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Abstract
National and international technical reports have demonstrated the increase of extreme event occurrences which becomes

more dangerous in coastal areas due to their higher population density. In Spain, flood and storm events are the main

reasons for compensation according to the National Insurance Consortium. The aim of this paper is to model the risk of

flooding in a Mediterranean catchment in the South of Spain. A hybrid dynamic object-oriented Bayesian network (OOBN)

was learnt based on mixture of truncated exponential models, a scenario of rainfall event was included, and the final model

was validated. OOBN structure allows the catchment to be divided into five different units and models each of them

independently. It transforms a complex problem into a simple and easily interpretable model. Results show that the model

is able to accurately watch the evolution of river level, by predicting its increase and the time the river needs to recover

normality, which can be defined as the river resilience.

Keywords Flood risk assessment � Dynamic Bayesian networks � Object-oriented Bayesian networks � Mediterranean

watershed

1 Introduction

In the last decade, both national and international technical

reports have demonstrated the increase of extreme event

occurrences (AEMET 2008). In Europe, this has become

more evident with the last series of extreme storm like

Klaus (2009), Cyntia (2010) or the storm seasons which

devastated UK in 2013–2014. Nowadays, there is an

increased concern about the relationship between extreme

events, flooding risk and climate change (Paprotny and

Morales-Napoles 2017), which becomes more dangerous in

coastal areas due to their higher population density (Bolle

et al. 2018).

In a national context, the Spanish Meteorological

Agency (AEMET) has predicted a noticeable decrease in

the annual rainfall values for the twenty-first century.

However, rainfall events will be more extreme and tor-

rential (AEMET 2008). In the collective memory, we

found the 2017’s winter–spring seasons with a series of

heavy storms which provoked extensive damage in the

Andalusian coastal area. According to the study of the

National Insurance Consortium (CCS 2017), in Spain,

flood and storm events are the main reasons for compen-

sation. In the temporal series of 1971–2016, a total of

48.7% of files and a 69.9% of total costs have flood damage

as a cause, while those provoked by storms (including

damage for rain and snow) conform the 45% of files and

the 16% of total costs.

With the objective of reducing the risk of damage for

both infrastructures and humans well-being, there is a

necessity of creating robust tools to predict the behavior of

river levels as an initial step to establish the so-called Alert
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Systems. These systems configure a management tool able

to provide robust information about the risk of flooding

with time enough to adopt emergency security measures

(Bolle et al. 2018). These constitute a part of the so-called

Watershed Management Plan, defined as a set of processes,

tools and systems with the sustainable development as a

common objective to optimize a balance between socioe-

conomic benefits and ecological sustainability (Keshtkar

et al. 2013). Thus, an integrated flood risk management is

crucial to determine the strategies to be followed, mainly in

those areas with a high human density, like coastal areas

(Jager et al. 2018).

Risk of flooding has been defined as the probability of

an event occurrence and the negative consequences that

this event can provoke in human health, cultural heritage,

economic activity and environment (Commission 2007).

One of the main issues to be solved is how different

modeling approaches deal with uncertainty (Keshtkar et al.

2013). Besides, large hydrological dataset is often difficult

to deal with and needs powerful statistic tools able to

manage them (Papacharalampous et al. 2019). For that

reason, there is a growing interest in terms like adaptive

management, probability or probabilistic management, and

in methodologies which allow uncertainty to be properly

dealt with.

Defined at the beginning of the nineties (Pearl 1988),

Bayesian networks (BNs) are probabilistic graphical

models included in the artificial intelligence and data

mining family (Koski and Noble 2011). They have been

successfully applied in risk and reliability problems

(Langseth et al. 2009) in which their versatility and

robustness allow BNs to include large datasets with a high

degree of complexity dealing with uncertainty, and even,

with spatial and temporal data (Marcot and Penman 2019;

Yu et al. 2017; Ropero 2016). Besides, thanks to their

intuitive structure, BNs have been included in management

systems where experts and stakeholders play an important

role (Zhu et al. 2018; Landuyt et al. 2013) configuring a

decision support systems in several fields (Chan et al.

2012) and forecasting models (Kim et al. 2018; Dlamini

2010). Because of these advantages, BNs have been

applied in risk assessment (Wang et al. 2016; Maldonado

et al. 2016) and natural hazards modeling (Malekmoham-

madi and Moghadam 2018), specially in flood risk

assessment (Paprotny and Morales-Napoles 2017).

However, modeling real-life problems often implies

facing with really complex systems. In order to deal with

these situations, a step beyond BNs is the development of

the so-called object-oriented Bayesian networks (OOBNs)

(Mortera et al. 2013; Langseth and Bangsø 2001). They

have the same advantages of BNs but also, the ability to

model really complex systems by dividing the main prob-

lem into sub-problems (sub-models). They have started to

be applied in risk studies (Liu et al. 2016a) and water

management field (Gine-Garriga et al. 2018), but neither in

environmental risk management, nor flooding risk

management.

