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Abstract

The probability mass distribution of a class of copulas that are invariant under univariate truncation is presented. In particular, 
it is shown how (differential) properties of the generator of the copula are able to identify the singular (respectively, absolutely 
continuous) component of the induced measure and its support.
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1. Introduction

A stochastic system composed by several components can be conveniently represented in terms of the marginal 
behaviour and a suitable copula, as suggested by the celebrated Sklar’s theorem [16] (see also [10,14]). Thus, having 
at disposal a variety of copula families may provide more realistic tools for expressing some particular features of 
multivariate random vectors such as asymmetries, heavy tails, and directional dependencies.

In the bivariate case, a family of copulas generated by a one-dimensional real-valued function f : [0, +∞] −→
[0, 1] has been proposed in [8] and is recalled below. Notice that f [−1] denotes the right-inverse of f given by 
f [−1](s) = inf{t ∈ [0, +∞] : f (t) = s}.
Theorem 1. Let Cf : [0, 1]2 −→ [0, 1] be the function defined by

Cf (u, v) =
⎧⎨
⎩ uf

(
f [−1](v)

u

)
, if u �= 0,

0, otherwise,
(1)
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where f : [0, +∞] −→ [0, 1] is surjective and monotone. If f is concave and non-decreasing (or, convex and non-
increasing), then Cf is a copula.

Copulas of the form (1) arise in the study of the preservation of the dependence structure under truncation. In fact, 
if Cf is the distribution function of a pair (U, V ) of standard uniform random variables, then Cf is also the copula 
of the conditional distribution function of (U, V ) given that U ≤ α for any α ∈ (0, 1). In words, we say that Cf is 
invariant under univariate truncation.

Various aspects that emphasize the possible use of copulas of type (1) in statistical estimation have been presented 
in [9,12] like measures of association, tail dependence, and stochastic simulation among others. In particular, [9]
investigates whether copulas of type (1) are absolutely continuous (respectively, singular) by exploiting a link with 
Archimedean copulas (see Proposition 3.2 and Corollary 3.3 in [9]). These latter aspects are particularly relevant for 
(at least) two main reasons. First, knowing the density of the copula may be helpful to apply maximum likelihood 
techniques in the estimation procedures. Secondly, the singular component (if it exists) may suggest that there is a 
non-zero probability that transformations of the involved random variables may be equal each other – an aspect quite 
relevant in systemic risk and default models (see, e.g., [2,13]).

Motivated by these aspects, we complement here the study of measure-theoretic properties of copulas of type 
(1) considered in [9]. To this end, we exploit the disintegration of the copula measure (related to the existence of 
conditional probability measures), which is illustrated in the preliminary section 2. Then, in section 3, we introduce 
some auxiliary functions to determine the mass distribution of the measure induced by a copula of type (1) as well as 
to describe the singular and the absolutely continuous component of the measure.

2. Preliminaries

For basic definitions and properties about copulas, we refer to [10,14]. Here we recall that a (bivariate) copula
is a function C : [0, 1]2 −→ [0, 1] which satisfies: (i) the boundary conditions C(t, 0) = C(0, t) = 0 and C(t, 1) =
C(1, t) = t for all t in [0, 1], and (ii) the 2-increasing property, i.e. VC([u1, u2] ×[v1, v2]) := C(u2, v2) −C(u2, v1) −
C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2. VC(R) is usually called as the 
C-volume of the rectangle R.

Let B([0, 1]) and B([0, 1]2) denote the respective Borel σ -algebras in [0, 1] and [0, 1]2, and λ (respectively, λ2) 
denotes the Lebesgue measure on [0, 1] (respectively, [0, 1]2). A measure μ on B([0, 1]2) is doubly stochastic if 
μ(B × [0, 1]) = μ([0, 1] × B) = λ(B) for every B ∈ B([0, 1]). Each copula C induces a doubly stochastic measure 
μC by setting μC(R) := VC(R) for every rectangle R ⊆ [0, 1]2 and extending μC to B([0, 1]2).

