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Abstract

In this paper we complement and generalize some constructions of fuzzy implications based on two arbitrary copulas, obtaining 
new fuzzy implications. By means of (restricted) aggregation functions acting on [0, 1]S , where S is a fixed finite or infinite set, 
and related S-systems of fuzzy implications and transforming functions, we introduce and discuss a rather general method for 
constructing fuzzy implications. Several examples illustrating our results are also included.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

In fuzzy logic and approximate reasoning, the most usual method for managing the conditional statements “If 
A, then B” is done through functions I : [0, 1]2 → [0, 1] in such a way that the result value of the conditional is 
functionally stated from the truth values of the fuzzy statements A and B. These functions I are the so-called fuzzy 
implications (or simply, implications), and they play an important role in many fields where fuzzy logic applies (see 
[2]).
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A binary operation I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies the following conditions:

(i) I (0, 0) = I (1, 1) = 1,
(ii) I (1, 0) = 0,

(iii) I (u1, v) ≥ I (u2, v) for all u1, u2, v ∈ [0, 1], u1 ≤ u2,
(iv) I (u, v1) ≤ I (u, v2) for all u, v1, v2 ∈ [0, 1], v1 ≤ v2,

which means that fuzzy implications are hybrid monotone extensions of the classical Boolean implication.
Implications are usually derived from t-norms and semi-copulas, being both of them subclasses of aggregation 

functions with zero annihilator. See [4,10] for more details of these concepts, and [3,17–19] for some constructions of 
implications based on these functions.

Methods for constructing fuzzy implications based on copulas –bivariate probability distribution functions with 
uniform margins on [0, 1]– can be found, for example, in [9,14,20,21]. Our aim in this paper is to provide a general-
ization of some known copula-based constructions of fuzzy implications.

The rest of the paper is organized as follows. After some preliminaries concerning copulas (Section 2), our goal 
in this paper is to complement and generalize some of the results related to the new method for constructing fuzzy 
implications given in [20] (see also [21]), which is based on any two copulas and a fuzzy implication (Section 3). To 
illustrate the generality of our approach, several examples are also included. Section 4 is devoted to the conclusions in-
dicating some possible applications of our results for constructing fuzzy implications with some particular properties, 
such as the neutrality principle or the ordering property, and also some possible directions for further research.

2. Preliminaries

A (bivariate) copula is a binary operation C : [0, 1]2 → [0, 1] which satisfies:

(i) for every u ∈ [0, 1], C(u, 0) = C(0, u) = 0 and C(u, 1) = C(1, u) = u, and
(ii) VC ([u1, u2] × [v1, v2]) := C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0 for every u1, v1, u2, v2 ∈ [0, 1]

such that u1 ≤ u2 and v1 ≤ v2.

We refer to [10,22] for a complete study of these functions.
Let � denote the copula for independent random variables, i.e., �(u, v) := uv for all (u, v) ∈ [0, 1]2. For any 

copula C we have W(u, v) := max(0, u + v − 1) ≤ C(u, v) ≤ min(u, v) =: M(u, v) for all (u, v) in [0, 1]2, where M
and W are themselves copulas (which are also the Fréchet-Hoeffding upper and lower bounds, respectively).

The importance of copulas in probability and statistics comes from Sklar’s theorem [24], which shows that the 
joint distribution H of a pair of random variables and the corresponding univariate marginal distributions F and G
are linked by a copula C in the following manner: H(x, y) = C (F(x),G(y)) for all (x, y) ∈] − ∞, +∞[2. If F and 
G are continuous, then the copula C is unique; otherwise, the copula is uniquely determined on Range F×Range G

(see [7] for details).
Let B([0, 1]) and B([0, 1]2) denote the Borel σ -algebras in [0, 1] and [0, 1]2, respectively, and let λ denote the 

Lebesgue measure on [0, 1]. A measure μ on B([0, 1]2) is doubly stochastic if μ(B × [0, 1]) = μ([0, 1] × B) = λ(B)

for every B ∈ B([0, 1]). Each copula C induces a doubly stochastic measure μC on B([0, 1]2) by setting μC(R) =
VC(R) for every rectangle R = [u1, u2] × [v1, v2] ⊆ [0, 1]2, and extending μC to B([0, 1]2) (see [22]). The support
of a copula C is the complement of the union of all open subsets of [0, 1]2 with μC -measure zero.

