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Abstract

In this paper we introduce varying generalized Freud–type polynomials which are orthogonal
with respect to a varying discrete Freud–type inner product. Our main goal is to give ladder
operators for this family of polynomials as well as finding a second order differential–difference
equation that these polynomials satisfy. To reach this objective it is necessary to consider the
standard Freud orthogonal polynomials and in the meanwhile we find new difference relations
for the coefficients in the first order differential equations that this standard family satisfies.
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Mathematics Subject Classification (2010): Mathematics Subject Classification 2010: 33C47,
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1 Introduction

Orthogonal polynomials with respect to a varying inner product have been considered in different
frameworks, for instance, in general contexts related to different types of weights (see, among
others, [4, 6, 14, 16, 25, 27, 28, 32, 35]) or in Sobolev orthogonality (see for instance [1, 3, 17, 30]).
In this paper we consider a varying Krall–type inner product, that is, an inner product involving a
measure with an absolutely continuous part that depends on a parameter t and a varying discrete
part. Concretely,

(f, g)n =

∫ +∞

−∞
f(x)g(x)w(x; t)dx+

Mn

2

(
f(c)g(c) + f(−c)g(−c)

)
, c ∈ R, (1)

where we assume that
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w(x; t) = |x|γ exp(−v(x; t)), γ ≥ 1, (2)

with v(x; t) being an even and continuously differentiable function on R and t ∈ R. In addition, we
suppose that {Mn}∞n=0 is a sequence of nonnegative real numbers. Thus, for every n, we have a

square tableau of monic orthogonal polynomials with respect to (1), {Q(Mn,c)
k (x; t)}∞k=0, but we only

deal with the diagonal of this tableau, {Q(Mn,c)
n (x; t)}∞n=0. To simplify the notation, we will denote

them by {Qn(x; t)}∞n=0 and name them as varying generalized Freud–type orthogonal polynomials.

In the special case c = 0 we will use the notation {Q(0)
n (x; t)}+∞

n=0 for the sequence of monic
orthogonal polynomials with respect to

(f, g)n =

∫ +∞

−∞
f(x)g(x)w(x; t)dx+Mnf(0)g(0). (3)

Generalized Freud orthogonal polynomials have been extensively studied in the literature in-
cluding books and articles (see, among others, [2, 12, 13, 14, 15, 16, 18, 19, 20, 23, 24, 26, 29, 33,
34, 36, 37]) and the references therein). In this paper we denote the sequence of monic generalized
Freud orthogonal polynomials by {Pn(x; t)}∞n=0. This family is orthogonal with respect to the inner
product involving the weight function (2), i.e.

(f, g)t =

∫ +∞

−∞
f(x)g(x)w(x; t)dx =

∫ +∞

−∞
f(x)g(x)|x|γ exp(−v(x; t))dx, γ ≥ 1. (4)

Thus, the inner product (1) can be expressed as

(f, g)n = (f, g)t +
Mn

2

(
f(c)g(c) + f(−c)g(−c)

)
. (5)

We note that the families of orthogonal polynomials Qn(x; t) and Pn(x; t) are symmetric, that
is,

Qn(x; t) = (−1)nQn(−x; t), Pn(x; t) = (−1)nPn(−x; t), n ≥ 0. (6)

Generalized Freud orthogonal polynomials play an essential role along the work. Thus, we
are going to give a basic background about them. We denote the square of the norm of these
polynomials by hn, so:

hn := hn(t) = (Pn, Pn)t =

∫ +∞

−∞
P 2
n(x; t)w(x; t)dx, n ∈ N ∪ {0}.

Since the inner product (4) is standard, i.e. the property (xf, g)t = (f, xg)t holds, and the cor-
responding orthogonal polynomials Pn(x; t) are symmetric, then this family of polynomials satisfies
a three–term recurrence relation such as

xPn(x; t) = Pn+1(x; t) + βn(t)Pn−1(x; t), n ∈ N, (7)
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where

βn := βn(t) =
1

hn−1

∫ +∞

−∞
xPn(x; t)Pn−1(x; t)w(x; t)dx =

hn
hn−1

, (8)

with the initial conditions P0(x; t) = 1, P1(x; t) = x.

The main goal of this paper is to obtain ladder operators (raising and lowering operators) for
the varying Krall–type orthogonal polynomials with respect to (1).

Ladder operators are relevant in the theory of orthogonal polynomials. On the one hand, they
have a natural connection with the coefficients of the recurrence relation and from the point of view
of physics they are related to the harmonic oscillator (see [36]). On the other hand, they are a very
useful tool to construct differential equations whose solutions are the corresponding orthogonal
polynomials. For these reasons, among others, the literature about ladder operators in different
frameworks is very wide, we cite some of them [7, 8, 9, 10, 11, 20, 21, 22, 36].

Ladder operators for the orthogonal polynomials Pn(x; t) are known (see, for example, [8, 20]).
Next result provides us with the the lowering operator. As usual, we denote the derivative with
respect to the variable x by ′.

Theorem 1.1 ([13, Corollary 1]) Let {Pn(x; t)}∞n=0 be the sequence of orthogonal polynomials
with respect to (4). Then, these polynomials satisfy the following differential–difference equation:

xP ′
n(x; t) = −Bn(x; t)Pn(x; t) +An(x; t)Pn−1(x; t), n ≥ 1, (9)

where

An(x; t) =
x

hn−1

∫ +∞

−∞
P 2
n(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy, (10)

Bn(x; t) =
x

hn−1

∫ +∞

−∞
Pn(y; t)Pn−1(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy +

γ

2
(1− (−1)n) . (11)

Obviously, the lowering operator is given by relation (9) and can be rewritten as(
Bn(x; t) + x

d

dx

)
Pn(x; t) = An(x; t)Pn−1(x; t).

The raising operator can be derived in a straightforward way using the lowering operator and the
three–term recurrence relation (7),(

xAn−1(x; t)

βn−1
−Bn−1(x; t) + x

d

dx

)
Pn−1(x; t) = −An−1(x; t)

βn−1
Pn(x; t).

The coefficients An(x; t) and Bn(x; t) appearing in the ladder operators satisfy certain differ-
ence equations (see for instance [20, 26, 36]). These equations are usually known as compatibility
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conditions and they are useful to compute the coefficients in the corresponding three–term recur-
rence relation when we are working with a standard inner product. In the case of the Freud weight
function w(x) = exp(−v(x)) the difference equations for An(x; t) and Bn(x; t) were obtained in
[8] and [22]. Thus, another objective of this paper is to deduce some difference equations for the
coefficients An(x; t) and Bn(x; t) defined in (10) and (11), respectively.

The structure of the paper is the following: in Section 2 we obtain new difference equations
for the coefficients in the first order differential–difference equation (9) satisfied by the polynomials
Pn(x; t); in section 3 we use a standard technique to obtain the algebraic relations between the
polynomials Qn(x; t), their first derivatives and the standard polynomials Pn(x; t). These relations
are essential to tackle our main objective in Section 4 which is to give the ladder operators and
a second order differential equation for the varying Freud–type orthogonal polynomials Qn(x; t).
Along the paper we have illustrated the results with examples.

