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Abstract

Modelling environmental systems becomes a challenge when dealing di-
rectly with continuous and discrete data simultaneously. The aim in regres-
sion is to give a prediction of a response variable given the value of some
feature variables. Multiple linear regression models, commonly used in en-
vironmental science, have a number of limitations: (1) all feature variables
must be instantiated to obtain a prediction, and (2) the inclusion of categor-
ical variables usually yields more complicated models. Hybrid Bayesian net-
works are an appropriate approach to solve regression problems without such
limitations, and they also provide additional advantages. This methodology
is applied to modelling landscape - socioeconomy relationships for different
types of data (continuous, discrete or hybrid). Three models relating so-
cioeconomy and landscape are proposed, and two scenarios of socioeconomic
change are introduced in each one to obtain a prediction. This proposal can
be easily applied to other areas in environmental modelling.
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1. Introduction

Bayesian networks (BNs) (Pearl, 1988; Jensen and Nielsen, 2007) play a
relevant role in modelling of complex systems in which relationships between
variables are subject to uncertainty. BNs provide an efficient framework for
reasoning in terms of updating information about unobserved variables when
some new information is incorporated into the system (Jensen et al., 1990;
Shenoy and Shafer, 1990). Variables are modelled by means of probability
distributions; therefore risk and uncertainty can be estimated more accu-
rately than in other models (Uusitalo, 2007; Liao et al., 2010; Liu et al.,
2012; Chen and Pollino, 2012).

Their graphical interpretation, based on nodes and arcs, allows stakehold-
ers to easily understand the relationships between variables and refine the
learned model manually by adding or removing arcs (even variables) from
the graph to better represent reality (Voinov and Bousquet, 2010). Most
available data in environmental sciences are continuous or hybrid (discrete
and continuous), and while BNs can manage them, the limitations are too
restrictive in many cases (Nyberg et al., 2006). The most widely-used so-
lution in environmental modelling is to discretise the variables, accepting a
loss of information (Bromley et al., 2005; Landuyt et al., 2013; Li et al.,
2013; Nash et al., 2013; Sun and Müller, 2013). To date, several new solu-
tions to this problem have been proposed, such as the Conditional Gaussian
(CG) model (Lauritzen, 1992; Lauritzen and Jensen, 2001), the Mixture of
Truncated Exponentials model (MTE) (Moral et al., 2001), the Mixtures of
Polynomials model (MoP) (Shenoy and West, 2011) and the Mixtures of
Truncated Basis Functions (MoTBFs) model (Langseth et al., 2012).

In the study of environmental systems, it is common to find problems in
which the goal is to predict the value of a variable of interest depending on
the values of some other observable variables. If the variable of interest is
discrete, we are faced with a classification problem, whilst if it is continuous,
it is usually called a regression problem (Hastie et al., 2009).

BNs have been proposed both for classification and regression purposes.
Its main advantage with respect to other regression models is that it is not
necessary to have a full observation of the features to give a prediction for the
response variable; in addition, the model is usually richer from a semantic
point of view.

Some restricted BNs models, such as the näıve Bayes (Minsky, 1963),
have been applied to regression problems under the assumption that the
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joint distribution of the features and the response variable is multivariate
Gaussian (Gámez and Salmerón, 2005). If the normality assumption is not
fulfilled, regression with näıve Bayes models has been approached using kernel
densities to model the conditional distribution in the BN (Frank et al., 2000;
Pérez et al., 2009), but the models obtained are too complex.

In a more general solution, we are interested in regression problems where
the features can be either continuous or discrete. In this case, the joint dis-
tribution is not multivariate Gaussian in any case, due to the presence of
discrete variables. To solve this problem, a näıve Bayes regression model
based on the approximation of the joint distribution by an MTE was pro-
posed (Morales et al., 2007).

Aguilera et al. (2011) reviewed the application of BNs in environmen-
tal modelling. Although there are few attempts in the literature to solve
BNs-based regression problems in environmental science, these are focused
on discrete response variables or Gaussian distributions unable to handle
discrete and continuous variables simultaneously without constraints on the
structure (Malekmohammadi et al., 2009; Pérez-Miñana et al., 2012). More-
over, in a more general setting, hybrid BNs have scarcely been applied in
environmental modelling (Aguilera et al., 2010, 2013).

Territorial (landscape spatial pattern) and socioeconomic structures main-
tain a constant and reciprocal interaction since they are “co-evolving sys-
tems” (Norgaard, 1984; Turner et al., 1988; Schmitz et al., 2003; Lacitignola
et al., 2007). Thus, socioeconomic processes, as drivers of change (Burgi
et al., 2004), are the main cause of changes in land uses, i.e., it deter-
mines the structure, function and dynamics of landscapes (Bicik et al., 2001;
Wu and Hobbs, 2002). European agricultural landscapes have been under-
going significant changes associated with intense and rapid socio-economic
changes (Nikodemus et al., 2005; Strijker, 2005). In Europe, and particularly
in Spain, socioeconomic development has led to a notable migration of the
rural population to the city, and the abandonment of the countryside.

