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Abstract

The Sobolev polynomials, which are orthogonal with respect to an inner product involving deriva-
tives, are considered. The theory about these nonstandard polynomials has been developed along
the last 40 years. The local asymptotics of these polynomials can be described by the Mehler-Heine
formulae, which connect the polynomials with the Bessel functions of the first kind. In recent years,
the formulae have been computed for discrete Sobolev orthogonal polynomials in several particular
cases. We improve various known results by unifying them. Besides, an algorithm to compute these
formulae effectively is presented. The algorithm allows to construct a computer program based
on Mathematica® language, where the corresponding Mehler-Heine formulae are automatically ob-
tained. Applications and examples show the efficiency of the approach developed

Keywords: Sobolev orthogonal polynomials · algorithm · asymptotics · computer program.
Mathematics Subject Classification (2020): 33F10 · 33C47 · 42C05

1 Introduction

Sobolev orthogonal polynomials were first considered in a paper concerning the simultaneous poly-
nomial approximation of functions and their derivatives in 1947 [17]. In the sixties and seventies of
the last century, the German school studied such polynomials, mainly from a theoretical point of view
[4, 11, 26, 27]. At the beginning of the nineties, the topic attracted great interest after the seminal
works of Iserles et al.[12, 13], where among other results the authors proposed a useful algorithm for
computing the coefficients of the Fourier-Sobolev series. More details about the Sobolev orthogonality
can be found mainly in the survey [21], but a very short and concise overview is given in the first two
pages of [20]. More recently, several authors have found applications of this theory — e.g. in the study
of second-order elliptic equations on the real line [25], in elliptic boundary value problems combin-
ing Jacobi-Sobolev polynomials and spectral methods [31], and in the Cauchy problem for ordinary
differential equations [28, 29].
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In this paper we consider the Sobolev-type inner product or the discrete Sobolev inner product

( f , g)S =

∫

f (x)g(x)dµ+Mn f ( j)(c)g( j)(c), (1)

where µ is a finite positive Borel measure supported on an infinite subset of the real line, c is adequately
located on the real axis, j ∈ N∪{0}, and {Mn}n≥0 is a sequence of nonnegative real numbers satisfying
a very general condition.

The orthonormal polynomials with respect to (1) are studied from a theoretical point of view in
[19]. There the authors provided a scaled asymptotics around the point c where the perturbation of the
standard inner product is introduced. This type of local asymptotics is known either as Mehler-Heine
formula or Mehler-Heine asymptotics. As it is well known, it is quite useful to describe the asymptotic
differences between the sequences of orthogonal polynomials with respect to (1) and the orthonormal
polynomials with respect to µ. In fact, in that paper it was shown that the relative asymptotics or the
Plancherel-Rotach type asymptotics do not provide exciting results for these polynomials. Now, our goal
is more practical as we will describe below.

The paper [19] achieved two objectives. First, it presents a detailed description of the local asymp-
totic behavior of these Sobolev-type orthonormal polynomials or discrete Sobolev orthonormal polyno-
mials (dSOP) in terms of a linear combination of special functions — viz. the Bessel functions of the
first kind

Jα(x) =
∞
∑

k=0

(−1)k

k!Γ (k+α+ 1)

� x
2

�2k+α
. (2)

The results obtained are valid for measures with bounded and unbounded supports and generalize
the works considering specifically chosen measures. Thus, paraphrasing [19], the paper provides “a
final and global vision of the Mehler-Heine asymptotics” for these dSOP. Although the obtention of the
Mehler-Heine formulae for the dSOP is constructive, many details are omitted. Thus a question arises:
what else can we add to this topic?

Obtaining the limit functions in [19, Theorems 1 and 2] requires many calculations. Hence, the
answer to the previous question is to provide an algorithm and the corresponding computer program,
which would automatically determine the limit functions of these Mehler-Heine formulae — i.e. we used
symbolic computation to obtain these limit functions involving Bessel functions. This program is imple-
mented on a computer using the Mathematica® language 12.1.1 (also known as Wolfram language).1

The program can be downloaded from the web https://w3.ual.es/GruposInv/Tapo/MHAS.nb.
Numerical algorithms for computation are a necessary and relevant tool when we want to use or-

thogonal polynomials and special functions in applications. There are nice classic books and articles on
this topic — cf. Refs. [1, 9, 14, 15, 16, 23]. Besides, there are many others works where special cases
are treated. As far as Sobolev orthogonality is concerned, the literature is not too wide. Thus, as was

1The program in the previous versions of Mathematica®may not work properly — e.g. we found malfunctions in the 11-th
version.
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already mentioned, the seminal papers [12, 13] provide an algorithm to compute the coefficients of the
Fourier-Sobolev expansion in the setting of coherence of measures. In [9, Sect. 2.5] we can find an
algorithm to compute Sobolev orthogonal polynomials (SOP), and in [10] the zeros and critical points
of SOP are studied from a numerical approach. Now we compute the local asymptotic for dSOP by
using symbolic computation. As far as we know, it is the first work of this type in the context of SOP. In
addition, the use of the program has also permitted to clarify some subtle theoretical aspects, see, for
example, the comments in 4.2.1, subsection 4.4 or Remark 4.1. Furthermore, using Hurwitz’s Theorem
we obtain the asymptotic behavior of the zeros of these dSOP.

We structure the paper in the following way. In Section 2 we improve all theoretical results obtained
in [19] that are necessary to construct the algorithm and the computer program. In Section 3 we explain
how the algorithm works by including a process flow diagram. Finally, in Section 4 some applications
and examples are shown.

2 Theoretical Results

We first summarize auxiliary results to make this section self-contained. Thus we improve various issues
in [19] by providing more details needed for establishing concrete formulae.