2 Difference equations for the coefficients An(x; t) and Bn(x; t)

In case of the weight function w(x; t) = |x|γ exp(−v(x; t)) with γ ≥ 1, one of these compatibility
equations was already obtained in [13].

Theorem 2.1 ([13, Lemma 2]) The functions An(x; t) and Bn(x; t) defined in (10) and (11),
respectively, satisfy the following relation:

Bn+1(x; t) +Bn(x; t) =
xAn(x; t)

βn
+ γ − xv′(x; t). (12)

Now, we will use the techniques given in [8] and [22] to obtain other compatibility equations
for the coefficients An(x; t) and Bn(x; t) defined in (10) and (11), respectively. As far as we know,
the difference equations that we have obtained in Theorems 2.2 and 2.3 are new.

Theorem 2.2 The functions An(x; t) and Bn(x; t) defined in (10) and (11), respectively, satisfy
the following relation:

Bn+1(x; t)−Bn(x; t) =
An+1(x; t)

x
− βnAn−1(x; t)

xβn−1
− 1. (13)

Proof. To establish the result we will use (7), (8), and Theorem 1.1. We have
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x (Bn+1(x; t)−Bn(x; t))

=
x2

hn

∫ +∞

−∞
Pn+1(y; t)Pn(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy

− x2

hn

∫ +∞

−∞
βnPn(y; t)Pn−1(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy + xγ(−1)n

=
x

hn
(A+ B + C +D) + xγ(−1)n, (14)

where A, B, C and D are the following integrals:

A =

∫ +∞

−∞
(x− y)Pn+1(y; t)Pn(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy,

B =

∫ +∞

−∞
yPn+1(y; t)Pn(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy,

C = −
∫ +∞

−∞
(x− y)βnPn(y; t)Pn−1(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy,

D = −
∫ +∞

−∞
yβnPn(y; t)Pn−1(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy.

To calculate the value of A, we use relation v′(x; t)w(x; t) = γ
xw(x; t) − w′(x; t), which easily

follows from (2). We have

A =

∫ +∞

−∞
Pn+1(y; t)Pn(y; t)(v

′(x; t)− v′(y; t))w(y; t)dy

= v′(x; t)

∫ +∞

−∞
Pn+1(y; t)Pn(y; t)w(y; t)dy −

∫ +∞

−∞
Pn+1(y; t)Pn(y; t)v

′(y; t)w(y; t)dy

= −
∫ +∞

−∞
Pn+1(y; t)Pn(y; t)

γ

y
w(y; t)dy +

∫ +∞

−∞
Pn+1(y; t)Pn(y; t)w

′(y; t)dy

= −γ

2
(1 + (−1)n)hn +

∫ +∞

−∞
Pn+1(y; t)Pn(y; t)w

′(y; t)dy,

= −γ

2
(1 + (−1)n)hn − (n+ 1)hn = −hn

(
n+ 1 +

γ

2
(1 + (−1)n)

)
.

where we have used ([13, f. (19)]):∫ ∞

−∞

Pn(y; t)Pn−1(y; t)

y
w(y; t)dy =

1

2
(1− (−1)n)hn−1, n ∈ N.
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Making the change n → n−1 in A, we obtain C up to the multiplicative factor −βn. Therefore,
we have

C = βnhn−1

(
n+

γ

2
(1− (−1)n)

)
= hn

(
n+

γ

2
(1− (−1)n)

)
.

This yields
A+ C = −hn (1 + γ(−1)n) .

To calculate B and D, we will use (7) and (10):

B =

∫ +∞

−∞

(
P 2
n+1(y; t) + βnPn+1(y; t)Pn−1(y; t)

) v′(x; t)− v′(y; t)

x− y
w(y; t)dy,

D = −
∫ +∞

−∞
βnPn+1(y; t)Pn−1(y; t)− β2

nP
2
n−1(y; t)

v′(x; t)− v′(y; t)

x− y
w(y; t)dy.

Then,

B +D =

∫ +∞

−∞

(
P 2
n+1(y; t)− β2

nP
2
n−1(y; t)

) v′(x; t)− v′(y; t)

x− y
w(y; t)dy.

Finally, substituting in (14) we obtain

x (Bn+1(x; t)−Bn(x; t))

=
x

hn

(
−hn (1 + γ(−1)n) +

∫ +∞

−∞

(
P 2
n+1(y; t)− β2

nP
2
n−1(y; t)

) v′(x; t)− v′(y; t)

x− y
w(y; t)dy

)
+ xγ(−1)n

= An+1(x; t)−
βnAn−1(x; t)

βn−1
− x,

which proves the result. 2

Theorem 2.3 The functions An(x; t) and Bn(x; t) defined in (10) and (11), respectively, satisfy
the following relation:

Bn(x; t)
(
Bn(x; t) + xv′(x; t)− γ

)
+ x

n−1∑
i=0

Ai(x; t)

βi
=

An(x; t)An−1(x; t)

βn−1
. (15)

Proof. The equation (13) is equivalent to

x+ x (Bk+1(x; t)−Bk(x; t)) = Ak+1(x; t)−
βkAk−1(x; t)

βk−1
.

Multiplying the above expression by Ak(x;t)
βk

, we get
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x
Ak(x; t)

βk
+ x

Ak(x; t)

βk
(Bk+1(x; t)−Bk(x; t)) =

Ak+1(x; t)Ak(x; t)

βk
− Ak(x; t)Ak−1(x; t)

βk−1
. (16)

We can simplify the left side on formula (16) using (12). Thus, we get

x
Ak(x; t)

βk
+ x

Ak(x; t)

βk
(Bk+1(x; t)−Bk(x; t))

= x
Ak(x; t)

βk
+ (Bk+1(x; t)−Bk(x; t))

(
Bk+1(x; t) +Bk(x; t) + xv′(x; t)− γ

)
= x

Ak(x; t)

βk
+Bk+1(x; t)−Bk(x; t),

where Bk(x; t) = B2
k(x; t) +Bk(x; t)(xv

′(x; t)− γ). The right side of (16) can be rewritten as

Ak+1(x; t)− Ak(x; t),

where Ak(x; t) =
Ak(x;t)Ak−1(x;t)

βk−1
.

Assuming A0(x; t) = B0(x; t) = 0, it remains to sum from k = 0 to n − 1 in the previous
expressions to obtain the result. 2

Next, we illustrate how Theorem 2.1, Theorem 2.2 and Theorem 2.3 are useful to obtain in-
formation about the coefficient βn in the three–term recurrence relation (7). In addition, ladder
operators are given explicitly.

2.1 Example 1

We consider a very simple case when v(x) does not depend on t. We take v(x) = x2. Then, the
polynomials Pn(x) are orthogonal with respect to the weight w(x) = |x|γ exp(−x2) with γ ≥ 1.
They are called generalized Hermite orthogonal polynomials. Using (10) and (11), we get

An(x) = 2xβn, Bn(x) =
γ

2
(1− (−1)n).

Thus, equation (9) is

xP ′
n(x) = −γ

2
(1− (−1)n)Pn(x) + 2xβnPn−1(x). (17)

Using equations (12), (13), and (15) we get, after some computations,

βn =
2n+ γ(1− (−1)n)

4
.