Modelling environment-human relationships are becoming increasingly
important and it has been applied in decision-making processes (Wang and
Zhang, 2001; Serra et al., 2008; Milne et al., 2009; Celio et al., 2014). More
specifically, the relationships between landscape structure and socioeconomy
have been formalized through Multiple Linear Regression (MLR) (Schmitz
et al., 2003, 2005). This procedure provides a dependence model with a lim-
ited number of socioeconomic variables, which themselves can account for
much of the variation in the landscape structure.
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There are no studies related to modelling landscape-socioeconomy re-
lationship using hybrid BNs. Thus, our objective is to develop a regres-
sion model based on a hybrid BN that can be applied to study landscape-
socioeconomy relationships. The article is organised as follows. Section 2
presents the theory behind the proposed hybrid BN-based regression model.
In Section 3, the methodology proposed, using three types of data, is vali-
dated against MLR and a case study with three different landscape tendency
changes is presented. Finally, Section 4 is devoted to draw some conclusions
and future work.

2. Hybrid BNs-based regression

2.1. Bayesian networks

A Bayesian network (Jensen et al., 1990; Shenoy and Shafer, 1990) is
a statistical multivariate model for a set of variables X1 appropriate for
knowledge representation under uncertainty. It is explained in terms of two
components: (1) qualitative, defined by means of a directed acyclic graph
(DAG), in which arcs linking nodes determine the independence relations
between them (see example in Fig. 1(a)); and (2) quantitative, specified using
a conditional distribution p(xi | pa(xi)) for each variable Xi, i = 1, . . . , n,
given its parents in the graph, denoted as pa(Xi) (see example in Fig. 1(b)).

The success of BNs stems from the fact that the DAG structure gives us
information about which variables are relevant or irrelevant for some other
variable of interest, which allows us to simplify, to a significant extent, the
joint probability distribution (JPD) of the variables necessary to specify the
model. In other words, BNs provide a compact representation of the JPD
over all the variables, defined as the product of the conditional distributions
attached to each node, so that

p(x1, . . . , xn) =
n
∏

i=1

p(xi | pa(xi)). (1)

For instance, the JPD associated to the network in Fig. 1, p(x1, x2, x3), is
simplified as the product p(x1) · p(x2 | x1) · p(x3 | x1, x2).

1Uppercase letters denote random variables and boldfaced uppercase letters denote a
set of variables, e.g. X = {X1, . . . , Xn}. The domain of X is denoted as ΩX. By lowercase
letters x (or x) we denote some element of ΩX (or ΩX).
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X1

X2 X3

(a) Qualitative component.

P (X1 = 0) = 0.4
P (X2 = 0 | X1 = 0) = 0.4
P (X2 = 0 | X1 = 1) = 0.3
P (X3 = 0 | X1 = 0, X2 = 0) = 0.2
P (X3 = 0 | X1 = 0, X2 = 1) = 0.1
P (X3 = 0 | X1 = 1, X2 = 0) = 0.7
P (X3 = 0 | X1 = 1, X2 = 1) = 0.3

(b) Quantitative component.

Figure 1: An example of a discrete Bayesian network with three binary variables. Note
that P (Xi = 1 | . . .) is not specified as it can directly be computed as 1−P (Xi = 0 | . . .).

There are two approaches for learning a BN: automatic and manual (or
a mixture of the two). The first approach involves using algorithms which,
starting with a set of training data, calculate the optimum structure for
them (Cooper and Herskovits, 1992; Spirtes et al., 1993). From here, the
corresponding probability distributions are estimated. In contrast, using
manual approximation, expert opinion is included as part of the process to
indicate which variables are related and how strongly. This second option is
often used when no training data are available or some of them are missing.

A BN can carry out an efficient reasoning for a given scenario under
conditions of uncertainty. This is known as probability propagation or prob-
abilistic inference. Hence, the objective is to obtain information about a set
of variables of interest (unobserved variables) given known values of other
variables (observed or evidenced variables). If we denote the evidenced vari-
ables as E, and its values as e, then we can calculate the posterior probability
distribution, p(xi | e), for each variable of interest Xi /∈ E.

2.2. Mixtures of truncated exponentials

BNs were originally proposed for handling discrete variables (see Fig. 1(b))
and today, a broad and consolidated theory can be found in the literature for
this case (Jensen and Nielsen, 2007). However, in environmental systems, it
is very common to find continuous and discrete domains simultaneously.

In a hybrid framework, the simplest and the most common solution is
to discretise the continuous data and treat them as if they were discrete.
Thus, existing methods for discrete variables can be easily applied. However,
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discretisation of variables can lead to a loss in precision and this is why other
approaches have received so much attention over the last few years.

So far, several approaches have been devised to represent probability dis-
tributions in hybrid BNs. The CG model is used extensively by researchers
but it puts some restrictions on the network. It is only useful in situations
where the joint distribution of the continuous variables, for each configura-
tion of the discrete ones, follows a multivariate Gaussian. Moreover, CG
models are not valid in frameworks where a discrete variable has continuous
parents, even though some attempts to overcome this restriction have been
addressed (Lerner et al., 2001).

On the other hand, the MOPs and MoTBFs models have been recently
proposed as promising solutions, but they still have not been applied to
solving regression problems.

Discretisation is equivalent to approximating a density by a mixture of
uniforms, meaning that each interval is approximated by a constant func-
tion. Thus, the accuracy of the final model could be increased if, instead
of constants, other functions with better fitting properties were used. A
good choice are exponential functions, since they are closed under restric-
tion, marginalisation and combination. This is the idea behind the so-called
MTE model, explained next.