We also recall the known Disintegration theorem [1], which we adapt for our purposes, and where 1E denotes the 
indicator function of a set E ⊆ [0, 1].

Theorem 1 (Disintegration theorem). Let μ be a doubly stochastic measure on B([0, 1]2). Then there exists a λ-almost 
everywhere uniquely determined Borel family of probability measures {μx}x∈[0,1] on B([0, 1]) such that

μ(B) =
∫

[0,1]

⎛
⎜⎝ ∫

[0,1]
1Bx (y)dμx(y)

⎞
⎟⎠dx =

∫
[0,1]

μx(Bx)dx,

for every B ∈ B([0, 1]2), where Bx = {y ∈ [0, 1] : (x, y) ∈ B}.
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3. Implications based on copulas

In [20], a copula-based method for constructing fuzzy implications is provided. Specifically, let C be a copula, and 
for each x ∈ [0, 1], let νC,x : [0, 1] → [0, x] be the function defined by νC,x(t) = C(x, t), and let gC,x : [0, 1] → [0, 1]
be the function given by

gC,x(t) =
{ dνC,x(t)

dt
if this derivative exists,

0 otherwise.

Now, for each x ∈ [0, 1], let fC,x : [0, 1] → [0, 1] be the left-continuous function defined by

fC,x(t) = sup{gC,z(t) : z ∈ [0, x]}. (1)

Then the authors proved in [20] that, for any two copulas C1 and C2, and a Borel integrable fuzzy implication I , 
the function JC1,C2,I : [0, 1]2 → [0, 1] given by

JC1,C2,I (u, v) =
∫

[0,1]
I

(
fC1,u(t), fC2,v(t)

)
dt (2)

is a fuzzy implication.
In [20, Remark 2.9(iv)], the authors pointed out that construction (2) can be applied to any two monotone non-

decreasing systems of functions 
(
f1,x

)
x∈[0,1] and 

(
f2,y

)
y∈[0,1] such that f1,0(t) = f2,0(t) = 0 and f1,1(t) = f2,1(t) =

1 for all t ∈ [0, 1]. We can even generalize this result in the next theorem, but first, following [12], we “extend” the 
arity of an aggregation function, where, for any interval I and any non-empty set S, IS denotes the set of all functions 
from S to I .

Definition 1. Let I be an interval, and let S be a non-empty set. The function A : IS −→ I is an (S-)aggregation 
function on I if:

(i) A is non-decreasing in each variable; and
(ii) A fulfills the boundary conditions

inf
x∈IS

A(x) = inf I and sup
x∈IS

A(x) = sup I.

Theorem 2. Let S be a non-empty set, let G1 = (
g1,s

)
s∈S

and G2 = (
g2,s

)
s∈S

be two systems of non-decreasing 
functions from [0, 1] into [0, 1] such that g1,s(0) = g2,s(0) = 0 and g1,s(1) = g2,s(1) = 1 for all s ∈ S. Let IS = (Is)s∈S

be a family of fuzzy implications, and let A be an (S-)aggregation function on [0, 1]. Then the function KG1,G2,IS,A

defined on [0, 1]2 by

KG1,G2,IS ,A(u, v) = A
((

Is

(
g1,s(u), g2,s (v)

))
s∈S

)
(3)

is a fuzzy implication.

Proof. First, assume u = v = 0. Then we have Is

(
g1,s(u), g2,s (v)

) = Is(0, 0) = 1 for each s ∈ S, whence

KG1,G2,IS ,A(0,0) = A
((

Is

(
g1,s(0), g2,s(0)

))
s∈S

) = A(1) = 1;
and similarly, KG1,G2,IS ,A(1, 1) = A(1) = 1 and KG1,G2,IS,A(1, 0) = A(0) = 0.

Now, for any u ∈ [0, 1] and given v1, v2 ∈ [0, 1] such that v1 < v2, we have Is

(
g1,s(u), g2,s (v1)

) ≤
Is

(
g1,s(u), g2,s (v2)

)
for each s ∈ S, whence

KG1,G2,IS ,A(u, v1) = A
((

Is

(
g1,s(u), g2,s (v1)

))
s∈S

) ≤ A
((

Is

(
g1,s(u), g2,s (v2)

))
s∈S

) = KG1,G2,IS,A(u, v2);
and similarly, for any v ∈ [0, 1] and given u1, u2 ∈ [0, 1] such that u1 < u2, KG1,G2,IS ,A(u1, v) ≥ KG1,G2,IS ,A(u2, v); 
i.e., the function given by (3) is a fuzzy implication. �
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We apply Theorem 2 in the next examples.

