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Abstract
To increase nitrogen (N) use efficiency and reduce water pollution from vegetable produc-
tion, it is necessary to optimize N management. Fluorescence-based optical sensors are 
devices that can improve N fertilization through non-destructive field monitoring of crop 
variables. The aim of this work was to compare the performance of five fluorescence indi-
ces (SFR-R, SFR-G, FLAV, NBI-R, and NBI-G) to predict crop variables, as dry matter 
production, crop N content, crop N uptake, Nitrogen Nutrition Index (NNI), absolute and 
relative yield, in sweet pepper (Capsicum annuum) crops grown in greenhouse. Fluores-
cence measurements were periodically made with the Multiplex® 3.6 sensor throughout 
three cropping cycles subjected to five N application treatments. The performance of fluo-
rescence indices to predict crop variables considered calibration and validation analyses. In 
general, the five fluorescence indices were strongly related with NNI, crop N content and 
relative yield. The best performing indices to predict crop N content and NNI at the early 
stages of the crops (i.e., vegetative and flowering phenological stages) were the SFR indi-
ces, both under red (SFR-R) and green (SFR-G) excitation. However, in the final stage of 
the crop (i.e., harvest stage), the best performing indices were NBI, both under red (NBI-
R) and green (NBI-G) excitation, and FLAV. The two SFR indices best predicted relative 
yield of sweet pepper at early growth stages. Overall, the fluorescence sensor and the fluo-
rescence indices evaluated were able to predict crop variables related to N status in sweet 
pepper. They have the capacity to be incorporated into best N management practices.
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Introduction

Nitrogen (N) is an essential nutrient and is one of the most important elements for plant 
development and growth, affecting yield and fruit quality (Greenwood et al., 1991; Lemaire 
et al., 2008). To guarantee high yields, N fertilizer is commonly applied in high amounts 
in vegetable production systems (Neeteson et al., 1999). Commonly, in vegetable produc-
tion, the combined N supply, consisting of fertilizer N plus available soil N, appreciably 
exceed crop N requirements (Ju et  al., 2006; Thompson et  al., 2017b). The excess N is 
susceptible to nitrate  (NO3

−) leaching losses (Thompson et al., 2007; Zotarelli et al., 2009), 
and subsequent environmental contamination (Meisinger et al., 2008). Nitrate contamina-
tion of groundwater, from vegetable production, has been reported for diverse regions, such 
as south-eastern (SE) Spain (Pulido-Bosch et al., 2000), SE United States (Zotarelli et al., 
2009), and China (Ju et al., 2006).

Matching N supply with crop N requirements quantitatively over time will optimize N 
use and decrease the associated environmental problems (Samborski et al., 2009; Thomp-
son et al., 2017b; Zhang et al., 2012). Vegetable production systems increasingly have the 
technical potential to match N supply to crop requirements through the combined use of 
localized irrigation and fertigation systems (Thompson et  al., 2017a, 2017b). Tools that 
can assess crop N status are required to ensure optimal N management in intensive produc-
tion systems, by permitting correction of N fertilizer additions added frequently through 
combined fertigation and localized irrigation.

A convenient way to determine crop N nutrition status on farm is through the use of 
portable optical sensors. There are several types of proximal optical sensors with the capac-
ity to evaluate crop N status; the most important are chlorophyll meters, canopy reflectance 
sensors, and flavonols meters (Padilla et al., 2018; Samborski et al., 2009; Tremblay et al., 
2012). These sensors estimate the N content through the use of optical properties of the 
light which interact with compounds sensitive to N content (Fox & Walthall, 2008; Trem-
blay et al., 2012). The major advantages of these sensors are speed and simplicity of meas-
urement, and that they can determine crop N status non-destructively (Samborski et  al., 
2009; Tremblay et al., 2012).

Two groups of compounds in plants are particularly sensitive to plant N content, chlo-
rophyll and polyphenols (Agati et al., 2013; Fox & Walthall, 2008; Tremblay et al., 2012). 
Within polyphenols, flavonols are the compounds that are easier to estimate by using opti-
cal tools (Meyer et al., 2006) Fluorescence-based sensors can estimate chlorophyll and fla-
vonols contents of leaf tissue in-situ (Padilla et  al., 2018). These sensors estimate chlo-
rophyll content from the chlorophyll fluorescence emission ratio of red (RF), and far-red 
radiation (FRF) emitted from chlorophyll after excitation with ultraviolet (UV), red, green 
or blue radiation (Tremblay et  al., 2012). Flavonols content in leaves has the opposite 
behaviour to that of chlorophyll as function of N, and can also be directly affected by other 
environmental factors such as light. When N is deficient, flavonols content increases and 
chlorophyll content decreases (Bragazza & Freeman, 2007; Liu et al., 2010). The Nitrogen 
Balance Index (NBI) is calculated as the ratio between chlorophyll and flavonols contents; 
it has been shown to be a very sensitive indicator of crop N status (Cartelat et al., 2005; 
Padilla et al., 2016; Samborski et al., 2009).

