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Olive cropshavebecomeastrategic sector inAndalusia, Spain,
providing an element of social cohesion and territorialman-
agement, but identifiedasvulnerableunderClimateChange.
Their great socio-economic importance makes the mitiga-
tion of Climate Change effects an important strategy. The
main contribution of this paper is to show the application
of Bayesian networks into Climate Change assessment us-
ing the evaluation of its impact over olive system in Andalu-
sia. Both classification and regression models were learnt
and validated to predict the potential olive grove distribu-
tion under an IPCC scenario. A lower error rate was ob-
tained for the regression problem compared to classifica-
tion. Results predict Climate Change will lead to changes
into the territorial distribution of olive crops, with a move-
ment from the river valley to the uplands due to the impact
of the predicted increase in temperatures.

Recommendations for ResourceManagers
• Bayesian networks are a powerful tool that allowdealing
with both discrete and continuous data. However, if con-
tinuous data is available in order to retrieve all statistical
information from them, discretization process should be
avoided and original continuous data used for modeling
purpose.

• Olive cropping area follows an altitudinal gradient from
the river bed to the mountainous ranges. The minimum
temperature limits the establishment of this crop over
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certain altitude.
• Under the scenario ofClimateChange the altitudinal gra-
dient is lost and themainexpanseofolive grovesbecomes
fragmented into smaller patches. Besides, mountainous
areaswould reachoptimal conditions forolivegrowthdue
to the increase in temperatures.

K E YWORD S
Agriculture systems, Classification, naïve Bayes, Regression, Tree
Augmented naïve Bayes

1 | INTRODUCTION
Spanish agriculture was characterised by diverse and extensive croplands, with a significant proportion of rainfed ce-
real crops (Sánchez-Martínez et al., 2011). Olive trees (Olea europaea L.) are one of the oldest domesticated crops
which best adapted to the Spanish climate. Their ability to grow under both dry and drought conditions, meant that
olive cropping became an important sector in Spain (Tanasijevic et al., 2014). However, during the 1970s, the fall in
olive oil prices made olive cropping much less profitable and a more problematic activity, which drove people to aban-
don it. However, at the beginning of the nineties, the European laws and grants arising from the Common Agricultural
Policy (CAP) encouraged Spanish farmers to maintain and even to increase the surface area and productivity of olive
groves. Under these new circumstances, olive cropping became a strategic sector in Spain, accounting for 51% of
the European olive crop surface area (Commission, 2011). The autonomous region of Andalusia - particularly Jaén
Province - is one of the areas that receivedmost grants. According to theManagement Plan forOlive Crops in Andalu-
sia (PDOA, 2015), olives comprise the most symbolic and representative sector in this region with more than 1. 52
million hectares, producing over 75% of Spain’s olive oil (Taguas et al., 2015). From the economic point of view, olive
exploitation is the agricultural sector that providesmost employment, with between 100 and 350 thousand labourers
per year (PDOA, 2015). Thus, olive crops comprise an important agriculture sector in Andalusia and configure the
so-called comarcas olivareras (open landscapes of olive groves), where both social and natural structures are highly con-
ditioned by this crop. It means that olive crops have provided an element of social cohesion, territorial management,
employment andwealth generation, while providing society with ecosystem services, such as cultural identity, carbon
sequestration and food providing (PDOA, 2015).

The Intergovernmental Panel on Climate Change (IPCC) predicts significant changes in temperature and rainfall
patterns in Andalusia, with an increase in the number and force of extreme events (storms and droughts) (Mendez-
Jimenez, 2012; Solomon et al., 2007). These changes would potentially have an impact on the distribution of several
species, leading to changes in their spatial patterns as optimal conditions relocate. Accordingly, the agriculture sector
has been identified as one of the most vulnerable sectors in Andalusia under climatic change. In the case of olive crop-
ping, its huge socio-economic importancemakesmitigation of any impacts of climatic change an important strategy. In
order to implement anymitigation strategy, climate change impacts firstly need to be clearly known, and this is where
statistical modeling becomes crucial.