Example 1. Let S =]0, 1], let g1,s(t) = g2,s(t) = t s for all t ∈ [0, 1], and, for each s ∈ S, let Is = IG be the Goguen 
fuzzy implication, i.e.,

IG(u, v) =
⎧⎨
⎩

1 if u ≤ v,

v

u
otherwise

(see [2]). If A is the S-supremum aggregation function on [0, 1], i.e., A 
(
(us)s∈S

) = sup {us : s ∈ S}, then the fuzzy 
implication (3) is given by

KG1,G2,IS ,A(u, v) = sup
{
IG

(
us, vs

) : s ∈]0,1]} =
{

0 if v = 0 and u 	= 0,

1 otherwise

for all (u, v) ∈ [0, 1]2.

Example 2. Let S = [1, +∞[, let g1,s(t) = g2,s(t) = t s for all t ∈ [0, 1], and, for each s ∈ S, let Is = IG be the Goguen 
fuzzy implication. If A is the S-infimum aggregation function on [0, 1], i.e., A 

(
(us)s∈S

) = inf {us : s ∈ S}, then the 
fuzzy implication KG1,G2,IS ,A is the Rescher fuzzy implication (see [2]), that is,

KG1,G2,IS ,A(u, v) = inf
{
IG

(
us, vs

) : s ∈ [1,+∞[} =
{

1 if u ≤ v,

0 otherwise

for all (u, v) ∈ [0, 1]2.

Remark 1. For infinite sets S, it is often necessary to deal with some restricted domains for an aggregation function A
instead of [0, 1]S , i.e., a suitable subset of [0, 1]S as a domain of an aggregation function A is considered. Namely, one 
can deal with A : H → [0, 1], where H ⊂ [0, 1]S such that 1∅, 1S ∈ H, and A(1∅) = 0, A(1S) = 1 and A(x) ≤ A(y)

for all x, y ∈ H satisfying x ≤ y. Obviously, to apply Theorem 2, one needs to ensure that xG1,G2,IS,u,v ∈ H for all 
u, v ∈ [0, 1], where

xG1,G2,IS,u,v(s) = Is

(
g1,s(u), g2,s (v)

)
.

In such a case, (3) can be rewritten as

KG1,G2,IS ,A(u, v) = A
((

xG1,G2,IS ,u,v(s)
)
s∈S

)
. (4)

As typical examples for such aggregation functions A one can consider the Lebesgue, Choquet and Sugeno inte-
grals defined for appropriate functions from [0, 1]S only. In general, the Borel measurability of fuzzy implications Is

should be considered. As an example of a fuzzy implication which is not Borel measurable one can take a function 
IE : [0, 1]2 → [0, 1] given by

IE(u, v) =
{

1 if u > v or (u = v and u /∈ E),

0 otherwise,

where E is any subset of ]0, 1[ which is not Borel measurable. It can be checked that IE is a fuzzy implication, but it 
is not a Borel measurable function.

Example 3. Let S =]0, 1], let g1,s(t) = g2,s(t) = t s for all t ∈ [0, 1], and, for each s ∈ S, let Is = IG be the Goguen 
fuzzy implication. Then xG1,G2,IS ,u,v(s) = min

{
1,

(
v
u

)s}
and thus xG1,G2,IS ,u,v is Borel measurable for any u, v ∈

[0, 1].
(i) If A is the Lebesgue integral (see [15]) on (]0, 1], B(]0, 1])) and considering the Lebesgue measure λ, we have

KG1,G2,IS ,A(u, v) =
⎧⎨
⎩

1 if u ≤ v,
v − u

u ln
(

v
) otherwise.
u
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(ii) If A = Chμ is the Choquet integral [5] with respect to the fuzzy measure μ = λ2, then we get

KG1,G2,IS ,A(u, v) =
⎧⎨
⎩

1 if u ≤ v,
2u + 2v ln v

u
− 2v

u ln2 v
u

otherwise.