During the probability inference process, where the posterior distributions
of the variables are obtained given some evidence, the intermediate functions
are not necessarily density functions. Therefore, a general function called
MTE potential needs to be defined as follows:

Definition 1. (MTE potential) Let X be a mixed n-dimensional random
vector. Let Z = (Z1, . . . , Zd)

T and Y = (Y1, . . . , Yc)
T be the discrete and

continuous parts of X, respectively, with c + d = n. We say that a function
f : ΩX 7→ R

+
0 is a Mixture of Truncated Exponentials potential (MTE

potential) if one of the next conditions holds:

i. Z = ∅ and f can be written as

f(x) = f(y) = a0 +
m
∑

i=1

aie
{bT

i
y} (2)

for all y ∈ ΩY, where ai ∈ R and bi ∈ R
c, i = 1, . . . , m.

6



ii. Z = ∅ and there is a partition D1, . . . , Dk of ΩY into hypercubes such
that f is defined as

f(x) = f(y) = fi(y) if y ∈ Di,

where each fi, i = 1, . . . , k can be written in the form of Equation (2).

iii. Z 6= ∅ and for each fixed value z ∈ ΩZ, fz(y) = f(z,y) can be defined
as in ii.

Definition 2. (MTE density) An MTE potential f is an MTE density if

∑

z∈ΩZ

∫

ΩY

f(z,y)dy = 1.

A conditional MTE density can be specified by dividing the domain of
the conditioning variables and specifying an MTE density for the conditioned
variable for each configuration of splits of the conditioning variables.

Example 1. Consider two continuous variables Y1 and Y2. A possible con-
ditional MTE density for Y1 given Y2 is the following:

f(y1 | y2) =



















0.28 + 0.01e1.03y1 + 0.02e0.01y1 if 0 ≤ y1 < 1, 1 ≤ y2 < 3,

0.02 + 0.02e1.01y1 + 0.12e0.09y1 if 1 ≤ y1 < 3, 1 ≤ y2 < 3,

0.49− 0.12e0.59y1 − 0.24e−0.08y1 if 0 ≤ y1 < 1, 3 ≤ y2 < 4,

0.07− 0.02e−0.23y1 + 0.62e−0.23y1 if 1 ≤ y1 < 3, 3 ≤ y2 < 4.

In the same way as in discretisation, the more intervals used to divide
the domain of the continuous variables, the better the MTE model accuracy,
but also more complex. Furthermore, in the case of MTEs, using more
exponential terms within each interval substantially improves the fit to the
real model, but again more complexity is assumed.

2.3. MTE Bayesian networks for regression

Assume we have a set of variables Y,X1, . . . , Xn. Regression analysis con-
sists in finding a model g that explains the response variable Y in terms of the
feature variables X1, . . . , Xn, so that given a full observation of the features
x1, . . . , xn, a prediction about Y can be obtained as ŷ = g(x1, . . . , xn).
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A BN can be used as a regression model for prediction purposes if it
contains a continuous response variable Y and a set of discrete and/or con-
tinuous feature variables X1, . . . , Xn. Thus, in order to predict the value for
Y from k observed features, with k ≤ n, the conditional density

f(y | x1, . . . , xn), (3)

is computed, and a numerical prediction for Y is given2 using the expected
value as follows:

ŷ = g(x1, . . . , xn) = E[Y | x1, . . . , xn] =

∫

ΩY

yf(y | x1, . . . , xn)dy, (4)

where ΩY represents the domain of Y .
Note that f(y | x1, . . . , xn) is proportional to f(y) × f(x1, . . . , xn | y),

and therefore, solving the regression problem would require a distribution
to be specified over the n variables given Y . The associated computational
cost can be very high. However, using the factorisation determined by the
network, the cost is reduced. Although the ideal would be to build a network
without restrictions on the structure, usually this is not possible due to the
limited data available. Therefore, networks with fixed and simple structures
are used.

X1 X2

Y

· · · Xn

Figure 2: Structure of a näıve Bayes model.

The extreme case is the so-called näıve Bayes (NB) structure (Friedman
et al., 1997; Duda et al., 2001). It consists of a BN with a single root node
and a set of features having only one parent (the root node). The NB model
structure is shown in Fig. 2.

2Note that in the BN framework, a prediction of Y can be obtained even when some
of the variables are not observed.
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Its name comes from the naive assumption that the features X1, . . . , Xn

are considered independent given Y . This strong independence assumption
is somehow compensated by the reduction in the number of parameters to
be estimated from data, since in this case, it holds that

f(y | x1, . . . , xn) ∝ f(y)

n
∏

i=1

f(xi | y), (5)

which means that, instead of one n-dimensional conditional distribution, n
one-dimensional conditional distributions are estimated. Despite this ex-
treme independence assumption, the results are competitive with respect to
other models.

However, if some variables are highly correlated, the error in the regres-
sion would decrease if any dependence between them could be included in
the network (i.e., links between features). There are several structures in
which each feature is permitted to have more parents beside Y , for instance,
TAN (Friedman et al., 1997), FAN (Lucas, 2002), kDB (Sahami, 1996) or
AODE (Webb et al., 2005). These models are richer but an increase of com-
plexity is assumed instead, both in the structure and the probability learning.
In this study, the scarcity of data does not allow the use of complex struc-
tures and that is why we opted for the NB structure to develop the regression
model.

In any case, regardless of the structure employed, it is necessary that the
joint distribution for Y,X1, . . . , Xn follows a model for which the computation
of the density in Equation (3) can be carried out efficiently. As we are
interested in models able to simultaneously handle discrete and continuous
variables without any restriction in the structure developed, the approach
that best meets these requirements is the MTE model.