Fluorimeters are a kind of optical sensors which provide indirect measurements of both 
chlorophyll and flavonols contents from the fluorescence properties of the leaves (Padilla 
et al., 2018; Thompson et al., 2017b). These sensors can also be used to estimate other crop 
properties not dependent on the chlorophyll content such as leaf health status and light use 
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efficiency (Schreiber & Bilger, 1987). Two fluorimeters developed for agriculture are the 
Dualex, a leaf-clip sensor, and the Multiplex, both produced by Force-A (Orsay, France). 
The Multiplex is a proximal sensor that take measurements at a distance of 10 cm from the 
leaf (Padilla et al., 2018; Thompson et al., 2017b).

The evaluation of fluorescence measurements as predictors of crop variables that are 
important for crop N management has been made by establishing relationships between 
fluorescence measurements and crop variables (Padilla et al., 2016). Most of the literature 
has focused on the prediction of crop N status but it remains largely unaddressed if meas-
urements of fluorescence-based sensors can predict other crop variables such as crop N 
uptake and yield (Huang et al., 2019).

This manuscript evaluates the capacity of five fluorescence indices, measured with the 
Multiplex sensor, to predict the following crop variables: dry matter production, crop N 
content, crop N uptake, Nitrogen Nutrition Index (NNI), and yield (both absolute and rela-
tive yield respect to the maximum yield), in sweet pepper crops. Subsequently regressions 
were validated for phenological stages. The work was carried out in an intensive vegetable 
production system in Almería, SE Spain. This area is one of the most important for produc-
tion of vegetables crops in greenhouse in Spain, occupying 30,000 ha. Within the vegetable 
crops, sweet pepper is one of the most important crops, occupying an area of 8,000  ha 
(Valera et al., 2017).

Material and methods

Experimental crops and N treatments

This study was carried with sweet pepper (Capsicum annuum cultivar ‘Melchor’) grown 
in three different years at the Experimental Station of the University of Almeria (36◦51’N, 
2◦16’W and 92 m elevation), in Retamar, Almeria, Spain. The crops were grown in soil 
in a plastic greenhouse. The soil was an artificial layered “enarenado” typical of this area 
(Thompson et al., 2007). A complete description of the greenhouse and the enarenado soil 
are presented in Thompson et al. (2007). A complete list of acronyms used is presented in 
Table 1.

The sweet pepper crop was repeated over three cropping seasons (2014, 2016, and 2017; 
Table 2, Fig. 1), with a summer–winter cycle. Each crop was subjected to five different N 
treatments, applied throughout the crop in the nutrient solution applied by a combined drip 
irrigation and fertigation system. The N treatments were very N deficient (N1), N deficient 
(N2), conventional N (N3), excessive N (N4) and very excessive N (N5) (Table 2). The 
majority of N was applied as nitrate (90%), and the rest as ammonium  (NH4

+). In addition 
to N, the other macronutrients applied remained constant in all treatments in the follow-
ing concentrations:  H2PO4-, 1.75 mmol  L−1;  K+, 4 mmol  L−1;  Ca+2, 4 mmol  L−1;  Mg+2, 
1.5 mmol  L−1;  SO4

−2, 2.35 mmol  L−1; on average for the three cropping seasons. The dif-
ferent N treatments were applied in every irrigation, which were made every 1–4 days. The 
irrigation was scheduled using tensiometers (Irrometer, Co., Riverside, Ca, USA) that were 
installed at 15 cm depth. Crop management followed local practices.

The experimental design was a randomized block design, with four replications per 
treatment. Each replicate plot measured 6 m by 6 m. There was a total of 20 plots. In each 
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replicate plot there were 72 plants with a density of two plants  m−2. One emitter with a 
flow of 3 L  h−1 was immediately adjacent to each plant.

Dry matter production, crop N uptake, crop N content, NNI and yield

Periodic above-ground biomass samplings were made in each of the three crops. In the 
2014–2015 crop, the biomass samplings were made every 21 days, in the 2016–2017 every 
23 days, and in the 2017–2018 crop every 24 days.