(iii) If A = Suλ is the Sugeno integral [25] with respect to the Lebesgue measure λ, then we have

KG1,G2,IS ,A(u, v) =
{

1 if u ≤ v,

h−1
(

ln
v

u

)
otherwise,

h−1 : [−∞, 0] → [0, 1] being an inverse function to the function h : [0, 1] → [−∞, 0] given by h(t) = ln t
t

.

As a consequence of Theorem 2 we have the following result.

Corollary 3. Let S be a non-empty set, and let μ be a measure that can either be non-additive defined on 2S , finitely 
additive defined on an algebra on S, or σ -additive defined on a σ -algebra on S. Let G1 = (

g1,s

)
s∈S

and G2 = (
g2,s

)
s∈S

be two systems of non-decreasing functions from [0, 1] into [0, 1] such that g1,s(0) = g2,s(0) = 0 and g1,s(1) =
g2,s(1) = 1 for all s ∈ S. Let IS = (Is)s∈S be a family of fuzzy implications fulfilling adequate integrability conditions 
for μ. Then the function KG1,G2,IS defined on [0, 1]2 by

KG1,G2,IS (u, v) =
∫
S

Is

(
g1,s(u), g2,s (v)

)
dμ(s) (5)

is a fuzzy implication.

Remark 2. (i) Note that formula (5) has been obtained from formula (3) when an aggregation function A is an 
appropriate integral, A(�) = ∫

S
� dμ. In such a case, the letter A will not be explicitly written in the notation of the 

constructed fuzzy implication.

(ii) We want to stress that though there is a variety of integrals which could be applied in (5), we will only consider 
the Lebesgue integral with respect to a σ -additive measure μ (see [15]), or the Choquet and Sugeno integrals with 
respect to a fuzzy measure μ (see [5,8] and [25], respectively).

Remark 3. Obviously, depending on what kind of set S and measure μ are considered in Corollary 3, we obtain 
different implications.

1. If the set S is finite and μ is a probability measure on S, then we get a convex linear combination of fuzzy 
implications.

2. If S = [0, 1], μ is a probability measure on B([0, 1]) and, for any u, v ∈ [0, 1], Is

(
g1,s(u), g2,s (v)

)
is a Borel 

measurable function on [0, 1], then we can obtain new fuzzy implications, see, e.g., Example 3(i). Moreover, 
observe that (5) is a generalization of (2): if μ is the Lebesgue measure on [0, 1], (g1,s

)
s∈S

:= (
μC1,s

)
s∈S

and (
g2,s

)
s∈S

:= (
μC2,s

)
s∈S

are the disintegrations of the measures associated with the copulas C1 and C2, respec-
tively, and, for any u, v ∈ [0, 1], Is

(
g1,s(u), g2,s (v)

)
is a Borel measurable function on [0, 1], then we obtain (2). 

We note that there is a difference between our construction and the fuzzy implication given by (2), since in this 
last case the function fC,x defined by (1) is left-continuous, but not right-continuous, in general.

We provide an additional example.

Example 4. Let S = {1, 2, 3}, let I1 be the Reichenbach implication —i.e., I1(u, v) = 1 −u +uv for all (u, v) ∈ [0, 1]2

(see [2])—, let I2 be the Goguen implication, let I3 be the Łukasiewicz implication —i.e., I3(u, v) = min(1, 1 −u +v)

for all (u, v) ∈ [0, 1]2 (see [2])—, let g1,s (t) = g2,s(t) = t for all t ∈ [0, 1] and for every s ∈ S, and let μ be the fuzzy 
measure on 2S given by
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μ(∅) = 0,

μ({1}) = μ({3}) = 1/3, μ({2}) = 2/3,

μ({1,3}) = 2/3, μ({2,3}) = μ({1,2}) = 5/6,

μ({1,2,3}) = 1.

Then, after some elementary algebra, we can conclude that the fuzzy implication defined by (5), when the Choquet 
integral is considered, is given by

KG1,G2,IS (u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − u(1 − v)

6
if u ≤ v,

u2(v − 2) + u(v + 2) + v

3u
if

u

u + 1
< v < u,

u2(v − 3) + u(2v + 3) + 3v

6u
otherwise.

Observe that all Ii , i = 1, 2, 3, satisfy the left neutrality principle, i.e., Ii(1, v) = v for all v ∈ [0, 1], and that KG1,G2,IS
also has the same property.