Using (17), we obtain the corresponding ladder operators.
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� Lowering operator:

Ψn =

[
γ

2
(1− (−1)n) + x

d

dx

]
,

so, Ψn [Pn(x)] = 2xβnPn−1(x).

� Raising operator. Making the transformation n → n− 1 in (17) and using (7), we deduce

xP ′
n−1(x) =

γ

2
(1 + (−1)n)Pn−1(x) + 2xβn−1Pn−2(x)

=
γ

2
(1 + (−1)n)Pn−1(x) + 2xβn−1

(
xPn−1(x)− Pn(x)

βn−1

)
=

(γ
2
(1 + (−1)n) + 2x2

)
Pn−1(x)− 2xPn(x).

Then, the raising operator is

Ψ̂n =

[
γ

2
(1 + (−1)n) + 2x2 − x

d

dx

]
,

so, Ψ̂n [Pn−1(x)] = 2xPn(x).

2.2 Example 2

Now we consider v(x; t) depending on t, concretely v(x; t) = x4−tx2. Thus, w(x; t) = |x|γ exp(−x4+
tx2) with γ ≥ 1. We have the following expressions for the coefficients An(x; t) and Bn(x; t) (see
[13, f. (56)]):

An(x; t) = 4xβn

(
x2 + βn+1 + βn − t

2

)
,

Bn(x; t) = 4x2βn +
γ

2
(1− (−1)n) .

Using (9), we get

xP ′
n(x; t) = −

(
4x2βn +

γ

2
(1− (−1)n)

)
Pn(x; t)

+ 4xβn

(
x2 + βn+1 + βn − t

2

)
Pn−1(x; t). (18)

Therefore, the ladder operators are:
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� Lowering operator:

Ψn =

[
4x2βn +

γ

2
(1− (−1)n) + x

d

dx

]
,

so, Ψn [Pn(x; t)] = 4xβn
(
x2 + βn+1 + βn − t

2

)
Pn−1(x; t).

� Raising operator: Making the change n → n− 1 in (18) and using (7), we get

xP ′
n−1(x; t) = −

(
4x2βn−1 +

γ

2
(1 + (−1)n)

)
Pn−1(x; t)

+4x2βn−1

(
x2 + βn + βn−1 −

t

2

)(
xPn−1(x; t)− Pn(x; t)

βn−1

)
.

Thus, we obtain

Ψ̂n =

[
4x2

(
x2 + βn + βn−1 −

t

2

)
− 4x2βn−1 −

γ

2
(1 + (−1)n)− x

d

dx

]
,

so, Ψ̂n [Pn−1(x; t)] = 4x
(
x2 + βn + βn−1 − t

2

)
Pn(x; t).

We have the following nonlinear difference equation for βn (see for example [13, f. (34)], [18,
Th. 6.1] or [20] and the references therein),

βn+1 + βn + βn−1 =
t

2
+

2n+ γ(1− (−1)n)

8βn
, (19)

which is called discrete Painlevé I (PI(dPI)). We show how we can obtain this relation easily using
Theorem 2.1, Theorem 2.2, and Theorem 2.3.

We make the change n → n− 1 in (13). Then, on one side we have

An(x; t)

x
− βn−1An−2(x; t)

βn−2x
− 1

= 4βn

(
x2 + βn+1 + βn − t

2

)
− 4βn−1

(
x2 + βn−1 + βn−2 −

t

2

)
− 1

= 4βn

(
x2 + βn+1 + βn + βn−1 −

t

2

)
− n

−
(
4βn−1

(
x2 + βn + βn−1 + βn−2 −

t

2

)
− (n− 1)

)
= An(x; t)− An−1(x; t),

where An(x; t) = 4βn
(
x2 + βn+1 + βn + βn−1 − t

2

)
− n.

Thus, (13) becomes

An(x; t)− An−1(x; t) = Bn(x; t)−Bn−1(x; t).

Then, summing the above expression and taking into account the assumption A0(x; t) = B0(x; t) =
0, we get the Painlevé equation PI(dPI) given by (19).
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3 Relations for varying generalized Freud-type orthogonal poly-
nomials

In this section we obtain some algebraic relations for the polynomials Qn(x; t) and their derivatives.
In fact, these relationships play a relevant role in obtaining the corresponding ladder operators
using a standard technique [5, 8, 9, 20]. Taking into account the relevance of the case c = 0, we
particularize the results for this situation.

We use the very well–known kernel polynomials

Kn(x, y; t) =
n∑

k=0

Pk(x; t)Pk(y; t)

hk
,

as well as the Christoffel–Darboux formula

Kn(x, y; t) =
1

hn

Pn+1(x; t)Pn(y; t)− Pn(x; t)Pn+1(y; t)

x− y
, (20)

and its confluent form

Kn(x, x; t) =
P ′
n+1(x; t)Pn(x; t)− P ′

n(x; t)Pn+1(x; t)

hn
.

First, we express the polynomials Qn(x; t) in terms of the kernel polynomials related to the
polynomials Pn(x; t).

Lemma 3.1 Let Qn(x; t) be the n–th monic orthogonal polynomial with respect to (1). Then,

Qn(x; t) = Pn(x; t)−
Mn

2
Qn(c; t) (Kn−1(c, x; t) + (−1)nKn−1(−c, x; t)) , n ≥ 1, (21)

with

Qn(c; t) =
Pn(c; t)

1 + Mn
2 (Kn−1(c, c; t) + (−1)nKn−1(−c, c; t))

. (22)

Proof. We follow the ideas in [31, Sect. 2], among others. It is well known that the sequence
{Pk(x; t)}nk=0 forms a basis of the linear space Pn[x] of polynomials with real coefficients of degree
at most n. So, we can write

Qn(x; t) =

n∑
k=0

an,kPk(x; t).

The coefficient an,n = 1 because Qn(x; t) and Pn(x; t) are monic polynomials. For 0 ≤ i ≤ n−1,
using the orthogonality of Qn(x; t) we get

an,k =
−Mn

2 Qn(c; t) (Pk(c; t) + (−1)nPk(−c; t))

hk
.
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Therefore,

Qn(x; t) = Pn(x; t)−
Mn

2
Qn(c; t)

(
n−1∑
k=0

Pk(c; t)Pk(x; t)

hk
+ (−1)n

Pk(−c; t)Pk(x; t)

hk

)

= Pn(x; t)−
Mn

2
Qn(c; t) (Kn−1(c, x; t) + (−1)nKn−1(−c, x; t)) .

Finally, evaluating the above expression at x = c we obtain

Qn(c; t) = Pn(c; t)−
Mn

2
Qn(c; t) (Kn−1(c, c; t) + (−1)nKn−1(−c, c; t)) ,

from where (22) follows. 2

Corollary 3.1 Let Q
(0)
n (x; t) be the n–th monic orthogonal polynomial with respect to (3). Then,

Q(0)
n (x; t) =

{
Pn(x; t), if n is odd;

Pn(x; t)− MnPn(0;t)
1+MnKn−1(0,0;t)

Kn−1(0, x; t), if n is even.
n ≥ 1.

Furthermore,

Q(0)
n (0; t) =

{
0, if n is odd;

Pn(0;t)
1+MnKn−1(0,0;t)

, if n is even.
n ≥ 1.