At each sampling date, dry matter production (DMP) and N content were determined 
from two complete plants for each replicate. The dry weights (oven-dried at 65ºC) of the 
different plant organs (stems, leaves, and fruits) were determined. Additionally, harvested 
fruit and pruned shoot material were periodically removed from eight marked plants for 
replicate plot throughout each crop. The total amounts of harvest fruit and pruned mate-
rial were calculated by summing the data per plot per treatment. Subsamples of oven-dry 
material were ground to a fine powder prior to analysis of N content (%) in a Dumas-type 
elemental analyzer (Rapid N, Elementar Analysensysteme GmbH, Hanau, Germany).

The total N in each organ was calculated multiplying the %N of the sub-sample by the 
corresponding dry matter mass. Total crop N uptake (kg N  ha−1) was the sum of N in all 
relevant components. Total crop N content (%N) was calculated as total crop N uptake 
divided by total DM.

The NNI was calculated from the critical N curve derived for greenhouse-grown sweet 
pepper crop (Critical N = 4.71·DMP−0.22; Rodríguez et  al., (2020)). The NNI was calcu-
lated as:

Table 1  List of acronyms used

List of acronyms Units

SFR Simple Fluorescence Ratio Dimensionless
SFR-R Simple Fluorescence Ratio under red excitation Dimensionless
SFR-G Simple Fluorescence Ratio under green excitation Dimensionless
FLAV Flavonols Dimensionless
NBI Nitrogen Balance Index Dimensionless
NBI-R Nitrogen Balance Index under red excitation Dimensionless
NBI-G Nitrogen Balance Index under green excitation Dimensionless
NNI Nitrogen Nutrition Index Dimensionless
DMP Dry Matter Production t  ha−1

Nup Crop Nitrogen uptake kg N  ha−1

N Crop Nitrogen Content %
I Integrated values Depends on the variable
Y Absolute Yield t  ha−1

RY Relative Yield %
RMSE Root mean square error Depends on the variable
RE Relative error %
SE Standard error of the mean Depends on the variable
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where Nact is the real N measured and Nc is the critical N content calculated from the 
critical N curve. The NNI value for each day of the crop was calculated by interpolating 
values between two consecutive biomass samplings (Padilla et al., 2017).

Multiplex measurements

A Multiplex® 3.6 sensor (Force-A, Orsay, France) was used to measure chlorophyll fluo-
rescence throughout the three cropping seasons. This sensor is a portable device with four 
emission light sources (UV, green, red and blue) that induce fluorescence in plant tissues 
(Huang et al., 2019). Detailed descriptions of the sensor and its operation are available in 

(1)NNI =
Nact

Nc

Fig. 1  a Daily integral of solar radiation and b daily average air temperature, in the greenhouse during the 
three cropping seasons (2014–2015, 2016–2017, and 2017–2018), from transplant to end of the crop



284 Precision Agriculture (2022) 23:278–299

1 3

Bürling et al. (2013) and Tremblay et al. (2012). The measurements were made weekly in 
the 2014–2015 crop and every two weeks for the other two crops. Measurements started at 
15, 25 and 21 DAT in the first, second and third crops, respectively.

Measurements were made throughout the growing cycle in 16 marked plants per repli-
cate plot. In each of these 16 plants, measurements were made on the most recently fully 
expanded leaf, following the protocols of Padilla et al., (2018). The measurement area was 
an 8 cm diameter circle of leaf surface.

Of the various indices measured by the Multiplex sensor (Huang et al., 2019), the pre-
sent work focused on five indices that are most sensitive to plant N status (Tremblay et al., 
2012). These indices were: i) the Simple Fluorescence Ratio (SFR), both under red (SFR-
R) and green (SFR-G) excitation, indicative of leaf chlorophyll content (Tremblay et al., 
2012); ii) the FLAV index, indicative of leaf flavonols content (Cerovic et al., 2002); and 
iii) the Nitrogen Balance Index (NBI) (Cartelat et al., 2005), either under red (NBI-R) or 
green (NBI-G) excitation.

Data analysis

Sweet pepper is an indeterminate crop with multiples harvests during the cycle. The major 
phenological stages considered were: vegetative, flowering, early fruit growth, and harvest 
(de Souza et al., 2019). Integrated values (Iv) of fluorescence indices, DMP, crop N con-
tent, crop N uptake and NNI for each phenological stage, were calculated as:

where D was the duration of the phenological stage, V was the value of fluorescence indi-
ces or crop variable for each day of measurement, and ds was the duration between two 
successive measurements (de Souza et al., 2019).

Yield data were considered both in absolute terms (kg  m−2) and in relative terms (%). 
In each crop, relative yield was calculated for each plot by dividing yield of each of the 
20 plots by the maximum yield recorded in a plot of that particular crop, expressed as a 
percentage.

