐹𝑔(𝑎𝑖) − 𝐹𝑔(𝑎𝑖−1)
)

]

< 0

with
Γ=

1
(

𝐹𝑔(𝑎𝑖) − 𝐹𝑔(𝑎𝑖−1)
)(

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖)
)(

𝐹𝑔(𝑎𝑖+1) − 𝐹𝑔(𝑎𝑖−1)
) .

Consequently, when deleting some 𝑎𝑖, 𝑄𝑡(𝐭𝐎𝐏(𝑡)) < 𝑄𝑡(𝛾).
If we delete the value 𝑎𝑀 , i.e, we consider the auxiliary vector 𝛾 = (𝑎1,… , 𝑎𝑀−1), 𝑄𝑡(𝛾) takes the following expression:

𝑄𝑡(𝛾) = 2𝑁𝐹𝑦(𝑡) ⋅𝐾𝑡(𝑎𝑀−1) −
𝑀−1
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗 −𝐾𝑡(𝑎𝑗−1))
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
− (𝐾𝑡(𝑎𝑀−1))2

On the other hand

𝑄𝑡(𝐭𝐎𝐏(𝑡)) = (𝑁𝐹𝑦(𝑡))2 −
𝑀
∑

𝑗=1

(

𝐾𝑡(𝑎𝑗 −𝐾𝑡(𝑎𝑗−1))
)2

𝐹𝑔(𝑎𝑗) − 𝐹𝑔(𝑎𝑗−1)
and it easy to see that

𝑄𝑡(𝐭𝐎𝐏(𝑡)) −𝑄𝑡(𝛾) = (𝑁𝐹𝑦(𝑡) −𝐾𝑡(𝑎𝑀−1))2 −
(𝑁𝐹𝑦(𝑡) −𝐾𝑡(𝑎𝑀−1))2

𝐹𝑔(𝑎𝑀 ) − 𝐹𝑔(𝑎𝑀−1)
< 0.

Therefore, when we delete 𝑎𝑀 ; 𝑄𝑡(𝐭𝐎𝐏(𝑡)) < 𝑄𝑡(𝛾).

Thus, if 𝑍𝑡 = ∅ and 𝐹𝑡 = 𝐴𝑡 there is not a reduction in the auxiliary vector to reach the minimum of 𝑄𝑡(𝛾).

A.3 Dimension reduction of the optimal auxiliary vector for 𝑝𝑖; 𝑖 ∈ {2,… , 𝑙𝑡} when 𝐃𝐭 ≠ ∅; 𝐃𝐭 = 𝐀𝐌
and 𝐁𝐭 ≠ ∅
Under the assumptions 𝐃𝐭 ≠ ∅; 𝐃𝐭 = 𝐀𝐌 and 𝐁𝐭 ≠ ∅, if we consider 𝑝𝑖 with 𝑖 = 2,… , 𝑙𝑡, it is clear that 𝑝𝑖 > 𝑝(𝑖−1) and
𝑓 𝑡
𝑝𝑖
> 𝑓 𝑡

𝑝(𝑖−1)
. Moreover, because the value 𝑏𝑡𝑓𝑝𝑖

exists, this implies that 𝑓 𝑡
𝑝𝑖
> 𝑓 𝑡

𝑝(𝑖−1)
+ 1.

If we suppose that 𝑝𝑖 = 𝑝(𝑖−1) + 1, it is clear that 𝑓 𝑡
𝑝𝑖
= 𝑓 𝑡

(𝑝(𝑖−1)+1)
and due to the value 𝑏𝑡𝑓𝑝𝑖

exists, the set

𝑈𝑝(𝑖−1)+1 = 𝑈𝑝𝑖 = {𝑙 ∈ 𝑈 ∶ 𝑎𝑓 𝑡
𝑝(𝑖−1)

< 𝑔𝑙 < 𝑎𝑓 𝑡
𝑝(𝑖−1)+1

} = {𝑙 ∈ 𝑈 ∶ 𝑎𝑓 𝑡
𝑝(𝑖−1)

< 𝑔𝑙 < 𝑎𝑓 𝑡
𝑝𝑖
} ≠ ∅

As a consequence, we have:
{𝑎𝑓 𝑡

(𝑝(𝑖−1)+1)
,… , 𝑎(𝑓 𝑡

𝑝𝑖
−1)} ⊆ 𝐷𝑡

and 𝑏𝑡𝑓𝑝𝑖
= 𝑎(𝑓 𝑡

𝑝𝑖
−1) and there is not a possible reduction in the dimension.