The support of a copula C is the complement of the union of all open subsets of [0, 1]2 with μC -measure zero — 
we note that this definition can be extended to any probability distribution of any dimension. When we refer to the 
“mass” of a measure μ on a set S, we mean the value of μ for that set, i.e. μ(S). In particular, we say that the copula 
measure μC is concentrated on S, whenever μC(S) = 1.

We also need to recall some concepts in measure theory [11]. A measure on the real line is discrete if it is concen-
trated on a set which is at most countable. If μ1 and μ2 are two finite measures on a σ -algebra A, we say that μ2
is absolutely continuous with respect to μ1 if μ2(A) = 0 for any A ∈ A such that μ1(A) = 0. μ1 and μ2 are said to 
be singular if there are two sets A, B ∈ A such that A ∩ B = ∅, A ∪ B = A and μ1(B) = μ2(A) = 0. In particular, 
a measure defined on Rn is singular if it is singular with respect to the Lebesgue measure on this space. A copula C
is said to be singular (respectively, absolutely continuous) if the measure μC induced by C is singular (respectively, 
absolutely continuous) with respect to λ2 (see [5,6] for a detailed study).

In order to deal with the copula measure, we consider the following disintegration theorem (see e.g. [1]). First, let 
P(�) denote the collection of Borel probability measures on a metric space (�, d). We consider � as a Radon space, 
i.e. a topological space such that every Borel probability measure on � is inner regular, e.g. separable metric spaces 
on which every probability measure is a Radon measure.

Theorem 2 (Disintegration theorem). Let �1 and �2 be two Radon spaces. Let μ ∈ P(�1). Let π : �1 −→ �2 be 
a Borel-measurable function, and let γ ∈ P(�2) be the pushforward measure γ = μ ◦ π−1. Then there exists a γ -
almost everywhere uniquely determined Borel family of probability measures {μx}x∈�2

⊆ P(�1), which provides a 
“disintegration” of μ into {μx}x∈� , namely
2
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• μx lives on the fiber π−1(x), i.e. for γ -almost all x ∈ �2, μx

(
�1\π−1(x)

) = 0 and, hence, μx(E) = μx(E ∩
π−1(x)) for any E ⊆ �1;

• for every Borel-measurable function f : �1 → [0,∞],

∫
�1

f (y)dμ(y) =
∫
�2

⎛
⎜⎝ ∫

π−1(x)

f (y)dμx(y)

⎞
⎟⎠dγ (x). (2)

In particular, for any E ⊆ �1, taking f to be the indicator function of E, it holds

μ(E) =
∫
�2

μx(E)dγ (x).

Now, we consider copulas of the form (1), where f is concave and non-decreasing (or, convex and non-increasing). 
We will use Theorem 2 to express the related copula measure μCf

. To this end, let π : [0, 1]2 −→ [0, 1] be the 
canonical projection with respect to the second variable and γ = λ, the Lebesgue measure. Set μCf ,v = μv . Then, for 
every Borel set E ⊆ [0, 1]2,

μCf
(E) =

1∫
0

μv(Ev)dγ (v), (3)

where Ev = E ∩ π−1(v).

3. The probability mass distribution of invariant copulas under truncation

We consider copulas of the form (1) whose measure is expressed as in (3). In order to calculate the distribution 
function of μv (related to the Markov kernel representation of the copulas, see [17]), we need to recall some aspects 
about the generator of a copula of type (1).

We recall that, if f is a real-valued concave (respectively, convex) function, then f admits left and right derivatives 
— denoted by f ′− and f ′+, respectively — and these are monotonically non-increasing (respectively, non-decreasing) 
– see, e.g., [18]. In particular, if f generates a copula of type (1), then f is differentiable in {x ≥ 0 : x /∈ S}, where S
is a set of (at most) countably many points. In particular, for every x ≥ 0 such that x /∈ S it holds that f ′−(x) = f ′+(x), 
and

f ′−(x) = lim
y→x
y<x

f ′+(y).