The aim of this paper is to model the probability of

exceeding the river level, so that, risk of flooding becomes

highly probable. To achieve this goal, the behavior of a

Mediterranean catchment in the South of Spain was mod-

eled based on a dynamic object-oriented Bayesian network.

Section 2 explains in detail the theory behind both BNs and

OOBNs, and their adaptation to temporal data. Section 3

describes the methodology followed to model flood risk in

Guadalhorce, a Mediterranean watershed located in the

South of Spain. Section 4 shows the results obtained, and

finally, Sect. 5 draws the conclusions achieved and iden-

tifies future works.

2 Dynamic object-oriented Bayesian
networks

Bayesian networks (BNs) (Jensen and Nielsen 2007) are

defined as a statistical multivariate model for a set of

variables X ¼ fX1; . . .;Xng, and made up of two compo-

nents: i) the qualitative part, a direct acyclic graph in which

each vertex represents one of the variables (when two

vertices are linked by an edge, it indicates the existence of

statistical dependence between them); ii) the quantitative

part, a conditional probability distribution for each variable

Xi, i ¼ 1; . . .; n, given its parents in the graph (paðxiÞ)
expressed as conditional probability tables (CPTs) (in the

case of discrete variables) or probability functions (for

continuous variables).

The qualitative part allows BN models to be easily

understood by experts in other fields who are unfamiliar

with the model’s mathematical context. Thus, experts and

stakeholders can play an important role in the model

learning process, mostly identifying relationships between

variables and giving values for the CPTs or even refining

the structure previously learnt from data (Aguilera et al.

2011; Voinov and Bousquet 2010). This structure also

means that, with no mathematical calculation involved, the

variable that is relevant (or not) for a certain problem can

be known (Pearl 1988). That is, it simplifies the joint

probability distribution (JPD) of the variables required to

specify the model. Thus, BNs provide a compact repre-

sentation of the JPD over all the variables, defined as the

product of the conditional distributions attached to each

node, so that

pðx1; . . .; xnÞ ¼
Yn

i¼1

pðxi j paðxiÞÞ: ð1Þ
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BNs were originally developed for discrete variables, but

real-life problems often require continuous, or even both

continuous and discrete (hybrid) data to be included into

modeling processes. Initially, the Conditional Gaussian

(CG) model (Lauritzen 1992) was proposed to deal with

continuous data, but it requires data to follow a Multi-

variate Gaussian distribution which is not always fitted by

real-life environmental data. Besides, in the case of hybrid

data, CG imposes a set of topological restrictions in the

network that limit the structure of the model (Aguilera

et al. 2011). These limitations have encouraged the pro-

posal of new models for dealing with continuous and

hybrid data in BNs. One of these models is the mixture of

truncated exponential models (MTE). Defined in Moral

et al. (2001) and developed in detail in Rumı́ (2003), MTE

models were designed as an approach to include continu-

ous and discrete variables into BNs with no restriction on

the network structure. This approximation divides the

range of a continuous variable into several intervals, and

estimates each of them using a linear combination of

exponential functions rather than by a constant (Rumı́

2003). Moreover, since they are closed under restriction,

marginalization and combination MTE models are appro-

priate for performing inference. This model is able to

accurately approximate any theoretical distribution func-

tion because of its high fitting power. See Rumı́ et al.

(2006), Rumı́ and Salmerón (2007), Cobb et al. (2007) for

more information about it.

There are many other kinds of probabilistic graphical

models, some of which are described in Koller and Fried-

man (2009) including: variants of BNs, such as influence

diagrams (also called Bayesian decision networks), which

extend BNs with decision and utility nodes to support

decision making; dynamic Bayesian networks (DBNs),

which explicitly model changes in the system over time,

and object-oriented Bayesian networks (OOBNs), which

refer to a particular form of BN whose principles are based

on object-oriented philosophy. OOBNs are hierarchical and

compositional BNs which support incremental construction

and re-usability of sub-models. They provide a very pow-

erful representation to model particular types of problems,

where there is repetition of the same kind of elements.

A standard BN is made up of ordinary nodes, repre-

senting random variables. An OOBN class is made up of

both nodes and objects, which are instances of other clas-

ses. Thus, an object may encapsulate multiple sub-net-

works, giving a composite and hierarchical structure.

Objects are connected to other nodes via some of its own

ordinary nodes, called its interface nodes. The rest of the

nodes are not visible to the outside world, thus providing

so-called information hiding, another key concept. A class

can be thought of as a self-contained template for an

OOBN object, described by its name, its interface and its

hidden part. Finally, interface nodes are divided into input

nodes and output nodes. Input nodes are the root nodes

within an OOBN class, and when an object (instance) of

that class becomes part of another class, each input node

may be mapped to a single node (with the same state space)

in the encapsulating class. The output nodes are the only

nodes that may become parents of nodes in the encapsu-

lating class. Connections to and from an object must be

such that the underlying BN is still a directed acyclic

graph.