Regarding inference, the posterior MTE distribution, f(y | x1, . . . , xn),
will be computed using the Variable Elimination algorithm (Li and D’Ambrosio,
1994; Dechter, 1996; Zhang and Poole, 1996).

For learning the model, we follow the approach of Morales et al. (2007) to
estimate the corresponding conditional distributions. Let Xi and Y be two
random variables, and consider the conditional density f(xi | y). The idea
is to split the domain of Y by using the equal frequency method with three
intervals. Then, the domain of Xi is also split using the properties of the
exponential function, which is concave, and increases over its whole domain
(see Rumı́ et al. (2006)). Accordingly, the partition consists of a series of
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intervals whose limits correspond to the points where the empirical density
changes between concavity and convexity or decrease and increase. In case
of models with more than one conditioning variable, see Moral et al. (2003)
for more details.

At this point, a 5-parameter MTE is fitted for each split of the support of
X , which means that in each split there will be 5 parameters to be estimated
from data:

f(x) = a0 + a1e
a2x + a3e

a4x, α < x < β , (6)

where α and β define the interval in which the density is estimated.
The reason to use the 5-parameter MTE lies in its ability to fit the most

common distributions accurately, while the model complexity and the num-
ber of parameters to estimate is low (Cobb et al., 2006). The estimation
procedure is based on least squares (Romero et al., 2006; Rumı́ et al., 2006).

A natural way to obtain the predicted value from the distribution is to
compute its expectation. Thus, the expected value of a random variable X
with a density defined as in Equation (6) is computed as

E[X ] =

∫ ∞

−∞

xf(x)dx =

∫ β

α

x(a0 + a1e
a2x + a3e

a4x)dx

= a0
β2 − α2

2
+

a1
a22

((a2β − 1)ea2β − (a2α− 1)ea2α) +

a3
a24

((a4β − 1)ea4β − (a4α− 1)ea4α).

If the density is defined by different intervals, the expected value would
be the sum of the expression above for each part.

2.4. Feature selection

It is well known in prediction problems (particularly in regression) that,
in general, including more variables does not necessarily increase the model
accuracy. It can happen that some variables are not informative for the
prediction task, and therefore including them in the model provides noise to
the predictor. Also, unnecessary variables increase the number of parameters
required to be determined from data. There are different approaches to the
feature selection problem:
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• The filter approach, which in its simplest formulation, consists in es-
tablishing a ranking of the variables according to some measure of rel-
evance with respect to the class variable, usually called filter measure.
Then, a threshold for the ranking is selected and those variables below
that threshold are discarded.

• The wrapper approach proceeds by constructing several models with
different sets of feature variables, and selecting the model that gives
the highest accuracy.

• The filter-wrapper approach (Ruiz et al., 2006) is a mixture of the above
two options. First of all, the variables are sorted using a filter measure
and then, using that order, they are included only if they increase the
accuracy of the current model.

The problem of selecting the features to be included in the MTE model
was addressed by Morales et al. (2007) following a filter-wrapper approach.
The accuracy of the model is measured using the root mean squared error
(rmse) (Witten and Frank, 2005) between the actual values of the response
variable, y1, . . . , yn, and those predicted by the model, ŷ1, . . . , ŷn, for the
records in a test database. In practice, this external test set is rarely available
as such. Instead, the original dataset is randomly divided into two sets, one
for learning the model, and the other for testing it. Thus, the rmse is obtained
as

rmse =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2. (7)

The mutual information between two random variables X and Y is defined
as

I(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞

fXY (x, y) log2
fXY (x, y)

fX(x)fY (y)
dxdy, (8)

where fXY is the joint density for X and Y , fX is the marginal density for
X and fY is the marginal for Y .

The mutual information has been successfully applied as a filter measure
in classification problems with continuous features (Pérez et al., 2006). For
MTEs, the computation of Equation (8) cannot be obtained in closed form.
We will therefore use the estimation procedure proposed by Morales et al.
(2007), which is based on the estimator
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Î(X, Y ) =
1

m

m
∑

i=1

(

log2 fX|Y (Xi | Yi)− log2 fX(Xi)
)

, (9)

for a sample of size m, (X1, Y1), . . . , (Xm, Ym), drawn from fXY .

2.5. The näıve Bayes model for regression

The task of estimating this model from data is simplified since the un-
derlying structure is fixed beforehand, as in Fig. 2. The detailed steps for its
construction can be found in the appendix, Algorithm 1.

This procedure includes all the available features in the model. The
version in which the features are filtered and selected is called selective. We
follow the filter-wrapper approach presented in Section 2.4. The steps for
its construction are detailed in Algorithm 2, and graphically shown with an
example in Fig. 3. The main idea is to start with a model containing the class
variable and one feature variable, which is the node with the highest mutual
information with respect to the response variable (Y and X(1)). Afterwards,
the remaining variables are included in the model in sequence, according to
their mutual information with respect to Y . In each step, if the included
variable reduces the error defined in Equation (7), it is kept. Otherwise, it
is discarded.

3. Case study

3.1. Methodology

3.1.1. Study area

The study area is located in southeastern Spain, straddling parts of
Almeŕıa and Granada provinces (Fig. 4). It covers around 500,000 ha. It has
a spatially and temporally irregular rain pattern. Spatially, rainfall ranges
from 300 mm in the South, to 700 mm in the highland area, increasing to
850 mm in wet years. This rain patterns has configured a particular cultural
landscape (Garćıa-Latorre and Sánchez-Picón, 2001).

