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Abstract

Socio-ecological systems can be represented as a complex network of
causal interactions. Modelling such systems requires methodologies that
are able to take uncertainty into account. Due to their probabilistic na-
ture, Bayesian networks are a powerful tool for representing complex systems
where interactions between variables are subject to uncertainty. In this pa-
per, we study the interactions between social and natural subsystems (land
use and water flow components) using hybrid Bayesian networks based on the
Mixture of Truncated Exponentials model. This study aims to provide a new
methodology to model systemic change in a socio-ecological context. Two
endogenous changes - agricultural intensification and the maintenance of tra-
ditional cropland - are proposed. Intensification of the agricultural practices
leads to a rise in the rate of immigration to the area, as well as to greater
water losses through evaporation. By contrast, maintenance of traditional
cropland hardly changes the social structure, while increasing evapotran-
spiration rates and improving the control over runoff water. These results
indicate that hybrid Bayesian networks are an excellent tool for modelling
social-natural interactions.
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1. Introduction

Nature and society are clearly related and so any delimitation between
natural and social systems is artificial and arbitrary (Berkes and Folke, 1998).
Instead, they should be considered as a complex system of interactions op-
erating on different scales; this is referred to as a Socio-Ecological System
(SES) (Anderies et al., 2004; Cadenasso et al., 2006; Folke, 2006). In the
context of SES, a systemic change can be defined as a fundamental change
in the interactions within a system, arising either from an external hazard
event or from gradual endogenous change, which leads to a shift in the state
of the system to another with new properties (Kinzig et al., 2006; Filatova
and Polhill, 2012).

Graphically the SES can be represented as a network of nodes (social and
natural components), with a number of links between them. When a hazard
event occurs or a component undergoes gradual change, the change can be
propagated through the entire system by means of cause-effect interactions
between the components of the SES. These types of interactions are subject to
the uncertainty inherent in the system (Clark, 2002; Refsgaard et al., 2007).
This uncertainty can be modelled using probability theory (Ricci et al., 2003;
Walker et al., 2003; Refsgaard et al., 2007; Warmink et al., 2010).

Bayesian networks (BNs) are considered one of the most powerful tools for
representing complex systems of causal interactions between variables that
are subject to uncertainty (Borsuk et al., 2004; Jensen and Nielsen, 2007;
Pourret et al., 2008; Korb and Nicholson, 2011; Carmona et al., 2013; Kelly
et al., 2013; Landuyt et al., 2013; Nash et al., 2013). Their graphical structure
allows stakeholders to understand the relationships easily. In addition, they
provide stakeholders with a participatory framework because the learned
model can be refined manually by adding or removing arcs (or even variables)
from the graph to better represent reality (Voinov and Bousquet, 2010).

BNs models have already been successfully applied in environmental mod-
elling (Aguilera et al., 2011; Kelly et al., 2013; Landuyt et al., 2013; Dyer
et al., 2014). Whereas BNs usually estimate models using discrete domains,
most environmental and social variables are continuous. A common solution
is to discretise continuous variables, but this involves some loss of statistical
information (Uusitalo, 2007). Estimation of a model directly from the orig-
inal discrete and continuous (hybrid) data returns a more accurate model.
In turn, this model is able to report more specific answers to the proposed
scenarios. The main problem when dealing with hybrid BNs is that, initially,
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there is no common structure to represent the distribution of the variables.
The Mixtures of Truncated Exponentials (MTE) model (Moral et al., 2001)
provides us with a common structure to represent both the discrete and con-
tinuous variables simultaneously, in such a way that all the computations
needed to perform probability propagation in the model can be done using
the same structure (Moral et al., 2001). The versatility of BNs allows any
statistic of interest to be calculated from the variables, including the proba-
bility of extreme values.

Two of the main challenges in SES research (Filatova and Polhill, 2012)
are: (i) to accommodate the study of systemic change while taking uncer-
tainty into account (Clark, 2002), and (ii) to represent the new state of
the system after systemic change has been propagated (Filatova and Pol-
hill, 2012). Since BNs are modelled by means of probability distributions,
risk and uncertainty can be estimated more accurately than by using models
which only consider mean values (Uusitalo, 2007). They allow a system to
be represented both in its current state (a priori), and a posteriori, once
the change has been propagated through the system, using the probability
distribution functions of the variables. Their main purpose is to provide a
framework for efficient reasoning about the system they represent, in terms
of updating information about unobserved variables, when new information
(changes to a single or several observed variables) is incorporated to the sys-
tem. This is known as probability propagation or probabilistic inference.
However, not every change included into a component of the system (one or
more variables) will lead to systemic change because some components may
be conditionally independent. This property is expressed in the graph by
means of the d-separation concept (see Section 2 for a more detailed expla-
nation).

