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Abstract

We consider the discrete Sobolev inner product

(f, g)S =
∫
f(x)g(x)dµ+Mf (j)(c)g(j)(c), j ∈ N ∪ {0}, c ∈ R, M > 0,

where µ is a classical continuous measure with support on the real line (Jacobi, La-
guerre or Hermite). The orthonormal polynomials with respect to this Sobolev inner
product are eigenfunctions of a differential operator and obtaining the asymptotic
behavior of the corresponding eigenvalues is the principal goal of this paper.

Keywords: Sobolev orthogonal polynomials ·Differential operator · Eigenvalues ·Asymp-
totics
Mathematics Subject Classification (2010): 33C47 · 42C05

1 Introduction
The classical continuous hypergeometric polynomials (CCHP) have been well known since
the nineteenth century and they constitute a relevant class within the orthogonal poly-
nomials. Thus, almost all the books devoted to orthogonal polynomials and their appli-
cations included chapters or sections about CHHP, see among others [3, 12]. CCHP can
be defined as the polynomial solutions to the hypergeometric differential equation [5]

σ(x)y′′(x) + τ(x)y′(x) = λny(x), (1)
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where σ and τ are polynomials with deg(σ) ≤ 2, deg(τ) = 1, and λn = n
(
τ ′(x) + n−1

2 σ′′(x)
)
.

One can prove that these polynomial solutions are orthogonal polynomials with respect
to a weight function w. In fact, on the real line they are orthogonal with respect to a
measure µ given by dµ(x) = w(x)dx where, up to affine transformations, w corresponds
to one of these situations: Jacobi case w(x) = (1 − x)α(1 + x)β with α, β > −1 and
x ∈ (−1, 1), Laguerre case w(x) = xαe−x with α > −1 and x ∈ (0,∞), and Hermite case
w(x) = e−x

2 with x on the real line.
The equation (1) can be rewritten as

B[y(x)] = λny(x),

where B is a differential operator defined as B := σ(x)D2 + τ(x)D, being D the usual
derivative operator. In this way, the CCHP are the eigenfunctions of the operator B and
λn are the corresponding eigenvalues. Both B and λn are explicitly known.

Since the second half of the last century an emergent theory of orthogonal polyno-
mials in Sobolev spaces has risen, see for example the surveys [8] and [9]. The seminal
papers on this topic linked Sobolev orthogonal polynomials (SOP) with the simultaneous
approximation of a function and their derivatives, but now some recent applications have
been found in [11, 13].

In this work we have considered a special case of SOP called discrete SOP which are
orthogonal with respect to the Sobolev inner product

(f, g)S =
∫
f(x)g(x)dµ+Mf (j)(c)g(j)(c), j ∈ N ∪ {0}, M > 0, (2)

where µ is a classical measure, i.e., dµ(x) = w(x)dx being w one of the classical weights
described previously. Notice that when j = 0 we have the so-called Krall polynomials
which were a first extension of the CCHP [6].

The inner product (2) can be seen as a perturbation of the standard inner product∫
f(x)g(x)dµ. Thus, it is natural to wonder how this perturbation influences on the cor-

responding orthogonal polynomials, for example, about the asymptotic behavior of these
SOP. In fact, there has been a wide literature about this so far (e.g. the previous surveys
[8] and [9] and the references there in). On the one hand, it is obvious that the orthogonal
polynomials with respect to (2) do not satisfy the hypergeometric equation (1). However,
in [4] the authors impose conditions so that the polynomials qn orthonormal with respect
to (2) satisfy a (possibly infinite order) differential equation. Later, in [1] and [2] the
differential operator is explicitly built as

L :=
∞∑
i=1

ri(x)Di,
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where ri is a polynomial with deg(ri) ≤ i, and satisfying

L[qn(x)] = λ̃nqn(x).

In this way, the orthonormal polynomials qn with respect to (2) are the eigenfunctions
of the differential operator L and λ̃n are the corresponding eigenvalues.

Thus, we analyze the asymptotic behavior of the λ̃n. We prove that this behavior is
different of the one of λn. A first approach of this problem was done in [7] although on
that occasion the authors focused their attention on computing a value related to the
convergence of a series in a left-definite space. Here, we tackle the problem in a wider
framework.