Consider the discrete Sobolev inner product

( f , g)S =

∫

f (x)g(x)dµ+Mn f ( j)(c)g( j)(c), j ∈ N∪ {0}, (3)

where µ is a finite positive Borel measure supported on an infinite subset of the real line, c a real number
whose exact location will be determined later according to the measure µ, and {Mn}n≥0 a sequence of
nonnegative real numbers satisfying the general condition

lim
n→∞

MnK( j, j)n−1 (c, c) = L ∈ [0,+∞], (4)

where K(ℓ,k)n−1 (x , y) are the partial derivatives of the n-th kernel for the sequence of orthonormal polyno-
mials {pn}n≥0 with respect to µ, i.e.

K(ℓ,k)n (x , y) =
∂ ℓ+k

∂ xℓ∂ yk
Kn(x , y) =

n
∑

i=0

p(ℓ)i (x)p
(k)
i (y), ℓ, k ∈ N∪ {0}.

Since the inner product (3) is varying, there is a square tableau of orthonormal polynomials {q(Mn)
k }k≥0

for each n, but we deal with the diagonal of this tableau {q(Mn)
n }n≥0 =: {qn}n≥0. Obtaining the Mehler-

Heine formulae for these dSOP was the main task in [19]. To do this, it was necessary to deal with a
third family of orthonormal polynomials. Thus, we denote by {p[2i]

n }n≥0 the sequence of orthonormal
polynomials with respect to the measure µ2i with dµ2i(x) = (x − c)2idµ(x), i ∈ N ∪ {0}. We will use
the notation fn ≃ gn to indicate that limn→∞ fn/gn = 1.

Taking into account the symmetry of measure µ, we distinguish two cases.
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2.1 µ is a nonsymmetric measure

We denote by I = supp(µ) ∈ R. Then, the point c is chosen either as c = inf(I) or c = sup(I). In
[19] the results about Mehler-Heine asymptotics were given taking c = inf(I), although in Section 3 of
that paper it was said “results can be also obtained with c = sup(I) ∈ R making some changes”. Now,
to obtain a computer program that considers all the cases, we need to give the details that were not
computed in [19].

We begin assuming that for the sequence {p[2i]
n }n≥0 we have the following Mehler-Heine asymptotics

lim
n→∞

sn,c

a1/2
n,c

bi
n,c

p[2i]
n

�

c + sc
z2

bn,c

�

= z−(νc+2i)Jνc+2i(2z), i = 0, . . . , j + 1, (5)

uniformly on compact subsets of C, where Jνc+2i are the Bessel functions of the first kind and order
νc + 2i given by (2),

sn,c =

�

(−1)n, if c = inf(I),
1, if c = sup(I), sc =

�

1, if c = inf(I),
−1, if c = sup(I), (6)

and
a−1/2

n,c ≃ Acn
ac , bn,c ≃ Bcn

bc , νc > −1, and 2ac + 1= bc(νc + 1), (7)

with Ac , Bc , bc > 0.

Remark 2.1 Notice that conditions (5)-(7) are satisfied for a wide class of measures — e.g. Nevai-Blumenthal
class [6, 22] the measures related to a Laguerre weight or to modified or generalized Jacobi weights [19, 24].

Remark 2.2 The differences between the cases c = inf(I) and c = sup(I) is demonstrated by an example
in Section 4.

The proof of [24, Theorem 5], also used in [19], shows that if (5)-(7) are satisfied, then

�

p[2i]
n

�(k)
(c)≃ sn,c

(−sc)k AcB
k+i
c

Γ (k+ νc + 2i + 1)
n fc(k+i), 0≤ k ≤ n, (8)

where fc(x) = bc x + ac is a strictly increasing function with 2 fc(0)+1= bc(νc +1)> 0. Therefore, the
relation (8) can be written as

�

p[2i]
n

�(k)
(c)≃ Ck,isn,cn

fc(k+i), 0≤ k ≤ n,

where

Ck,i =
(−sc)k AcB

k+i
c

Γ (k+ νc + 2i + 1)
. (9)

The constants Ck,i also depend on c, so when c = sup(I) these constants are always positive and when
c = inf(I) they alternate the sign according to the order of the derivatives k.
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Theorem 2.1 Assuming the conditions (5)-(7), we have the following Mehler-Heine asymptotics for the
dSOP qn,

lim
n→∞

sn,ca
1/2
n,c qn

�

c + sc
z2

bn,c

�

=
j+1
∑

i=0

(−sc)
idi,c(L)z

−νc Jνc+2i(2z) := ϕc,νc , j,L(z), (10)

uniformly on compact subsets of C, where Jνc+2i are the Bessel functions of the first kind given by (2). The
coefficients di,c(L) are known explicitly through the recursive process

di,c(L) = (−1)i
θc,i, j,L −
∑i−1

m=0(−1)mdm,c(L)
� i

m

�

m!
Ci−m,m

Ci,0

i!
C0,i
Ci,0

, 0≤ i ≤ j + 1, (11)

where the constants Ck,i are given in (9), and

θc,i, j,L =
L ( fc(i)− fc( j)) + fc(i) + fc( j) + 1
(1+ L)( fc(i) + fc( j) + 1)

, (12)

with L determined by (4) denoting

θc,i, j,+∞ = lim
L→+∞

L( fc(i)− fc( j)) + fc(i) + fc( j) + 1
(1+ L)( fc(i) + fc( j) + 1)

=
fc(i)− fc( j)

fc(i) + fc( j) + 1
.

We note that the Mehler-Heine formulae (10) have been reported in [19, Theorem 1] but only for
the case c = inf(I).

Remark 2.3 It is easily seen that if the asymptotic behavior of the sequences an,c and bn,c is known, then
fc(k) and Ck,i can be computed straightforwardly. Furthermore, according to [19, Eq. (6)], one can
determine L by using the relation

K( j, j)n−1 (c, c)≃
C2

j,0

2 fc( j) + 1
n2 fc( j)+1.