1.1. Outline of the paper

Global socio-economic changes affect regional and local socio-economic
structures (Lambin et al., 2001; Foley et al., 2005) and lead to changes in
land uses in the landscape (Schmitz et al., 2005; Caillault et al., 2013) and in
the structure and functionality of natural ecosystems (Matson et al., 1997;
Foley et al., 2005; Rudel et al., 2009). One of the main effects of these
changes relates to the behaviour of water flows (Scanlon et al., 2005; Maes
et al., 2009; Toda et al., 2010; Park et al., 2014). The concepts of green and
blue water flows were defined to introduce the whole water cycle into water
management plans (Falkenmark, 1997; Rockstroem, 2000). Blue water is the
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amount of rainfall that exceeds the soil’s storage capacity and feeds rivers,
lakes and aquifers. Green water refers to the rainfall that infiltrates into the
root zone of the soil to support the primary productivity of natural and agri-
cultural systems through evapotranspiration (Falkenmark, 1997; Falkenmark
and Folke, 2002). Green and blue water flow through natural subsystems
across the landscape, participating in several ecological processes; as a re-
sult, there is a clear interaction between land use and green and blue water
flows (Willaarts et al., 2012). The characteristics of soil and the type and
cover of vegetation determine the amount of water that evaporates back to
the atmosphere, infiltrates into the soil or flows away as runoff (Falkenmark,
2003; Willaarts et al., 2012). For example, tropical forest and Mediterranean
pasture have high green water flows, whilst urban land and irrigated herba-
ceous croplands have high blue water flows (Rockstroem and Gordon, 2001;
Willaarts, 2009).

In this paper, we study a Spanish catchment as a SES. Three variables
were selected to represent the socioeconomic subsystem while land use and
green and blue water flows were selected to represent the natural subsystem.

The aim of the study is to demonstrate the ability of hybrid BNs to model
systemic change. We develop a new methodology, which considers the tails
of the probability distribution functions to identify systemic change, and
we carry out statistical tests to differentiate between different states of the
system. By this means, we provide the expert with a set of tools to help
assess systemic change.

2. Methodology

2.1. Study area

The study area comprises the catchment of the river Adra in south-eastern
Spain (Figure 2). It is bounded to the north by the Sierra Nevada, to the
south by the Mediterranean Sea, to the aast by the Sierra de Gádor, and to
the west by the Sierra Filabres. It occupies 74.400 Ha, and supports an esti-
mated population of 124.000 people distributed over fourteen municipalities.

The landscape of the Sierra Nevada mountain range is characterized by
dense woodland, mainly oaks and conifers species with Mediterranean scrub-
land. In the upper reaches, the original Mediterranean forest with oaks re-
mains, whilst the scrubland is the result of several episodes of deforestation
(Garćıa-Latorre and Sánchez-Picón, 2001). The socioeconomy is character-
ized by several small municipalities accommodating and ageing population
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Figure 1: Outline of the methodology divided into four different steps: i) data collection
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with a high rate of migration. In the foothills of Sierra Nevada, mixed and
irrigated crops replace woodland and the social structure indicates a slightly
younger population, though still with a high migration rates.

In the east of the area, in the Sierra de Gádor foothills, land uses com-
prise traditional croplands including olive and almond groves with patches of
woodland and scrub, creating a complex and heterogeneous landscape. The
socioeconomy is characterised by depopulation and an older population.

In the middle and west of the study area, the landscape is composed by
scrubs and some patches of woodland whose configuration was determined by
historical trends in the 19th century (mining and the deforestation of natural
forest) (Garćıa-Latorre and Sánchez-Picón, 2001).

In the lower reaches, the land uses are intensive agriculture with green-
houses and irrigated crops, mixed with scrubland. Immigration rate is sig-
nificant given the incoming of a new workforce to the greenhouses.

2.2. Data collection

Taking into account socio-economic characteristics of the study area (CCA,
2007; Camarero et al., 2009), three representative variables (ageing, emi-
gration and immigration rates) were selected. Data on these variables were
obtained for each municipality from the Andalusian Statistical Institute (Fig-
ure 1 i)). The ageing component was summarised by calculating the percent-
age of people older than 65 years old, while emigration and immigration rates
were calculated as percentages of the total population.

The BalanceMEd model (Willaarts, 2009; Willaarts et al., 2012) was ap-
plied to calculate the water flows described above (Figure 1 i)). This is a
semi-deterministic model developed to quantify hydrological functioning in
Mediterranean catchments using long time series of monthly rainfall and po-
tential evapotranspiration data. The model assumes that a fraction from the
total precipitation is intercepted by vegetation or soil and evaporates directly
as a Non Productive Green Water (NPGW). Another fraction from the total
precipitation can be intercepted on impermeable surfaces and is returned to
the atmosphere as Consumptive Blue Water (CBW). The remaining precipi-
tation reaches the soil and is taken up by plants and transpired, this portion
is termed Productive Green Water flow (PGW). When the infiltrated water
exceeds the soil storage capacity, it can either percolate or drain as Runoff
Blue Water (RBW). In the specific case of greenhouse crops, we consider
that the concept of PGW is not applicable since the crops are irrigated from
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Figure 2: Study area. a) altitude, and b) land uses.
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Table 1: Summary statistics of the continuous variables in the data set. PGW, Productive
Green Water; NPGW, Non Productive Green Water; CBW, Consumptive Blue Water;
RBW, Runoff Blue Water; SD, standard deviation.