With a slight abuse of notation, we set f ′−(0) = 0.
Note that, if f generates a copula of type (1), then g(x) = f (αx), with α > 0, determines the same copula via (1). 

For this reason, without loss of generality, we may consider that either f is bijective or f (1) = 1 and f (x) < 1 for 
x < 1. If f is not bijective, f −1 represents the inverse of the restriction of f to [0, 1].

Now, we present some results about the measure of Cf when f is concave and non-decreasing. Notice that, if the 
generating function f is surjective, monotone convex and non-increasing, then the related copula Cf obtained from 
(1) can be represented as Cf (u, v) = u − Cg(u, 1 − v) where g = 1 − f is concave and non-decreasing (see [9]). 
Thus, the results can be translated from one case to the other one with suitable modifications.

Theorem 3. Let Cf be the copula of type (1) generated by f : [0, +∞] −→ [0, 1] being surjective, concave and 
non-decreasing. Suppose that μCf

can be written as in (3). Then, for every v /∈ {0, 1}, the distribution function of the 
measure μv is given by

Fv(u) =

⎧⎪⎪⎨
⎪⎪⎩

0, if u ≤ 0,

f ′−
(

f −1(v)

u

)
1

f ′−
(
f −1(v)

) , if 0 < u < 1,

1, if 1 ≤ u.

(4)
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Proof. Let v be in ]0, 1[. Since the function f is monotone and concave, then f ′− is non-increasing and positive, and 

hence the function Fv in (4) is monotonically non-decreasing. Moreover, since the map u �→ f −1(v)
u

is non-increasing 
and f ′− is left-continuous, the function Fv(u) is right-continuous.

Let u be fixed in [0, 1]. Since f is concave, the function

f ′−
(

f −1(v)

u

)
1

f ′−
(
f −1(v)

) (5)

is continuous except, maybe, on a countable set of points and has 1 as upper bound; thus the function (5) is measurable 
and it is possible to calculate its integral. When u = 0 we have

v∫
0

Fs(0)ds = 0;

otherwise, we define

D(u,v) :=
v∫

0

Fs(u)ds =
v∫

0

f ′−
(

f −1(s)

u

)
1

f ′−
(
f −1(s)

) ds.

Since D(u, v) and Cf (u, v) are two absolutely continuous functions and have the same λ-almost everywhere deriva-
tive with respect to the second variable, we have D(u, v) = Cf (u, v) for all (u, v) ∈ [0, 1]2. Thus, the measure induced 
by the distribution functions Fv coincides with μCf

. It follows that the measures μv given by the disintegration pro-
cedure of Theorem 2 are those that have the distribution functions given in (4). �
Remark 4. Observe that, under the same conditions of Theorem 3, the distribution function Fv(u) can be also written 
as

Fv(u) =

⎧⎪⎪⎨
⎪⎪⎩

0, if v ≤ 0,

f ′+
(

f −1(v)

u

)
1

f ′+
(
f −1(v)

) , if 0 < v < 1,

1, if 1 ≤ v.

(6)

In the sequel, we use Theorem 3, taking into account that its results can be equivalently formulated in terms of (6).

Remark 5. Notice that, if the function f from Theorem 3 is not bijective, then the support of Cf cannot be [0, 1]2. 
In fact, in such a case, if we take (u0, v0) ∈ (0, 1)2 such that u0 < f −1(v0), then there exists an open ball Br(u0, v0)

of radius r and center (u0, v0) satisfying u < f −1(v) for all (u, v) ∈ Br(u0, v0). Thus, μCf
(R) = 0 for a suitable 

non-empty rectangle R ⊆ Br(u0, v0) such that (u0, v0) ∈ R. Hence, μCf
cannot be of full support.

Now, by using Theorem 3, we provide several examples of copulas of type (1) by considering a function f with 
different properties.