Proof. It is an immediate consequence of Lemma 3.1. 2

We will rewrite Lemma 3.1 using the following notation:

κ2n(x, y; t) :=

n∑
i=0

P2i(x; t)P2i(y; t)

h2i
,

κ̃2n(x, y; t) :=

n∑
i=0

P2i+1(x; t)P2i+1(y; t)

h2i+1
.

Thus,
K2n+1(x, y; t) = κ2n(x, y; t) + κ̃2n(x, y; t),

and

K2n−1(x, y; t) +K2n−1(−x, y; t) = 2κ2(n−1)(x, y; t), (23)

K2n(x, y; t)−K2n(−x, y; t) = 2κ̃2(n−1)(x, y; t). (24)

Thus, assuming that Q0(x; t) = 1 and Q1(x; t) = x, Lemma 3.1 becomes:

11



Corollary 3.2 We have,

Q2n(x; t) = P2n(x; t)−
M2nP2n(c; t)

1 +M2nκ2(n−1)(c, c; t)
κ2(n−1)(c, x; t), n ≥ 1,

Q2n+1(x; t) = P2n+1(x; t)−
M2n+1P2n+1(c; t)

1 +M2n+1κ̃2(n−1)(c, c; t)
κ̃2(n−1)(c, x; t), n ≥ 1.

In the following result we establish a relation for the ratio of the square of the norm of Qn(x; t)
and hn = (Pn, Pn)t.

Proposition 3.1 It holds,

(Q2n, Q2n)2n
h2n

=
1 +M2nκ2n(c, c; t)

1 +M2nκ2(n−1)(c, c; t)
,

(Q2n+1, Q2n+1)2n+1

h2n+1
=

1 +M2n+1κ̃2n(c, c; t)

1 +M2n+1κ̃2(n−1)(c, c; t)
.

Proof. Using Lemma 3.1, (5) and (23) we get

(Q2n, Q2n)2n = (Q2n, P2n)2n

= (Q2n, P2n)t +
M2n

2
(Q2n(c; t)P2n(c; t) +Q2n(−c; t)P2n(−c; t))

= h2n +M2nQ2n(c; t)P2n(c; t) = h2n +M2n
P 2
2n(c; t)

1 +M2nκ2(n−1)(c, c; t)

= h2n
1 +M2nκ2n(c, c; t)

1 +M2nκ2(n−1)(c, c; t)
.

The result for the odd case is obtained in an analogous way but now using (24). 2

We have introduced a perturbation in the inner product (·, ·)t adding masses located at the
points c and −c. Then, the quadratic polynomial x2−c2 can be used to eliminate that perturbation.
Technical Lemmas 2–5 show how this polynomial helps obtain a useful relation between both
families of orthogonal polynomials Pn(x; t) and Qn(x; t).

Lemma 3.2 Let {Qn(x; t)}∞n=0 and {Pn(x; t)}∞n=0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

(x2 − c2)Qn(x; t) = f1(n, x, c; t)Pn(x; t) + g1(n, x, c; t)Pn−1(x; t), n ≥ 1, (25)

where

f1(n, x, c; t) =
(
x2 − c2 − cρn,cPn−1(c; t)

)
, (26a)

g1(n, x, c; t) = xρn,cPn(c; t), (26b)

12



with

ρn,c =
MnQn(c; t)

hn−1
, n ≥ 1.

Proof. We will use (6), (20) and (21). Multiplying the expression (21) by (x2 − c2), and using (6)
and (20), we obtain

(x2 − c2)Qn(x; t)

= (x2 − c2)Pn(x; t)−
Mn

2
Qn(c; t)

×
(
x+ c

hn−1
(Pn(x; t)Pn−1(c; t)− Pn(c; t)Pn−1(x; t))

+
x− c

hn−1
(−1)n (Pn(x; t)Pn−1(−c; t)− Pn(−c; t)Pn−1(x; t))

)
= (x2 − c2)Pn(x; t)−

Mn

2
Qn(c; t)

2cPn(x; t)Pn−1(c; t)− 2xPn(c; t)Pn−1(x; t)

hn−1

=

(
x2 − c2 −MnQn(c; t)

cPn−1(c; t)

hn−1

)
Pn(x; t) +MnQn(c; t)

xPn(c; t)

hn−1
Pn−1(x; t).

which proves the result. 2

Corollary 3.3 Let {Q(0)
n (x; t)}∞n=0 be the sequence of monic orthogonal polynomials with respect

to (3). Then,

xQ(0)
n (x; t) = f1,0(x)Pn(x; t) + g1,0(n; t)Pn−1(x; t), n ≥ 1, (27)

where

f1,0(x) = x,

g1,0(n; t) =
MnP

2
n(0; t)

hn−1(1 +MnKn−1(0, 0; t))
= ρn,0Pn(0; t).

Proof. Taking c = 0 in Lemma 3.2, using Corollary 3.1 and simplifying, the result follows straight-
forwardly. 2

Remark 3.1 Note that the functions f1(n, x, 0; t) and f1,0(x) are different as it also happens with
g1(n, x, 0; t) and g1,0(n; t). In fact,

f1(n, x, 0; t) = xf1,0(x), g1(n, x, 0; t) = xg1,0(n; t).

It is worth observing that when n is odd we have g1,0(n; t) = 0.
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Lemma 3.3 Let {Qn(x; t)}∞n=0 and {Pn(x; t)}∞n=0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

(x2 − c2)Q′
n(x; t) = f2(n, x, c; t)Pn(x; t) + g2(n, x, c; t)Pn−1(x; t), n ≥ 2, (28)

where

f2(n, x, c; t) = 2x− f1(n, x, c; t)

(
2x

x2 − c2
+

Bn(x; t)

x

)
− ρn,cPn(c; t)An−1(x; t)

βn−1
, (29a)

g2(n, x, c; t) =
−2x2ρn,cPn(c; t)

x2 − c2
+ f1(n, x, c; t)

An(x; t)

x

+ ρn,cPn(c; t)

(
1 +

xAn−1(x; t)

βn−1
−Bn−1(x; t)

)
. (29b)

The functions An(x; t), Bn(x; t), f1(n, x, c; t) and the value ρn,c are defined in (10), (11) and Lemma
3.2, respectively.

Proof. First, we take derivatives in (25) obtaining

2xQn(x; t) + (x2 − c2)Q′
n(x; t)

= 2xPn(x; t) + f1(n, x, c; t)P
′
n(x; t)

+ ρn,cPn(c; t)Pn−1(x; t) + ρn,cPn(c; t)xP
′
n−1(x; t). (30)

Now, we consider the differential–difference equation (9) given in Theorem 1.1 and using (7), we
then get

xP ′
n−1(x; t) = −Bn−1(x; t)Pn−1(x; t) +An−1(x; t)Pn−2(x; t)

= −An−1(x; t)

βn−1
Pn(x; t) +

(
xAn−1(x; t)

βn−1
−Bn−1(x; t)

)
Pn−1(x; t).