Climate changemodeling approaches are becoming indispensable as a tool for helpingmanagement plans and pol-
itics to mitigate their effects (Niggol Seo, 2016; Schliep et al., 2015). However, most of the papers related with olive
orchards modelling are mainly focused on their effect over soil moisture or soil erosion and, therefore, over olive pro-
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ductivity (Viola et al., 2013; García-Ruíz, 2010). In this sense, Viola et al. (2014) develop a cropmodel divided into two
parts, the first for estimating evapotranspiration and assimilation in well-watered conditions whilst the second aimed
at reproducing water-stressed conditions. Once the model was calibrated and validated, it was applied to forecast
the impact of three scenarios of climate change in a region of Southern Italy. In a similar way, dos Santos et al. (2017)
evaluate the impact of climate projections on climatological water balance for olive orchard. Dhiab et al. (2017) use
a partial least squares regression method in which olive output is the dependent variable and meteorological and aer-
obiological information are the independent variables for forecasting the extension of olive crop in Tunisia. Morales
et al. (2016) model is more focused on the olive production with a three-dimensional model of canopy photosynthesis
and radiation absorption fromwhich simulations about Climate Changewere carried out.

Most of these papers are based on deterministic models (Taguas et al., 2017; Militino et al., 2006). Here, we pro-
posed the use of a probabilistic based model. Bayesian networks (BNs) have been defined in recent decades as pow-
erful tools capable of dealing with uncertainty in real-life problems (Quentin Grafton, 2017; Abbal et al., 2016; Phan
et al., 2016; Aguilera et al., 2011; Smith et al., 2011). In comparison with other fields, applications in environmental
sciences and ecology are still scarce, though some examples of climatic change modelling can be found (Franco et al.,
2016;Molina et al., 2013). According to the literature, BNs have been developed to deal with three types of problems:
characterisation, classification and regression; but most studies have focused just on characterisation whilst BNs clas-
sifiers and BN-based regression, remain scarcely applied (Ropero, 2016).

The aim of this paper is to explore the use of BNs in the assessment of the impact of Climate Change on the extent
of olive cropping in Andalusia, Spain. This paper is organised as follows: Section 2 defines and explains the concept
of Bayesian networks and their use for classification and regression problems, and the inference process. Section 3
describes the methodology used, considering model learning, validation and scenarios of Climatic Change. Section 4
shows the results obtained and the predictions from the Climatic Change scenarios. Finally, Section 5 draws the con-
clusions obtained.

2 | BAYESIAN NETWORKS

Bayesian networks (BNs) are defined as a statistical multivariatemodel for a set of variablesX = {X1, . . . , Xn}. They
are composed by two components: i) the qualitative part, a direct acyclic graph in which each vertex represents one
of the variables, linked by an edge which indicates the existence of statistical dependence between them; and ii) the
quantitative part as the conditional probability distribution for each variable Xi, i = 1, . . . , n, given its parents in
the graph (pa(xi)) expressed in Conditional Probability Tables (CPTs) (in the case of discrete variables) or probability
functions (for continuous variables).

The qualitative part allows BN models to be easily understood by experts in other fields who are unfamiliar with
the model’s mathematical context. Thus, experts and stakeholders can play an important part in the model learning
process by identifying relationships between the variables, giving values for the CPTs or even refining the structure
previously learnt from data (Aguilera et al., 2011).

This structure also allows that, with nomathematical calculation involved, the variable(s) that are relevant (or not)
for a certainonecanbeknown (Pearl, 1988), andhelp to simplify the joint probability distribution (JPD)of thevariables
necessary to specify themodel. Thus, BNs provide a compact representation of the JPD over all the variables, defined
as the product of the conditional distributions attached to each node, so that
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p(x1, . . . , xn) =

n∏
i=1

p(xi | pa(xi)). (1)

where pa(xi) is the set of parents of variable xi according to the structure of the directed acyclic graph.
BNs were originally developed for discrete variables, but real life problems require both continuous and discrete

(hybrid) data to be simultaneously included in themodelling processes. This necessity has brought about the proposal
of newmodels for dealing with hybrid data in BNs. One of these models is theMixture of Truncated Exponentialmodels
(MTEs), proposed by Moral et al. (2001) and developed in detail in Rumí (2003). Similar to discretization methods,
through MTE models the range of the variable is divided into a set of intervals, in each of them the distribution is
approximated by an exponential function, rather than a constant value like in discretization (for a detail information
about MTE see Cobb et al. (2007a); Rumí and Salmerón (2007); Rumí et al. (2006)). This approximation allows both
discrete and continuous variables to be included simultaneously in the model with no changes into the methodology
followed (Ropero et al., 2014). In environmental science, BNs based onMTEmodels have been successfully applied for
regression (Maldonado et al., 2016a), classification (Maldonado et al., 2016b), characterisation (Ropero et al., 2016),
and even dynamicmodels (Ropero et al., 2017).