Data of integrated fluorescence indices and integrated crop variables were pooled across 
the three crops, for each phenological stage. Within each phenological stage, pooled data 
were randomly divided into two groups, one group was used for calibration and the other 
group was used for validation. The calibration group had approximately 2/3 of the data; the 
remaining data was in the validation group. For the calibration group, simple linear regres-
sion analyses were performed between each integrated fluorescence index, as the independ-
ent variable, and each integrated crop variable, as the dependent variable. These relation-
ships assessed and compared the capacity of each fluorescence index to predict each crop 
variable. The CurveExpert Professional®2.2.0 software (Daniel G. Hyams, MS, USA) was 
used to retrieve statistical data of these relationships.

The relationships between each integrated fluorescence index and each integrated crop 
variable, at each phenological stage, were validated using the validation group. Validation 
consisted of calculating the predicted value of each integrated crop variable using the cali-
bration equation, and then comparing with the observed values of each integrated crop var-
iable of the validation dataset. Linear regression analysis was established between observed 
(independent variable) and predicted (dependent variable) values of each crop variable, 
and the root mean square error (RMSE) of the estimated crop variable was calculated as:

(2)Iv = 1∕D ⋅ Σ(V ⋅ ds)

Paco
Resaltado
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where n is the number of samples, Pi is the predicted value of the relationship, and Oi is 
the observed value (Zhao et al., 2018). Additionally, the relative error (RE) of the valida-
tion regression was calculated between values of each observed and predicted crop vari-
ables as:

where Oi is the average of observed values.
The performance of fluorescence indices to predict crop variables was evaluated taking 

into account both calibration and validation results (Xin-feng et al., 2013). Coefficient of 
determination  (R2) and RMSE values of linear regression of the calibration dataset, and 
 R2, RMSE, absolute values of slope-1, and absolute values of intercept, of linear regression 
of the validation dataset, were used (Xin-feng et al., 2013). Slope-1 is the absolute value 
of the slope after subtracting one from the slope of the linear regression. The use of this 
parameter effectively normalizes slope values and enabled ranking of all integrated veg-
etation indices from lowest to highest values (de Souza et al., 2020). The performance of 
each fluorescence index was calculated by: (i) sorting  R2 in decreasing order and RMSE in 
ascending order, for the calibration and validation datasets separately, and (ii) sorting abso-
lute slope-1 values and absolute values of intercept in ascending order, for the validation 
dataset. After sorting these parameters, each one was assigned an ascending number (i.e., 
1, 2, 3, etc.) starting from the beginning. The best performing fluorescence indices were 
those that had the lowest sum of numbers assigned in the six factors (Xin-feng et al., 2013).

Results

Calibration relationships between fluorescence indices and crop variables for each 
phenological stage

Results of linear regression between the five integrated fluorescence indices (SFR-R, SFR-
G, FLAV, NBI-R, NBI-G) and the six crop variables (DMP, crop N content, crop N uptake, 
NNI, absolute yield and relative yield) are shown in Table 3 and Table 1S. SFRi and NBIi 
indices were positively related with all crop variables, whereas the FLAVi index was 
inversely related with these variables. Most of the relationships between integrated fluo-
rescence indices and crop variables were statistically significant, in all phenological stages 
(Table 3 and Table 1S).

In general, most of the integrated fluorescence indices had low  R2 values for their 
relationship with DMP, regardless of phenological stage (Table 3). The average  R2 value 
of relationships of all five fluorescence indices with DMP, across the four phenological 
stages, was 0.37 ± 0.05 (± SE). Results were similar for the relationships of each of the five 
integrated fluorescence indices with absolute yield (Table 3 and Table 1S), with an average 
 R2 value of relationships of all integrated indices and phenological stages of 0.33 ± 0.04. 
Regarding relative yield, the average  R2 value of relationships between each integrated 
fluorescence index and relative yield, across all four phenological stages, was 0.54 ± 0.03, 

(3)RMSE =

√

√

√

√

n
∑

1

(

P
i
− O

i

)2

n

(4)RE ∶
RMSE

Oi
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with stronger relationships for SFR-Ri in the vegetative  (R2 of 0.70), flowering  (R2 of 0.65) 
and early fruit growth  (R2 of 0.72) stages (Table  3). In the relationships between inte-
grated fluorescence indices and crop N uptake, the average  R2 values of relationships for 
all integrated indices throughout the four phenological stages was 0.50 ± 0.05 (Table 3 and 
Table 1S). The indices NBI-Ri  (R2 of 0.44), SFR-Ri and SFR-Gi (both with  R2 of 0.78), 
NBI-Gi  (R2 of 0.69), and FLAVi  (R2 of 0.77), were most strongly related to crop N uptake 
in the vegetative, flowering, early fruit growth and harvest stages, respectively (Table 3 and 
Table 1S).