Example 6. Consider the function

f (x) =
{

xα, if 0 ≤ x ≤ 1,

1, if 1 < x,
(7)

where 0 < α < 1. Since f is concave and non-decreasing it generates a copula of type (1). The related measure μv

from (3) has distribution function given by

Fv(u) =
⎧⎨
⎩

0, if u < v1/α,

u1−α, if v1/α ≤ u ≤ 1,

1, if 1 < u.

The related copula Cf is given by Cf (u, v) = min(u, vu1−α) for every (u, v) ∈ [0, 1]2. Thus, the support of the copula 
Cf is the set 

{
(u, v) ∈ [0,1]2 : v ≤ uα

}
and
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μCf

({
(u, v) ∈ [0,1]2 : v = uα

})
= α.

These copulas belong to the Marshall-Olkin family as considered in [7].

In the previous example the generator f is not bijective and is not differentiable at the point x = 1. In the following 
example, f is still not a bijective function, but it is differentiable at the point x = 1.

Example 7. We consider the function

f (x) =
{ √

2x − x2, if 0 ≤ x ≤ 1,

1 if 1 < x,
(8)

that generates a copula of type (1). The distribution function of the related measure μv from (3) is given by

Fv(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if u < 1 − √
1 − v2,

v
(
u + √

1 − v2 − 1
)

√
(1 − v2)

(
−2 + 2u + v2 + 2(1 − u)

√
1 − v2

) , if 1 − √
1 − v2 ≤ u ≤ 1,

1 if 1 < u.

Thus, the support of the copula Cf is the set given by 
{
(u, v) ∈ [0,1]2 : v ≤ √

2u − u2
}

and

μCf

({
(u, v) ∈ [0,1]2 : v =

√
2u − u2

})
= 0.

A sample from this copula is visualized in Fig. 1.

Finally, in the next example, we consider a generating function f that is bijective.

Example 8. Consider the function

f (x) = x

x + 1
, for all x ∈ [0,+∞]. (9)

The distribution function of the measure μv is given by

Fv(u) =

⎧⎪⎪⎨
⎪⎪⎩

0, if u < 0,

u2

(u + v − uv)2 , if 0 ≤ u ≤ 1,

1, if 1 < u.

The related copula Cf is given by Cf (u, v) = uv/(u + v − uv) for every (u, v) ∈ [0, 1]2, which corresponds to the 
Gumbel’s bivariate logistic distribution. Hence, the support of the copula Cf is [0, 1]2.

Now, we define a (univariate) distribution function which will help us to study the distribution of the mass of the 
copula Cf .

Let f be a function satisfying the hypotheses of Theorem 3, and let Cf be the copula given by (1). For r ∈ [0, 1], 
we define the distribution function

Rf (r) := μCf

(
Ef,r

)
, (10)

where Ef,r := {
(u, v) ∈ [0,1]2 : v ≤ f (f −1(r)u)

}
. The following result holds.

Theorem 9. The distribution function Rf (r) defined by (10) is given by

Rf (r) = r − f ′−
(
f −1(r)

)
f −1(r) (11)

for every r ∈ [0, 1].
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Fig. 1. Sample of 5000 points from the copula in Example 7.

Proof. To prove the result, we apply the disintegration given by Theorem 2 to the measure μCf
. Thus, by disintegrat-

ing with respect to the second variable v and considering that Ef,r ⊆ [0, 1] × [0, r], we obtain the following chain of 
equalities:

Rf (r) = μCf

({
(u, v) ∈ [0,1]2 : v ≤ f (f −1(r)u)

})

=
1∫

0

μv

(
(Ef,r )v

)
dv

=
r∫ (

1 − f ′−
(
f −1(r)

)
f ′ (f −1(v)

)
)

dv
0
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= r − f ′−
(
f −1(r)

) r∫
0

1

f ′ (f −1(v)
) dv

= r − f ′−
(
f −1(r)

)
f −1(r),

where the third equality is obtained by using (4). This completes the proof. �
Remark 10. Suppose that (U, V ) is a random pair distributed according to a copula Cf of type (1). According to [9, 
Proposition 4.3], Rf is the distribution function of the random variable Cf (U, V )/U . See also [3].