14



We use the previous expression in an adequate way in (30), so we deduce

(x2 − c2)Q′
n(x; t)

=
−2x

x2 − c2
(x2 − c2)Qn(x; t) + 2xPn(x; t) + f1(n, x, c; t)P

′
n(x; t)

+ ρn,cPn(c; t)Pn−1(x; t) + ρn,cPn(c; t)xP
′
n−1(x; t)

=
−2x

x2 − c2
(f1(n, x, c; t)Pn(x; t) + g1(n, x, c; t)Pn−1(x; t)) + 2xPn(x; t)

+ f1(n, x, c; t)P
′
n(x; t) + ρn,cPn(c; t)Pn−1(x; t) + ρn,cPn(c; t)xP

′
n−1(x; t)

=
−2x

x2 − c2
(f1(n, x, c; t)Pn(x; t) + g1(n, x, c; t)Pn−1(x; t)) + 2xPn(x; t)

+ f1(n, x, c; t)

(
−Bn(x; t)Pn(x; t) +An(x; t)Pn−1(x; t)

x

)
+ ρn,cPn(c; t)Pn−1(x; t)

+ ρn,cPn(c; t)

(
−An−1(x; t)

βn−1
Pn(x; t) +

(
xAn−1(x; t)

βn−1
−Bn−1(x; t)

)
Pn−1(x; t)

)
.

Finally, simplifying these expressions we prove the result. 2

Corollary 3.4 Let {Q(0)
n (x; t)}∞n=0 be the sequence of monic orthogonal polynomials with respect

to (3). Then,

x
(
Q(0)

n

)′
(x; t) = f2,0(n, x; t)Pn(x; t) + g2,0(n, x; t)Pn−1(x; t), n ≥ 2,

where

f2,0(n, x; t) = −Bn(x; t)−
ρn,0Pn(0; t)An−1(x; t)

xβn−1
,

g2,0(n, x; t) = An(x; t) +
ρn,0Pn(0; t)

x

(
−1 +

xAn−1(x; t)

βn−1
−Bn−1(x; t)

)
.

In Lemmas 3.2 and 3.3 we have provided formulae for (x2− c2)Qn(x; t) and (x2− c2)Q′
n(x; t) in

terms of the standard polynomials Pn(x; t) and Pn−1(x; t). In the following two lemmas we will give
other different formulae applying the previous results. All of them will be very useful to construct
the ladder operators for the polynomials Qn(x; t) in the next section.

Lemma 3.4 Let {Qn(x; t)}∞n=0 and {Pn(x; t)}∞n=0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

(x2 − c2)Qn−1(x; t) = f3(n, x, c; t)Pn(x; t) + g3(n, x, c; t)Pn−1(x; t), n ≥ 2,
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where

f3(n, x, c; t) = −xρn−1,cPn−1(c; t)

βn−1
,

g3(n, x, c; t) =

(
x2 − c2 − cρn−1,cPn−2(c; t) +

x2ρn−1,cPn−1(c; t)

βn−1

)
.

Proof. It is enough to use (25) in Lemma 3.2 and the three–term recurrence relation given by (7).
Thus, we get

(x2 − c2)Qn−1(x; t)

= f1(n− 1, x, c; t)Pn−1(x; t) + g1(n− 1, x, c; t)Pn−2(x; t)

= f1(n− 1, x, c; t)Pn−1(x; t) + g1(n− 1, x, c; t)

(
xPn−1(x; t)− Pn(x; t)

βn−1

)
= −g1(n− 1, x, c; t)

βn−1
Pn(x; t) +

(
f1(n− 1, x, c; t) +

xg1(n− 1, x, c; t)

βn−1

)
Pn−1(x; t).

Using (26) the statement follows. 2

Corollary 3.5 Let {Q(0)
n (x; t)}∞n=0 be a sequence of monic orthogonal polynomials with respect to

(3). Then,

xQ
(0)
n−1(x; t) = f3,0(n; t)Pn(x; t) + g3,0(n, x; t)Pn−1(x; t), n ≥ 2, (31)

where

f3,0(n; t) = −ρn−1,0Pn−1(0; t)

βn−1
,

g3,0(n, x; t) = x

(
1 +

ρn−1,0Pn−1(0; t)

βn−1

)
.

Remark 3.2 The situation in this corollary is very similar to the one described in Remark 3.1.
Now, we note that f3,0(n; t) = 0 when n is even.

Lemma 3.5 Let {Qn(x; t)}∞n=0 and {Pn(x; t)}∞n=0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

(x2 − c2)Q′
n−1(x; t) = f4(n, x, c; t)Pn(x; t) + g4(n, x, c; t)Pn−1(x; t), n ≥ 3,

where

f4(n, x, c; t) = −g2(n− 1, x, c; t)

βn−1
,

g4(n, x, c; t) = f2(n− 1, x, c; t) + x
g2(n− 1, x, c; t)

βn−1
.

The functions f2(n, x, c; t) and g2(n, x, c; t) are defined in (29).
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Proof. We proceed as in the previous lemma but now using Lemma 3.3. 2

Corollary 3.6 Let {Q(0)
n (x; t)}∞n=0 be the sequence of monic polynomials orthogonal with respect

to (3). Then,

x
(
Q

(0)
n−1

)′
(x; t) = f4,0(n, x; t)Pn(x; t) + g4,0(n, x; t)Pn−1(x; t), n ≥ 3,

where

f4,0(n, x; t) = −g2,0(n− 1, x; t)

βn−1
,

g4,0(n, x; t) = f2,0(n− 1, x; t) + x
g2,0(n− 1, x; t)

βn−1
.

Proof: It is only necessary to use Corollary 3.4 and (7). 2

With these Lemmas we have the polynomials Pn(x; t) as the solutions of linear systems of two
equations. Thus, these standard polynomials are expressed in terms of the varying Freud–type
orthogonal polynomials.

Lemma 3.6 For n ≥ 2, we have

Pn(x; t) =
(x2 − c2) (g3(n, x, c; t)Qn(x; t)− g1(n, x, c; t)Qn−1(x; t))

f1(n, x, c; t)g3(n, x, c; t)− g1(n, x, c; t)f3(n, x, c; t)
, (32)

Pn−1(x; t) =
(x2 − c2) (−f3(n, x, c; t)Qn(x; t) + f1(n, x, c; t)Qn−1(x; t))

f1(n, x, c; t)g3(n, x, c; t)− g1(n, x, c; t)f3(n, x, c; t)
, (33)

where the functions f1(n, x, c; t), g1(n, x, c; t), f3(n, x, c; t) and g3(n, x, c; t) are defined in Lemma
3.2 and Lemma 3.4.

Proof. From Lemma 3.2 and Lemma 3.4, we can write{
f1(n, x, c; t)Pn(x; t) + g1(n, x, c; t)Pn−1(x; t) = (x2 − c2)Qn(x; t),
f3(n, x, c; t)Pn(x; t) + g3(n, x, c; t)Pn−1(x; t) = (x2 − c2)Qn−1(x; t).

It is enough to apply Cramer’s rule to get the result. 2

For the case c = 0 we can obtain simpler expressions.