For our next result we recall several known concepts.
Given two measure spaces (�1,F1,μ1) and (�2,F2,μ2), a mapping f : �1 → �2 is said to be a measure-

preserving transformation if:

(i) it is measurable with respect to the σ -fields F1 and F2, in the sense that, for every set B ∈F2, f −1(B) ∈ F1; and
(ii) μ1

(
f −1(B)

) = μ2(B) for every set B ∈F2.

For the particular case (�1,F1,μ1) = (�2,F2,μ2) = ([0,1],B([0,1]), λ), a relationship between copulas and 
measure-preserving transformations is the following [23]: If f1 and f2 are measure-preserving transformations on 
the space ([0,1],B([0,1]), λ), then the function Cf1,f2 : [0, 1]2 → [0, 1] defined by

Cf1,f2(u, v) := λ
(
f −1

1 ([0, u]) ∩ f −1
2 ([0, v])

)
(6)

is a copula; and, conversely, for every copula C there exist two measure-preserving transformations f1 and f2 such 
that C can be expressed in the form (6).

For any fuzzy implication I , the function NI : [0, 1] −→ [0, 1], defined by NI (u) = I (u, 0), is called the natural 
negation of I . If NI = NZ , where the function NZ : [0, 1] −→ [0, 1] is defined as NZ(u) = 1 − u for all u ∈ [0, 1], 
then the natural negation of I is called the Zadeh negation (or the standard negation).

Given two copulas C1 and C2, consider the ∗ “product” of C1 and C2 (see [6]) defined in terms of the two first-order 
partial derivatives of these copulas in the following manner:

(C1 ∗ C2)(r, s) =
1∫

0

∂C1

∂t
(r, t) · ∂C2

∂t
(t, s)dt

(if some derivative does not exist, its value equals zero, by convention).
We note that C1 ∗C2 is always a copula and, for any copula C, we have � ∗C = C ∗� = �, M ∗C = C ∗M = C

and (W ∗ C)(u, v) = v − C(1 − u, v) and (C ∗ W)(u, v) = u − C(u, 1 − v) for all (u, v) ∈ [0, 1]2.
Using measure-preserving transformations and a measurable implication with an additional boundary condition 

—in terms of a natural negation—, we obtain an interesting expression for (5) as stated in the following result, where 
id will denote the identity map on [0, 1].
Theorem 4. Let f be a measure-preserving transformation, let D be any copula, and let G1 = (

g1,s

)
s∈[0,1] =(

μD,s

)
s∈[0,1] and G2 = (

g2,s

)
s∈[0,1] = (

μCid,f ,s

)
s∈[0,1] be the disintegrations of the measures associated with the cop-

ulas D and Cid,f , respectively. For each s ∈ [0, 1] and every u ∈ [0, 1], let NIs (u) = Is(u, 0) be the natural negation 
of a measurable implication Is . Then the fuzzy implication KG1,G2,I[0,1] given by (5) can be expressed as
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KG1,G2,I[0,1](u, v) = 1 − λ (Tv) +
∫
Tv

NIs (μD,s(u))dλ(s) (7)

for all (u, v) ∈ [0, 1]2, where Tv = {s ∈ [0,1] : f (s) > v}. In particular, if NIs = NZ for every s ∈ [0, 1], we have

KG1,G2,I[0,1](u, v) = 1 − u + (
D ∗ Cid,f

)
(u, v) (8)

for all (u, v) ∈ [0, 1]2.

Proof. First note that Tv = {
s ∈ [0,1] : μCid,f ,s(v) = 0

}
. On the other hand, since Is is non-increasing in the first 

variable, from Is(1, 1) = 1 we have Is(u, 1) = 1 for every u ∈ [0, 1]. Then we obtain

KG1,G2,I[0,1](u, v) =
∫

[0,1]
Is

(
μD,s(u),μCid,f ,s(v)

)
dλ(s)

=
∫
Tv

Is

(
μD,s(u),0

)
dλ(s) +

∫
[0,1]\Tv

Is

(
μD,s(u),1

)
dλ(s)

=
∫
Tv

NIs (μD,s(u))dλ(s) +
∫

[0,1]\Tv

1 dλ(s),

whence Equation (7) follows. In particular, if, for every s ∈ [0, 1], the natural negation of Is is the Zadeh negation, 
i.e., NIs = NZ for every s ∈ [0, 1], then we have