The structure of the paper is the following. In Section 2 we provide a brief back-
ground about eigenvalues of a differential operator related to discrete Sobolev orthonor-
mal polynomials. Sections 3 and 4 are devoted to obtaining the asymptotic behavior of
the eigenvalues λ̃n distinguishing two cases: symmetric and nonsymmetric. In both cases
the technique is the same although, as we will see, the computational details are different.
Finally, in Section 5 we give a summary table of the results and we comment them.

2 Some known facts
We consider a classical nonsymmetric measure µ and the corresponding sequence of or-
thonormal polynomials {pn}n≥0, then it was established in [1] and [2] that when p(j)

n (c) 6= 0
for all n = j, j + 1, j + 2, . . ., we get

λ̃n = λn +Mαn, (3)

where λn are the eigenvalues of the differential operator B and αn is a sequence of real
numbers such that if they are chosen conveniently, then the differential operator L is
uniquely determined. To do this, it is enough to take α0 = 0 and {αi}ji=1 arbitrarily when
j > 0.

Thus, we have the measure µ such that dµ(x) = w(x)dx with w corresponding to
Laguerre o Jacobi case. We take c = 0 for the Laguerre case and c ∈ {−1, 1} for the
Jacobi one. Notice that the condition p(j)

n (c) 6= 0 is always satisfied when c is chosen in
this way because {pn}n≥0 is a family of CCHP. Then, using [1, f. (8-9)] we get

αn = αj +
n∑

i=j+1
(λi − λi−1)K(j,j)

i−1 (c, c), n ≥ j + 1, (4)

where K(j,j)
n (c, c) denotes the partial derivatives of the nth kernel for the sequence of

orthonormal polynomials {pn}n≥0 with respect to µ, i.e.,
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K(r,s)
n (x, y) =

n∑
i=0

p
(r)
i (x)p(s)

i (y), r, s ∈ N ∪ {0}.

Since {αi}ji=1 can be chosen arbitrarily, we take αi = 0 for i ∈ {0, 1, 2, . . . , j}. Thus,
(4) is transformed into

αn =
n∑

i=j+1
(λi − λi−1)K(j,j)

i−1 (c, c), n ≥ j + 1. (5)

When µ is a classical symmetric measure with respect to the origin we take c = 0.
According to [2, Sect. 2.3] to guarantee (3) it is necessary that p(j)

n (0) 6= 0 for all n =
j, j+1, j+2, . . . with n−j even. But again this holds because {pn}n is a family of CCHP.
Then, applying the results in [2, Sect. 2.3] and taking into account again that {αi}ji=1 are
chosen arbitrarily, we get

αj+2n =
n∑
i=1

(λj+2i − λj+2i−2)K(j,j)
j+2i−1(0, 0), n ≥ 1.

We remark that in this case, when j is even the subsequence of orthonormal polynomi-
als {q2n+1}n≥0 with respect to the discrete Sobolev inner product (2) matches the one of
standard orthonormal polynomials {p2n+1}n≥0. An analogous situation takes place when
j is odd, i.e., {q2n}n≥0 ≡ {p2n}n≥0.

The Hermite case is an example of this situation, but we can also consider the Gegen-
bauer case which occurs when α = β in the Jacobi case. Thus, for this last case we can
take c as any value of the set {−1, 0, 1}.

With these results we are in condition to obtain the asymptotic behavior of the eigen-
values λ̃n in the next section.

3 Asymptotic behavior of the eigenvalues: the non-
symmetric case

First, we give a joint approach to cases related to Jacobi and Laguerre weights. As we
have mentioned in the previous section, we denote by {pn}n≥0 the orthonormal polyno-
mials with respect to the classical weights. We also use the notation an ≈ bn meaning
limn→+∞ an/bn = 1. Then, it is easy to check that for these families of polynomials we
have

p(k)
n (c) ≈ Ck(−1)nnak+b, 0 ≤ k ≤ n, with 2(ak + b) + 1 > 0, (6)
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where Ck is a constant independent of n. When we consider the Laguerre case then c = 0,
and c ∈ {−1, 1} for the Jacobi case. For other nonclassical families satisfying (6) see [10].

It is worth noting that the factor (−1)n may appear or not, for example, it appears
when c = −1 in the Jacobi case and it does not when c = 1 in the same case. However,
for the results that we will obtain this factor will be not relevant from the asymptotic
point of view.

Lemma 1. Assuming the condition (6), we have

lim
n→+∞

K
(`,`)
n−1(c, c)

n2(a`+b)+1 = C2
`

2(a`+ b) + 1 .