Variable Minimum Maximum Mean SD
Ageing 11.84 32.00 23.14 6.12

Emigration rates 1.47 3.59 2.62 0.57
Immigration rates 0 4.27 2.03 1.23

PGW 0 459.90 216.40 77.60
NPGW 0 346.70 62.10 55.91
CBW 0 765.5 58.48 176.51
RBW 0 1032 257.10 129.97

groundwater flows rather than from direct precipitation. Moreover, evap-
orative flows are difficult to evaluate under a greenhouses cover. For that
reason, in this specific case, we focus on CBW when considering greenhouse
crops as the land use.

Nine land uses representative of the study area landscape were selected
(Table 2). These data were obtained from the Land Use and Land Cover
shape file from Andalusian Regional Government using ArcGis v.9.3.1 (ESRI,
2006) (Figure 1 i)). They are expressed as a discrete variable which represents
the presence of each land uses as a percentage.
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Table 2: Land uses selected and percentage of each one in the data set.

Land use Description % data
Mixed crops Mixture of crops (irrigated and rainfall-fed) 14.69

with patches of natural vegetation
Greenhouses Intensive greenhouse crops under plastic cover 6.71
Irrigated crops Herbaceous and woody crops with 2.08

permanent irrigation infrastructure
Rain-fed crops Herbaceous and woody crops fed by rainfall 10.93
Traditional Mixture of patchwork of olive, almond groves, 3.57

crops grapevines, subsistence croplands, and forest
(conifers and oak)

Scrub Land devoid of trees and with more than 20% 40.00
of scrub

Dense scrub Land with a tree cover of between 5 and 50%, 7.15
woodland and more than 50% of scrub

Disperse scrub Land with a treecover of between 5 and 50%, 5.73
woodland with 20 to 50% of scrub
Dense Forest land with more than 50% of tree cover 9.14

woodland (conifers and oak)
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(a) Qualitative component.

P (X1 = 0) = 0.4
P (X2 = 0 | X1 = 0) = 0.7
P (X2 = 0 | X1 = 1) = 0.5
P (X3 = 0 | X1 = 0) = 0.6
P (X3 = 0 | X1 = 1) = 0.3
P (X4 = 0 | X2 = 0, X3 = 0) = 0.8
P (X4 = 0 | X2 = 1, X3 = 0) = 0.4
P (X4 = 0 | X2 = 0, X3 = 1) = 0.7
P (X4 = 0 | X2 = 1, X3 = 1) = 0.8
P (X5 = 0 | X3 = 0) = 0.4
P (X5 = 0 | X3 = 1) = 0.1

(b) Quantitative component.

Figure 3: An example of a discrete Bayesian network with five binary variables (X1, X2,
X3, X4 and X5). Note that P (Xi = 1 | . . .) is not specified as it can directly be computed
as 1− P (Xi = 0 | . . .). Although the arrow has a specific direction, it actually represents
a two-way relationship between the variables.

Table 1 shows the main statistics of the continuous socioeconomic and
water flow variables in the data set. The land use variable is discrete and the
description of each category and its percentage in the data set are shown in
Table 2.

2.3. Model description

A BN is a statistical multivariate model for a set of variables X =
(X1, . . . , Xn), which is defined in terms of two parts (Jensen and Nielsen,
2007)1:

1. Qualitative part: A directed acyclic graph (Fig. 3(a)) where each vertex
represents a variable in the model and each edge, linking two variables,
represents the statistical dependence between them. The graph repre-
sents the general structure of the model and allows the most relevant or
irrelevant variables in the model to be identified without any numerical
calculations. Moreover, it is helpful in enabling fluid communication
between expert and non-expert (McDowell et al., 2009).

2. Quantitative part: A conditional probability distribution p(xi|pa(xi))
for each variable (Xi) given its parents (pa(Xi)) in the graph. It indi-
cates how strong the relationship between the variables shown in the

1Capital letters e.g. Xi represent random variables, whilst lower case letter, e.g. xi

represent values of the corresponding variables
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Figure 4: Example of two variables X and Z d-separated by Y

graph is and models the joint probability distribution of the variables
according to the following decomposition:

p(x1, x2, . . . , xn) =

n∏

i=1

p(xi|pa(xi)) (1)

The existence of conditional independencies in the graph, together with
the above mentioned decomposition, allows the BNs to perform local compu-
tations, which means that they can deal with complex models (Getoor et al.,
2004; Luo et al., 2005).

The ability of BNs to represent the independencies in the graph in a
natural way makes them a highly appropriate tool to study systemic change.
One of the main features of systemic change is that every change introduced
into the system affects all the components (set of variables) involved in the
system, rather than just some of them. This feature is difficult to model using
more classical statistical tools; in contrast, the type of connections in the BN
graph implicitly encodes this kind of situations. Not all inputs to the model
would lead to a systemic change. Using the d-separation concept (Pearl,
1988) it is possible to select the variables that connect different parts of the
graph, allowing the systemic change to propagate all through the network.