Landscape is characterized by an altitude gradient from the sea level
to the peak of the study area (Sierra Nevada and Filabres mountains with
more than 2,000 meters a.s.l.). The lowland part of the study area, named
“Campo de Daĺıas” has an extension of more than 18,000 ha covered by
greenhouses. In contrast, the middle to high altitude agricultural landscape

12



Sorted features by Î(Xi, Y ) : X2,X3,X1,X4

rmse = 0.15

Y

X2

Add X3

rmse = 0.14

X2

Y

X3

Add X1

rmse = 0.145

X2

Y

X3 X1

Remove X1

Add X4

rmse = 0.143

X2 X3

Y

X4

Remove X4

FINAL MODEL

rmse = 0.14

X2

Y

X3

Figure 3: Example of feature selection in a NB regression model. First, features are
sorted in a decreasing order using its mutual information with respect to Y . Then, their
inclusion is checked step by step. Note that only the inclusion of X2 and X3 reduces the
error. Finally, the procedure selects two out of four variables to be part of the final model.

is a patchwork of olive and almond groves, grapevines, subsistence croplands,
and forest (conifers and oak).

The study area contains 90 municipalities, those from “Campo de Daĺıas”
area are quite densely populated with a high degree of migration. Socioe-
conomic activities are linked to primary (intensive agriculture with green-
houses) and tertiary sector, which is related to the development of intensive
agriculture (e.g. large numbers of banks and shopping centers). The munic-
ipalities in the middle to high altitudes are less populous and more prone to
depopulation through emigration; there is less primary sector activity and,
in some cases, rural tourism is more pronounced than in the lowland area.

3.1.2. Data collection

Table 1 shows the selected socioeconomic variables which are represen-
tative of the socioeconomic structure of the territory (Schmitz et al., 2005;
Aranzabal et al., 2008). Data were obtained per municipality in 2007 from
the Andalusian Statistical Institute (Andalusian Regional Government).

Using the landscape typologies described by Schmitz et al. (2005), we
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Table 1: Socioeconomic variables. National emigration/immigration refers to people who
emigrate/immigrate to/from other places in Spain, while foreign emigration/immigration
refers to emigrants/immigrants to/from other countries.

Socioeconomic variables Unit
Total population No. people
Ageinga % of people
Natural increaseb Value of Natural increase
Male indexc No. males / No. females
Primary sector No. employees
Secondary sector No. employees
Tertiary sector No. employees
Unemployed No. unemployed
National emigration

% of people
Foreign emigration
National immigration
Foreign immigration
Illiterate

% of people
Primary studies
Secondary studies
Higher studies

aAgeing is defined as the percentage of the population older than 65.
bNatural increase refers to the difference between the number of births and deaths.
cMale index is included since in the last decades in Spain, rural areas presented more

male population than female (Camarero et al., 2009).
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Figure 4: Study area.

selected three types of landscape: scrubland (dense and sparse scrubland),
agricultural Mediterranean landscape (heterogeneous traditional croplands
with olive trees and grapevine), and native forest (oak trees). Corresponding
landscape data (percentages per municipalities) were obtained from Land
Use and Land Cover shape file3 using ArcGis v.9.3.1 (ESRI, 2006).

3.1.3. Model learning

Model learning was addressed using Elvira software (Elvira-Consortium,
2002) and involves performing feature selection, which is influenced by two
issues. Firstly, as shown in Section 2.4, mutual information cannot be analyt-
ically computed, but it must be estimated from a simulated sample instead.
If this sample size is small, the selected features can vary between different
executions (Fernández et al., 2007). Secondly, the scarcity of data (only 90
instances) implies that the selected features strongly depends on the random
test selected from the original dataset. To solve both problems, Algorithm 2
was run twenty times and the variables appearing at least 75% of the time
were chosen. Accordingly, three continuous regression models were learned,
one for each landscape (Figs. 5, 6 and 7) following the methodology described
in Section 2.

In order to compare the performance of the continuous model (presented

3http://www.juntadeandalucia.es/medioambiente/site/web/rediam

15



Table 2: Intervals of socioeconomic and land use variables included in the discrete model.
* refers to those variables discretised in the hybrid model. k-means method is used to
discretise the variables.
Socioeconomic variables Intervals
Total population* [98, 9519) [9519, 47510) [ 47510, 186651]
Ageing* [ 6.76, 19.13) [ 19.13, 29.77 ) [ 29.77, 48.44 ]
Natural increase* [ -29, 46 ) [ 46, 528) [ 528, 982 ]
Male index [ 0.49, 0.72 ) [ 0.72, 0.88 ) [ 0.88, 1.04]
Tertiary sector* [ 0.0, 2095.5 ) [ 2095.5, 8041.5 ) [ 8041.5, 11819.0 ]
Unemployed* [ 2.0, 975.5 ) [ 975.5, 7936.5 ) [ 7036.5, 12645.0 ]
National emigration* [ 0.78, 5.38) [ 5.38, 9.61 ) [ 9.61, 19.35 ]
Foreign emigration [ 0.0, 0.24) [ 0.24, 1.58 ) [ 1.58, 3.87 ]
National immigration [ 0.0, 5.38 ) [ 5.38, 16.63 ) [ 16.63, 28.21 ]
Foreign immigration [ 0.0, 1.18 ) [1.18, 3.14 ) [ 3.14, 6.70 ]
Primary studies [ 4.03, 16.85 ) [ 16.85, 28.96 ) [ 28.96, 43.0 ]
Secondary studies* [ 14.87, 25.04) [ 25.04, 32.21) [ 32.21, 45.07 ]
AML [ 4.45, 23.39 ) [ 23.39, 44.49 ) [44.49, 80.93 ]
Scrubland [ 0.0, 5.20 ) [ 5.20, 15.94 ) [ 15.94, 29.75 ]
Native forest [ 0.0, 18.11 ) [ 18.11, 36.71 ) [ 36.71, 67.35 ]