Defined in Moral et al. (2001), MTE models divide the value range of a continuous variable into several intervals,
and approximate each of themby an exponential function rather than by a constant (Rumí, 2003), since they are closed
under restriction, marginalization and combination. It is able to deal with any distribution function, due to of its high
fitting power, which makes it appropriate to deal with hybrid data. In the same way as in discretisation, the more
intervals used to divide the domain of the continuous variables, the better theMTEmodel accuracy, but also themore
complex. Furthermore, in the case ofMTEs, usingmore exponential terms within each interval substantially improves
the fit to the real model, but, again, more complexity is assumed. For more details about learning and inference tasks
inMTEmodels, see Rumí et al. (2006); Rumí and Salmerón (2007) and Cobb et al. (2007b).

2.1 | Classification based on Bayesian networks
A classification problem, in which a discrete class variable C exists, and a set of continuous or discrete explanatory
variables (called features)X1, . . . , Xn, can be expressed as a BN and an individual with observed features x1, . . . , xn

will be classified as belonging to class c∗ obtained as

c∗ = arg maxc∈ΩC
f(c | x1, . . . , xn), (2)

whereΩC denotes the set of possible values ofC .
If we consider that f(c | x1, . . . , xn) is proportional to f(c) × f(x1, . . . , xn | c), the specification of an n di-

mensional distribution forX1, . . . , Xn given C is required in order to solve the classification problem, which implies
a high computational cost, since the number of parameters necessary to specify a joint distribution is exponential to
the number of variables. However, using the factorisation determined by the network (Eq. 1), this cost can be broadly
reduced.
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2.2 | Regression based on Bayesian networks
In the case of regression, the idea is similar to classification problems but the so-called class variable is nowcontinuous.
A BN can be used as a regression model for prediction purposes if it contains a continuous response variable Y and
a set of discrete and/or continuous feature variables X1, . . . , Xn. Thus, in order to predict the value for Y from k

observed features, with k ≤ n, the conditional density

f(y | x1, . . . , xn), (3)

is computed, and a numerical prediction for Y is given1 using the expected value as follows:

ŷ = g(x1, . . . , xn) = E[Y | x1, . . . , xn] =

∫
ΩY

yf(y | x1, . . . , xn)dy, (4)

whereΩY represents the domain of Y .
Note that f(y | x1, . . . , xn) is proportional to f(y) × f(x1, . . . , xn | y), and therefore, solving the regression

problemwould require a distribution to be specified over the n variables given Y . The associated computational cost
can be very high. However, using the factorisation determined by the network, the cost can be again broadly reduced.

2.3 | Constrained structures for classification and regression through BNs
In both classification and regression problems, the aim of the model is to predict, as accurately as possible, the results
of the class/response variable (olive crops in our case) rather thanproperly estimate theparameters of the relationship
between all variables, so that the so-called constrained or fixed structure is developed. The extreme case is the naïve
Bayes (NB) structure (Duda et al., 2001; Friedman et al., 1997), which consists of a Bayesian networkwith a single root
node and a set of attributes having only the class/response variable as a parent.

Its name comes from the naive assumption that feature variables X1, . . . , Xn are assumed to be independent
given the class/response variable. This strong conditional independence assumption is somehow compensated by the
reduction of the number of parameters to be estimated from data, since in this case, it holds that

f(c | x1, . . . , xn) ∝ f(c)
n∏

i=1

f(xi | c), (5)

which means that, instead of one n-dimensional conditional distribution, n one-dimensional conditional distributions
are estimated. Despite this extreme independence assumption, the results are amazing inmany cases, and it is for this
reason that it has become themost widely used Bayesian classifier in the literature.

A stepbeyond is to alloweach feature to haveonemoreparent beside the response/class variable, so configuring a
Tree Augmented naïve Bayes. For each dataset there are several possible TAN structures, so theway to choose between
them is to learn a maximum weight spanning tree structure with feature variables using the mutual information with
respect to the response/class variable as the weight of each edge (Chow and Liu, 1968), defined as

1Note that in the BN framework, a prediction ofY can be obtained evenwhen some of the variables are not observed.
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I(Xi, Xj | C) =
∑

Xi,Xj ,C

p(xi, xj | c) log
p(xi, xj | c)

p(xi | c)p(xj | c)
(6)

These extra relationships are not based on an environmental interpretation but on the amount of information
they sharewith the response/class variable. Finally, relationships from the response/class to each feature are included.
In general, the increased complexity, in both the structure and the number of parameters results in richer and more
accuratemodels (Friedman et al., 1997).