Figure 4 shows a simple example of the d-separation concept. In this
situation, variables X and Z are d-separated by Y i.e., X and Z are inde-
pendent, if we do not know the exact value of Y , so an input in the model
only for variable X will not affect variable Z (and viceversa) and so that
input will not promote a systemic change. Fig 4 represents a very simple
BN but the concept of d-separation is the same for larger BNs: given several
parents for X and Z and children for Y forming different components, then
as long as Y and its descendant are unknown, X and Z are independent, i.e.,
any change in X or its parents is not propagated to Y or its parents (For
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more information see Pearl (1988) and Jensen and Nielsen (2007) Section
2.2.)

In the presence of continuous and discrete variables it is necessary a spe-
cific model able to deal simultaneously with these variables. Several ap-
proaches have been devised to deal with this problem. The Conditional
Gaussian model (Lauritzen, 1992) was the first model developed, but it puts
some restrictions on the network: (i) the joint distribution of the continuous
variables has to follow a multivariate Gaussian, (ii) a discrete variable can
not have a continuous parents. An alternative is the MTE model, which does
not impose any restriction on the network. In the MTE model, the density
functions for the continuous variables are expressed as piecewise functions
with linear combination of exponentials in each piece. They were initially
defined by Moral et al. (2001), and they are capable of dealing with different
probability distributions due to their great fitting power (Cobb et al., 2006).
For estimating the parameters of the model, we followed the approach of
Moral et al. (2003) and Rumı́ et al. (2006), which is based on an iterative
least squares algorithm. For more detailed explanations of this topic we refer
the reader to Cobb et al. (2007); Langseth et al. (2009).

BN models based on the methodology proposed here have already been
successfully applied in environmental modelling (Aguilera et al., 2010, 2013),
as well as in other fields (Fernández et al., 2007; Cobb et al., 2013).

In this way, hybrid BNs have been shown to provide an excellent tool
for studying interactions between social and natural subsystems from an
uncertainty perspective (Ropero et al., 2014).

2.4. Model learning, evidence propagation and analysis of results

In the model learning stage, the structure of the model is defined tak-
ing into account the theoretical background developed in Section 1.1 (Fig-
ure 1 ii)). Natural and social subsystems are connected through causal inter-
actions, and land use is clearly influenced by the social subsystem (Lambin
et al., 2001; Foley et al., 2005; Schmitz et al., 2005; Rudel et al., 2009; Ropero
et al., 2014). Furthermore, the relationship between water flows and land-
scape are widely described in the literature (Scanlon et al., 2005; Maes et al.,
2009; Toda et al., 2010). Figure 5 shows the qualitative part of the model.
Estimation of the parameters of the model was carried out according to
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Figure 5: Qualitative part of Hybrid BN. By their nature every variable except one (land
use) were continuous. Emig, emigration rates; Immig, immigration rates; PGW, produc-
tive green water; NPGW, non productive green water; CBW, consumptive blue water;
RBW, runoff blue water.

Section 2.3 using the Elvira2 software (Elvira-Consortium, 2002), which im-
plements the algorithms to estimate the probability distributions and carries
out the inference process.

After the model is learned, the next step is evidence propagation or infer-
ence (Figure 1 iii)).There are several methods that can be applied to obtain
the results either exactly or approximately; in the case of complex models
which cannot be solved in an exact way. In our case, we selected the Shenoy-
Shafer algorithm (Shenoy and Shafer, 1990) which is able to deal with hybrid
model and is specifically adapted to the MTE model (Rumı́ and Salmerón,
2007).

The evidence (new information) represents the change in one component
of the SES which is propagated through the system, causing the systemic
change (Figure 1 iii)). It was introduced into the land use component in
order to simultaneously determining the influence on the social subsystem
and the water flow component. The current state of the system, “a priori”,
reflects the probability in the case where no new information is added to the
system. The evidence is introduced as the presence of one of the states of the
land use variable. We selected two different endogenous changes: presence
of traditional cropland and presence of greenhouses, which address both the
land use trends that are observed in the study area.

Once the change is introduced into the model as evidence, we can take
advantage of the versatility of BNs to obtain detailed results. The change

2This is a free software based on JAVA. It can be found in http://leo.ugr.es/elvira
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alters the interactions in the model, leading to changes in the distribution
of each variable. The distribution of the variables is then used to display
the final result of the inference. The mathematical relationships that govern
the interactions are expressed in a BN by means of conditional probability
distributions, which are difficult to interpret. In contrast, the behaviour of
the variables, both a priori and a posteriori is expressed through univariate
probability distributions, which are much easier to interpret, especially for
environmental systems.

For this reason, changes are commonly quantified in terms of the mean
value of the variable. Sometimes, however, the mean value is not the most
appropriate statistic to represent a probability distribution because it does
not allow the overall behaviour of the variable to be tracked.