Both BNs and OOBNs can be used to obtain prediction

about the change of the system under some (future) sce-

narios, but the conclusions reached cannot be extrapolated

to a particular time, nor time series can be handled. For

these reasons, the extension of BNs, the so-called dynamic

Bayesian networks (DBNs) (Korb and Nicholson 2011),

has begun to be applied to face the new challenge of

including time in the model (Molina et al. 2013). The first

attempt to deal with time using BNs appeared in Provan

(1993), which proposed their use for modeling a generic

system in each time step, joining the BNs with links which

represent the transition from one time to the next one. They

were defined as (Nicholson and Flores 2011): A long-

established extension of BNs that can represent the evo-

lution of variables over time.

The term dynamic means the system is changing over

time, not that the network and the relations between vari-

ables change (Murphy 2002). For simplicity, it is assumed

that a DBN is a time-invariant model composed by a

sequence of identical BNs representing the system in each

time step, and a set of temporal links between variables in

the different time steps representing a temporal proba-

bilistic dependence between them (Pérez-Ramiréz and

Bouwer-Utne 2015).

In order to reduce the potential number of temporal

parents in the network, and also the computational cost, the

Markov assumption is followed (Murphy 2002). That is

that the state of the world at a particular time depends on

only a finite history of previous states. In the simplest case,

the current state of the system depends only on the previous

state, called a first-order Markov process. Given these

restrictions, a DBN can be represented with only two

consecutive time slices (time 0 and time 1) and the rela-

tionship between them. Only if necessary, the DBN can be

rolled out and more than two time slices would be

represented.

DBNs are still a scarcely used modeling approach in

environmental science, but preliminary applications show

powerful and promising results in real-life applications

(Yung et al. 2016).

Recently, a novel approach called extended OOBN

(EOOBN) has been presented (Liu et al. 2016a), where
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parameters in OOBNs may vary among the different

instantiations/objects of the network. The modeling

scheme proposed also includes the dynamic dimension.

This model has been successfully used for representing risk

assessment of flash floods (Liu et al. 2016b), which indi-

cates that this approach seems promising to the current

problem. However, this methodology is considerably dis-

tinct to our problem, because we deal with continuous

values and distributions, while the mentioned work dealt

with discrete values and CPTs. They share the capability to

change the conditional probabilities, as in our learning

process the instances parameterizations are estimated

independently too.

Hence, in our paper we use a combination of these two

dynamic BNs (DBNs) to model decision making regarding

flooding risk (over time) between time-dependent vari-

ables, and OOBNs to represent the watershed structure in

different objects that correspond to the different river units

identified.

3 Flood risk assessment based on Bayesian
networks

3.1 Study area

Guadalhorce catchment is located in Málaga province,

Andalusia, in the South of Spain (Fig. 1). It is considered

one of the most important rivers in Andalusia in terms of

length, over 165 km, and flow rate (estimated at 8 m3 per

second according to local government). Andalusian

Regional Government determines the so-called areas of

potential risk of flooding (APRFs) based on historical data,

soil, geomorphologic characteristics and potential impact

over human infrastructures and society. For Guadalhorce

catchment, a total of three APRFs (Fig. 2) have been

identified due to its high population settlement and agri-

culture activity. In the last years, these areas, and Málaga

province in general, have suffered events of heavy storm

that have provoked critical damage.

This catchment is limited in the North by Sierra de

Archidona mountainous range, in the East by the Gibalto,

San Jorge, Jobo and Camarolos mountainous ranges, by

Sierra de las Nieves mountainous range in the West, and

Mediterranean Sea in the South. The main tributaries of

Guadalhorce River are the rivers Grande, Turón and

Guadalteba (Fig. 1). In its incipient watercourse, Guadal-

horce river is shaped by the orographic conditions of the

territory characterized by limestone, clay and gypsum.

Then, it runs from west to east through the so-called

Depresión de Antequera, an area of important agricultural

tradition, to come across the vast alluvial plains of a group

of municipalities belonging to the Guadalhorce’s valley

region, which is well known for its irrigated agriculture.

Historically, this area has had a notable population and

agricultural activity. But the irregular flow regime of

Guadalhorce River, characterized by severe droughts and

flash floods, has encouraged dam constructions in its

middle course. So that, from the beginning of the twentieth

century, several hydrological infrastructures have been

constructed in order to supply water, regulate water flow,

Fig. 1 Guadalhorce catchment, its location, relief and hydrographic systems. Dams are marked in red. Only the three dams used in the

experiments are shown
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provide electricity to the cities and reduce damages pro-

voked by flood and drought. There are a total of five

reservoirs in the Guadalhorce catchment: Guadalhorce

reservoir, in the Turón River, Gualdalteba reservoir, in the

Guadalteba River, Guadalhorce reservoir (connected to

the Guadalteba reservoir when there is a high level of

water in both reservoirs), Gaitanejo reservoir and Tajo de

la Encantada reservoir. Because of the lack of data in the

last two reservoirs, they will not be taken into account in

this study. Finally, Guadalhorce flows into the Mediter-

ranean, close to the capital city of Málaga, in an area that

was once a deltaic plain, occupied by marshes that fed on

the winter floods, but the reservoirs upstream provoked

their disappearance.