2.4 | Inference in Bayesian networks
Once themodel is learnt and validated, BNs allow new information, or evidence, to be included into themodel, through
the so-called inference process or probabilistic propagation. If we denote the set of evidenced variables as E, and its value
as e, then the inference process consists of calculating the posterior distribution p(xi|e), for each variable of interest
Xi /∈ E:

p(xi|e) =
p(xi, e)
p(e) ∝ p(xi, e), (7)

since p(e) is constant for allXi /∈ E. So, this process can be carried out computing and normalising the marginal
probabilities p(xi, e), in the following way:

p(xi, e) =
∑

x/∈{xi,e}
pe(x1, . . . , xn), (8)

wherepe(x1, . . . , xn) is theprobability functionobtained fromreplacing inp(x1, . . . , xn) the evidencedvariables
E by their values e.

3 | METHODOLOGY

The cover area by olive crops in Andalusia was predicted through BNs according to a set of land uses and climatic vari-
ables. In the literature, it is common to change continuous into discrete variable in order to deal with a classification
problem rather than a regression sincemost available software are not able to dealwith continuous or hybrid variables
(Aguilera et al., 2011). In order to compare both approximations, once regression model was learnt with the original
continuous data, the olive crops variable was discretised and a classification model built. Both techniques were com-
pared in terms of error rate. Lastly, a scenario of climatic change with two horizons, 2040 and 2100, was included and
the evolution of olive orchard was evaluated.
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F IGURE 1 Location of Andalusia in southern Spain and the extent of olive cropping.

3.1 | Study area
Andalusia is located in southern Spain (Figure 1) forming the second largest autonomous region (covering more than
87.000km2) and themost densely populated according to data from the National Statistics Institute 2.

From the climatic point of view, Andalusia presents a Mediterranean climate, characterised by mild annual tem-
peratures and an irregular rainfall pattern, with periods of drought followed by strong storm events. This irregularity
is also territorial, with stark differences between inland and coastal Andalusia. Whilst coastal areas, mainly in the
southeast, are characterised by semi-arid conditions, inland Andalusia is more humid.

Inland Andalusia enclosed the so-called Baetic depression, with the Guadalquivir river basin area. Two extensive
mountainous ranges - the Sierra Morena mountain range and the Baetic system- separate this depression from the
coastal and north area of Andalusia. This river valley plain presents optimum conditions for agricultural settlement,
mainly rainfed herbaceous and woody crops (olive is the most common crop). In this area, more than 50% of territory
is used for agriculture. In addition, its population has close links to agriculture, through direct employment (in the
primary economic sector), and through indirect employment (manufacturing industries).

3.2 | Data collection & pre-processing
Data were collected from the Andalusian Regional Environmental Information Network 3, from the Regional Gover-
ment of Andalusia. Data from different thematic maps (climate and land uses) were incorporated into the geographic
information system ArcGIS v.9.3. For all datasets used, the coordinate system is based on the European Terrestrial
Reference System 1989 (ETRS89). A 5x5 km grid cell was used for obtaining the information for all variables, giving a
total of 3630 observations.

Climatic information was obtained from raster maps based on the 1971-2000 time series. For each cell, values of
2http://www.ine.es
3http://www.juntadeandalucia.es/medioambiente/site/rediam
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TABLE 1 Minimum, maximum andmean values for all variables collected. PET, Potential Evapotranspiration.

Variable Min Max Mean
PET 0 962 832.0

Average Temperature 0 19.03 15.94

Average Rainfall 0 1753 567

Herbaceous Crops 0 100 17.87

Woody Crops 0 100 4.1

Forest 0 100 48.3

Water Surface 0 100 2.78

Bared Areas 0 100 3.17

Olive Crops 0 100 16.37

Potential Evapotranspiration (PET, expressed in mm), Annual Average Temperature (◦C) and Annual Average Rainfall
(mm) were collected.

Land use information was obtained from the SIOSE 2011 4. Initially, a total of 138 different land uses were rep-
resented on the thematic map. This number was reduced into 10 by merging them using similarity criteria (i.e., all
different types of herbaceous crops were merged into one unique variable: Herbaceous Crops). Besides, those land
uses occupying less than 1% of the total surface were removed, as well those variables for which more than 75% of
data were equal to 0. Finally, a total of six land use variables were preserved and expressed as the percentage of the
cell occupied by this land use.