In general, the strongest relationship of integrated fluorescence indices with crop vari-
ables occurred with crop N content and NNIi (Table 3 and Table 1S). The average  R2 value 
of relationships of all five fluorescence indices with crop N content and NNIi, across the 
four phenological stages, was 0.60 ± 0.04 for crop N content and for NNIi. The SFR and 
NBI indices had one of the highest  R2 values in relationships with crop N content and NNIi 
in all four phenological stages (Table 3). For relationships with crop N content, the SFR-Gi 
had stronger relationships in the vegetative  (R2 of 0.70) and early fruit growth  (R2 of 0.77) 
stages, and the NBI-Gi in the flowering  (R2 of 0.77) and the harvest  (R2 of 0.75) stages 
(Table 3). For relationships with NNIi, the SFR-Gi had stronger relationships in the vegeta-
tive  (R2 of 0.70), flowering  (R2 of 0.68) and early fruit growth  (R2 of 0.76) stages, and the 
NBI-Ri in the harvest stage  (R2 of 0.76) (Table 3 and Table 1S).

Validation of relationships between integrated fluorescence indices and crop 
variables for each phenological stage

Results of the validation analysis varied with phenological stages, fluorescence indices and 
crop variables. Considering all crop variables, validation had high  R2 values for crop N 
uptake, crop N content and NNI, with average  R2 values of 0.61 ± 0.05, 0.64 ± 0.05 and 
0.64 ± 0.05, respectively, across all indices and phenological stages. Validation had low 
 R2 values for crop yield (average  R2 value across all indices and phenological stages of 
0.38 ± 0.05), followed by dry matter production and relative yield (average  R2 values across 
all indices and phenological stages of 0.48 ± 0.06 and 0.51 ± 0.04, respectively (Table 2S).

According to higher  R2 and lower RMSE (Eq.  3) values of the validation analysis, 
results showed better validation for crop dry matter production in the vegetative stage than 
in others phenological stages, with best results for the NBIi indices (Table 2S). For crop N 
content, the phenological stage with best validation results, considering all indices, was the 
early fruit growth; the index with best validation in this stage was SFR-Gi. The early fruit 
growth stage and the SFR-Gi index showed better validation results for crop N uptake. The 
best validation for NNI was early fruit growth, with best results for SFR-Gi. For absolute 
crop yield, the phenological stage with best validation results was early fruit growth, and 
the best performing index in this stage was NBI-Ri. For relative yield, best results were 
obtained in fruit growth stage with the SFRi indices.

Slope of regression between observed and predicted values of crop variables 
from fluorescence indices for each phenological stage

For all fluorescence indices and phenological stages, the slopes of linear regression 
between observed and expected values differed appreciably from 1 for absolute yield 
(Figs. 2–4, and Figs. 1 S and 2S).
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In general, for the SFR-Ri and SFR-Gi indices, the slopes of the linear regressions 
between observed and predicted values of crop variables were closer to 1 particularly 
in the early fruit growth and flowering stages, followed by the vegetative stage, for most 
crop variables (Fig. 2 and Fig. 1S). For these indices, the slopes of the linear regressions 
between observed and predicted values of crop variables were clearly different to 1 in 
the harvest stage. It is notable that, in the flowering stage, the slopes for crop N uptake 
and relative yield were approximately 1 (Fig. 2 and Fig. 1S), indicating very good pre-
diction of these crop variables.

Fig. 2  Relationships between observed values and predicted values, from SFR-Ri measurements, of a 
dry matter production (DMPi), b crop N content (Ni), c crop N uptake (Nupi), d nitrogen nutrition index 
(NNIi), e absolute yield (Y), and f relative yield (RY); for vegetative, flowering, early fruit growth and 
harvest stages, for validation data (n = 20). Dashed line represents the 1:1 line. Regression results are in 
Table S1
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For the FLAVi index, the slopes of the linear regression between observed and pre-
dicted values of crop variables were different to 1 particularly in the flowering stage, 
followed by the vegetative stage, for most crop variables (Fig. 3). Slopes of linear rela-
tionships were closer to 1 in the early fruit growth and harvest stages for most crop vari-
ables, particularly for crop DMP, crop N content, crop N uptake and NNIi (Fig. 3).