On the contrary, if we suppose that 𝑝𝑖 > 𝑝(𝑖−1)+1, then 𝑓 𝑡
𝑝𝑖
> 𝑓 𝑡

(𝑝(𝑖−1)+1)
and there is a integer 𝑧 ≥ 1 such that 𝑝𝑖 = 𝑝(𝑖−1)+1+𝑧.

For all 𝑗 = 1,… , 𝑧, the value 𝑏𝑓 𝑡
𝑝(𝑖−1)+𝑗

does not exist and the set 𝑈𝑝(𝑖−1)+𝑗 = ∅. As in the previous case (case 𝑝1), we have:

𝑎𝑓 𝑡
(𝑝(𝑖−1)+𝑗)

= 𝑎(𝑓 𝑡
𝑝(𝑖−1)

+𝑗), 𝑗 = 1,… , 𝑧.

Thus, if 𝑝𝑖 > 𝑝(𝑖−1) + 1, we have:
{𝑎(𝑓 𝑡

𝑝(𝑖−1)
+1),… , 𝑎(𝑓 𝑡

𝑝(𝑖−1)
+𝑝𝑖−𝑝(𝑖−1)−1)} ⊆ 𝐴𝑡.

Then, if we define the following sets:
𝐴𝑝𝑖 = {𝑎(𝑓 𝑡

𝑝(𝑖−1)
+1),… , 𝑎(𝑓 𝑡

𝑝(𝑖−1)
+𝑝𝑖−𝑝(𝑖−1)−1)}

𝑍𝑝𝑖 = {𝑎𝑖 ∈ 𝐴𝑝𝑖 ∶ 𝑞𝑡𝑖 = 0}
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and
𝐹𝑝𝑖 = {𝑎𝑖 ∈ 𝐴𝑝𝑖 ∶ 0 < 𝑞𝑡𝑖 < 𝑟𝑖}

we can proof in a similar way to the previous case (case 𝑝1) that if 𝑍𝑝𝑖 = 𝐴𝑝𝑖 or 𝑍𝑝𝑖 ≠ 𝐴𝑝𝑖 but 𝐹𝑝𝑖 ≠ 𝐴𝑝𝑖 there is a possible
reduction in the dimension of the auxiliary vector 𝐭𝐎𝐏(𝑡). If 𝐹𝑝𝑖 = 𝐴𝑝𝑖 there is no possible dimension reduction.

Finally, if we suppose that 𝑝𝑙𝑡 = 𝑀𝑡 then the value 𝑏𝑓 𝑡
𝑀𝑡

exists and analogously to previous cases, there is no reduction
between the points 𝑏𝑓 𝑡

𝑀𝑡
and 𝑎𝑓 𝑡

𝑀𝑡
.

On the other hand, if we suppose that 𝑝𝑙𝑡 < 𝑀𝑡 then for ℎ = 𝑝𝑙𝑡 +1, 𝑝𝑙𝑡 +2,… ,𝑀𝑡 the corresponding value 𝑏𝑓 𝑡
ℎ

does not exist
and therefore the sets 𝑈ℎ = ∅ . As a consequence, we have:

𝑎𝑓 𝑡
(𝑝𝑙𝑡+1)

= 𝑎(𝑓 𝑡
𝑝𝑙𝑡

+1),… , 𝑎𝑓 𝑡
𝑀𝑡

= 𝑎(𝑓 𝑡
𝑝𝑙𝑡

+𝑀𝑡−𝑝𝑙𝑡 )

If we denote by
𝐴𝑀𝑡

= {𝑎(𝑓 𝑡
𝑝𝑙𝑡

+1),… , 𝑎(𝑓 𝑡
𝑝𝑙𝑡

+𝑀𝑡−𝑝𝑙𝑡 )
} ⊆ 𝐴𝑡

𝑍𝑀𝑡
= {𝑎𝑖 ∈ 𝐴𝑀𝑡

∶ 𝑞𝑡𝑖 = 0}
𝐹𝑀𝑡

= {𝑎𝑖 ∈ 𝐴𝑀𝑡
∶ 0 < 𝑞𝑡𝑖 < 𝑟𝑖}

then, we can reduce the dimension of the optimal auxiliary vector 𝐭𝐎𝐏(𝑡) if 𝑍𝑀𝑡
= 𝐴𝑀𝑡

or if 𝑍𝑀𝑡
≠ 𝐴𝑀𝑡

but 𝐹𝑀𝑡
≠ 𝐴𝑀𝑡

. If
𝐹𝑀𝑡

= 𝐴𝑀𝑡
there is no possible dimension reduction.
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