All variables collected were continuous, and Table 1 summarises their main statistics. The surface area of olive
groves was expressed in the continuous variable Olive crops, which is the variable of interest in our models. In order
to compare against regression, Olive crops was discretised into five intervals for the classification model: 0-Absence;
1-Less than 25%; 2- Between 25-50%; 3- Between 50-75%; 4-More than 75% land cover.

3.3 | Models Learning
The objective of this paper is to predict, as accurately as possible, the potential cover of olive crops in Andalusia, which
is originally a continuous variable. It means a regression problem is faced. Model learning was addressed using Elvira
software (Elvira-Consortium,2002), basedonMTEmodels, and twodifferent structureswere tested, aNBandaTAN 5.
A 5-parameter MTE distribution was fitted for every probability distribution due its ability ti fit the most common
distributions accurately while bothmodel complexity and the number of parameters to be estimated remains low.

In order to compare the performance of this continuous model against classification methods, a BN classifier was
learnt using the discretised version of the Olive crops variable, whilst all features remain continuous. Again, both NB
and TAN structures were used, so that the comparison is more reliable since themodel structure remains constrained.

4http://www.siose.es
5The software and datasets are available as supplementarymaterial
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Model parameters were again estimated using Elvira software (Elvira-Consortium, 2002) and based on 5-parameter
MTEmodels.

So, a total of four BNs models were obtained: two of these treat the Olive crops variable as continuous - NB for
regression (NBr) and TAN for regression (TANr) - while the other two treat the Olive crops variable as discrete - NB
classifier (NBc) and TAN classifier (TANc).

3.4 | Models Validation
Models obtained were tested through k-fold cross validation (Stone, 1974). This is a commonly used technique in
Artificial Intelligence formodel validation that is basedon theholdoutmethod to checkhowpredictive amodel iswhen
confrontedwith data that have not been previously used for learning. Data is separated into two complementary sets,
one for learning (Dl) andone for testing (Dt), and the rootmean square error (rmse) of amodel built fromDl according
toDt was estimated using the following equation:

rmse =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (9)

To reduce variability, data is initially divided into k subsets, and the method is repeated k times. Each time, one of
the k subsets is used asDt and the other k-1 subsets are combined to formDl. Finally, the average error of k trials is
computed. In this paper, kwas set to 10.

Equation 9 was developed for continuous variables. So, in order to compare regression model with the classifica-
tion, the rmse equation needs to be re-computed for the discrete version as:

rmse =

√√√√ 1

n

n∑
i=1

(yi − ca(ĉi))2 , (10)

where ca(ĉi) is the class average for the predicted category after propagating the records in the discrete case, and
yi is the actual continuous value for the response variable. Note that, once the data are discretised, the original contin-
uous values are still necessary to compute this version of the rmse. So that, a 10-fold cross validation was computed
for both regression and classificationmodels.

3.5 | Scenarios of Climatic Change
In this paper, the aim is to predict how the land use of olive crops might change as a consequence of Climatic Change
through an inference process.

The IPCC considers two main scenarios of Climatic Change for Andalusia: A2 and B2 (Mendez-Jimenez, 2012).
The A2 scenario describes a heterogeneous world, where self-reliance and preservation of local identity are key. Pop-
ulation increases continuously and economic development is based on national decisions (regionally oriented), whilst
per capita economic growth and technological change are fragmented and slow (Gasca, 2014; Solomon et al., 2007).
By contrast, the B2 scenario describes a situation in which economic development is not important and the environ-
mental and socio-economic problems are solved at local level. This scenario implies a slow population increase (Gasca,
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2014; Solomon et al., 2007). In our study, we focus on the A2 scenario, since we consider it closer to the current trend
of socio-ecological change.

Taking the information provided by the IPCC, both national and regional governments have developed climate
change scenarios for their territory for a set of variables. In Andalusia, the Environmental Information Network (RE-
DIAM) provides information as a shapefile, with prediction for a set of climatic and land use variables according to the
Assessment of the International Panel on Climate Change (Stocker et al., 2013). By thismeans, the information for the
evidences was collected from the REDIAM for only climatic variables, which means just three variables were used as
evidences (Rainfall, Temperature and PET).