KG1,G2,I[0,1](u, v) = 1 − λ (Tv) +
∫
Tv

(
1 − μD,s(u)

)
dλ(s) = 1 −

∫
Tv

μD,s(u)dλ(s)

= 1 − μD([0, u] × Tv) = 1 − μD([0, u] × f −1([v,1])) = 1 − u + μD([0, u] × f −1([0, v]))
= 1 − u + (

D ∗ Cid,f

)
(u, v),

where the last equality follows from [11,13], and this completes the proof. �
In the following examples we use the expression given by (8) in order to find new implications by choosing different 

copulas D or measure-preserving transformations f .

Example 5. For different choices of the copula D in (8) we obtain the following fuzzy implications:

1. If D = � we have

KG1,G2,I[0,1](u, v) = 1 − u + uv

for all (u, v) ∈ [0, 1]2, i.e., the Reichenbach implication, regardless of the choice of the function f .
2. If D = M then

KG1,G2,I[0,1](u, v) = 1 − u + Cid,f (u, v)

for all (u, v) ∈ [0, 1]2.
3. If D = W then

KG1,G2,I[0,1](u, v) = 1 − u + v − Cid,f (1 − u,v)

for all (u, v) ∈ [0, 1]2.
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s

fa(s)

0 a
1

1

0 a 1

1

0 v

u − a(1 − v)

Fig. 1. The graph of the function fa given by (9) (left) and 2D-visualization of the copula C1 from Example 6 (right) whose support corresponds 
to the graph of fa .

Example 6. Let a ∈]0, 1[, and consider the function fa defined by

fa(s) =

⎧⎪⎨
⎪⎩

1 − s

a
if 0 ≤ s ≤ a,

s − a

1 − a
if a ≤ s ≤ 1.

(9)

Moreover, f0(s) = s and f1(s) = 1 − s for all s ∈ [0, 1]. Since id−1([0, u]) = [0, u] and f −1
a ([0, v]) = [a(1 − v), v +

a(1 − v)] then

Cid,fa (u, v) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ u ≤ a(1 − v),

u − a(1 − v) if a(1 − v) ≤ u ≤ v + a(1 − v),

v if v + a(1 − v) ≤ u ≤ 1,

so that

∂Cid,fa

∂u
(u, v) =

{
1 if a(1 − v) ≤ u ≤ v + a(1 − v),

0 otherwise,

and hence, for any copula C we have

(
C ∗ Cid,fa

)
(u, v) =

v+a(1−v)∫
a(1−v)

∂C

∂t
(u, t)dt = C(u, v + a(1 − v)) − C(u,a(1 − v)).

Therefore, for each a ∈ [0, 1], from (8) we obtain the fuzzy implication IC,a given in [20, Corollary 2.6], i.e.,

IC,a(u, v) = 1 − u + C(u, v + a(1 − v)) − C(u,a(1 − v))

for all (u, v) ∈ [0, 1]2. We note that IC,a(u, v) + u − 1 is a subfamily of the biparametric family of copulas given by

VC([c(1 − u),u + c(1 − u)] × [d(1 − v), v + d(1 − v)]),
for any c, d ∈ [0, 1] (see [16,22]). Observe also that if, for instance, we consider the copula C = M , then we have

IM,a(u, v) = 1 − u + min(u, v + a(1 − v)) − min(u, a(1 − v)),

and hence C1(u, v) := u − 1 + IM,a(u, v) is a copula whose support is related —in some sense— to the graph of the 
function fa given by (9): Fig. 1 shows the graph of the function fa and the support of the resulting copula C1.
Finally, note also that IW,a = IM,1−a for all a ∈ [0, 1].
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Example 7. Let a ∈]0, 1[, and let f ∗
a be the function given by

f ∗
a (s) =

⎧⎪⎨
⎪⎩

s

a
if 0 ≤ s ≤ a,

1 − s

1 − a
if a ≤ s ≤ 1.

Moreover, f ∗
0 (s) = 1 − s and f ∗

1 (s) = s for all s ∈ [0, 1]. Then, for any copula C and each a ∈ [0, 1], from (8) we 
obtain the fuzzy implication

I ∗
C,a(u, v) = 1 + C(u,av) − C(u,av + 1 − v)

for all (u, v) ∈ [0, 1]2.