Now we compute the distribution function Rf related to previous examples.

Example 11. Consider the copula Cf generated by a function f that satisfies the assumptions of Theorem 3.

• If f is given by (7), then

Rf (r) =
{

r (1 − α) , if 0 ≤ r < 1,

1, if r = 1.

• If f is given by (8), then

Rf (r) = 1 − √
1 − r2

r
, for all r ∈]0,1].

Note that

lim
r→0+ Rf (r) = lim

r→0+
1 − √

1 − r2

r
= 0.

• If f is given by (9), then Rf (r) = r2 for every r ∈ [0, 1].

In view of the Lebesgue decomposition theorem (see, e.g., [18]) Rf can be decomposed into the sum of an ab-
solutely continuous function, a singular function (i.e. a continuous function of bounded variation whose classical 
derivative vanishes almost everywhere) and a jump function (i.e. a right continuous non-decreasing function with 
countable many jumps). Moreover, the measure induced by Rf can be also decomposed as the sum of a measure that 
is absolutely continuous with respect to the Lebesgue measure λ, a measure that is singular with respect to λ and 
has no point masses, and a discrete measure (that has only point masses). Such aspects can be recovered from the 
analogous properties of the function f ′−.

Theorem 12. The distribution function Rf given by (11) corresponds to a discrete, singular or absolutely continuous 
measure if, and only if, the function f ′− is, respectively, a jump, a singular or an absolutely continuous function.

Proof. First, consider that f ′− is a monotone non-increasing function on ]0, +∞[ that is of bounded variation. As 
such, in view of the Lebesgue decomposition (see, e.g., [18]) it can be decomposed as the sum of three functions 
(f ′−)d , (f ′−)s and (f ′−)ac that are, respectively, a jump, a singular and an absolutely continuous function. Now, we 
distinguish three cases.

• Suppose that f ′− has a jump of size αs > 0 in the point s. If f
−1(v)
s

= u < 1, then it follows from (4) that

μv

({
f −1(v)

s

})
= αs

f ′−(f −1(v))
.

Moreover, it holds
291
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μRf
(f (s)) = μCf

(
{(u, v) ∈ [0,1]2 : v = f (su)}

)
= μCf

(
{(u, v) ∈ [0,1]2 : f −1(v)

s
= u}

)

= αs

f (s)∫
0

1

f ′−(f −1(v))
dv > 0.

Therefore, μRf
has a point mass in f (s).

Conversely, if μRf
(f (s)) > 0, then

μRf
(f (s)) = αs

f (s)∫
0

1

f ′−(f −1(v))
dv > 0,

where αs is the size of the jump of f ′− in the point s. thus, αs > 0. Summarizing, each discontinuity point (with 
finite jump) of f ′− corresponds to a discontinuity point in Rf . Thus, the discrete components of μ−f ′− and μRf

are in one-to-one correspondence.
• Suppose that f ′− is singular in S ⊆ [a, b] with a > 0, where μ−f ′−(S) > 0 and f ′− has no jumps in S. If v < f (a)

and s ∈ S, then f
−1(v)
s

< 1. Thus

μv

({
f −1(v)

s
: s ∈ S

})
> 0

Set Sv =
{

f −1(v)
s

: s ∈ S
}

and Sf = ⋃
v<f (a)

Sv × {v}. It follows that μCf
(Sf ) > 0. Moreover,

μRf
(f (S)) = μCf

(
{(u, v) ∈ [0,1]2 : v = f (su), s ∈ S}

)
= μCf

(
{(u, v) ∈ [0,1]2 : u ∈ Sv}

)
= μCf

(Sf ) > 0.