Climate in this area is Mediterranean, but the steep relief

determines stark differences between areas. The presence

of two main mountain ranges, Sierra de las Nieves and

Torcales, acts as barrier reducing the rainfall coming from

the Atlantic sea and, also, the coastal influence in local

climate. It defines three areas from the climate point of

view. The upper catchment, around the municipality of

Antequera, is the area with the highest variability of tem-

peratures with the coldest values in winter, but also being

the warmest in summer, due to its inland location. Sec-

ondly, in the middle course, the area around the dams lies

between both mountain ranges and presents the highest

rainfall values of the catchment. Finally, the lower part has

the warmest climate due to the coastal influence. Despite

these differences, in terms of rainfall values, autumn and

spring seasons are characterized by strong storms which

can provoke serious damage in infrastructures, and also,

humans well-being, mostly on the upper and middle part

due to the mentioned relief.

3.2 Data collection

Data were collected from the Hydrological Information

Systems1 (Sistema Automático de Información Hidroló-

gica, SAIH). This system allows data to be obtained in

different time periods (monthly, weekly, daily and per

hour) for a set of stations in different Mediterranean

catchments. These are from three different types, namely

dams, meteorological and hydrological stations. Informa-

tion is mainly related to rainfall patterns and the level of

the river in the different points of interest.

For our study, data for Guadalhorce catchment were

collected per hour from October 2013 to March 2018 (both

included). A total of 15 stations—over 20 available—were

selected along the riverbed (Fig. 2). The rest were omitted

because of their incomplete data series. Table 1 shows a

summary of variables collected in each type of station

used.

Final dataset contains a total of 33.252 observations. We

have followed the division into hydrological years (from

October to September), and used just those complete years,

from October 2013 to September 2017, for learning and

validation processes. Once the model was validated, a

scenario of storm event was included into the model with

the aim of evaluating its predictive accuracy. For this

purpose, the remaining last 6 months (from October 2017

to March 2018) were avoided and just a period of 10 days

was used. This period of time includes a significant storm

Fig. 2 Points for data collection, sub-catchments and areas of

potential risk of flooding (APRF) in the Guadalhorce catchment.

Those data points with no label were rejected because of the lack of

data

Table 1 Stations and variables collected in Guadalhorce catchment

Station Type Variables collected

A130 Hydrological Level, rainfall

A129

A128

A127

A104

A38

D34

D126 Meteorological Rainfall

P105

A46

P40

D33

D32

E31 Dam Level

E30

1 http://www.redhidrosurmedioambiente.es/saih/presentacion.
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event that takes place from October 16th to 26th, 2017, and

provoked flood and damage in human infrastructure.

3.3 Structural model learning

The idea is to model the temporal evolution of the river

level. Following a simple approximation, it could be con-

sidered that predicted water level at hour t would be equal

to the water level at hour t � 1, which allows to reduce

complexity (Papacharalampous et al. 2019). However, the

study area lies into a Mediterranean climate, characterized

by sudden and heavy storm events, which can produce a

quick and dangerous increase of river level. So, water level

should not be the same at t than at t � 1, and a more

complex model is needed. In this paper, a model based on

OOBN is developed.

There are two main ways of determining the structure of

a BN model (Ropero 2016): by automatic structural

learning algorithms, and by hand using literature and expert

opinion. In this paper, the structure of the model was

developed by hand, following the physical networks of

relations among the different data points. In this section, an

example of model construction is developed, but the final

complete model is presented in following sections.

According to Fig. 2, Guadalhorce River connects the

different points between them and determines the possible

structure of the model and the division in different sub-

catchments. In this sense, firstly, an initial network of

relations between the stations in Guadalhorce catchment

was defined, and the different areas were separated in order

to define the sub-models (Fig. 3). From this initial network,

variables of Level for each Hydrological station were

linked to each other configuring a draft of the final network

structure. By this way, this initial network represents the

river flow and connects all the stations between them fol-

lowing a causal relation along the riverbed. Next, rainfall

variables were included into the model structure. In this

case, there were two possible sources of rainfall informa-

tion. In the one hand, each hydrological station provides

values of rainfall and they were included into the model as

new nodes connected to their corresponding Level variable

(for example, hydrological station A130 provides two dif-

ferent variables: level at A130 and rainfall at A130). In the

other hand, apart from hydrological stations, data were

collected from meteorological station and are distributed in

the middle and lower part of the catchment. In these cases,

the relationships of these new nodes (rainfall at meteoro-

logical stations) and the level variables need to be estab-

lished according to their geographical situation. So that, for

each hydrological station, its drainage influence area was

calculated using the ArcGIS toolbox,2 and those meteoro-

logical stations belonging to this influence area were con-

nected in the network to the corresponding level variable.