Similar to FLAVi, slopes of linear regression between observed and predicted val-
ues of crop variables, from NBI-Ri and NBI-Gi measurements, differed from 1 in 
the flowering stage, followed by the vegetative stage (Fig.  4 and Figuer 2S). Slopes 

Fig. 3  Relationships between observed values and predicted values, from FLAVi measurements, of a 
dry matter production (DMPi), b crop N content (Ni), c crop N uptake (Nupi), d nitrogen nutrition index 
(NNIi), e absolute yield (Y), and f relative yield (RY); for vegetative, flowering, early fruit growth and 
harvest stages, for validation data (n = 20). Dashed line represents the 1:1 line. Regression results are in 
Table S1
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of regression were closer to 1, for most crop variables, in the early fruit growth and 
harvest stages, particularly for crop N content, crop N uptake and NNIi (Fig.  4 and 
Fig. 2S).

Relative error (RE) of prediction of crop variables from fluorescence indices for each 
phenological stage

The RE (Eq. 4) values of the prediction of crop variables from fluorescence indices were 
lower for crop N content, relative yield and NNIi, regardless of the fluorescence index and 

Fig. 4  Relationships between observed values and predicted values, from NBI-Ri measurements, of a 
dry matter production (DMPi), b crop N content (Ni), c crop N uptake (Nupi), d nitrogen nutrition index 
(NNIi), e absolute yield (Y), and f relative yield (RY); for vegetative, flowering, early fruit growth and 
harvest stages, for validation data (n = 20). Dashed line represents the 1:1 line. Regression results are in 
Table S1
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phenological stage (Fig. 5). Average RE values across fluorescence indices and phenologi-
cal stages were 11.06 ± 0.19, 12.02 ± 0.20 and 12.36 ± 0.26%, for crop N content, relative 
yield and NNIi, respectively. The RE of prediction of DMP, crop N uptake and absolute 
yield ranged 13.49‒33.55, 14.94‒37.30 and 19.65‒34.49%, respectively. In general, for 
most of the crop variables, the fluorescence index that presented lower RE was SFR-Ri, 
mainly in the flowering and early fruit growth stages (Fig. 5), and NBI-Ri, mainly in the 
harvest stage (Fig. 2S). In the vegetative stage, there was not an individual fluorescence 
index that stood out for most crop variables (Fig. 5).

Fig. 5  Relative error, expressed in percentage, of prediction of crop variables from measurements with each 
fluorescence index at different phenological stages for validation data (n = 20). a Dry matter production 
(DMPi), b crop N content (Ni), c crop N uptake (Nupi), d nitrogen nutrition index (NNIi), e absolute yield 
(Y), and f relative yield (RY). Veg: vegetative stage, Flow: flowering stage, Early F. G.: early fruit growth 
stage, Harv: harvest stage
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Performance of fluorescence indices

An overall assessment of the performance of fluorescence indices for each phenological 
stage and crop variable was made considering  R2 and RMSE values of linear regression 
analysis of the calibration and validation datasets, and the slope and intercept values of 
linear regressions of the validation dataset (Table 3S). One of the best performing indices 
for most of the variables and phenological stages was SFRi (both under red and green exci-
tation), followed by NBIi (both under red and green excitation) (Table 3S). FLAVi was the 
best performing index for absolute yield in most of the phenological stages (i.e., vegetative, 
early fruit growth and harvest stage). The same procedure explained before was calculated 
to know An assessment of the phenological stage in which each fluorescence index per-
formed best was also made considering  R2 and RMSE values of linear regression analy-
sis of the calibration and validation datasets, and the slope and intercept values of linear 
regressions of the validation dataset (Table 4S). In general, both SFR-Ri and SFR-Gi had 
their best performance in the flowering and early fruit growth stages (Table 4S). FLAVi 
had its best performance in the vegetative and harvest stages. The best performance of both 
NBI-Ri and NBI-Gi was in the vegetative, early fruit growth and harvest stages (Table 4S).

Discussion

Calibration relationships between integrated fluorescence indices, measured with the Mul-
tiplex® 3.6 sensor, and crop variables were variable in terms of  R2 values across phenolog-
ical stages and the indices. In general, SFRi, NBIi and FLAVi were related to all six crop 
variables from the vegetative stage through to the harvest stage. With rice (Huang et al., 
2019), these three indices were also correlated with above-ground biomass, leaf and plant 
N content, plant N uptake, and NNI. In the present study, SFRi and NBIi were positively 
related with crop variables, whereas FLAVi was inversely related with crop variables. 
These results concur with mainstream literature showing that chlorophyll indices, such as 
SFR, increases with N availability, whereas flavonols indices, such as FLAV, decreases 
with N availability (Cerovic et al., 2002; Gabriel et al., 2017; Tremblay et al., 2012).