Since f is concave, it is absolutely continuous and, hence, it maps sets of λ-measure zero into sets of λ-measure 
zero. It follows that λ(f (S)) = 0. Thus, Rf has a singular component on f (S). Analogously, we can prove 
that, if there exists a set S of λ-measure equal to zero such that μ−f ′−(S) = μ−f ′−(]0, +∞[), then μRf

(f (S)) =
μCf

(Sf ) = 1. It follows that, if f ′− is singular, then Rf is singular (and vice versa).
• Analogously, if f ′− has a non-vanishing absolutely continuous component, then the absolutely continuous com-

ponent of Rf is not vanishing too. Moreover, if f ′− is absolutely continuous, then Rf is absolutely continuous.

Finally, notice that, if μRf
is discrete, then f ′− can have neither a non-zero absolutely continuous component nor a 

non-zero singular component. The same aspect occurs in the singular and in the absolutely continuous case. �
Interestingly, the properties of the measure induced by Rf allow to characterize some measure-theoretic aspects 

of the copula measure μCf
. For the sake of simplicity, given a function f as in Theorem 3, we denote by fx the 

mapping u �→ f (xu) for a fixed x ∈ [0, 1]. Moreover, if f is differentiable, then the function −f ′− is a continuous and 
non-decreasing function and its associated measure is denoted by μ−f ′− .

Theorem 13. Let f be a function satisfying the hypotheses of Theorem 3, and let Cf be the copula given by (1). Let 
Rf be given by (11).

(a) The measure μCf
is singular if, and only if, Rf does not admit a non-zero absolutely continuous component. 

Moreover, if Rf is discrete, then the mass of μCf
is concentrated on the graphs of the functions fx , where x is a 

jump point for f ′−.
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(b) The measure μCf
is absolutely continuous if, and only if, Rf is absolutely continuous. Moreover, the mass of μCf

is concentrated on the graphs of the functions fx , where x belongs to a full measure set of μf ′− .

Proof. We prove part (a) since part (b) can be done analogously.
Since f ′− is monotone, it is almost everywhere differentiable. Let A be the set of points in which f admits a non-
zero derivative. Suppose that λ(A) > 0, which is equivalent to the fact that Rf has a non-zero absolutely continuous 
component in view of Theorem 12. With a slight abuse of notation, we denote by f ′′(a) the derivative of f ′− at each 
point a ∈ A.

For a fixed v ∈]0, 1[, the distribution function Fv is differentiable in f
−1(v)
a

= u < 1 and it holds

F ′
v(u) = − f ′′(a)a2

f −1(v)f ′−(f −1(v))
> 0

By similar steps as in the proof of Theorem 12 it follows that

μCf

(
{(u, v) ∈ [0,1]2 : v = f (au), a ∈ A}

)
> 0

Thus, Cf has an absolutely continuous component with density given by

(cf )ac(u, v) =
{

F ′
v(u), v = f (au), a ∈ A,

0, otherwise.

Thus, if Rf has a non-zero absolutely continuous component, then Cf is not singular. Equivalently, for Cf being 
singular it is necessary that the absolutely continuous component of Rf is zero. Conversely, if Cf is singular, then 
the absolutely continuous component of Rf is zero. In fact, on the contrary, f ′− has a non-zero absolutely continuous 
component and a similar way of thinking as above will lead to a contradiction.

To conclude part (a), notice that Rf is a jump function if, and only if, f ′− is a jump function (see Theorem 12). 
Moreover, the previous reasoning ensures that the mass of μCf

is concentrated on the graphs of the functions u �→
f (au), where a is a jump point for f ′−. �

As a consequence of Theorems 12 and 13, we obtain the following result.

Corollary 14. Let f be a function satisfying the hypotheses of Theorem 3, and let Cf be the copula given by (1). The 
following statements hold:

(a) μCf
is singular if, and only if, f ′− does not have an absolutely continuous component;

(b) μCf
is absolutely continuous if, and only if, f ′− is absolutely continuous.

Note that the previous result is equivalent to Proposition 3.2 and Corollary 3.3 from [9], but these latter proofs 
exploit a one-to-one correspondence among truncation invariant copulas and Archimedean copulas.