For a more comprehensive study of the results, we measured how the
proposed changes are propagated to the water flow component and to the
social subsystem, looking at the tail values of the probability distribution
of each water flow and social variable as the means to defining the extent
of the difference between the a priori and a posteriori distributions. In
any probability distribution, the tails are highly relevant because they show
the probability of the extreme values of the variable - in this case, the very
high or very low water flows, and the very high or very low emigration and
immigration rates and ageing. We first defined the threshold values of the
tails since there are no references in the literature to identify what constitutes
an extreme value. For this purpose, a k-means clustering (Anderberg, 1973;
Jain et al., 1999) with 3 clusters was performed dividing the original data in
three groups, according to their similarity. The first group was considered as
the left tail, the second group as the centre of the distribution, and the third
group as the right tail. Accordingly, the upper and lower thresholds were
determined as the points that separated the first and the third cluster from
the second. Once the thresholds were obtained, we computed the cumulative
probability of both the left (lower) and right (upper) tails of all the water
flow and social variables. As an example, Figure 6 shows the computation of
these cumulative probabilities and the degree of change for a variable X in the
a priori and a posteriori scenarios. Using the k-means clustering method,
the left tail threshold was determined as X < 37, and the right tail threshold
was determined as X > 59. Then the cumulative probability of the tails were
computed, and we can see for example that P (X > 59) = 0.34 a priori, but
it decreases to 0.13 a posteriori.

As pointed out in Aguilera et al. (2011), validation methods in BNs de-

14



pend on the aim of the model. When the aim is inference, as in this pa-
per, appropriate validation methods are experts opinions or comparison with
models that try to solve the same problem. In this case, there are no other
models relating socioeconomic-land use and green and blue water flows in
a SES framework. Therefore, validation by experts is considered to be the
appropriate model. However, as a way of validating the conclusions drawn
from the results obtained, we performed several goodness-of-fit tests. To
determine whether there were significant differences between the variables a
priori and a posteriori (that is, between the different states of the system)
we simulated a sample of size 1000 from each of the a priori and a pos-
teriori probability distribution functions. Then we carried out a two-sided
Kolmogorov-Smirnov test at a 0.05 level of significance. If significant differ-
ences are found between the system state a priori and a posteriori in both
social and natural subsystems, the change introduced in the model can be
considered as a systemic change (Figure 1 iv)).

3. Results

Table 3 shows the mean and standard deviation values of the variables
both in the current situation (a priori), and after the two land use changes
are simulated (a posteriori). The tails of the distributions were also analyzed
(the procedure is detailed in Section 2.4) as a part of the interpretation of
the results. Table 4 shows the probability in the tails and Table 5 shows
the p-values of the two-sided Kolmogorov-Smirnov tests. Figures 7, 8, and 9
show the probability distributions of social and water flow variables in the
current situation, and under both land use change scenarios (a posteriori).

3.1. A priori

A priori shows the current situation without any change introduced in the
system. The ageing variable has a mean value of 21.65%, while emigration
and immigration rates are 2.56% and 1.87%, respectively (Table 3). Social
variables are more probable in the left tail (Table 4, Figure 7).

Likewise, the probability of green water, (both productive and non pro-
ductive), are more probable in upper values (Table 4, Figure 8), with mean
values of 223.17 mm for PWG, and 123.04 mm for NPGW (Table 3). RBW
has the same behaviour, with a mean value equal to 454.74 mm (Table 3),
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Table 3: Mean and standard deviation (SD) values of water flow and social variables
obtained from the (a priori and a posteriori) probability distribution. PGW, productive
green water; NPGW, non productive green water; CBW, consumptive blue water; RBW,
runoff blue water.

A posteriori
Variable Statistics A priori Greenhouses Traditional

Ageing (%) Mean 21.65 17.94 21.88
SD 5.82 3.53 5.85

Emigration (%) Mean 2.56 2.57 2.51
SD 0.58 0.58 0.56

Immigration (%) Mean 1.87 1.92 1.68
SD 1.16 1.16 1.30

PGW (mm) Mean 223.17 - 284.39
SD 95.19 - 76.25

NPGW (mm) Mean 123.04 173.97 151.85
SD 95.58 87.32 74.85

CBW (mm) Mean 209.32 559.09 124.48
SD 216.89 200.33 207.91

RBW (mm) Mean 454.74 537.35 260.75
SD 235.43 336.78 209.91
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Table 4: Threshold of left and right tails, and probability values in the tails of water
flow, and social variables for the current situation (a priori) and both land use changes
(a posteriori). As an example, in the ageing variable, 0.39 a priori is the probability of
having fewer than 19.08% of people older than 65 years old, while 0.17 is the probability
of having more than 28.44% of people older than 65 years old. The thresholds in social
variables are expressed as a percentage of the population; thresholds for water flows are
in mm. PGW, Productive Green Water; NPGW, Non Productive Green Water; CBW,
Consumptive Blue Water; RBW, Runoff Blue Water.