Proof: It is enough to use Stolz’s criterion and (6) to get

lim
n→+∞

K
(`,`)
n−1(c, c)

n2(a`+b)+1 = lim
n→+∞

K
(`,`)
n−1(c, c)−K(`,`)

n−2(c, c)
n2(a`+b)+1 − (n− 1)2(a`+b)+1

= lim
n→+∞

(p(`)
n−1(c))2

(2(a`+ b) + 1)n2(a`+b) = C2
`

2(a`+ b) + 1 . �

To obtain the asymptotic behavior of λ̃n it is necessary to know the asymptotics of
the sequence {αn} and use (3). Thus, we establish it in the next result.

Proposition 1. Assuming (6) and λn = γn2 + δn with γ, δ ∈ R, then we have

lim
n→+∞

αn
n2(aj+b)+3 =

2γC2
j

(2(aj + b) + 3)(2(aj + b) + 1) , if γ 6= 0;

lim
n→+∞

αn
n2(aj+b+1) =

δC2
j

2(aj + b+ 1)(2(aj + b) + 1) , if γ = 0,

where αn was defined in (5).

Proof: Observe that

λn − λn−1 =
{

2γn− γ + δ, if γ 6= 0;
δ, if γ = 0.

Then, we need to distinguish two cases depending on γ. In both situations we use Lemma
1, (5), and again the Stolz’s criterion to deduce the result:
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• If γ 6= 0,

lim
n→+∞

αn
n2(aj+b)+3

= lim
n→+∞

∑n
i=j+1(λi − λi−1)K(j,j)

i−1 (c, c)−∑n−1
i=j+1(λi − λi−1)K(j,j)

i−1 (c, c)
n2(aj+b)+3 − (n− 1)2(aj+b)+3

= lim
n→+∞

(λn − λn−1)K(j,j)
n−1 (c, c)

(2(aj + b) + 3)n2(aj+b+1) =
2γC2

j

(2(aj + b) + 3)(2(aj + b) + 1) .

• If γ = 0,

lim
n→+∞

αn
n2(aj+b+1) = lim

n→+∞

(λn − λn−1)K(j,j)
n−1 (c, c)

2(aj + b+ 1)n2(aj+b)+1

=
δC2

j

2(aj + b+ 1)(2(aj + b) + 1) . �

Theorem 1. Let λ̃n be the eigenvalues of the differential operator L related to the or-
thonormal polynomials qn with respect to (2). Under the hypothesis of Proposition 1, we
get

lim
n→+∞

λ̃n
n2(aj+b)+3 =

2γMC2
j

(2(aj + b) + 3)(2(aj + b) + 1) , if γ 6= 0;

lim
n→+∞

λ̃n
n2(aj+b+1) =

δMC2
j

2(aj + b+ 1)(2(aj + b) + 1) , if γ = 0.

Proof: We only need to take limits in (3) and apply Proposition 1. We only show the
proof when γ 6= 0, the other case is totally similar.

lim
n→+∞

λ̃n
n2(aj+b)+3 = lim

n→+∞

λn +Mαn
n2(aj+b)+3

= lim
n→+∞

λn
n2(aj+b)+3 +M lim

n→+∞

αn
n2(aj+b)+3

=
2γMC2

j

(2(aj + b) + 3)(2(aj + b) + 1) .

The first limit is 0 because using (6) we have 2(aj + b) + 3 > 2. �
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3.1 Discrete Jacobi–Sobolev case
We consider the discrete Sobolev inner product

(f, g)JS =
∫ 1

−1
f(x)g(x)(1− x)α(1 + x)βdx+Mf (j)(1)g(j)(1), (7)

with α, β > −1 and j ∈ N ∪ {0}. We denote by {p(α,β)
n }n≥0 the sequence of the classical

Jacobi orthonormal polynomials with respect to the weight function (1−x)α(1+x)β. This
inner product corresponds to (2) with c = 1.

Using the properties of Jacobi polynomials (e.g., see [12, f. (4.1.1), (4.3.3), (4.21.7)]),
we deduce (

p(α,β)
n

)(k)
(1) ≈ 1

2k+α+β
2 Γ(α + k + 1)

n2k+α+1/2,

so, (6) is satisfied with Ck = 1
2k+α+β

2 Γ(α+k+1)
, a = 2 and b = α + 1/2. Since α > −1, the

condition 2(ak + b) + 1 > 0 holds.
On the other hand, Jacobi polynomials p(α,β)

n satisfy the second–order differential equa-
tion (e.g., see [12, f. (4.2.1)]):

(x2 − 1)y′′(x) + (α− β + (α + β + 2)x)y′(x) = n(n+ α + β + 1)y(x),

thus, we deduce λn = n2 + n(α + β + 1).
Now, we are ready to apply Theorem 1, getting

lim
n→+∞

λ̃n
n4j+2α+4 = M

22j+α+β+1(2j + α + 2)(2j + α + 1)Γ2(α + j + 1) .