Consequently, we obtain

L = lim
n→∞

Mn

C2
j,0

2 fc( j) + 1
n2 fc( j)+1. (13)

With all these ingredients we can automatize, through a symbolic computer program, the process for ob-
taining the limit function in (10).
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2.2 µ is a symmetric measure

When µ is a symmetric positive Borel measure with respect to the origin, we take c = 0 in (3), i.e.

( f , g)S =

∫

f (x)g(x)dµ+Mn f ( j)(0)g( j)(0). (14)

Therefore, the sequences of polynomials {pn}n≥0 and {qn}n≥0 are symmetric, and we have to consider
the corresponding subsequences of polynomials of even and odd degree — i.e. {p2n}n≥0, {p2n+1}n≥0,
{q2n}n≥0 and {q2n+1}n≥0. In this way, we can reproduce the method described for nonsymmetric mea-
sures with slight differences.

We begin by assuming that for all i ≥ 0, the limits

lim
n→∞

(−1)n
a1/2

n

bi
n

p[2i]
2n

�

z
bn

�

= z−(ν+i)Jν+i(2z), (15)

lim
n→∞

(−1)n
a1/2

n

bi
n

p[2i]
2n+1

�

z
bn

�

= z−(ν+i)Jν+i+1(2z), (16)

hold uniformly on compact subsets of C. Note that Jt is the Bessel function of the first kind and order
t given by (2), and

a−1/2
n ≃ Ana, bn ≃ Bnb, ν > −1, and 2a+ 1= 2b(ν+ 1), (17)

with A, B, b > 0.
The assumptions (15)-(17) are natural. For example, the generalized Freud polynomials satisfy

these conditions [19, 24]. In fact, they only need to hold for i = 0, i.e. for the orthonormal polynomials
with respect to µ, and the additional conditions

lim
n→∞

γ2n

γ2n+1

bn

n
= lim

n→∞

γ2n+1

γ2n+2

bn

n
=

1
2b

,

where γn are the leading coefficients of pn for n≥ 0, cf. [24, Lemma 3].
Similar to the nonsymmetric case, it is simple to deduce that there is a strictly increasing function

f (x) = bx + a with 2 f (0) + 1= b(ν+ 1)> 0 such that for 0≤ k ≤ n, one has

(p[4i]
2n )

(2k)(0)≃ Ck,i(−1)nn f (2k+2i) = Ck,i(−1)nng(k+i), (18)

(p[4i]
2n+1)

(2k+1)(0)≃ eCk,i(−1)nn f (2k+2i+1) = eCk,i(−1)nng∗(k+i), (19)

where g and g∗ are strictly increasing functions defined as

g(k) := f (2k) with 2g(0) + 1> 0,

g∗(k) := f (2k+ 1) with 2g∗(0) + 1> 0
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and

Ck,i =
(−1)k(2k)!AB2(k+i)

k!Γ (k+ ν+ 2i + 1)
, eCk,i =

(−1)k(2k+ 1)!AB2(k+i)+1

k!Γ (k+ ν+ 2i + 2)
. (20)

Therefore, [19, Theorem 2] concerning the Mehler-Heine asymptotics for the symmetric polynomials
qn can be now written as follows.

Theorem 2.2 Let {qn}n≥0 be the sequence of orthonormal with respect to (14). Then, assuming (15)-(17),
we have uniformly on compact subsets of C,

• When j = 2r,

lim
n→∞

(−1)na1/2
n q2n

�

z
bn

�

=
r+1
∑

i=0

(−1)idi,1(L)z
−νJν+2i(2z) := Φν,r,L(z), (21)

lim
n→∞

(−1)na1/2
n q2n+1

�

z
bn

�

= z−νJν+1(2z).

• When j = 2r + 1,

lim
n→∞

(−1)na1/2
n q2n

�

z
bn

�

= z−νJν(2z),

lim
n→∞

(−1)na1/2
n q2n+1

�

z
bn

�

=
r+1
∑

i=0

(−1)idi,2(L)z
−νJν+2i+1(2z) := Φ∗ν,r,L(z). (22)

The coefficients di,1(L) and di,2(L) are given in a recursive way — viz.

di,1(L) = (−1)i
τi,r,L − (2i)!
∑i−1

m=0 dm,1(L)
(−1)iCi−m,m

(2(i −m))! Ci,0

(2i)!
C0,i

Ci,0

, (23)

di,2(L) = (−1)i
ρi,r,L − (2i + 1)!

∑i−1
m=0 dm,2(L)

(−1)i eCi−m,m

(2(i −m) + 1)! eCi,0

(2i + 1)!
eC0,i

eCi,0

, (24)

where the constants Ck,i and eCk,i are provided in (20), and

τi,r,L =
L
�

g(i)− g(r)
�

+ g(i) + g(r) + 1

(1+ L)(g(i) + g(r) + 1)
, (25)

ϱi,r,L =
L
�

g∗(i)− g∗(r)
�

+ g∗(i) + g∗(r) + 1

(1+ L)(g∗(i) + g∗(r) + 1)
, (26)

7



with

τi,r,+∞ = lim
L→+∞

τi,r,L =
g(i)− g(r)

g(i) + g(r) + 1
,

ϱi,r,+∞ = lim
L→+∞

ϱi,r,L =
g∗(i)− g∗(r)

g∗(i) + g∗(r) + 1
.

Jt denotes again the Bessel function of the first kind and order t given by (2).

To compute the value of L we can proceed like in Remark 2.3. The symmetric case was illustrated
in [19, Sec. 6] with an example where the measure µ corresponds to the classical Hermite weight
on the real line. In the constructive process to obtain the Mehler-Heine asymptotics the generalized
Hermite polynomials appeared and, just as we might expect, the sequences an and bn are related to the
Maskhar-Rakhmanov-Saff numbers cf. [8, p. 2].