For example, the hydrological station D34 is located in the

middle area, and the variable level at D34 was initially

connected upland with both variables of level at E30 and

Fig. 3 Procedure to determine

the static OOBN structure.

Based on the territorial

distribution of the watershed, an

initial network described the

relationships between the

stations following the riverbed

and connected the variables of

level between them. For each

hydrological station, its

drainage influence area was

obtained using the

corresponding ArcGIS Toolbox

and those meteorological

stations lie in were linked to it.

So that, rainfall variables were

included into the model and

connected to the corresponding

Level variable. D dam, H.St.

hydrological station, M.St.

meteorological station, R.

rainfall

2 For a detailed information of this method see http://desktop.arcgis.

com/en/arcmap/10.3/tools/spatial-analyst-toolbox/understanding-drai

nage-systems.htm.
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E31 dams, and downland with variable of level at A38

hydrological station (Fig. 3). Now, rainfall variables can be

included in the net, by calculating the drainage influence

area of D34 station and checking that both D32 and D33

meteorological stations lie in. So, both Rainfall from D32,

D33, and even D34 stations, were included in the network

and linked with the Level variable from D34 station. This

process was repeated with all stations and the structure for

the OOBN was finally completed.

Notice that we use OOBN framework for modeling

purposes, but this does not imply that every instance of

river unit is identical. On the one hand, the parameters for

the probability distributions may differ as they are learnt

from the corresponding data. Furthermore, when modeling

the particular unit we also consider the territory structure,

so that we consider the individual features such as rain

trajectory and riverbed.

However, the aim of this model is to evaluate the risk of

flooding by means of observing the level of the river along

time. To accurately determine the level of the river in a

specific time, information about the temporal evolution of

this river is necessary. That is why this OOBN model needs

to be transformed into a temporal model.

To transform a static (OO)BN model into a dynamic

one, the most common solution consists in duplicating the

static network structure, and connecting nodes by temporal

links [detailed information about this methodology can be

found in Ropero et al. (2018)]. It means all relations

included in the network will be replicated and connected,

as it is shown in Fig. 4, option a).

In our model, it would imply repeating both rainfall and

river-level variables. However, as a modeling decision we

did not include temporal relation in rainfall variables, for

the sake of simplicity. Given the climate conditions of this

particular geographical area, the value of rainfall at time

iþ 1 is not strongly dependent on the rainfall at i. Rain can

happen abruptly at any time, and it is, in fact a rare

occurrence. So, this is the circumstance we would like to

predict, when sudden rains could arrive. To empirically

prove this weak dependence, we have computed statistical

information. Per every rainfall variable, we got the corre-

lation values at time i with respect to the same variable at

time iþ 1. When all the data points are used, these cor-

relations values are mostly below 0.50, having only five

stations out of 13 with a value between 0.5 and 0.64. When

removing those data points where the Rainfall value is 0.0

both for moments i and iþ 1, which are not informative for

our purposes, the correlation is effectively reduced for all

the stations. In this second case, 9 of 13 stations present

correlation lower than 0.40, and the most correlated does

not even reach 0.55.

By contrast, to evaluate the river level and the risk of

flooding, the behavior of the river in the previous time is

important. We have empirically corroborated that the

dependence between river level at time i and iþ 1 is strong

enough to be included into the model (mean correlation

close to 0.9). Here, we could ask how much information

would be relevant, 1 h, 2 h, or more? Data available pre-

sent a time step of 1 h, so that lower range is not feasible.

The other idea would be to increase the time step, 2 h, 3 h

or more. The goal of the model is to predict the behavior of

Fig. 4 Example of the

methodology followed to

transform a static OOBN into a

dynamic OOBN. R. rainfall, L.

level
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the river during a storm event, which is usually short in

time but intensive in Mediterranean areas. It means that,

considering a large time step probably implies losing

information for the river behavior. For that reason, 1 h time

step is considered. Thus, only level variables will be defi-

nitely duplicated as it is shown in Fig. 4, option b).

3.4 Parameter estimation and model validation

As in the model structure learning, there are two main

approaches to estimate the parameters in a BN: by experts

or literature. These approaches are mainly used in the case

of discrete variables, and through the use of automatic

learning algorithms that estimate the parameters from the

provided data.

In this paper, since all variables are continuous, and

there is a large dataset available (from October 2013 to

September 2017, 33.252 observations), automatic param-

eter estimation was carried out using Elvira software

(Elvira-Consortium 2002). A 5-parameter MTE (mixture of

truncated exponential model, explained in Sect. 2) distri-

bution was fitted for every probability distribution due its

ability to fit the most common distributions accurately,

while both model’s complexity and the number of param-

eters to be estimated remain low. This function fits a

function of the form piðxÞ ¼ k þ aebx þ cedx, where

k, a, b, c and d 2 R, for every piece in which the domain of

the variable is divided, according to changes in increasing/

decreasing and concavity/convexity. This way every

function piðxÞ fits an easy-shaped function, and so it is able

to accurately approximate a wide variety of functions. In

the case of conditional distributions (for non-root variables

in the graph), the domain of the conditioning variables is

also split according to equal frequency criteria. So, in fact,

the 5-parameter MTE function is piecewise function where,

in each piece i a function piðxÞ if fitted to the data. See

Moral et al. (2001) and Rumı́ et al. (2006) for more

information.