above), against other alternatives, a hybrid and a discrete model were learned
using Algorithm 1 with the same set of variables selected for the continuous
case. In this way, the comparison is more reliable as the model structure
remains fixed, and it makes more sense from an environmental point of view.
In the hybrid approach, half of the variables were discretised (see Table 2).
Note that, as explained in Section 2.2 the CG model cannot be applied in this
situation, since there are some discrete feature variables with a continuous
parent (the response variable). Several discretisation methods (equal fre-
quency, equal width and k-means) were tested to obtaining the hybrid and
the fully discrete model (including the response variable). Finally, the k-
means algorithm with three intervals was used as it reported the best results
in terms of rmse.

It should be remembered that a fully discrete model is mainly oriented
towards classification and not to regression. Consequently, in order to com-
pare this model with the hybrid and continuous cases, the rmse specified in
Equation (7) needs to be re-computed for the discrete version as:
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rmse =

√

√

√

√

1

n

n
∑

i=1

(yi − ca(ĉi))2 , (10)

where ca(ĉi) is the class average for the predicted category after propagating
the records in the discrete case, and yi is the actual continuous value for
the response variable. Note that, once the data are discretised, the original
continuous values are still necessary to compute this version of the rmse.

Direct (+) and inverse (-) relationships between each feature and the
response variable were analysed. Two variables, X and Y , are considered to
have a direct relationship if an increase (or decrease) in the value ofX implies
an increase (or decrease) in the expected value of the posterior distribution
of Y . In contrast, an inverse relationship means that when the value of X
increases (or decreases), the expected value of Y decreases (or increases). In
order to check the sign of the relationships, for each feature, 10 equidistant
values from its domain (including the minimum and maximum) were used
as evidences for carrying out different propagations on the model. Thus,
10 expected values (means) of each posterior distribution for the response
variable gave us information about the type of relationship (+ or -).

3.1.4. Validation of the model

The model was tested using k-fold cross-validation (Stone, 1974). It is a
widely used technique in Artificial Intelligence to validate models. The aim
is to check how predictive a model is when confronted with data that have
not been previously used for learning the model. It is based on the holdout
method in which the data set is separated into two complementary sets, one
for learning (Dl) and another for testing (Dt). In this way, we can estimate
the error of a model built from Dl according to set Dt, using the formula in
Equation (7).

To reduce variability, the data set is initially divided into k subsets, and
the holdout method is repeated k times. Each time, one of the k subsets is
used as Dt and the other k−1 subsets are put together to form Dl. Then the
average error across all k trials is computed. For the case study presented in
this paper, we set the value of k to 10.

Finally, the validation was conducted by comparing our BN-based pro-
posals (continuous, hybrid, and discrete models), with a MLR implemented
in R software (R Development Core Team, 2012), since it is the most common
regression solution used in environmental sciences.
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The MLR model can also be applied in the presence of categorical vari-
ables, usually by transforming them into dummy variables. In particular,
each categorical variable with k states has to be converted into k − 1 binary
variables, one for each category of the variable. However, the interpretation
of the regression coefficients for the categorical variables is different from
the continuous ones. Another disadvantage of this hybrid MLR approach is
that the manual construction of dummy variables can be laborious and even
error prone, especially in the case of many categories. On the other hand,
Bayesian networks naturally include categorical and continuous variables in
the same model using the MTE distributions without the need of creating
new variables.

Hence, the idea is just to overview that the BN-based solution is coherent,
and not to provide an exhaustive comparison of the two approaches.

3.1.5. Scenarios of socioeconomic change

Two scenarios of socioeconomic change were proposed (Table 3). The
first scenario shows a positive socioeconomic development which involves an
increase in the variables related to population, migration movement, study
level (mainly in secondary and higher studies), and primary and tertiary eco-
nomic sector. The second scenario shows a negative socioeconomic change.
It involves a decrease in study level and primary and tertiary sector while an
increase in emigration rates and unemployment.

Both scenarios represent general tendencies in the socioeconomic struc-
ture. As each regression model has a different subgroup of socioeconomic
variables selected during the pre-processing step, the evidence is only intro-
duced in those variables included in the corresponding model.

3.2. Model validation results

Table 4 shows the results in terms of the rmse (see Equations (7) and (10))
when comparing the four approaches for the three variables of interest. As
expected, the errors for the proposed continuous method are smaller than
the other approaches. It is well-known that discretising data implies loss
of information as demonstrated in the errors obtained for the hybrid and
discrete approaches. Finally, MLR obtains a significantly larger error than
the BN-based approaches.

In any case, the goal of this paper is not only to compare the models above,
but to present different ways to solve a regression problem in environmental
modelling that carry fewer limitations, and which depend on the nature of the
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Table 3: Scenarios of socioeconomic change. Minimum and maximum values refer to
the minimum and maximum value found in the data set. Percentage changes are taken
from Schmitz et al. (2005) and Aranzabal et al. (2008).