The statements of the two theorems in this Section have been given in detail to have all the necessary
ingredients for the algorithm and the computer program that we provide in this paper.

3 Process Flow Diagram and Computer Program

In the previous section we have provided all the necessary results to obtain the Mehler-Heine asymptotics
for the discrete Sobolev orthonormal polynomials considered in this work. Now, a natural question
arises: which are the inputs that we need to run the computer program? The rule should be the lesser
inputs, the better. A first look at these results tells us that it is mandatory to give the information of
the symmetry (or nonsymmetry) of µ, the general term of the sequence {Mn}n, and the values of the
constants j and c (the last one is taken automatically as 0 when the measure is symmetric). These are
basic inputs determined by the inner product (1). In addition, a second somewhat deeper look provides
us with relevant information. Together with the previous inputs, if we know the general term of the
sequences an,c and bn,c (resp. an and bn), we can compute explicitly all the functions and constants to
obtain the Mehler-Heine formulae given in Theorem 2.1 (resp. Theorem 2.2). Therefore, the key inputs
of the program are these two sequences.

In some situations both sequences are strongly connected: for example, for the generalized Freud
orthonormal polynomials the sequence bn is easily obtained from the sequence an [8]. But, in general,
we choose to provide both sequences because they are obtained in a straightforward way through the
Mehler-Heine formulae satisfied by the standard orthonormal polynomials with respect to µ (according
to the assumptions in Theorems 2.1 and 2.2).

In some cases both sequences are well-known for the corresponding families of orthonormal poly-
nomials — e.g. Laguerre [30], Jacobi [30], or generalized Freud [2, 3, 4, 5, 6, 7, 8]. For this reason, we
preloaded these families in the program. Thus, we want to know the Mehler-Heine asymptotics for the
discrete Sobolev orthonormal polynomials with respect to (1) where µ is one of the measures related to
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the families of standard polynomials just cited, then it is enough to indicate it without providing explic-
itly both sequences. In fact, we could also include the case corresponding to the so-called modified or
generalized Jacobi orthonormal polynomials [7], i.e. when dµ= h(x)(1− x)α(1+ x)βd x with α,β > 0,
and where h is a real analytic function and strictly positive on [−1,1]. However, the function h has no
influence on the Mehler-Heine asymptotics [7, 24], so if we are interested in this type of asymptotics
for the dSOP in this case, then it is enough to consider the Jacobi case with α,β > 0.

In conclusion, to run the program, firstly, we choose either between the preloaded measures or the
general case providing the key inputs — i.e. the sequences an,c and bn,c or an and bn. Thus,

• General case (Key inputs). After entering both sequences, the program asks about the symmetry
(or nonsymmetry) of µ and for the basic inputs. For this case, we remark that the user must
know that the sequences considered satisfy the assumptions (5)-(6) given in Theorem 2.1 (resp.
the conditions (15)-(16) in Theorem 2.2). In other words, the user must know the correspond-
ing Mehler-Heine formulae for those polynomials. Anyway, to avoid wrong results, the program
checks automatically the condition (7) (resp. (17)).

• Preloaded cases. The program asks about some specific details of the preloaded measures and
for the basic inputs.

Regarding the outputs, the program returns the corresponding limit function in the Mehler-Heine
formula, together with three extras: the value of L, a list of the coefficients of di,c(L), di,1(L) or di,2(L) as
appropriate, and a plot of the limit function around the point c (just where this type of local asymptotics
is more precise).

Notice that the program checks the admissibility of the given inputs. Thus, as we have commented
before, it checks whether the sequences an,c and bn,c (resp. an and bn) satisfy the conditions (7) (resp.
(17)), and whether j is a nonnegative integer. In the preloaded cases the program also checks that the
involved parameters are admissible: for example, in the Laguerre case the parameter αmust be greater
than −1.

We summarize how the algorithm and the computer program work in the following process flow
diagram — cf. Fig. 1.
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Start: Choose between the gen-
eral case providing the key inputs
or the preloaded cases

Is measure µ symmetric? Choose one of the preloaded cases

General case: Key inputs Preloaded cases

Laguerre Jacobi Generalized Freud

Choose
between
c = 1 or
c = −1

Enter α, β,
j, and Mn

Enter α, j,
and Mn

Enter m, α,
j, and Mn

The program returns the limit
function in the Mehler-Heine
formula, the value of L, the co-
e�cients di,c(L), and a plot of
the limit function around the
point c

The program returns the two
limit functions in the Mehler-
Heine formulae: one for the se-
quence of even polynomials and
the other one for the sequence
of odd polynomials, the value
of L, the coe�cients di,1(L) or
di,2(L) as appropriate, and two
plots of the corresponding limit
functions around the point 0

Enter an,
bn, j, and
Mn

Enter c and choose between c =
inf(I) or c = sup(I)

Enter an,c ,
bn,c , j, and
Mn

Yes

No

Figure 1: Flow diagram.
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4 Examples

We illustrate how the program works through examples where we only show some paths of the process
flow diagram given in the previous section. Nevertheless, we are confident that it is sufficient to manage
the program.

4.1 Example 1. Path: General Case

In this path we must provide the so-called key inputs. We tackle a case corresponding to a nonsymmetric
measure belonging to the Nevai-Blumenthal class considered in [5]. When the Mathematica® notebook
is evaluated, the first thing we see is the dialog notebook given in Fig. 2. In this example, we will show
that it is enough to fill eight dialog notebooks where we will enter the basic and key inputs to get the
desired limit function in the Mehler-Heine asymptotics. When the measure is symmetric we will only
fill six dialog notebooks because c = 0. The number of dialog notebooks to fill does not include those
asking for confirmation about the data entered — cf. Fig. 5.