Corollary 3.7 For c = 0 and n ≥ 2, we have

g3,0(n, x; t)Pn(x; t) = g3,0(n, x; t)Q
(0)
n (x; t)− g1,0(n; t)Q

(0)
n−1(x; t),

g3,0(n, x; t)Pn−1(x; t) = −f3,0(n, x; t)Q
(0)
n (x; t) + f1,0(n, x; t)Q

(0)
n−1(x; t),

where the functions f1,0(x), g1,0(n; t), f3,0(n; t), and g3,0(n, x; t) are given in Corollary 3.3 and
Corollary 3.5.
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Proof. Gathering (27) and (31) in Corollary 3.3 and Corollary 3.5, respectively, we have a linear
system of two equations. Solving it, we obtain:

Pn(x; t) =
x
(
g3,0(n, x; t)Q

(0)
n (x; t)− g1,0(n; t)Q

(0)
n−1(x; t)

)
f1,0(x)g3,0(n, x; t)− g1,0(n; t)f3,0(n; t)

,

Pn−1(x; t) =
x
(
−f3,0(n; t)Q

(0)
n (x; t) + f1,0(x)Q

(0)
n−1(x; t)

)
f1,0(x)g3,0(n, x; t)− g1,0(n; t)f3,0(n; t)

.

Using Corollaries 3.3 and 3.5 we obtain

f1,0(x)g3,0(n, x; t)− g1,0(n; t)f3,0(n; t)

= x2
(
1 +

ρn−1,0Pn−1(0; t)

βn−1

)
+ ρn,0Pn(0; t)

ρn−1,0Pn−1(0; t)

βn−1

= x2
(
1 +

ρn−1,0Pn−1(0; t)

βn−1

)
= xg3,0(n, x; t),

where we have used the fact that Pn(0; t)Pn−1(0; t) is always zero. 2

4 Ladder operators and second order differential equation

In this section we obtain the second order linear differential equation satisfied by the varying
generalized Freud–type orthogonal polynomials. The first step is to obtain the ladder operators for
this family of polynomials. Lemmas 3.2–3.6 obtained in the previous section are the key to deduce
these ladder operators.

Theorem 4.1 (Ladder Operators) Let {Qn(x; t)}∞n=0 be the sequence of monic orthogonal poly-
nomials with respect to (1). Then, there exit a lowering differential operator Φn and a raising
differential operator Φ̂n defined as

Φn := φ3,2(n, x, c; t) + φ1,3(n, x, c; t)
d

dx
, n ≥ 2,

Φ̂n := φ1,4(n, x, c; t)− φ1,3(n, x, c; t)
d

dx
, n ≥ 3,

and satisfying

Φn [Qn(x; t)] = φ1,2(n, x, c; t)Qn−1(x; t), (34)

Φ̂n [Qn−1(x; t)] = φ3,4(n, x, c; t)Qn(x; t), (35)
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with

φi,j(n, x, c; t) =

∣∣∣∣ fi(n, x, c; t) fj(n, x, c; t)
gi(n, x, c; t) gj(n, x, c; t)

∣∣∣∣ , i, j ∈ {1, 2, 3, 4},

where the functions fi(n, x, c; t) and gi(n, x, c; t) with i ∈ {1, 2, 3, 4} are defined in the Lemmas
3.2–3.5.

Proof. To prove (34), we substitute the relations (32) and (33) into (28) and simplify. Then, we
get

(x2 − c2)Q′
n(x; t)

= f2(n, x, c; t)Pn(x; t) + g2(n, x, c; t)Pn−1(x; t)

=
f2(n, x, c; t)(x

2 − c2) (g3(n, x, c; t)Qn(x; t)− g1(n, x, c; t)Qn−1(x; t))

φ1,3(n, x, c; t)

+
g2(n, x, c; t)(x

2 − c2) (−f3(n, x, c; t)Qn(x; t) + f1(n, x, c; t)Qn−1(x; t))

φ1,3(n, x, c; t)
.

Then,

φ1,3(n, x, c; t)Q
′
n(x; t)

= (f2(n, x, c; t)g3(n, x, c; t)− g2(n, x, c; t)f3(n, x, c; t))Qn(x; t)

+ (−f2(n, x, c; t)g1(n, x, c; t) + g2(n, x, c; t)f1(n, x, c; t))Qn−1(x; t)

= φ2,3(n, x, c; t)Qn(x; t) + φ1,2(n, x, c; t)Qn−1(x; t).

Taking into account the obvious fact that φ3,2(n, x, c; t) = −φ2,3(n, x, c; t) we deduce (34). The
proof of (35) is completely similar. 2

Corollary 4.1 The ladder operators in the case c = 0 are given by

Φ(0)
n := Υ3,2(n, x; t) + Υ1,3(n, x; t)

d

dx
, n ≥ 2,

Φ̂(0)
n := Υ1,4(n, x; t)−Υ1,3(n, x; t)

d

dx
, n ≥ 3,

which satisfy

Φ(0)
n

[
Q(0)

n (x; t)
]

= Υ1,2(n, x; t)Q
(0)
n−1(x; t),

Φ̂(0)
n

[
Q

(0)
n−1(x; t)

]
= Υ3,4(n, x; t)Q

(0)
n (x; t),

with

Υi,j(n, x; t) =

∣∣∣∣ fi,0 fj,0
gi,0 gj,0

∣∣∣∣ , i, j ∈ {1, 2, 3, 4}, (36)

where the functions fi,0 and gi,0 with i ∈ {1, 2, 3, 4} are defined in the Corollaries 3.3–3.6.
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Proof. It is enough to use Corollaries 3.3–3.7 in the same way as in the proof of Theorem 4.1. 2

We are ready to establish one of the main results.

Theorem 4.2 (Holonomic equation) The varying generalized Freud–type orthogonal polynomial
satisfy the following second order linear differential equation:

α(n, x, c; t)Q′′
n(x; t) + σ(n, x, c; t)Q′

n(x; t) + τ(n, x, c; t)Qn(x; t) = 0, (37)

with n ≥ 3, where

α(n, x, c; t) = φ2
1,3(n, x, c; t)φ1,2(n, x, c; t),

σ(n, x, c; t) = φ1,3(n, x, c; t)

(
φ1,2(n, x, c; t)(φ3,2(n, x, c; t) + φ′

1,3(n, x, c; t)

− φ1,4(n, x, c; t))− φ′
1,2(n, x, c; t)φ1,3(n, x, c; t)

)
,

τ(n, x, c; t) = φ1,2(n, x, c; t)(φ1,2(n, x, c; t)φ3,4(n, x, c; t)− φ1,4(n, x, c; t)φ3,2(n, x, c; t))

+ φ1,3(n, x, c; t)
(
φ′
3,2(n, x, c; t)φ1,2(n, x, c; t)− φ′

1,2(n, x, c; t)φ3,2(n, x, c; t)
)
.

Proof. The technique is standard once we know the corresponding ladder operators given in
Theorem 4.1. By (35) we have

Φ̂n[Qn−1(x; t)] = φ3,4(n, x, c; t)Qn(x; t).