One advantage of BNs is that it is not necessary to include information for all feature variables in order to be able
to make the prediction (Ropero et al., 2014). Rather, only new information is included as evidences in those variables
for which we have knowledge about their change. In our case, evidences were included in those variables we have
information about, i.e. the climatic variables and propagated to predict the most probable state of the variable Olive
crops.

4 | RESULTS AND DISCUSSION
4.1 | Models comparison
Table 2 shows a comparison between BNs and traditional methodologies in terms of their ability to include both con-
tinuous and discrete variables simultaneously, dealing with regression and classification problems, and provide inter-
pretable results and a quality output. BNs are able to deal with these five items, and besides, provide additional advan-
tages. Firstly, it is possible to establish specific types of relationships between each feature and the response variable
( i.e., linear relationships in the case of Multi Linear Regression), and also, no relationships among the features are of-
ten possible. By contrast, BN models allow relationships between features to be included with the aim of improving
the response variable prediction. In our paper, only constrained structures have been built, but general networks can
be used in which the relationships between features do not respond only to optimise the parameters of the response
variable, but also to include environmental knowledge. Also, other types of relationships can be modelled in a BN not
only linear relationships. Figure 2(a) shows the type of relationship identified with the regression model with a BN
with a TAN structure. These relationships were identified by including several values for each feature and obtaining
the value of the probability distribution. In order to summarise the evolution of the probability function when each
feature is increasing, the mean of the distribution was calculated and represented. In this case, BNs identify not only
direct (Figure 2(a) PET variable representswith a +) and inverse (Figure 2(a)Herbaceous Crops variable representswith
a -) relationships, but also those variables that present a complex relationshipwithOlive crops (Figure 2(a)Average Rain-
fall variable epresents with a +-). Figure 2 b) shows the relationship between Average Rainfall and Olive Crops. At the
beginning of the range, an increase inAverage Rainfall leads to an increase inOlive Crops. Then, at the fourth point of the
Rainfall variable distribution which is equivalent to the value 526mm, the relationship changes and further increase in
Average Rainfallprovokes a decrease inOlive Crops. Fromanenvironmental point of view, olivesflourish in not so humid
areas; thus, while an initial increase in rainfall would improve conditions for growth, above a certain rainfall threshold,
the conditions become sub-optimal for olive crops again.

Another important advantage of BNs is that not all feature variables need to be evidenced in order to predict the
response variable. In the case of traditional regression methodologies, if new information about a subset of features
needs to be included into the model, the remaining unknown features have to be set with a value (i.e., the mean or the
initial value) which implies non-real situations are modeled and some noise is included. In the case of BNs, a scenario
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Variable Relation BNs
PET +

Average Temperature +-
Average Rainfall +-
Herbaceous Crops -
Woody Crops -
Forest -

Water Surface +-
Bared Areas +-

(a) Type of relationship
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(b) Relationship Rainfall - Olive crops

F IGURE 2 Type of relationships identified by BNs based regression with a TAN structure (a). + means a direct
relationship; - means an inverse relationship; +- means a complex relationship. An example of relationships between a
feature (Average Rainfall variable) and theOlive Crops variable (b) in which total of 12 points (minimum, maximum and
10 equidistant points) were included into the feature and themean of the posterior probability distribution forOlive
Crops at each point, was calculated.
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TABLE 2 Comparisons between Bayesian networks and traditional methodologies. Y expresses that this method
is able to deal appropriately with this item, whilst X expresses this method is not. Quality output refers to the
information contained in the output i.e., if it returns only a value or a distribution of values, which is more informative

Method Discrete/Continuous Regression Classification Interpretability Quality output
Bayesian networks Y Y Y Y Y
Linear regression X Y X Y Y
Regression trees Y Y X Y X
Classification trees Y X Y Y X
Logistic regression X X Y X Y
Neural network X X Y X X

TABLE 3 Rootmean square error for the 4 BNsmodels: NB classifier (NBc), TAN classifier (TANc), NB for
regression (NBr) and TAN for regression (TANr); and the accuracy of BNs classifiers.

Model rmse Accuracy
NBr 21.67 -
TANr 19.64 -
NBc 35.80 0.507

TANc 31.06 0.549

of change can be included to take into account a subset of feature variables, and keeping the rest as non-evidenced
variables, rather than including an estimate (Ropero et al., 2014). In our case, information about just three features
(over 8) were included as evidences, and results were properly obtained. This is why we have decided not to compare
against other traditional methodologies.