Scenario Variables involved % Change

Positive socioeconomic change

Foreign immigration Maximum value
National emigration +50%
Tertiary sector +60%
Primary sector +80%
Higher studies +15%
Secondary studies +30%
Natural increase +70%
Ageing Minimum value

Negative socioeconomic change

National emigration Maximum value
Higher studies -70%
Natural increase Minimum value
Primary sector -20%
Tertiary sector -80%
Total population -50%
Ageing +80%
Secondary studies -40%
Unemployment Maximum value
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Table 4: Root mean squared error for the four BN-based regression models and the MLR.
10 fold-cross-validation is used to reduce variability.

Model Native forest AML Scrubland
Continuous BN 6.47 14.73 18.60
Hybrid BN 6.74 14.89 19.13
Discrete BN 6.98 16.07 26.72
MLR 8.81 19.92 29.47

available data (continuous, hybrid and discrete). For a detailed comparison
of BN-based regression models, see Morales et al. (2007).

3.3. Scenario results

The previous section suggests the continuous approach to be the most
appropriate one for modelling this problem as it has the lowest rmse. For
this reason, only results from the continuous models are presented here.

Results are presented according to three different settings: a priori and a
posteriori (two scenarios). The a priori information is obtained purely from
the probability distributions learned from data, i.e., the current data descrip-
tion. On the other hand, information a posteriori is computed by carrying
out inference considering the proposed scenarios as evidence introduced into
the model.

Figs. 5, 6, 7 show the qualitative part of the BNs developed and the direct
and inverse relationships with the selected socioeconomic variables.

Fig. 8 shows the probability distributions a priori without introducing
any scenario (black line), and the posterior probability distributions (blue and
red line) of the variables after introducing the two socioeconomic scenarios
according to Table 3.

Table 5 shows some statistics for each variable in the three different set-
tings specified above.

3.3.1. Agricultural Mediterranean Landscape (AML)

A priori, AML (Fig. 5) is related to a socioeconomic structure charac-
terized by a sparse total population with a low male index, but a positive
natural increase. Educative level is medium with a high unemployment rate.
National immigration is low. Variable Foreign immigration has a peculiar
behaviour, since its middle and low values are related to agriculture work-
force (mainly coming from northern Africa), and have a direct relationship
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with AML. On the other hand, its high values are more related to retired
population coming mostly from northern Europe, who have a second home
in the area, and this has a inverse relationship with AML.

A negative scenario means a decrease in total population, natural increase
and study level variables (as specified in Table 3). It entails a rural abandon-
ment in which elder and non-qualified population, dedicated to traditional
agricultural activities, stay in the area. Therefore, it involves an increase in
the mean of the posterior probability distribution of AML (Table 5).

On the other hand, a positive scenario supposes larger values in natural
increase, foreign immigration and study level (as specified in Table 3). Thus,
the interests in other economic sectors, like in the tertiary sector, is increased.
It involves a decrease in the mean of the posterior probability distribution of
AML.

AML

Natural increase

National inmigration

Foreign immigration

Unemployment

Secondary studies

Total Population
Male index

Foreign emigration+
-

+-

-

+

++

-

Figure 5: Regression model for variable Agricultural Mediterranean Landscape (AML) af-
ter the feature selection using Algorithm 2. Direct and inverse relationships between each
feature and the variable AML are labelled with “+” and “-”, respectively, on the corre-
sponding arc. Foreign immigration is labelled with “+-” as it has a peculiar behaviour,
low and middle values in its domain present a direct relationship with AML, however high
values have a inverse relationship.

3.3.2. Scrubland

A priori, Scrubland (Fig. 6) is related to a socioeconomic structure char-
acterized by an ageing population with low study levels. Unemployment
is considerable and national emigration prevails over international. In this
context, tertiary sector is the main economic activity.

A negative scenario means an increase in ageing, national emigration
and unemployment; and a decrease in secondary studies and tertiary sector
(Table 3). It causes rural abandonment and entails an increase in the mean
of the posterior probability distribution of Scrubland.
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On the other hand, a positive scenario entails a decrease in variable
Ageing to its minimum and an increase in secondary studies, national emi-
gration and tertiary sector (as specified in Table 3). Population growth and
a increase in secondary study levels cause a higher interest in other economic
activities replacing scrubland with other land uses. It, therefore, involves a
decrease in the mean of the posterior probability distribution of Scrubland.

Scrubland

Ageing

National emigrationForeign emigration

Unemployed Tertiary sector Primary studies

Secondary studies++
+ + -

-+

Figure 6: Regression model for variable Scrubland after the feature selection using Algo-
rithm 2. Labels “+” and “-” have the same meaning as in Fig. 5.

3.3.3. Native forest

A priori, Native forest (with oak trees) (Fig. 7) is related to a socioeco-
nomic structure characterized by low population with primary studies, but
a positive value in natural increase variable. Moreover, the tertiary sector is
well-developed and there is a national migration (immigration and emigra-
tion).

A negative scenario entails a decrease in the value of natural increase
variable, total population and tertiary sector (rural tourism), whilst there
is an increase in national emigration. Rural abandonment and low tourism
levels entail less interest in maintaining native forest. It involves a slight
decrease in the mean of the posterior probability distribution of Native forest.