Figure 2: First dialog notebook.

We click on General case. Next, the program asks about the symmetry of the measure — cf. Fig. 3.
For this example, we choose No.

11



Figure 3: Second dialog notebook.

Next, the value and location (infimum or supremum) of point c are asked. We write 1 and click on
Supremum in the corresponding dialog notebooks — cf. Figs. 4 and 6.

Figure 4: Third dialog notebook.

Figure 5: Dialog notebook asking for confirmation about the data.

Figure 6: Fourth dialog notebook.

Since the nonsymmetric measure considered belongs to the Nevai-Blumenthal class M(0, 1), the
sequences (key inputs) are known [5, 24]. Thus,

an,1 = 4ν1 n−2ν1−1 bn,1 =
n2

2
.

12



It is easy to check that the conditions (7) are satisfied by any ν1 > −1. For this example, we take ν1 = 1,
so an,1 = 4/n3. In this way, we write these sequences in the dialog notebooks such as we see in Figs. 8
and 9. Obviously, and according to Theorem 2.1, the choice of v1 changes the limit function in the
Mehler-Heine formula. Thus, one question arises: why does the program not ask about v1 (in general,
for vc)? We think that it is better to give only two sequences and let the program check whether all the
conditions required in (7) are satisfied. Thus, we trust the program — i.e. if we enter two sequences that
do not satisfy (7), then the program gives a warning. For example, if we enter an,1 = n and bn,1 = 3n2,
then from (7) we would deduce that ν1 = −1, which is not an admissible value. Thus, the program
returns the following warning:

Figure 7: Dialog notebook when (7) are not satisfied.

Notice that the program does not continue with the evaluation of the notebook and asks us for a new
expression for the sequence an,1 indicating the expression entered previously. Next, a new expression
for bn,1 will be requested.

Figure 8: Fifth dialog notebook.
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Figure 9: Sixth dialog notebook.

Finally, the program asks for the remaining basic inputs such as the order of the derivatives, j, and
the general term of the sequence Mn. In this example, we chose j = 5 and Mn = n2− n+3. Notice that
Mn must be a sequence of nonnegative real numbers. This relevant fact is warned in the corresponding
dialog notebook, but it is not checked by the program. Thus, these data are entered as Figs. 10 and 11
show.

Figure 10: Seventh dialog notebook.

Figure 11: Eighth dialog notebook.

Eventually, in this easy way the program provides us with relevant information — viz. the case that
we are tackling according to the value of L, the expression of the limit function in the Mehler-Heine
asymptotics together with a list of the coefficients (di,c(L)) in that expression, and a plot of the limit
function around point c. In this example, the relevant outputs are collected in Figs. 12 and 13.
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Figure 12: Output of the program for this example.

-5 5 10

-0.6

-0.4

-0.2

Figure 13: Graphic output of the program for this example.

We omitted all the dialog notebooks asking for confirmation about the data, except the one shown
in Fig. 5 as an example. These notebooks are useful in practice because they help to avoid errors in
input data.

15



4.2 Example 2. Path: Preloaded cases: Jacobi

For several standard orthonormal polynomials the sequences an,c and bn,c (resp. an and bn) are known.
There is no need to provide them because they are already implemented in the program. Our sec-
ond example corresponds to a classical bounded measure. More exactly, we obtain the Mehler-Heine
asymptotics for the discrete Sobolev orthonormal polynomials for the measure µ determined by the
Jacobi weight on [−1, 1], i.e. dµ(x) = (1− x)α(1+ x)βd x with α,β > −1.

Now in Fig. 2, we click on Preloaded cases and obtain the dialog notebook shown in Fig. 14.

Figure 14: Preloaded cases.

We choose Jacobi. In the next dialog notebook — cf. Fig. 15, we see the inner product considered and
are asked to choose the value of c. Here, we set c = −1.

Figure 15: The nonstandard inner product and the choice of c.

In the next two steps we enter the values of the parameters α and β . For this example, we choose α= 2
and β = 1/5, cf. Figs. 16 and 17.
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Figure 16: The value of α.

Figure 17: The value of β .

The program checks whether the parameters required are admissible. It is well known that in this case
the values α and β must be greater than −1. If we enter a non-admissible value, the program returns
a warning — e.g. for β = −5 we obtain the answer shown in Fig. 18.

Figure 18: Dialog notebook when a non-admissible value of a parameter is entered.

Finally, similar to Example 4.1, the inputs j and Mn are required. We omit the corresponding dialog
notebooks. Thus, introducing the values j = 6 and Mn = n−132/5, the program returns (we omit the
output corresponding to the coefficients di,−1 to save space):
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Figure 19: Value of L and limit function in the Mehler-Heine formula.

Figure 20: Graphic output of the program.

4.2.1 Differences between c = −1 and c = 1.

The choice of c is very relevant. When c = −1 the value of β plays a main role in the Mehler-Heine
asymptotics. However, when c = 1, it is α which plays this role. Thus, the value of L changes according
to the value of c. In the case c = −1 we have

f−1(k) = 2k+ β + 1/2, Ck,0 =
(−1)k

2
2k+α+β

2 Γ (k+ β + 1)
.

Now it follows from (13) that

L = lim
n→∞

n−132/5
C2

6,0

2 f−1(6) + 1
n2 f−1(6)+1 =

C2
6,0

2 f−1(6) + 1
=

5

2162688 5p2 Γ 2
�36

5

� .
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On the other hand, if c = 1 then

f1(k) = 2k+α+ 1/2, Ck,0 =
1

2
2k+α+β

2 Γ (k+α+ 1)
.

Consequently, we obtain

L = lim
n→∞

n−132/5
C2

6,0

2 f1(6) + 1
n2 f1(6)+1

= lim
n→∞

n−132/5 1

799065243648000 5p2
n30 = +∞.