A similar result can be obtained if we choose c = −1 in (7) instead of c = 1.

3.2 Discrete Laguerre–Sobolev case
Now, we consider

(f, g)LS =
∫ +∞

0
f(x)g(x)xαe−xdx+Mf (j)(0)g(j)(0), α > −1, j ∈ N ∪ {0}.

We denote by {l(α)
n }n≥0 the sequence of the classical Laguerre orthonormal polynomials

with respect to the weight function xαe−x. We have taken c = 0 in (2). In this case we
use the properties of Laguerre polynomials (e.g., see [12, f. (5.1.1), (5.1.7), (5.1.14)]) to
obtain (

l(α)
n

)(k)
(0) ≈ (−1)k

Γ(α + k + 1)n
k+α/2.
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Again, (6) is satisfied taking now Ck = (−1)k
Γ(α+k+1) , a = 1 and b = α/2. Since classical

Laguerre polynomials satisfy the hypergeometric differential equation (e.g., see [12, f.
(5.1.2)]):

−xy′′(x) + (x− α− 1)y′(x) = ny(x),

we have λn = n. Therefore, we can apply Theorem 1 taking into account that in this case
γ = 0 and δ = 1, getting

lim
n→+∞

λ̃n
n2j+α+2 = M

(2j + α + 2)(2j + α + 1)Γ2(α + j + 1) .

4 Asymptotic behavior of the eigenvalues: the sym-
metric case

We suppose that µ is a symmetric measure and we take c = 0. Thus we can proceed like
in the previous section, but bearing in mind that now both families of orthonormal poly-
nomials, {pn} and {qn}, are symmetric. Therefore, we have to assume similar conditions
to (6) for the subsequences of even and odd polynomials. Thus, we suppose that

p
(2k)
2n (0) ≈ Ck,1(−1)nna1k+b1 , p

(2k+1)
2n+1 (0) ≈ Ck,2(−1)nna2k+b2 , (8)

with 2(a1k + b1) + 1 > 0 and 2(a2k + b2) + 1 > 0 for all k ∈ {0, . . . , n}.
Assuming (8), we can obtain similar results to the ones obtained in the previous

section. Since the techniques are the same we only state the main outcome.

Theorem 2. Let λ̃n be the eigenvalues of the differential operator L related to the or-
thonormal polynomials qn with respect to (2). We assume (8) and λn = γn2 + δn with
γ, δ ∈ R. Then,

• If j = 2r, we get

lim
n→+∞

λ̃2r+2n

n2(a1r+b1)+3 =
8γMC2

r,1

(2(a1r + b1) + 3)(2(a1r + b1) + 1) , if γ 6= 0;

lim
n→+∞

λ̃2r+2n

n2(a1r+b1+1) =
δMC2

r,1

(a1r + b1 + 1)(2(a1r + b1) + 1) , if γ = 0.
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• If j = 2r + 1, we get

lim
n→+∞

λ̃2r+1+2n

n2(a2r+b2)+3 =
8γMC2

r,2

(2(a2r + b2) + 3)(2(a2r + b2) + 1) , if γ 6= 0;

lim
n→+∞

λ̃2r+1+2n

n2(a2r+b2+1) =
δMC2

r,2

(a2r + b2 + 1)(2(a2r + b2) + 1) , if γ = 0.

4.1 Discrete Hermite–Sobolev case
We take the Hermite weight function and c = 0, then the inner product (2) is transformed
into

(f, g)HS =
∫ +∞

−∞
f(x)g(x)e−x2

dx+Mf (j)(0)g(j)(0), j ∈ N ∪ {0}.

We denote by {hn}n≥0 the sequence of the classical Hermite orthonormal polynomials
with respect to the weight function e−x

2
. Using the properties of Hermite polynomials

(e.g., see [12, f. (5.5.1), (5.5.5), (5.5.10)]) we deduce

h
(2k)
2n (0) ≈ (−1)n (−1)k22k

√
π

nk−1/4, h
(2k+1)
2n+1 (0) ≈ (−1)n (−1)k22k+1

√
π

nk+1/4.