Taking into account that by (34)

Qn−1(x; t) =
1

φ1,2(n, x, c; t)
Φn[Qn(x; t)],

then

Φ̂n

[
1

φ1,2(n, x, c; t)
Φn[Qn(x; t)]

]
= φ3,4(n, x, c; t)Qn(x; t). (38)

Now, we deal with the left hand side in the above expression getting

Φ̂n

[
1

φ1,2(n, x, c; t)
Φn[Qn(x; t)]

]
=

φ1,4(n, x, c; t)

φ1,2(n, x, c; t)
Φn[Qn(x; t)]− φ1,3(n, x, c; t)

d

dx

(
Φn[Qn(x; t)]

φ1,2(n, x, c; t)

)
=

φ1,4(n, x, c; t)

φ1,2(n, x, c; t)

(
φ3,2(n, x, c; t)Qn(x; t) + φ1,3(n, x, c; t)Q

′
n(x; t)

)
− φ1,3(n, x, c; t)

d

dx

(
φ3,2(n, x, c; t)Qn(x; t)

φ1,2(n, x, c; t)
+

φ1,3(n, x, c; t)Q
′
n(x; t)

φ1,2(n, x, c; t)

)
. (39)
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We calculate the derivatives in (39):

d

dx

(
φ3,2(n, x, c; t)Qn(x; t)

φ1,2(n, x, c; t)

)
=

φ′
3,2(n, x, c; t)φ1,2(n, x, c; t)− φ′

1,2(n, x, c; t)φ3,2(n, x, c; t)

φ1,2(n, x, c; t)2
Qn(x; t)

+
φ3,2(n, x, c; t)

φ1,2(n, x, c; t)
Q′

n(x; t), (40)

d

dx

(
φ1,3(n, x, c; t)Q

′
n(x; t)

φ1,2(n, x, c; t)

)
=

φ′
1,3(n, x, c; t)φ1,2(n, x, c; t)− φ′

1,2(n, x, c; t)φ1,3(n, x, c; t)

φ2
1,2(n, x, c; t)

Q′
n(x; t)

+
φ1,3(n, x, c; t)

φ1,2(n, x, c; t)
Q′′

n(x; t). (41)

Substituting (40) and (41) in (39) and using (38), we obtain

φ3,4(n, x, c; t)Qn(x; t)

=
φ1,4(n, x, c; t)

φ1,2(n, x, c; t)

(
φ3,2(n, x, c; t)Qn(x; t) + φ1,3(n, x, c; t)Q

′
n(x; t)

)
− φ1,3(n, x, c; t)

(
φ′
3,2(n, x, c; t)φ1,2(n, x, c; t)− φ′

1,2(n, x, c; t)φ3,2(n, x, c; t)

φ1,2(n, x, c; t)2
Qn(x; t)

+
φ3,2(n, x, c; t)

φ1,2(n, x, c; t)
Q′

n(x; t)

+
φ′
1,3(n, x, c; t)φ1,2(n, x, c; t)− φ′

1,2(n, x, c; t)φ1,3(n, x, c; t)

φ1,2(n, x, c; t)2
Q′

n(x; t)

+
φ1,3(n, x, c; t)

φ1,2(n, x, c; t)
Q′′

n(x; t).

)
To get the second order differential equation for the polynomials Qn(x; t) it only remains to multiply
the above expression by φ2

1,2(n, x, c; t) and simplify . 2

As it is usual when c = 0 this differential equation looks simpler.

Corollary 4.2 For c = 0 and n ≥ 3, we have

α0(n, x; t)
(
Q(0)

n

)′′
(x; t) + σ0(n, x; t)

(
Q(0)

n

)′
(x; t) + τ0(n, x; t)Q

(0)
n (x; t) = 0, (42)
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where

α0(n, x; t) = Υ2
1,3(n, x; t)Υ1,2(n, x; t),

σ0(n, x; t) = Υ1,3(n, x; t)

(
Υ1,2(n, x; t)(Υ3,2(n, x; t) + Υ′

1,3(n, x; t)−Υ1,4(n, x; t))

− Υ′
1,2(n, x; t)Υ1,3(n, x; t)

)
,

τ0(n, x; t) = Υ1,2(n, x; t)(Υ1,2(n, x; t)Υ3,4(n, x; t)−Υ1,4(n, x; t)Υ3,2(n, x; t))

+ Υ1,3(n, x; t)
(
Υ′

3,2(n, x; t)Υ1,2(n, x; t)−Υ′
1,2(n, x; t)Υ3,2(n, x; t)

)
.

The functions Υi,j with i, j ∈ {1, 2, 3, 4} are defined in (36).

Finally, we illustrate the results obtained in this section with two examples: ladder operators
and second order differential equations for the varying Freud–type orthogonal polynomials. In these
examples we consider the weight functions like the ones in subsections 2.1 and 2.2.

4.1 Example 3

We consider the orthogonal polynomials Q
(0)
n (x) with respect to (3) with v(x) = x2 and c = 0. We

have seen in Example 1 that

An(x) = 2xβn, Bn(x) =
γ

2
(1− (−1)n).

To calculate the lowering operator, we use (36) in Corollary 4.1. Then, we have for n ≥ 2,

Υ1,3(n, x)
(
Q(0)

n

)′
(x) + Υ3,2(n, x)Q

(0)
n (x) = Υ1,2(n, x)Q

(0)
n−1(x).

We can compute all the coefficients in the above differential equation. Taking into account that
Pn(0)Pn−1(0) and ρn,0ρn−1,0 are always zero, and after tedious computations we obtain

Υ1,3(n, x) = x2
(
1 +

ρn−1,0Pn−1(0)

βn−1

)
,

Υ3,2(n, x) = −2xβnρn−1,0Pn−1(0)

βn−1
+

γ

2
(1− (−1)n)x

(
1 +

ρn−1,0Pn−1(0)

βn−1

)
+2xρn,0Pn(0),

Υ1,2(n, x) = 2x2βn + ρn,0Pn(0)
(
−1 + 2x2 − γ(−1)n

)
+ 2ρ2n,0P

2
n(0).

On the other hand, the lowering operator is given by

Φ(0)
n =

[
x

(
γ

2
(1− (−1)n)

(
1 +

ρn−1,0Pn−1(0)

βn−1

)
+ 2ρn,0Pn(0)−

2βnρn−1,0Pn−1(0)

βn−1

)
+ x2

(
1 +

ρn−1,0Pn−1(0)

βn−1

)
d

dx

]
,
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and it acts as

Φ(0)
n

[
Q(0)

n (x)
]
=
(
2x2βn + ρn,0Pn(0)

(
−1 + 2x2 − γ(−1)n

)
+ 2ρ2n,0P

2
n(0)

)
Q

(0)
n−1(x).

Obviously when ρn,0 = 0 for all n, then the above lowering operator is the same as the one
obtained in Example 1 as it was expectable. It is equivalent to Mn = 0 for all n.

Now, we calculate the raising operator. Using (36) in Corollary 4.1 we have for n ≥ 3,

Υ1,4(n, x)Q
(0)
n−1(x)−Υ1,3(n, x)

(
Q

(0)
n−1

)′
(x) = Υ3,4(n, x)Q

(0)
n (x).

Using the fact that Pn(0)Pn−1(0) and ρn,0ρn−1,0 are always zero, and after some computations we
obtain the coefficients in the previous differential equation.

Υ1,4(n, x) = 2x3 + 2xρn,0Pn(0)− x
γ

2
(1− (−1)n−1)− 2xρn−1,0Pn−1(0)

+
xρn−1,0Pn−1(0)

βn−1

(
−1 + 2x2 − γ

2
(1− (−1)n−2)

)
,

Υ1,3(n, x) = x2
(
1 +

ρn−1,0Pn−1(0)

βn−1

)
,

Υ3,4(n, x) = 2x2 +
ρn−1,0Pn−1(0)

βn−1

(
−1 + 2x2 − γ(−1)n−1 + 2ρn−1,0Pn−1(0)

)
.