In order to validate the complete model, k-fold cross-

validation (Stone 1974) process was applied. It is a widely

used technique in artificial intelligence in which the aim is

to check how predictive a model is when confronted with

data that have not been previously used for learning. It is

based on the holdout method in which the data set is sep-

arated into two complementary sets, one for learning (Dl)

and another for testing (Dt). In this way, we can estimate

the error of a model built from Dl according to set Dt. To

check the accuracy of the model, the root mean square

error (RMSE) (Witten and Frank 2005) was calculated for

level variables:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

: ð2Þ

where y1; . . .; yn are the actual values of the level variable,

and ŷ1; . . .; ŷn are the values predicted by the model.3

To reduce variability, the dataset is initially divided into

k subsets, and the holdout method is repeated k times. Each

time, one of the k subsets is used as Dt and the other k � 1

subsets are put together to form Dl. For the case study

presented in this paper, and due to the temporal nature of

the data, a forward k-fold cross-validation was performed.

It means the first Dt corresponds to the first hydrological

year (October 2013 to September 2014), and the first Dl the

second hydrological year (October 2014 to September

2015). Later on, the second Dt corresponds to the first and

second hydrological years (October 2013 to September

2015), and the second Dl, is the third hydrological year

(October 2015 to September 2016) and so on. Then, the

average error across all k trials, 3 in our case, is computed.

3.5 Scenario of rainfall event

Once the model is obtained and validated, BNs allow new

information, or evidence, to be included into the model,

through the so-called inference process or probabilistic

propagation. If we denote the set of evidenced variables as

E, and its value as e, then the inference process consists of

calculating the posterior distribution pðxijeÞ, for each

variable of interest Xi 62 E:

pðxijeÞ ¼
pðxi; eÞ
pðeÞ / pðxi; eÞ; ð3Þ

since pðeÞ is constant for all Xi 62 E. So, this process can be

carried out computing and normalizing the marginal

probabilities pðxi; eÞ, in the following way:

pðxi; eÞ ¼
Z

x

62 fxi; egpeðx1; . . .; xnÞdx; ð4Þ

where peðx1; . . .; xnÞ is the probability function obtained

from replacing in pðx1; . . .; xnÞ the evidenced variables E

by their values e.

Distribution pðxi; eÞ would be the result of the inference

process, i.e., the output predictive probability distribution.

This is one of the advantages of modeling using Bayesian

networks; the output is a complete distribution of values for

the goal variable (Fig. 5), instead of just a single-point

prediction. However, since for validation purposes we need

to compare to the real values, a point prediction ŷ is

computed:

3 Computation of values ŷi is explained in Sect. 3.5.
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ŷ ¼
Z

x pðxi; eÞdxi

Inference process was applied for validation purpose using

real observations from October 16th to 26th, 2017, when a

series of rainfall events were detected (please note that this

dataset was not previously used for the learning and vali-

dation processes). Data for rainfall variables were included

as evidence and propagated to obtain the predicted poste-

rior probability distribution of level variables.

Besides, in order to compare with the naive assumption

mentioned in Sect. 3.3, inference is done, but considering

water level at t � 1 is equal to its initial value in the dataset

(it means, the water level at t0), and RMSE is also com-

puted. Since it is just a simple comparison, only one

variable is shown.

4 Result and discussions

Figure 6 shows the model obtained. The OOBN was

divided into five different units or BNs corresponding to

the physical structure of the watershed. In the upper area,

the Guadalhorce-Antequera river unit corresponds to the

beginning of river course, and two data points are located

(A130 and A127) with their corresponding rainfall and

level information. Besides, in this upper area but located in

the west, the Guadalteba and Turón river units are found,

both with just one station. These three units converge into

the Guadalhorce middle river course unit, where both E30

an E31 dams, and D34 hydrological station are located.

Finally, the Guadalhorce river unit represents the lower

part of the watershed with two hydrological and four

meteorological stations.

Temporal behavior is represented by a set of level

variables (i.e., Level A129_0) marked in white and linked

to the present model with dashed lines. These variables

represent the state of the river level in the previous hour.