Probability
Variable Threshold A priori Greenhouses Traditional
Ageing Left tail 19.08 % 0.39 0.62 0.38

Right tail 28.44 % 0.17 0.004 0.18
Emigration Left tail 2.58 % 0.52 0.52 0.56

Right tail 3.06 % 0.25 0.25 0.21
Immigration Left tail 1.18 % 0.33 0.31 0.39

Right tail 2.91 % 0.21 0.22 0.17
PGW Left tail 138.53 mm 0.17 - 0.049

Right tail 251.61mm 0.24 - 0.70
NPGW Left tail 46.41 mm 0.36 0.09 0.04

Right tail 115.73 mm 0.45 0.72 0.62
CBW Left tail 140.9 mm 0.64 0.049 0.80

Right tail 506.53 mm 0.21 0.67 0.11
RBW Left tail 216.37 mm 0.15 0.26 0.50

Right tail 400.83 mm 0.53 0.59 0.20
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Figure 7: Probability distribution of social variables a priori and after both land use
changes (a posteriori). The vertical black lines represent the threshold values of the tails
of the variables. Note that probability functions are defined as a piecewise function using
MTEs.
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Figure 8: Probability distribution of green water flow variables a priori and after both
land use changes (a posteriori). The vertical black lines represent the threshold values
of the tails of the variables. Note that probability functions are defined as a piecewise
function using MTEs.
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Figure 9: Probability distribution of blue water flow variables a priori and after both land
use changes (a posteriori). The vertical black lines represent the threshold values of the
tails of the variables. Note that probability functions are defined as a piecewise function
using MTEs
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Table 5: P-values of Kolmogorov-Smirnov test among simulated values from a priori
and a posteriori distribution functions. PGW, Productive Green Water; NPGW, Non
Productive Green Water; CBW, Consumptive Blue Water; RBW, Runoff Blue Water.
*The distribution functions are significantly different at a 0.05 level of significance.

Variable Greenhouses Traditional
Ageing 2.2e−16 * 0.2634

Emigration 0.8593 0.001227 *
Immigration 0.00060* 0.1205

PGW - 2.2e−16 *
NPGW 2.2e−16 * 2.2e−16 *
CBW 2.2e−16 * 2.2e−16 *
RBW 7.05e−16 * 2.2e−16 *

and increased probabilities of falling into the right tail, 0.53 (Table 4, Fig-
ure 9). By contrast, CBW probabilities increase in the left tail, with 0.64 of
probability (Table 4, Figure 9), and 209.32 mm mean value (Table 3).

In this state of the system, the population is ageing, and both emigration
and immigration rates are low. The structure of the landscape determines
that RBW and PGW are the main water flows.

3.2. Intensive Agriculture with Greenhouses

This land use change involves the presence of crops grown under green-
house cover in the catchment.

The ageing mean value decreases from 21.65% to 17.94% (Table 3). A look
at probability values in the tail shows the change more clearly than the mean
value. The decreasing trend in this variable is more noticeable when the tails
of the distribution are studied- these indicate that there is little probability
of a population with greater than 28% over 65 (in the left tail, probability
decreased from 0.17 to close to zero (Table 4, Figure 7)). On the other hand,
immigration mean value increases from 1.87% to 1.92% (Table 3). In this
case, the probability values of the tails are also small (Table 4, Figure 7).
Furthermore, both variables show significant differences between the a priori
and the new scenario (Table 5). By contrast, as Figure 7 shows, emigration
rates hardly changes (Table 3, and 4) which is confirmed by the two-sided
Kolmogorov-Smirnov test (Table 5).

The means of all the water flow variables increase, in NPGW from 123.04
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mm to 173.97 mm from 209.32 mm to 559.09 mm in CBW, and from 454.74
mm to 537.35 mm in RBW (Table 3). If only these mean values were taken
into account, the behavior of blue and green water flows can be considered
similar, since they both increase under this first scenario. However, there is
a marked difference between the two when we consider the probabilities in
the tails of the distribution. In the case of NPGW, the right tail probability
increases from 0.45 to 0.72 (Table 4, Figure 8) which only emphasizes the a
priori behavior, i.e. higher water flows are more likely than lower ones.

But in CBW, a marked change in the trend is predicted. The probability
of the left tail (extremely low flows) decreases from 0.64 to 0.049; while
probability of right tail values (extremely high flows) increases from 0.21 to
0.67.

Similarly, the mean RBW value increases from which one might expect an
increase in the right tail probability, and a decrease in the left tail. However,
the probability in both tails increases (Table 4 and Figure 9). This shows
a peculiar behaviour in the variable, which means that both high and low
extremes values of runoff become more probable than a priori, whilst the
moderate values are less probable.

For NPGW, CBW and RBW, there are significant differences in the dis-
tribution functions a priori and under this scenario (Table 5).