Repeating this example for c = 1 leads to the result shown in Fig. 21 visibly different from the one in
Fig. 19 for c = −1. The outcome is consistent with expressions (10) related to Theorem 2.1.

Figure 21: Value of L and limit function in the Mehler-Heine formula when c = 1.

We note that the Jacobi weights have been considered in [18] by using another standardization.
However, if we orthonormalize the polynomials in [18], we obtain the same results as in Theorem 2.1.

4.3 Example 3. Path: Preloaded Cases. Generalized Freud

To complete the examples, we consider a symmetric measure µ. In this way, we illustrate Theorem 2.2.
We click on Preloaded cases and next on Generalized Freud in the dialog notebook shown in Fig. 14.
Notice that dµ(x) = x2me−2|x |αd x with α > 1, m ∈ N∪ {0}, and c = 0.

The program asks for the value of m, cf. Fig. 22. As an example we choose m= 3.

19



Figure 22: Generalized Freud case and the choice of m.

We omit the dialog notebooks where the program requires the values for α, j, and the general term Mn.
Here, we choose α= 4, j = 6, and Mn = n. Omitting again the output for the coefficients, the program
returns:

Figure 23: Value of L and limit functions in the Mehler-Heine formula.
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Figure 24: Graphic outputs of the program for this example.

Remark 4.1 We make the following comments.

• According to Theorem 2.2, there are two Mehler-Heine formulae — viz. for even and odd polynomials.
Since j = 6, we have r = 3. Therefore, in this example the odd case lacks interest.

• In [2] the authors prove that for standard generalized Freud orthogonal polynomials, the parameter
α does not influence the limit function of the Mehler-Heine formula. As it is expected, this also occurs
for the Sobolev case. However, the parameter m has an essential impact on the asymptotics because
ν = m− 1/2. In this way, the Mehler-Heine formulae do not change for these Sobolev polynomials
if we choose any α > 1. However, changing m in this example, we obtain different Mehler-Heine
formulae for the even polynomials.

• Since ν = m − 1/2, being m a nonnegative integer, the Bessel functions of the first kind can be
expressed via trigonometric functions sin(x) and cos(x) as Fig. 23 shows. Mathematica® often uses
this type of simplifications. In this example, it can be checked that

cos(2x)− 15 cos(2x)
4x2 + 15sin(2x)

8x3 − 3 sin(2x)
xp

πx3
= x−5/2J7/2(2x),

which is consistent with Theorem 2.2.
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4.4 Two other cases. Comments and warnings.

The simplest case within the Freud weights corresponds to classical Hermite weight. Thus, the authors
of [19] consider the measure given by dµ(x) = e−x2

d x to illustrate their results about the asymptotic
behavior of the zeros of the orthonormal polynomials with respect to the discrete Sobolev inner product

( f , g)S =

∫ +∞

−∞
f (x)g(x)e−x2

d x +Mn f ( j)(0)g( j)(0). (27)

We know that the asymptotic behavior of the zeros is obtained from the corresponding Mehler-Heine
formula by the Hurwitz’s Theorem. Since the above inner product is a particular case of (1), we could
want to apply our program. Our first idea is to use the preloaded case Generalized Freud. However,
choosing m = 0 and α = 2 yields dµ = e−2x2

d x . This subtle difference between both measures makes
it impossible to use the preloaded case directly. Nevertheless, there is a simple solution — viz. one
can choose the General case, then symmetric measure, and introduce the key inputs as an = bn =

p
n.

Another option is to consider the relation

q̃n(x) = 21/4qn(
p

2x),

where qn are the orthonormal polynomials with respect to the inner product (27) and q̃n are the or-
thonormal polynomials with respect to the Sobolev inner product

( f , g)S1
=

∫ +∞

−∞
f (x)g(x)e−2x2

d x + eMn f ( j)(0)g( j)(0), (28)

where eMn = Mn/2
j+1/2. Now one can use the preloaded case Generalized Freud, where we set m = 0,

α= 2, and when the general term of Mn is requested, we have to enter eMn. As it is natural, both options
lead to the same result. This occurs because the key inputs for dµ(x) = e−2x2

d x are an =
p

n/2 and
bn =
p

2n. Therefore, the limits in Theorem 2.2 coincide for both families.
Another case of interest is related to the Gegenbauer measure

dµ(x) = (1− x2)αd x , α > −1.

This can be viewed as a particular case of the Jacobi case when α= β . Hence, we select the preloaded
case Jacobi and choose either c = −1 or c = 1. On the other hand, since this measure is symmetric
we can first select General case, c = 0, and using the corresponding sequences an and bn gives the
Mehler-Heine formula.

It is convenient to warn about some aspects of the program:

• If α, β (Laguerre and Jacobi cases) or m (generalized Freud case) are large enough, the limit
functions in the corresponding Mehler-Heine formulae are very close to the zero function in the
uniform norm. Then, the plot is not useful, and Mathematica® has problems with the plot con-
struction and issues the warnings of the type “too small to represent as a normalized machine
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number; precision may be lost." This is not a malfunction because the limit function and the
coefficients are correctly obtained, which are the main objectives of the program.

• To simplify the expression of the limit functions returned by the program we have used the com-
mand FullSimplify in the symmetric cases (general case and generalized Freud). In these situa-
tions, the simplification can take a substantial amount of time. We can gain time removing this
command, although the expression obtained for the limit function can be enormous.

4.5 Zeros

Although it is not the objective of this paper, we guess that the location of the zeros of the orthonormal
polynomials related to the inner product (1) is an interesting problem. Let us explain how to use the
program to locate zeros of these dSOP. First, we need some theoretical results the proof of which is
similar to [19, Sect. 4]. As usual we distinguish between a symmetric and nonsymmetric measure µ.