Table 2 shows the RMSE values for all level variables,

and their range. This metric gives us information about the

difference between the predicted and real value. Taking

into account the range of the variables, the RMSE for level

variables is relatively low in all variables except dams. In

our model, just information about rainfall and river level

was considered; however, the level achieved in a dam

depends not only on the incoming water (through rainfall

and runoff coming from its drainage area), but also on the

water consumption (both human and agriculture), and even

on management decisions (pumped water from other

dams).4 For these reasons, the difference between the value

predicted by the model and the real value is higher. This is

an initial approximation of flooding risk modeling in

Mediterranean watershed through dynamic OOBN that, as

far as we know, has not been previously deal with. So the

aim of this paper is to provide a simple and easy to

understand model to show a real application and the

potentiality of modeling this problem using BNs. This

decision is also related with the fact that data obtained for

learning and validation purposes include only drought

years. The official website used for data collecting can

provide data from 2013, information prior this date was not

available, so just the last drought period was used. It means

that dams were most of the time under their values of

maximum capacity, so, during a storm event, they can be

used as flood container and avoid flooding in the upper area

has a deep impact over the middle and lower area of the

catchment.

Once the model was obtained and validated, a scenario

of Rainfall event was included into the model. In this

scenario, we have considered dams were under their

maximum capacity, so that they can admit the increase of

river level and avoid this increase to reach the middle and

lower river course. Besides, considering that the prediction

of dam levels needs further information (which is not

available) for the analysis of the scenario results, dam’s

level was not taken into account. First, Fig. 7 shows the

temporal series of rainfall variables used as evidences in

the scenario proposed. During 18th and 19th October, there

was a storm event that provoked a heavy storm in all units

of our model with the higher values in the lower part,

Guadalhorce unit, mainly in the area of the A38 data point

which is the closer point to the city of Málaga and lies in

an area considered to be at high risk of flooding. According

to the methodology described in Sect. 3.5, new information

was included into the model for just rainfall variables, so

that, water-level variables at time t � 1 are computed by

the model and it is not fixed. However, in order to compare

with the naive assumption mentioned previously, water

level at t � 1 is considered constant. Taking variable A127

0 1 2 3 4 5

0
1

2
3

4
5

x

f(
x) A priori

A posteriori

Fig. 5 Example of probability distributions both a priori and a

posteriori for A130 variable. The corresponding forecasts are

obtained computing the expected value for the a-posteriori (red-line)

density

4 This information was not available for this study.
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as an example, the computed RMSE for this naive

assumption reaches 0.29, against 0.018 obtained when

these variables are not constant (and its values are com-

puted by the model). Results obtained are able to predict

the river flood (Fig. 8), while in the case of naive

approximation, is always constant, so risk of flooding could

not be studied.

Results of the scenario proposed in the upper area are

shown in Figs. 9 and 10 in which four data points were

evaluated, those included into Guadalhorce-Antequera

units (A127 and A130), and Turón and Guadalteba units

(A128 and A129). The model provides the results as a set

of posterior probability distributions. For making the

interpretation of results easier, the means of the distribu-

tions are computed and compared with the real observed

values. So that, values predicted by the model (red) were

represented against real values (black) for all data points,

with the RMSE obtained. Besides, the degree of river-level

change is shown in Figs. 9 and 10b.

The storm during the 18th and 19th October (observa-

tions from 50 to 100) provoked an increase in the river

level in all stations, which come back to the initial levels in

A127 and A129, but not in A130 where level after the

storm was higher. Predictions made by the model show the

same tendency of level increase and, also, decrease. In the

case of A130, the results predict the increase in the river

level after the storm period. The percentage of level

increase was calculated for all stations and shown in

Fig. 9b). Again, model results are in concordance with the

real observations.

Fig. 6 Structure of the final

dynamic OOBN obtained. The

final notation ‘‘_0’’ indicates the

variable in the previous time.

Dotted lines represent the

temporal links, while solid lines

represented the links between

variables in the same time step.

R rainfall

2000 Stochastic Environmental Research and Risk Assessment (2019) 33:1991–2005

123



In the upper area, this storm event provoked more than

10 mm per hour in the Guadalhorce-Antequera unit

(Fig. 9), where A130 station suffered an increase in its

river level from 0.1 m to close to 1 m (more than 2% of

change each hour). This increase is even more evident in

the A127, located down in the riverbed, in which the level

increases from 0.2 m to more than 1.5 m (more than 4% of

change each hour). At the end of the storm, river does not

recover back to its initial level in A130 station, but in

A127. By contrast, in Guadalteba unit, represented by

A129 station, rainfall hardly reaches 7 mm per hour and

does not provoke an important river-level change

(0.1–0.15 m and less than 0.5% of change). These two

units lie on areas of potential risk of flooding (Fig. 2) since

their steep relief and soil characteristics encourage a rapid

runoff which feeds the river level. Besides, results show

that the river presents a high resilience since it is able to

recover its initial level after the rainfall event.

By contrast, Turón (Fig. 10, A128 station) is not con-

sidered as an area of flooding risk, and it is explained

through the results achieved. Figure 7 shows that rainfall

values around A128 station reached more than 5 mm per

hour; however, river level in this station is hardly affected

(around 1% of change).

Peculiar results are found in the case of D34 station

(Guadalhorce middle course unit). Figure 11 shows that no

change was predicted in the river level for this station. This

unit divides the watershed into the upper and lower area.