Table3 shows the rmsevalues for theBNmodels,which aremainly used in this paper as away to comparedifferent
models in an appropriate way, rather than to measure the goodness of the models. Firstly, regression models provide
smaller errors than classification. Data discretisation is the most commonly used solution when dealing with continu-
ous data. Even though when several approaches have been proposed for dealing with hybrid or continuous data, the
literature shows that a high percentage of models continue discretising the data (Ropero, 2016; Aguilera et al., 2011).
According to our results, discretising only the class variable causes rmse to increase from 19.64 to 31.06 in the case of
the TAN structure, and from 21.67 to 35.80 for theNB case. Thus, it is demonstrated that dealingwith the original data
provides more accurate results. Besides, In Table 3 the accuracy of both BN classifiers are also shown, and results are
below 0.6, which implies less than 60% of results predicted by the model agree with the real data (used for validation
purpose).

Finally, Figures 3(a) and 3(b) show the NB and TAN structures obtained. In terms of complexity, measured as
number of links, NB is simpler (8 links, between Olive crops variable and the features) than TAN (15 links, between
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Olive crops variable and each feature, but also among the features). Besides, the computational time was calculated
using a MacBook Air, 1.6 GHz Intel Core i5. RAM 4GB 1600 MHz DDR3, and again, NB is faster (11min 42sec) than
TAN (4h21min). Despite this results, TANprovide a smaller error in both classification and regressionmodels (Table 3).
This difference is smaller in the case of regression. Including relationships between features, despite the increase in
model complexity and computational cost, means that themodel is better able to predict the response variable.

Olive

Forest Bared areas WaterWoody C.Herb.C.PET R T
(a) NB

Olive

PET

T
R

Woody C.
Herb.C.

ForestWater Bared areas
(b) TAN

F IGURE 3 Regressionmodels for olive crops based on both NB and TAN structure. T., Temperature; R., Rainfall;
PET, Potential Evapotranspiration; Herb. herbaceous.; C. Crops.

4.2 | Evolution of olive crops in Andalusia under Climate Change
ABayesian networkmodel for regression based on a TAN structure was selected, and scenarios of climatic change for
2040 and 2100 horizons included. Figure 4 shows the results a priori, before any scenario of change, and the predic-
tions for 2040 and 2100 horizons.

According to the Technical Report on Andalusian Climatic Change Adaptation in the Agriculture Sector (Mendez-
Jimenez, 2012), optimal conditions for olive crops are characterised by a warm mean annual temperature (16-22 ◦C)
and 650 mm of mean annual rainfall. However, the main limiting factors are the maximum summer temperatures
(above 35-40 ◦C photosynthesis is affected) and sudden falls in the minimum temperature during certain moment
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of the cycle (i.e., around 0 ◦C during the flowering period can provoke irreparable damage). In terms of rainfall, even
though olives are quite drought-resistant, when annual rainfall is less than 200 mm, production is drastically reduced.
Also, rapid and sudden changes in temperature or rainfall can have important consequences on olive production if they
take place during the flowering or sprouting period.

Results a priori (Figure 4(a)) show the (current) distribution of olive crops in Andalusia. A gradient of color shows
the extent of olive crops per grid cell. The main area of olive groves, corresponds to the Guadalquivir river plain. This
is Andalusian’s largest river catchment, and it has a strong agricultural character. Through history, a warm climate and
rich soils have encouraged agricultural settlement here. FurtherWest, olive cropping decreases and around the river
mouth it covers less than 30 % of land surface. In this area rainfed crops could be replaced by crops which necessities
fit better with the new environmental conditions. By contrast, in southeastern Andalusia, the scarcity of olive groves
is explained by two factors: the semi-arid conditions, and the steep relief. This area is characterised by an abrupt
mountain relief with peaks rising tomore than 2000m.a.s.l.; the climate is semi-arid, mostmarkedly so in the so-called
Desert of Tabernas. However, over recent decades, in this desert area, significant olive cropping has been establish
thanks to the use of groundwater irrigation systems and stable climatic conditions. Finally, the areas marked in red in
Figure 4(a), correspond to the mountainous landscapes in Andalusia. In these areas, the minimum temperature limits
the establishment of this mediterranean crop.

Both the 2040 and 2100 horizons were evaluated under the A2 scenario of Climatic Change. Predictions were
madeusing aBNregressionmodel basedonaTANstructure. Theypredict significant changes in olive cropdistribution
in Andalusia.