4.5.1 Nonsymmetric measure

Proposition 4.1 The polynomial qn(x), n ≥ 1, orthonormal with respect to (1), has n real simple zeros,
at most one of which is located outside of I .

In order to establish the asymptotic behavior of the zeros of qn we have to consider two cases — viz.
c = inf(I) and c = sup(I). The asymptotic result in the next statement is the consequence of applying
the Hurwitz’s Theorem to the Mehler-Heine formula (10).

Proposition 4.2 Let j > 0 and si refer to the i-th positive zero of the function ϕc,νc , j,L(z).

(a) Choose c = inf(I) and let yn,1 < yn,2 < · · ·< yn,n be the zeros of the polynomial qn(x) ordered in an
increasing order. If n is large enough, then:

(a1) If

0≤ L <
fc(0) + fc( j) + 1

fc( j)− fc(0)
,

then all zeros of qn(x) are located inside of I . Moreover,

lim
n→∞

bn,c(yn,i − c) = s2
i , i ≥ 1.

(a2) If
fc(0) + fc( j) + 1

fc( j)− fc(0)
≤ L ≤ +∞,

we have
lim

n→∞
yn,1 = c, lim

n→∞
bn,c(yn,i − c) = s2

i−1, i ≥ 2.
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Moreover, if

L >
fc(0) + fc( j) + 1

fc( j)− fc(0)
,

then yn,1 < c.

(b) Choose c = sup(I) and let yn,1 > yn,2 > · · ·> yn,n be the zeros of the polynomial qn(x) ordered in a
decreasing order. If n is large enough, then:

(b1) If 0≤ L < fc(0)+ fc( j)+1
fc( j)− fc(0)

, then all zeros of qn(x) are located inside of I . Moreover,

lim
n→∞

bn,c(c − yn,i) = s2
i , i ≥ 1.

(b2) If
fc(0) + fc( j) + 1

fc( j)− fc(0)
≤ L ≤ +∞,

we have
lim

n→∞
yn,1 = c, lim

n→∞
bn,c(c − yn,i) = s2

i−1, i ≥ 2.

Moreover, if

L >
fc(0) + fc( j) + 1

fc( j)− fc(0)
,

then yn,1 > c.

Remark 4.2 If j = 0, then (1) is the standard inner product, so that all zeros of the corresponding or-
thonormal polynomials are located in I. Under the notation of Proposition 4.2, the following assertions
hold:

(i) If c = inf(I) and yn,1 < yn,2 < · · · < yn,n are the zeros of the polynomial qn(x) ordered in an
increasing order, then

lim
n→∞

bn,c(yn,i − c) = s2
i , i ≥ 1.

(ii) If c = sup(I) and yn,1 > yn,2 > · · · > yn,n are the zeros of the polynomial qn(x) ordered in a
decreasing order, then

lim
n→∞

bn,c(c − yn,i) = s2
i , i ≥ 1.
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4.5.2 Symmetric measure

In this case c = 0, I = (−ρ,ρ) with ρ > 0, so we have the Sobolev-type inner product (14), i.e.

( f , g)S =

∫

f (x)g(x)dµ+Mn f ( j)(0)g( j)(0).

It is clear that for even j, the polynomials q2n+1 coincide with the standard polynomials p2n+1. Anal-
ogously, for odd j we have q2n = p2n for all n. Thus, the Mehler-Heine formulae also coincide as
Theorem 2.2 shows. Therefore, we only consider two other cases mentioned in (21)-(22). Applying the
symmetrization process [3, 19], Theorem 2.2, Proposition 4.2, and the Hurwitz’s Theorem , we arrive
at the following proposition.

Proposition 4.3 Let j > 0, t i refer to the i-th positive zero of the function Φν,r,L(z), and t∗i to the ith
positive zero of the function Φ∗ν,r,L(z).

(a) For any even j, the polynomial q2n has 2n−2 real simple zeros and at most 2 purely imaginary zeros.
Moreover, if n is large enough, then:

(a1) If

0≤ L <
g(0) + g( j) + 1

g( j)− g(0)
,

the polynomial q2n has 2n real simple zeros. Denoting by y2n,1 < y2n,2 < · · ·< y2n,n the positive
zeros of the polynomial q2n ordered in an increasing order, we have

lim
n→∞

bn y2n,i = t i , i ≥ 1.

(a2) If
g(0) + g( j) + 1

g( j)− g(0)
< L ≤ +∞,

the polynomial q2n has 2n−2 real simple zeros and exactly 2 purely imaginary zeros. Denoting
by y2n,1 and y2n,−1 the purely imaginary zeros and by y2n,2 < y2n,3 < · · · < y2n,n the positive
zeros of the polynomial q2n ordered in an increasing order, we have

lim
n→∞

y2n,1 = lim
n→∞

y2n,−1 = 0, lim
n→∞

bn y2n,i = t i−1, i ≥ 2.

If

L =
g(0) + g( j) + 1

g( j)− g(0)
,

then either q2n has exactly 2 purely imaginary zeros, and we have the above asymptotic behavior,
or all zeros of q2n are real being y2n,1 < y2n,2 < · · · < y2n,n their positive zeros with the
asymptotic behavior

lim
n→∞

y2n,1 = 0, lim
n→∞

bn y2n,i = t i−1, i ≥ 2.
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(b) For any odd j, the polynomial q2n+1 has 2n− 1 real and simple zeros, one of which is located at the
origin, and at most 2 purely imaginary zeros. If n is large enough, then:

(b1) If

0≤ L <
g∗(0) + g∗( j) + 1

g∗( j)− g∗(0)
,

the polynomial q2n+1 has 2n+1 real simple zeros. Denoting by y2n+1,1 < y2n+1,2 < · · ·< y2n+1,n
the positive zeros of the polynomial q2n+1 ordered in an increasing order, we have

lim
n→∞

bn y2n+1,i = t∗i , i ≥ 1.