Dams located in this unit do not just provide water supply

for population and agriculture, but they are also designed to

control the river course and flooding. The four hydrological

years used for learning and validation purposes correspond

to drought years in which the dams level hardly achieved

the higher values. Thus, in this period, when a rainfall

event or storm affected the upper areas, the impact on the

lower area was minimized by the dams which functioned as

Table 2 Variable ranges and RMSE values from the forward 3-cross

validation

Variable RMSE Variable range

Level A38 0.059 0.0–1.77

Level A104 15.81 0.0–36.0

Level A127 0.408 0.0–8.1

Level A128 0.493 0.0–13.1

Level A129 0.216 0.0–3.0

Level A130 0.132 0.0–5.0

Level D34 0.008 0.0–2.0

Level E30 11.26 347.0–362.0

Level E31 37.97 327.0–355.0

Level variables are expressed in meters
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Fig. 7 Rainfall variables for the scenario of rainfall event, from

October 16th to 26th, 2017
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containment for the flood. In this case, since D34 is located

just below the dams, real values show changes lower than

0.4% (from 0.4 to 0.7 m) which were probably due to the

minimum water flow provided by the dams to maintain the

natural river regime downstream during drought periods

(Guadalquivir Plan 2007). This behavior responds to water

management decision not to rainfall values, so that model

predicts no changes into D34 river level as a consequence

of the storm.

Finally, Fig. 11 shows the results for the Guadalhorce

(A38 station) unit. In this area, rainfall reached the higher

values in this storm (Fig. 7), but the impact on the river is

hardly noticeable (slight percentage of changes, and an

increase from 0.1 m to less than 0.4 m). In this area, the

river is close to the sea and the soft relief and wider riv-

erbed makes this river area more stable and resilient, since

in spite of the high values of rainfall, the river hardly

appreciates the impact. However, due to the proximity of

important human infrastructures and population (it is the

closer data point to Málaga city, with more than 570.000

inhabitants), it is considered as an area of potential risk of

flooding (Fig. 2). During drought periods, since the dams

are under their maximum capacity, they contain the flood

avoiding storms in the upper areas can have an important

impact on lower part of the watershed.
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Fig. 9 Predicted versus real values and the RMSE obtained (a), and
evolution of the river-level change (b) in the river points of the

Guadalhorce-Antequera unit, for the scenario proposed, from October

16th to 26th, 2017
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5 Conclusions

Flooding risk management is a crucial aspect of the so-

called Watershed Management Plan and Alert Systems. In

coastal areas, due to their higher density of human infras-

tructures, the vigilance and control of river levels becomes

an essential task which helps to reduce economic and

society’s vulnerabilities. The risk of flooding has been

defined as the probability of an event occurrence and the

negative consequences that this event can provoke, where

the main issue to be solved is related with the uncertainty

inherent to this natural process.

In this paper, a dynamic object-oriented Bayesian net-

work was applied to determine the probability of exceeding

the river level in order to predict the risk of flooding in

Guadalhorce catchment, in the South of Spain. The use of

OOBNs has allowed the complexity of this catchment to be

divided into five different units according to the physical

structure of the territory. Each of them was modeled

independently but connected to each other, in such a way

that, if a disturbance takes place in one unit, the focus of

our attention can be set on just the same unit, in a related

one, or even in all the system. In the proposed scenario of

rainfall event, new information about rainfall data was

included in all units, but the results were evaluated per unit.

These results show that the model obtained presents low

error rates for river-level variables. This implies that, under

the scenario proposed, the predicted values do not present a

deep difference, neither high errors, when confronted

against the real values. During an event of rainfall or storm,

the model is able to predict the increase in the river level,

and also the time the river needs to recover the normality,

which means the resilience of the river.

Through this modeling approach, uncertainty is man-

aged using probability theory; a well-founded formalism

and there are a wide range of algorithms and procedures,

already developed and validated in the literature, which can

be applied to parameter estimation and inference. In our

case, the use of dynamic OOBNs contributes to uncertainty

analysis in several ways: (1) in the representation of the

complexity and (in)dependences of the variables of the

model which, by its nature, is intuitive in this type of

model, and (2) by the different ways in which results can

be displayed. All these advantages make up a broad range

of tools to aid the decision making by experts regarding the

uncertainty in the framework of adaptive catchment

management.

Certain issues remain to be addressed in the future,

which could improve the application of this tool in flood

risk management. Firstly, in this paper a simple and easy

model was obtained in order to show the applicability of

dynamic OOBNs in this field, but information about

management decisions, natural characteristics of the riv-

erbed and consumption rates could be included to make the

model richer. Besides, in Mediterranean areas there are

successive cycles of drought and humid years, but data

collected correspond only to a drought period. It means our

model is still no able to predict the behavior of the river

level during a humid period. For future works, dataset used

for model learning needs to be extended to include both

periods.
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