In comparison with a priori, under the 2040 horizon (Figure 4(b)) the main area of olive crops is now fragmented
into several patches Besides, the Guadalquivir plain becomes sub-optimal to support its a priori cover of olive crops,
and predict less than 30% cover. This change is driven by the increase in annual average temperature in this area
provoked by more intense heatwaves and a higher maximum temperatures in summer. This 2040 scenario includes
warmer summers rising tomore than 40 degrees. This would provoke a reduction in photosynthesis and losses in olive
production. In the same way, mountainous areas would suffer increased temperatures, but in this case the situation
is possitive for Olive crops: fewer frosts and a higher minimum temperature means these areas would reach optimal
conditions for olive growth. Comparing a priori and 2040 maps, the extension of olive crops increase from less than
10% to between 10 and 30%.

This relocation from the river plain to the uplands is even more emphatic under the 2100 horizon (Figure 4(c)).
Under the 2100 scenario, only a few cells are predicted to have olive groves covering less than 10% and these are
mainly located in the south-east. However, compared to the 2040 horizon, the continued increase in temperature
means several areas change from 40-50% cover ofOlive crops to 30-40% of olive extension.

These results are not deterministic since they are based on probabilistic approach. The value of each cell is repre-
sented as a probability function rather than an absolute value of extension. From this probability distribution a set of
statistics andmeasurements can be obtained. In this paper, for obtaining the maps of Figure 4, the mean of the proba-
bility distribution was obtained. So, the uncertainty enclosed in the results depends on the reliability of the evidences
included into themodel and the robustness of themodel with respect to the rest of variables in the horizon studied.

5 | CONCLUSIONS
Olive cropping has becomeone of themost important agricultural activities in Andalusia. Its role in the socio-economy
means this crop is the basis of a complex agroecosystem. Olive production is the main economic activity in some parts
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(a) A priori

(b) 2040

(c) 2100

F IGURE 4 Percentage surface area occupied by olive crops in Andalusia according to results from regression
based on BNsmodel with a TAN structure
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of Andalusia and potential changes in its distributionwould affect its annual production and impact the socioeconomic
structure of these areas.

According to our results, the a priori situation confirms a significant area of olive production near theGuadalquivir
river plain and a limit of olive groves marked by altitude. In the mountains, the lower temperatures means that olive
crops are not currently planted, and there is a gradual transition from upland to lowland planting pattern. However,
this altitudinal structure is lost under the A2 scenario. The increase of temperature and decrease of rainfall means
that olive planting would be relocated from the valley plain to mountainous areas. This territorial change would have
an impact on the local socio-economy. Nowadays, a significant proportion of the population depend, directly or indi-
rectly, on olive production. In these areas of olive crops, the reduction of their extension and productivity would imply
a decrease in employment rates and richness, which encourage the movement of the population. Besides, economic
sector should be diversified in order to adapt to this change and not to depend only on one agriculture activity. The im-
pact of Climatic Change on the distribution of this crop in turn implies a significant potential impact on socioeconomic
structure.

Bayesian networks have been extensively applied into several scientific fields to evaluate the impact of new con-
ditions on the system being modelled. In environmental sciences, applications of BNs to study Global Environmen-
tal Change and Climatic Change impacts are still scarce despite their advantages over classical methodologies. In
the present application, data available were totally continuous and no discretization method was applied in order to
fit with the software requirements, but for comparing a totally continuous against a hybrid model. Thus, regression
and classification models were obtained and results shows regression models give a smaller error than classification
ones.Besides, themethodologyappliedwasnotmodified inorder todealwithboth continuousanddiscrete/continuous
or hybrid data, which is an advantage over other traditional methods. Another advantage of BNs is that relationships
between each feature and the goal variable can be studied in detail. In this paper, the nature of the relationships be-
tween each feature and the goal variable Olive crops were studied and both positive and negative relations, but also,
more complex ones, were found. Finally, in order to perform an accurate and real scenario of change, BNs allow new
information to be included in just those variables for which well-known information is available, climate variables in
our case. This means that the remaining variables remain as non-evidenced and no estimates aremade of their values.

This paper presents an initial study on the impact of Climatic Change on olive cropping, which included only cli-
matic and land use variables. Due to their great importance in the socioeconomic systems of Andalusia, these models
should be extended to include socioeconomic information in order to provide greater focus in that field.
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