Therefore, (8) holds with Ck,1 = (−1)k22k
√
π

, a1 = 1, b1 = −1/4, Ck,2 = (−1)k22k+1
√
π

, a2 = 1 and
b2 = 1/4.

Moreover, Hermite polynomials satisfy the second–order differential equation (e.g., see
[12, f. (5.5.2)])

−y′′(x) + 2xy′(x) = 2ny(x).

Then, we have λn = 2n. In this way, we can apply Theorem 2 with γ = 0 and δ = 2,
obtaining the corresponding asymptotic behavior of the eigenvalues λ̃n, i.e.,

• If j = 2r, then

lim
n→+∞

λ̃2r+2n

n2r+3/2 = M24r+1

π(r + 3/4)(2r + 1/2) .

• If j = 2r + 1, then

lim
n→+∞

λ̃2r+1+2n

n2r+5/2 = M24r+3

π(r + 5/4)(2r + 3/2) .

9



4.2 Discrete Gegenbauer–Sobolev case
For this case, we consider the discrete Sobolev inner product

(f, g)GS =
∫ 1

−1
f(x)g(x)(1− x2)αdx+Mf (j)(0)g(j)(0), α > −1, j ∈ N ∪ {0}.

We denote by {c(α)
n }n≥0 the sequence of the classical Gegenbauer orthonormal polynomials

with respect to the weight function (1−x2)α. Using some properties of these polynomials
(e.g., [12, f. (4.7.1), (4.7.14), (4.7.15), (4.7.30)] and the relations in [12, p. 60] for
α = −1/2; notice that in [12] the author works with c(λ−1/2)

n with λ > −1/2), we get

(
c

(α)
2n

)(2k)
(0) ≈ (−1)n (−1)k22k+1/2

√
π

n2k,

(
c

(α)
2n+1

)(2k+1)
(0) ≈ (−1)n (−1)k22k+3/2

√
π

n2k+1.

Then, (8) holds with Ck,1 = (−1)k22k+1/2
√
π

, a1 = 2, b1 = 0, Ck,2 = (−1)k22k+3/2
√
π

, a2 = 2, and
b2 = 1. This family of polynomials satisfies the hypergeometric differential equation (e.g.,
see [5, f. (9.8.23)])

(x2 − 1)
(
c(α)
n

)′′
(x) + 2(α + 1)x

(
c(α)
n

)′
(x) = n(n+ 2α + 1)c(α)

n (x),

so, we have λn = n2 +n(2α+ 1). Finally, we apply Theorem 2 with γ = 1 and δ = 2α+ 1,
getting

• If j = 2r,

lim
n→+∞

λ̃2r+2n

n4r+3 = 24(r+1)M

π(4r + 3)(4r + 1) ,

• If j = 2r + 1,

lim
n→+∞

λ̃2r+1+2n

n4r+5 = 24r+6M

π(4r + 5)(4r + 3) .

5 Conclusions
Finally, we provide a summary table of the results obtained for SOP and we compare
them with those ones known for classical polynomials.
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XXXXXXXXXXXXEigenvalues
Case Jacobi Laguerre

Asymptotics of λn n2 n

Asymptotics of λ̃n C1n
4j+2α+4 C2n

2j+α+2

XXXXXXXXXXXXEigenvalues
Case Hermite Gegenbauer

Asymptotics of λn 2n n2

If j = 2r Asymptotics of λ̃2n C3n
2r+3/2 C4n

4r+3

Asymptotics of λ̃2n+1 4n 4n2

If j = 2r+ 1 Asymptotics of λ̃2n 4n 4n2

Asymptotics of λ̃2n+1 C5n
2r+5/2 C6n

4r+5

The constants Ci, i = 1, . . . , 6. can be found explicitly in the previous sections.
We can observe that in all the cases the presence of the discrete part Mf (j)(c)g(j)(c)

in the Sobolev inner product leads to important changes in the asymptotic behavior of
the eigenvalues. For example, in the Laguerre case the growing orden of the eigenvalues
increases 2j+α+1 > 0, i.e., when M = 0 the eigenvalues have a linear growth that changes
to a growth of O(n2j+α+2) if M > 0. Similar situations occur in the rest of the cases. We
can observe that this change is bigger in the bounded cases: Jacobi and Gegenbauer.
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