Of all crop variables evaluated, the best calibration relationships were, in general, those 
between the indices and crop N content and NNIi. These results are in agreement with the 
study of Huang et al., (2019), which showed high correlation between fluorescence indices 
and plant N concentration in rice. They also agree with the results of Agati et al., (2015) 
and Cerovic et al., (2015) regarding the correlation of fluorescence indices to leaf N con-
tent. Calibration relationships between integrated indices and NNIi were generally equal to 
or slightly better than those with crop N content, in the four phenological stages. Similar 
results were obtained with muskmelon (Padilla et al., 2014). Calibration relationships with 
absolute yield indicated a relatively low capacity for fluorescence indices to predict yield 
in sweet pepper, which could be due to the differences in the length of the crop cycles 
and of yield between the crops, since sweet pepper is an indeterminate crop with multi-
ple fruit harvests throughout the crop cycle. All fluorescence indices were better able to 
predict relative yield compared to absolute yield. However, only SFRi had a strong (i.e., 
 R2 value > 0.60) prediction capacity in most phenological stages, including the vegetative 
stage. This finding has implications for crop management because it suggests that SFRi 
could be useful to predict yield of sweet pepper, in relative terms, at early growth stages.
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In general, the best performance of SFRi to predict crop N content, crop N uptake, 
NNIi, and relative yield occurred in the first half of the crop cycle (i.e., vegetative, flower-
ing, and early fruit growth stages). These results are consistent with studies in maize where 
the best relationships of SFR with crop N status were during the earlier stages of the crop 
(Gabriel et al., 2017; Quemada et al., 2014; Zhang et al., 2012). However, working with 
cucumber, contradictory results were reported by Padilla et al., (2016), where SFR was not 
a good predictor of crop N status in the vegetative stage. The discrepant results of Padilla 
et al., (2016) may be because of the time required to fully establish the different N treat-
ments at the beginning of the transplanted cucumber crops.

In the present work, the relationships between SFRi and all crop variables, including 
absolute yield and relative yield, were weak in the harvest stage. However, there were 
stronger relationships with FLAVi and NBIi in the early fruit growth and harvest stages, 
mostly in the relationships with crop N content, crop N uptake, and NNIi. In the vegetative 
stage, the relationships between FLAVi and NBIi and all crop variables, including abso-
lute yield and relative yield were relatively weak. These results are consistent with those 
of Gabriel et al., (2017) and Quemada et al., (2014) in maize, where the performance of 
FLAV index to estimate leaf N content increased as the cropping season advanced. The 
better performance found in the first half of the crop cycle for the chlorophyll index SFRi 
could be due to leaf chlorophyll content increasing steadily in the first half of the cycle 
(de Souza et al., 2019), and a decrease in chlorophyll content thereafter (de Souza et al., 
2019), likely because of translocation of N from leaves to fruits (da Cunha et al., 2015). 
This could have caused the weaker performance of SFRi indices in the harvest stage. In 
contrast, there was better performance of FLAVi and NBIi in the harvest stage, compared 
to SFRi. A likely explanation for this contrasting behaviour may be in the dynamics of fla-
vonols content throughout the crop. The FLAV index, measured with the Multiplex sensor 
as an indicator of flavonols content, was not different between N treatments in the vegeta-
tive stage (data not shown), but differences between treatments appeared at the middle of 
the crop and were maintained during the harvest stage and until the end of the crop (data 
not shown). This could explain the poor performance of FLAVi and NBIi in the vegetative 
stage and the better performance in later phenological stages.

The validation analysis showed that lower relative errors (mostly < 20%) were found in 
the prediction of crop N content, NNI and relative yield. According to the classification of 
Yang et al., (2016), these relative error values indicate good prediction capacity. However, 
relative errors were, in general, > 20% for the prediction of absolute yield, indicating a rela-
tively poor capacity to predict absolute crop yield in sweet pepper. These results contradict 
Tremblay et al. (2010) who reported that fluorescence indices were able to predict yield 
in wheat. The likely explanation for this discrepancy may be the kind of crop; wheat is a 
determinate crop with a single harvest at the end of the crop, and greenhouse sweet pepper 
is an indeterminate crop with multiple fruit harvests that can span a period of 3–4 months.