3.3. Traditional Agriculture

The land use change introduced into the SES is expressed as the greater
presence of traditional croplands. Mean ageing and immigration hardly
change, nor does their probability distributions with respect to the a priori
situation (Tables 3 and 5, Figure 7). By contrast, the emigration variable
shows a significant difference between the a priori and the new scenario, with
slightly higher probabilities in the left tail (Table 4 and 5, Figure 7).

Both mean PGW and mean NPGW increase, from 223.17 mm to 284.39
mm, and from 123.04 mm to 151.85 mm respectively (Table 3).

For both variables, the mean indicates an increase, while a study of the
tails provides additional information about whether the extremes of the dis-
tribution become more or less pronounced. As we can see in Table 4, the
probability of high PGW in the right tail shifts from 0.24 to 0.70 while the
mean shows a more moderate increase. This means that, under this second
scenario, extremely high PGW flows are 46% more probable than a priori. In
the same way, the NPGW left tail (the probability of extremely low NPGW)
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decreases from 0.36 to 0.04. However, the shift in the mean is proportionally
less, from 123.04 mm to 151.85 mm.

The means of both CBW and RBW fall from 209.32 mm to 124.48 mm
for CBW, and from 454.74 mm to 260.75 mm for RBW (Table 3). The
probability of left tail of CBW (extremely low flows) also increases from 0.64
to 0.80 (Table 4). In this case, the tail values reinforce the trend described
by the change in the mean, and the probability of extremely low values also
increases.

In contrast, the RBW left tail probability increases from 0.15 to 0.50,
giving more information about the extent of the change in this variable (Ta-
ble 4, Figure 9). In this case, the evidence introduced in the model implies
the change in the tendency from an a priori situation where runoff was quite
probable in higher values (probability of the right tail decrease from 0.53 to
0.20), to a situation in which lower values are more probable.

For these four water flow variables, there are significant differences be-
tween the a priori situation and this scenario (Table 5).

4. Discussion

4.1. Case study results

Intensive greenhouse agriculture is one of the most important economic
activities in the south-east of Spain, and it can impact both social and nat-
ural subsystems (IEC, 2004). In the study area, greenhouses are mainly
located in the lower reaches, where population is characterized by a signif-
icant immigration rate. Under the first scenario of an increase in intensive
agriculture, the incoming young population has the effect of reducing the
extreme values of the ageing variable (i.e. the proportion of people over 65
falls). By contrast, emigration hardly changes (i.e., the departure of people
looking for a job elsewhere is virtually unchanged). However, the behavior
of the socioeconomic subsystems changes as a result of the intensification
(Garćıa-Álvarez-Coque, 2002). These results concord with numerous studies
made by different Spanish economic entities (Garćıa-Álvarez-Coque, 2002;
IEC, 2004; CCA, 2007); which show that the agricultural intensification in
the south-east of Andalusia has led to an increased influx of foreigners, mainly
young people, to work in the greenhouses. This has reversed the trend of an
increasingly ageing population, and has also led to an increase in the birth
rate so changing the social structure of the area.
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Vegetation cover around the greenhouses is often eliminated (to avoid
invasion of pests into the greenhouses). As a result, the evaporation rates
from the bare soil and plastic surfaces (greenhouses cover)-, described as
NPGW and CBW, respectively- increase. As agriculture intensifies, NPGW
becomes more important. However, while CBW in the a priori situation was
low, the increase in greenhouse cover increases CBW quite significantly. In
contrast, RBW has a peculiar behaviour, whereby both low and high extreme
flows increase while moderate flows decreases.

The results demonstrate how water flows are modified when soil and
natural vegetation cover are lost due to the introduction of plastic surfaces
(greenhouses).The increase in evaporative losses reduces the water available
for human and agricultural supply (thus, in semiarid regions such as this,
efforts need to focuss on optimizing water use and minimizing water losses).
Moreover, increase in runoff flows can alter soil structure due to increased
erosion. Agricultural intensification leads to greater homogeneity in the land-
scape, and a loss of connectivity (the capability of the landscape to facilitate
bio-physical flows), (Taylor et al., 1993), which implies poorer control of the
nutrient and water cycle (De-Lucio-Fernández et al., 2003).

Agricultural intensification is a gradual trend that significantly modifies
both natural and social subsystems, creating a new state in the system. Thus,
it can be considered as a systemic change from the expert’s point of view.

In our study area, traditional croplands comprise a mixture of woody
rain-fed crops of olive, almond groves and grapevines with patches of herba-
ceous subsistence crops and natural vegetation managed in a traditional way.
This heterogeneous pattern of traditional land use has been promoted as an
alternative management system, which can bring economic and environmen-
tal benefits (Schmitz et al., 2005; Anderson et al., 2009). Such croplands are
found mainly in the Sierra de Gádor foothills, which is a landscape charac-
terized by an ageing population and depopulated municipalities.

The presence of traditional croplands does not imply a new incoming
population, nor the emigration of young people and so neither ageing nor
immigration change significantly from their a priori values. Although em-
igration changes (Table 5), it does not imply an alteration of the global
behavior of the socioeconomic subsystem (CCA, 2007).