Finally, while the copula given in Example 8 is absolutely continuous, below we present two examples of a singular 
copula.

Example 15. Consider the piecewise linear function f : [0, +∞] −→ [0, 1] given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

2x, if 0 ≤ x ≤ 1/4,

x + 1/4, if 1/4 < x ≤ 1/2,

x/2 + 1/2, if 1/2 < x ≤ 1,

1, if 1 < x.

(12)

Since f is concave and non-decreasing it generates a copula of type (1). In order to determine the measure μv from 
(3) we need to study different cases, which depend on the values of v.

1. If v = 0, then μv is the atomic measure that concentrates all the mass in u = 0.
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2. If 0 < v ≤ 1/2, then f ′−
(
f −1(v)

) = f ′−
(

v
2

) = 2, and we need to distinguish four sub-cases, which depend on the 
values of u:
(a) If 0 ≤ u < v/2, then v

2u
∈]1, +∞], and hence f ′−

(
v

2u

) = 0.
(b) If v/2 ≤ u < v, then v

2u
∈]1/2, 1], and hence f ′−

(
v

2u

) = 1
2 .

(c) If v ≤ u < 2v, then v
2u

∈]1/4, 1/2], and hence f ′−
(

v
2u

) = 1.
(d) If 2v ≤ u < 1, then v

2u
∈]0, 1/4], and hence f ′−

(
v

2u

) = 2.
Thus, we obtain

Fv(u) = f ′−
(

f −1(v)

u

)
· 1

f ′−
(
f −1(v)

) = f ′ ( v

2u

)
· 1

f ′
(v

2

)

=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ u < v/2,

1/4, if v/2 ≤ u < v,

1/2, if v ≤ u < 2v,

1, if 2v ≤ u < 1,

i.e. μv is the atomic measure that concentrates its mass in three points, namely

μv(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/4, if u = v/2,

1/4, if u = v,

1/2, if u = 2v,

0, otherwise.

3. If 1/2 < v ≤ 3/4, then μv is the atomic measure that concentrates its mass in two points, namely

μv(u) =

⎧⎪⎨
⎪⎩

1/2, if u = v − 1/4,

1/2, if u = 2v − 1/2,

0, otherwise.

4. If 3/4 < v ≤ 1, then μv is the atomic measure that concentrates its mass in the point u = 2v − 1; so that μv(2v −
1) = 1, while μv(u) = 0, otherwise.

The function Rf associated with f via (11) is given by

Rf (r) =

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ r < 1/2,

1/4, if 1/2 ≤ r < 3/4,

1/2, if 3/4 ≤ r < 1,

1, if r = 1.

It follows that the measure μCf
is concentrated on the graphs of the following functions

f1/4(u) = f (u/4), f1/2(u) = f (u/2), f1(u) = f (u)

defined for every u ∈ [0, 1]. See Fig. 2.

Example 16. Here, we revisit [9, Example 3.2]. Let f : [0, +∞] −→ [0, 1] be defined by

f (x) =
+∞∑

p,q=1

2−π(p,q) max

(
0,1 − q

p
x

)
,

where π : N ×N −→ N is the bijection given by π(p, q) = 1
2 (p + q − 2)(p + q − 1) + q . Then f is singular. The 

related copula Cf is singular and has mass concentrated on the graphs of the functions fp/q for any natural p and q .
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Fig. 2. Support of the copula of Example 15.

4. Conclusions

We have considered a class of copulas that are invariant under univariate truncation and that can be expressed in the 
form (1). For such copulas, we have determined how the singular and the absolutely component of the copula measure 
can be expressed in terms of the properties of the generating functions f .

As known from [8] any copula that is invariant under univariate truncation can be represented as gluing ordinal 
sum of copulas of type (1). Given the stochastic representation of gluing construction [15] and its interpretation in 
terms of patchwork methods [4], the properties of the measure presented here can be easily extended to the copulas 
belonging to this more general class.
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