Generally, the behaviour of fluorescence indices in the validation and calibration analy-
sis were similar. The prediction of crop N content, crop N uptake, NNIi and relative yield, 
from SFRi values generally had slopes close to one and lower relative error values in the 
vegetative, flowering and early fruit growth stages. For FLAVi and NBIi, poorer predic-
tion occurred in the vegetative and flowering stages, and the prediction notably improved 
(i.e., slopes took values closer to one and relative error values were lower) in the early 
fruit growth and harvest stages. Slopes close to one and lower RE values represent excel-
lent validation of regression equations (Gallardo et  al., 2014; Piñeiro et  al., 2008). The 
analysis of the performance of fluorescence indices to predict crop variables considering 
both calibration and validation results was mostly consistent with the analysis conducted 
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for calibration and validation separately (de Souza et al., 2020; Xin-feng et al., 2013). The 
best predictions of crop N content and NNIi in the first half of the crop cycle (i.e., vegeta-
tive, flowering and early fruit growth stages) were with SFRi followed by NBIi and FLAVi. 
However, in the second half of the crop cycle (i.e., harvest stage), the best predictions of 
crop N content and NNIi were with NBIi and FLAVi, followed by SFRi.

These results show that it is possible to predict crop N status in sweet pepper, 
throughout the crop, using fluorescence indices. As NNI was accurately estimated by 
fluorescence indices, and NNI is a good indicator for diagnosis of crop N nutrition 
(Lemaire et  al., 2008), values of fluorescence indices can be used to determine if the 
amounts of N being applied throughout the crop cycle are optimal or not. Since opti-
mal crop N status occurs when NNI values are equal to 1, and deficient crop N status 
when NNI is < 1, on-going monitoring with fluorescence indices enables regular assess-
ment of the adequacy of N fertilization. Knowing sweet pepper N status will contrib-
ute to appreciably improved crop N management, since vegetable growers commonly 
apply excessive amounts of N fertilizer as a risk avoidance strategy because they have 
no quantitative information of actual crop N status (Thompson et al., 2007, 2017b). This 
issue is more relevant in zones with a high density of sweet pepper crops, such as south-
east Spain, where this crop is one of the most important with more than 8000 ha culti-
vated every year (Valera et al., 2017).

With all the fluorescence indices considered in this work, the SFR under both excita-
tions was able to predict relative yield in the earlier phenological stages. This is important 
for growers because this early information on potential yield can guide N management at 
early phenological stages.

In general, in this work, the performance of SFR and NBI under red or green excita-
tion were very similar in terms of  R2 values for the relationships of these indices with crop 
variables, as was reported for maize (Quemada et al., 2014) and cucumber (Padilla et al., 
2016). The SFR under both excitations are related to the leaf chlorophyll concentration 
(Tremblay et al., 2012). The difference between red and green light is that green light pen-
etrates more in the leaf tissues (Terashima et al., 2009) giving slightly different values of 
SFR because of different reabsorption of fluorescence by chlorophyll. Since the SFR under 
red or green excitation was very similar in the current work, it shows that the structure 
and chlorophyll concentration of sweet pepper does not affect much the SFR indices. The 
similitude between NBI under red or green excitation is explained because they are derived 
from SFR-R and SFR-G divided by the same parameter (FLAV) so that their difference 
in the estimate performance is expected to be similar to SFR indices. Therefore, the use 
of either red or green excitation with these indices is equally effective for monitoring and 
predicting sweet pepper N status.

In terms of crop N management, the high cost of flavonols meters (3,000–14,000€ in 
Europe, depending on the model) may make them unattractive to farmers. It is necessary 
to determine if the use of these sensors could make it attractive given the economic benefit 
of the reduction in the use of nitrogen fertilizers when using these tools. An alternative for 
the use of flavonols meters in farmers’ best N management practices is through the service 
of technical advisors or consulting companies that provide flavonols meters measurements 
on farms.

Overall, the results of this work show the potential of fluorescence indices to predict 
crop N content, crop N uptake, NNIi, and relative yield. It has been shown that selecting 
an optimized index for each phenological stage could be a potentially useful approach to 
derive different crop variables related to crop N content of sweet pepper. The use of these 
indices would be useful for the estimation of N status in the field, for guiding farmers in an 
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accurate application of N fertilisation throughout the crop cycle, and for increasing N use 
efficiency. The SFRi was most effective for prediction of crop N content and NNIi at ear-
lier stages of the crop (i.e., vegetative and flowering phenological stages), with either red 
(SFR-Ri) or green (SFR-Gi) excitation. In the harvest stage, the best capacity for prediction 
was with NBIi, both under red (NBI-Ri) or green (NBI-Gi) excitation, and with FLAVi. 
However, the high economical cost of fluorescence sensors can be an issue that hampers 
adoption by farmers.

Conclusions

• Selecting the best performing index in each phenological stage could improve the N 
use efficiency in sweet pepper crops.

• The SFRi indices showed the best performance at earlier phenological stage to pre-
dict crop N status.

• The NBIi indices and the FLAVi index showed the best performance at harvest stage 
to predict crop N status.

• The SFRi indices could be useful to predict relative yield of sweet pepper at early 
growth stages.
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