Thus, the raising operator is given by

Φ̂(0)
n =

[
x
(
2x2 + 2xρn,0Pn(0)−

γ

2
(1 + (−1)n)− 2ρn−1,0Pn−1(0)

+
ρn−1,0Pn−1(0)

βn−1

(
−1 + 2x2 − γ

2
(1− (−1)n)

))
− x2

(
1 +

ρn−1,0Pn−1(0)

βn−1

)
d

dx

]
,

and it acts as

Φ̂(0)
n

[
Q

(0)
n−1

]
=

(
2x2 +

ρn−1,0Pn−1(0)

βn−1

(
−1 + 2x2 − γ(−1)n−1 + 2ρn−1,0Pn−1(0)

))
Q(0)

n (x).

4.2 Example 4

Now, we choose the same weight function that we have considered in Example 2, i.e. we take
w(x; t) = |x|γ exp(−x4 + tx2) with v(x) = x4 − 2tx2 and γ ≥ 1. As we know (see [13, f. (56)])

An(x; t) = 4xβn

(
x2 + βn+1 + βn − t

2

)
, Bn(x; t) = 4x2βn +

γ

2
(1− (−1)n) .
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We take c = 0 for simplicity. As in the Example 3, we are going to calculate explicitly the functions
Υ1,3(n, x; t), Υ3,2(n, x; t), Υ1,4(n, x; t), Υ1,2(n, x; t), Υ3,4(n, x; t) of formula (36) in Corollary 4.1
which are necessary to deduce the corresponding ladder operators. Even for this case c = 0 the
calculations are tedious, and after these computations we get

Υ1,3(n, x; t) = x2
(
1 +

ρn−1,0Pn−1(0; t)

βn−1

)
.

Υ3,2(n, x; t) = −4xβn

(
x2 + βn+1 + βn − t

2

)
ρn−1,0Pn−1(0; t)

βn−1

+ x
(
4x2βn +

γ

2
(1− (−1)n)

)(
1 +

ρn−1,0Pn−1(0; t)

βn−1

)
+ 4x

(
x2 + βn + βn−1 −

t

2

)
ρn,0Pn(0; t).

Υ1,4(n, x; t)

= x

(
−
(
4x2βn−1 +

γ

2
(1 + (−1)n)

)
− 4ρn−1,0Pn−1(0; t)

(
x2 + βn−1 + βn−2 −

t

2

))
+ 4x3

(
x2 + βn + βn−1 −

t

2

)
+

xρn−1,0Pn−1(0; t)
(
−1 + 4x2

(
x2 + βn−1 + βn−2 − t

2

)
−
(
4x2βn−2 +

γ
2 (1− (−1)n)

))
βn−1

+ 4xρn,0Pn(0; t)

(
x2 + βn + βn−1 −

t

2

)
.

Υ1,2(n, x; t)

= 4x2βn

(
x2 + βn+1 + βn − t

2

)
+ ρn,0Pn(0; t)

(
−1 + 4x2

(
x2 + βn + βn−1 −

t

2

)
−
(
4x2βn−1 +

γ

2
(1 + (−1)n)

))
+ ρn,0Pn(0; t)

(
4x2βn +

γ

2
(1− (−1)n) + 4ρn,0Pn(0; t)

(
x2 + βn + βn−1 −

t

2

))
.
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Υ3,4(n, x; t)

= 4x2
(
x2 + βn + βn−1 −

t

2

)
+

ρn−1,0Pn−1(0; t)

βn−1

×
(
4x2βn−1 +

γ

2
(1 + (−1)n) + 4ρn−1,0Pn−1(0; t)

(
x2 + βn−1 + βn−2 −

t

2

))
+

ρn−1,0Pn−1(0; t)

βn−1

(
−1 + 4x2

(
x2 + βn−1 + βn−2 −

t

2

)
− 4x2βn−2 −

γ

2
(1− (−1)n)

)
.

Now, we are ready to give the ladder operators. To start with, the lowering operator is given
by

Φ(0)
n =

[
−4xβn

(
x2 + βn+1 + βn − t

2

)
ρn−1,0Pn−1(0; t)

βn−1

+ x
(
4x2βn +

γ

2
(1− (−1)n)

)(
1 +

ρn−1,0Pn−1(0; t)

βn−1

)
+ 4x

(
x2 + βn + βn−1 −

t

2

)
ρn,0Pn(0; t)

+ x2
(
1 +

ρn−1,0Pn−1(0)

βn−1

)
d

dx

]
,

and which verifies

Φ(0)
n

[
Q(0)

n (x; t)
]

=

(
4x2βn

(
x2 + βn+1 + βn − t

2

)
+ ρn,0Pn(0; t)

(
−1 + 4x2

(
x2 + βn + βn−1 −

t

2

)
−
(
4x2βn−1 +

γ

2
(1 + (−1)n)

))
+

(
4x2βn +

γ

2
(1− (−1)n) + 4ρn,0Pn(0; t)

(
x2 + βn + βn−1 −

t

2

))
ρn,0Pn(0; t)

)
× Q

(0)
n−1(x; t).
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The raising operator is given by

Φ̂(0)
n

=

[
x

(
−
(
4x2βn−1 +

γ

2
(1 + (−1)n)

)
− 4ρn−1,0Pn−1(0; t)

(
x2 + βn−1 + βn−2 −

t

2

))
+ 4x3

(
x2 + βn + βn−1 −

t

2

)
+

xρn−1,0Pn−1(0; t)
(
−1 + 4x2

(
x2 + βn−1 + βn−2 − t

2

)
−
(
4x2βn−2 +

γ
2 (1− (−1)n)

))
βn−1

+ 4xρn,0Pn(0; t)

(
x2 + βn + βn−1 −

t

2

)
− x2

(
1 +

ρn−1,0Pn−1(0)

βn−1

)
d

dx

]
,

and which satisfies,

Φ̂(0)
n

[
Q

(0)
n−1(x; t)

]
=

(
ρn−1,0Pn−1(0; t)

βn−1

(
4x2βn−1 +

γ

2
(1 + (−1)n) + 4ρn−1,0Pn−1(0; t)

(
x2 + βn−1 + βn−2 −

t

2

))
+ 4x2

(
x2 + βn + βn−1 −

t

2

)
+

ρn−1,0Pn−1(0; t)

βn−1

(
−1 + 4x2

(
x2 + βn + βn−2 −

t

2

)
− 4x2βn−2 −

γ

2
(1− (−1)n)

))
Q(0)

n (x; t).

Remark 4.1 In the previous examples we can give explicitly the coefficients of the second order

differential equation that the polynomials Q
(0)
n (x; t) satisfy. However, the expressions are very

cumbersome, long, and can be deduced in an easy way from the expressions of Υi,j with i, j ∈
{1, 2, 3, 4} given in (36). Thus, we omit them.

We could have shown examples where the point c is different from 0, but again the expressions
are huge and they do not contribute to give more clarity to the theoretical results.
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