Given that traditional croplands are a mixture of woody and herbaceous
crops and scrub, with areas of forest, the PGW is higher (Willaarts, 2009)
because the evaporative demand of woody vegetation is higher than for herba-
ceous. Patches of scrubland and woodland, as well as the olive and almonds
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groves increased, and imply an increase in the PGW flow. At the same time,
these traditional systems, are characterized by an absence of bare solid, and a
presence of herbaceous crops, which slightly increases NPGW (Rockstroem,
2000) and markedly decreases CBW. Agriculture heterogeneity involves a
tighter control over RBW. The structure of this Mediterranean multifunc-
tional rural landscape with its patchwork of different types of land use, to-
gether with the presence of mature ecosystems next to exploited plots, favours
this control of runoff (De-Lucio-Fernández et al., 2003; Anderson et al., 2009).

In terms of whether an increase in traditional croplands can be described
as a systemic change or not, we can say that systemic change can be defined
as a fundamental change which involves a shift in the system state to another
with new properties (Kinzig et al., 2006; Filatova and Polhill, 2012). The
model indicates that this does not happen under this second scenario and so
increasing traditional agriculture cannot be considered as a systemic change
from this point of view.

4.2. Hybrid BNs and systemic change

In order to assess modifications in the interactions between the different
components of a SES, we will examine the variables one by one, because 1)
any change in the interactions will lead to changes in the variables - which
are easier to interpret and 2) in BNs, causal interactions between different
components in an SES are modelled by conditional probability distribution
functions (see Section 2.3), which are not conducive to an intuitive environ-
mental interpretation. The versatility of BNs allows several statistics to be
calculated from the results of the variables. In this case, mean values and the
probability of the tails were calculated. Although mean values provide clear
information about the behavior of the variables, the tails allow the extent of
the changes to be assessed.

These results highlight that BNs are powerful tools for representing com-
plexity and are able to deal with some of the challenges of SES modelling.
In this way, important interactions among components are not omitted, and
a balance between model complexity and computational time is achieved.
Furthermore, using the hybrid approach instead of an approach that handles
only discrete variables, means that, the model learning stage is carried out
with all the statistical information contained in the data. Thus, the loss of
information implied in the discretization process is avoided (Uusitalo, 2007;
Aguilera et al., 2010, 2013). The qualitative part of the BNs allows the
general structure of the systems to be defined along with the connections
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between the different components of the model and their dynamics repre-
sented by probability distribution functions. Therefore, BNs are specifically
designed to deal with complex systems under conditions of uncertainty.

In this respect, BNs manage uncertainty using probability theory: this is
a well-founded theory and there are a wide range of algorithms and proce-
dures, already developed and validated in the literature, which can be applied
to parameter estimation and inference. In the specific case of SES modelling,
the use of BNs contributes to uncertainty analysis in several ways: (i) in the
representation of the independencies of the variables of the model which, by
its nature, is intuitive in BNs, through the application of the d-separation
concept, and (ii) by the different statistics calculated from the results (mean,
standard deviation, tail probabilities, and goodness-of-fit test). Taken to-
gether, these make up a broad range of tools to aid the decision-making by
experts regarding the uncertainty in the modelling of systemic change under
the SES framework.

Thus, expert knowledge and machine learning techniques can be com-
bined in different ways as an important part in SES modelling: both are
capable of focussing on the most important components and can evaluate
the model to improve it (Cyr et al., 2010; Haapasaari and Karjalainen, 2010;
Voinov and Bousquet, 2010; Zorrilla et al., 2010). Modelling with the par-
ticipation of experts and stakeholders has several advantages from a social,
instrumental and methodological point of view (Voinov and Bousquet, 2010).
Management decisions are usually more effective if all the social groups take
part in the management process, sharing information and opinions, each be-
ing aware of their responsibilities and roles.

BNs are able to deal with probability propagation, since new information
can been introduced into one or more components of the natural or social
subsystems and the effects over the rest of the SES can be inferred. There-
fore, the current situation and the new system state can be easily compared
because the model results can be displayed together in a single graph showing
changes in probability distribution (see Figures 7, 8, and 9). In summary,
the probabilities are updated when new information is incorporated into the
model and they can be analyzed to evaluate the systemic change in SESs.

Certain issues remain to addressed in the future, which could improve the
application of BNs in SESs and systemic change modelling. Since environ-
mental data is usually collected from neighbouring areas, spatial autocorre-
lation has to be taken into account in BNs (Cano et al., 2004; Tucker et al.,
2005). Another consideration is how hybrid BNs could be used in a temporal
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framework. Whilst some attempts to address this aspect can be found (Ihler
et al., 2007; Moradkhani, 2008; Barillec and Cornford, 2009; Zhang et al.,
2012) it is an aspect that requires further investigation. Sensitivity analysis
would be a normal way to validate the estimation of the parameters in a
BN. However, no sensitivity analysis algorithm has yet been developed for
the MTE model. This would lead to a greater impact of this model in future
applications.
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