Example 8. Consider a partition 0 = b0 < a1 < b1 < a2 < b2 < · · · < an < bn = 1, and let a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn). Let fa,b : [0, 1] → [0, 1] be the function defined on each subinterval 
[
bi−1, bi

]
, for i =

1, 2, . . . , n, by

fa,b(s) =

⎧⎪⎪⎨
⎪⎪⎩

ai − s

ai − bi−1
if bi−1 ≤ s ≤ ai,

s − ai

bi − ai

if ai ≤ s ≤ bi.

Then, for any copula C, we obtain from (8) the fuzzy implication

IC,(a,b)(u, v) = 1 − u +
n∑

i=1

[
C(u,ai + (bi − ai)v) − C(u,ai − (ai − bi−1)v)

]
for all (u, v) ∈ [0, 1]2. We note that, by using different notation, this expression corresponds to Equation (7) in [20].

Example 9. Consider a partition 0 = a0 < a1 < a2 < · · · < an = 1, and let a = (a1, a2, . . . , an). Let fa : [0, 1] → [0, 1]
be the function defined on each subinterval 

[
ai−1, ai

]
, for i = 1, 2, . . . , n, by

fa(s) = s − ai−1

ai − ai−1
.

Then, for any copula C, we obtain from (8) the fuzzy implication

IC,a(u, v) = 1 − u +
n∑

i=1

[
C(u,ai−1 + (ai − ai−1)v) − C(u,ai−1)

]
for all (u, v) ∈ [0, 1]2.

Example 10. Consider a partition 0 = b0 < a1 < b1 < a2 < b2 < · · · < an < bn = 1, and let a = (a1, a2, . . . , an)

and b = (b1, b2, . . . , bn). Let f ∗
a,b : [0, 1] → [0, 1] be the function defined on each subinterval 

[
bi−1, bi

]
, for i =

1, 2, . . . , n, by

f ∗
a,b(s) =

⎧⎪⎪⎨
⎪⎪⎩

s − bi−1

ai − bi−1
if bi−1 ≤ s ≤ ai,

bi − s

bi − ai

if ai ≤ s ≤ bi.

Then, for any copula C, we obtain from (8) the fuzzy implication

I ∗
C,(a,b)(u, v) = 1 +

n∑
i=1

[
C(u,bi−1 + (ai − bi−1)v) − C(u,bi − (bi − ai)v)

]
for all (u, v) ∈ [0, 1]2.
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4. Conclusions

In this paper we have developed a rather general construction method for constructing fuzzy implication functions 
given in Theorem 2 —see formula (3)—, which extends several other special construction methods, such as, for ex-
ample, the convex sums and generalized convex sums (usually in the form of some integral) of fuzzy implication 
functions. This method can also be applied for constructing fuzzy implication functions with some particular proper-
ties. For example, the neutrality principle of fuzzy implications —i.e., the property I (1, v) = v for each v ∈ [0, 1]— 
is satisfied by any fuzzy implication constructed by means of formula (8), independently of the considered copula 
D and the measure-preserving transformation f . Also, if each Is satisfies the neutrality principle, then the neutrality 
principle is preserved by our construction (3) whenever A is an idempotent aggregation function and g2,s = id for 
any s ∈ S. Similarly, any fuzzy implication constructed by means of formula (3) has the Zadeh —or the standard— 
fuzzy negation NZ : [0, 1] −→ [0, 1] given by NZ(x) = 1 − x as its natural negation, i.e., I (u, 0) = NZ(u), and this 
property is preserved by our construction (3) whenever A is an idempotent aggregation function and g1,s = id for 
any s ∈ S. We also recall another important property of fuzzy implications, namely the ordering property: I (u, v) = 1
if, and only if, u ≤ v. This property is satisfied by any implication constructed by means of formula (3) whenever 
g1,s = g2,s is strictly increasing for any s ∈ S, and A has no unit multipliers, i.e., if A((xs)s∈S) = 1 only if xs = 1 for 
some s ∈ S. Note that if S is finite, then A ≤ max is a sufficient condition for A not having unit multipliers. The use 
of the proposed construction method (3), as well as some other particular construction methods proposed in the paper 
(given, e.g., by (5) or (8)) for obtaining fuzzy implications with some other special properties, such as, for example, 
contrapositive symmetry, is a challenging topic for further research.
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