On the other hand, a positive scenario means an increase in the tertiary
sector, national emigration and natural increase variables. Population growth
and greater touristic activities lead to an improvement in infrastructure not
only for tourism, but also for residents. It entails the replacement of native
forest with land uses related to those improvements. It involves a decrease
in the mean of the posterior probability distribution of Native forest.
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Native forest

Natural increase

National immigration

National emigration Total population

Tertiary sector

Primary studies

+
+

+ -
+

-

Figure 7: Regression model for variable Native forest after the feature selection using
Algorithm 2. Labels “+” and “-” have the same meaning as in Fig. 5.

Table 5: Mean and standard deviation values a priori and in each scenario of socioeconomic
changes. AML refers to Agricultural Mediterranean Landscape.

A priori Negative Scenario Positive Scenario
Mean Sd Mean Sd Mean Sd

AML 21.50 15.16 29.65 16.18 15.62 5.17
Native forest 7.66 6.71 6.32 5.79 3.81 3.48
Scrubland 39.62 18.73 49.98 16.22 26.96 18.52

3.3.4. Discussion of the results

A positive scenario is defined as a development in the socioeconomic struc-
ture involving the decrease in AML, Scrubland and Native forest. Despite
the population growth, traditional agricultural landscape is reduced, but it
does not cause an increase in Scrubland. Moreover, the interest in native
vegetation decreases causing a fall in Native forest. This new scenario can
promote the development of new landscape typologies (Schmitz et al., 2005).

On the other hand, a negative scenario describes a similar situation to
a rural abandonment. In such conditions, both AML and Scrubland tend
to increase, while Native forest undergoes a slight reduction. Agricultural
Mediterranean landscape, as a heterogeneous landscape, only in rural ar-
eas is kept, where elderly people cultivate small patches of traditional crop-
lands (Schmitz et al., 2003). A lower level of education and fewer job opportu-
nities mean a restriction in the number of economic activities, so that several
patches are abandoned promoting the increase of Scrubland (Camarero et al.,
2009). In that situation, traditional activities related to the maintenance of
native forest are somehow forgotten, so the surface area of native forest is
slightly reduced (Jiménez-Herrero et al., 2011).
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Figure 8: Probability distributions of the landscape variables in each continuous regression
model. Three density functions are displayed: a priori (without introducing any scenario
to the model), and a posteriori (introducing both positive and negative scenarios according
to Table 3). Note that density functions are defined as a piecewise function using MTEs
(for more information, see Example 1). By comparing the probability mass of the three
densities, the impact of introducing different scenarios can be analysed.
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4. Conclusions

This work presents MTE-based hybrid BNs as a tool for solving regres-
sion problems in environmental sciences, using the modelling of landscape
- socioeconomy relationship in southern Spain as our study case. Three
landscape tendency changes are studied under two socioeconomic scenarios.
Advantages of a BN-based regression with respect to other solutions are pre-
sented below.

The proposed BN is able to deal with different types of data, totally
continuous, totally discrete, and hybrid, in which continuous and discrete
variables are both allowed in the model. One of the most common pre-
processing tasks in data mining is discretisation, which involves loss of in-
formation, and therefore returns less accurate results (see Table 4). Thus,
discretisation should be avoided when solving a regression problem. In the
case of the available data being fully discrete (including the response vari-
able), even if the problem could be solved with the methodology proposed,
it is more appropriate to address it using classification models, which are
specially proposed to handle this type of data.

A further advantage of using BN for regression is that a probability dis-
tribution obtained, and therefore any statistics of interest can be computed.
In this way the information about uncertainty is richer as shown in Fig. 8.

Not all features must be instantiated to obtain a prediction, i.e., in-
formation about the response variable can be obtained even if only partial
information about the features is available. In the case study, the proposed
scenarios of social change do not include all the features as we see in Sec-
tion 3.1.5. It allows scenarios of change to be designed and the behaviour
of the response variable to be checked. Also, probabilistic information can
be extracted from other non-evidenced variables. This cannot be done with
other regression solutions.

Validation in Section 3.1.4 reports better results in terms of error for the
BN-based solutions vs. MLR, obtaining the continuous model the lowest
error. As shown in Section 2.2, MTEs split the probability densities into
pieces to better fit the real density determined from data, whilst other stan-
dard solutions use only one function (see for instance Morales et al. (2007);
Fernández and Salmerón (2008); Fernández et al. (2010)). However, the
number of parameters to be determined from data is high for MTEs. Thus,
although more complexity in learning and inference is assumed, the results
in terms of error are better. If data are limited, a BN solution might be poor
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and other solutions could be more appropriate.
The versatility of BNs allows information from different sources to be

included in the model, including expert knowledge. It is important to refine
the model during the learning stage, for instance, when some data are missing
or not at all representative.

For these reasons, MTE-based BNs are considered a novel approach to
solve regression in environmental problems, in which continuous and discrete
variables can be treated in the same model simultaneously without any re-
striction nor data preprocessing.

There are some issues that could be considered for future work. Data
instances in real problems, and especially in environmental sciences, usually
have certain implicit dependence among them. In this field, this is more
common since data are collected from nearby areas that may be ecologically
related. Although BNs learning requires independent data, they are mostly
being applied to cases in which this restriction is not totally satisfied. In
the current study, the fact that data are collected per municipality in a
heterogeneous area alleviates this problem. However, it should be further
investigated.

Another consideration is how the relationship between the three land-
scapes might somehow be modelled. This issue lends itself to the application
of BNs-based multi-regression techniques where multiple predictions can be
assigned to each data instance at the same time.
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