(b2) If
g∗(0) + g∗( j) + 1

g∗( j)− g∗(0)
< L ≤ +∞,

the polynomial q2n+1 has 2n−1 real simple zeros and exactly 2 purely imaginary zeros. Denoting
by y2n+1,1 and y2n+1,−1 the purely imaginary zeros and by y2n+1,2 < y2n+1,3 < · · · < y2n+1,n
the positive zeros of the polynomial q2n+1 ordered in an increasing order, we have

lim
n→∞

y2n+1,1 = lim
n→∞

y2n+1,−1 = 0, lim
n→∞

bn y2n+1,i = t∗i−1, i ≥ 2.

If

L =
g∗(0) + g∗( j) + 1

g∗( j)− g∗(0)
,

then either q2n+1 has exactly 2 purely imaginary zeros, and we have the above asymptotic
behavior, or all zeros of q2n+1 are real being y2n+1,1 < y2n+1,2 < · · · < y2n+1,n their positive
zeros with the asymptotic behavior

lim
n→∞

y2n+1,1 = 0, lim
n→∞

bn y2n+1,i = t∗i−1, i ≥ 2.

Remark 4.3 The case j = 0 can be considered analogously to Remark 4.2.

Remark 4.4 Taking into account the Hurwitz’s Theorem, we note that the scaling sequence bn,c (or bn)
plays an important role in the description of asymptotic of the dSOP zeros.

4.5.3 Examples

In previous works we used numerical experiments to illustrate the asymptotic behavior of the zeros —
cf. [19] and the references therein. In this paper we unify the notation (Theorems 2.1 and 2.2), so that
we can proceed in a similar way. Now we want to show how the algorithm and the program can be
used in locating the zeros of these dSOP. In order to illustrate Propositions 4.2 and 4.3, we present four
examples but many more ones can be shown if needed.
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Example 4.1 [Jacobi case] We consider the inner product (1) with

dµ(x) = (1− x)−1/4(1+ x)2/3d x ,

and c = 1, j = 4, Mn = 107/(n+ 1)35/2, i.e.

( f , g)S =

∫ 1

−1

f (x)g(x)(1− x)−1/4(1+ x)2/3d x +
107

(n+ 1)35/2
f (4)(1)g(4)(1). (29)

In this situation, 1= sup(I) and bn,1 = n2/2 [24]. Therefore, we apply the program by choosing Preloaded
cases→ Jacobi and enter the data as above. The program returns (we omit the coefficients di,1(L) and the
plot of the limit function):

Figure 25: Output the program for the example corresponding to the Jacobi case.

It is clear that we are able to apply Proposition 4.2 b). Since f1(k) = 2k+α+ 1= 2k+ 3/4, we have

19
16
=

f1(0) + f1(4) + 1
f1(4)− f1(0)

< L =
15625

7× 25/12Γ
�19

4

�2 ≈ 6.07853.

The term f1(0)+ f1(4)+1
f1(4)− f1(0)

can be computed by the program by writing (f[0]+f[j]+1)/(f[j]-f[0]) in the Com-

mand Window of Mathematica® after running the program. Therefore, Proposition 4.2 b2) provides the
information about the asymptotic behavior of the zeros of the dSOP with respect to (29). Thus, for n large
enough, we have yn,1 > 1 and

lim
n→∞

yn,1 = 1, yn,i ≈ 1−
s2
i

bn,1
= 1−

2s2
i

n2
i ≥ 2.

To obtain approximations of the zeros yn,i , i ≥ 2, one only has to determine the zeros si in some interval. For
example, if we establish the first three zeros in the interval [0, 6], we can use the following Mathematica®

command
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NSolve[MH[j, x, α] == 0 && 0 < x < 6, x, WorkingPrecision -> 16]

thus obtaining

s1 =1.325920061278339,

s2 =3.244837348236775,

s3 =5.034929612268939.

As the result, for n= 50 we get the following approximations of the zeros yn,i , i = 2,3, 4:

y50,2 ≈ 1−
2× 1.3259200612783392

502
= 0.998593548792880,

y50,3 ≈ 1−
2× 3.2448373482367752

502
= 0.991576824466790,

y50,4 ≈ 1−
2× 5.0349296122689392

502
= 0.979719587039598.

Mehler-Heine asymptotics is a type of local asymptotic, so we obtain better approximations for the zeros
closer to point c. Since in this case c = 1, we get better approximations for the zeros closer to 1.

Example 4.2 (Laguerre case) In this case we choose α = 3, j = 5, and Mn = 1/(n+ 1), which gives the
Sobolev-type inner product

( f , g)S =

∫ ∞

0

f (x)g(x)x3e−x d x +
1

n+ 1
f (5)(0)g(5)(0). (30)

Noting that c = 0= inf(I), we proceed similar to the Example 4.1. Thus, the program returns

Figure 26: Output the program for the example corresponding to the Laguerre case.

Now we can apply Proposition 4.2 a2) with L = +∞. Inasmuch as bn,0 = n [24], the asymptotic
behavior of the dSOP zeros of respect to (30) is

lim
n→∞

yn,1 = 0, yn,i ≈
s2
i

bn,0
=

s2
i

n
i ≥ 2,

with yn,1 < 0 for n large enough. First, we search for the zeros of the limit function in the Mehler-Heine
formula, say in the interval [0,8]. The command
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NSolve[MH[j, x, α] == 0 && 0 < x < 8, x, WorkingPrecision -> 16]

returns

s1 =3.653924739560034,

s2 =5.533254604844355,

s3 =7.301999533325407,

and for n= 150 we have the following approximations of the zeros yn,i , i = 2, 3,4:

y150,2 ≈
3.6539247395600342

150
= 0.089007773349126,

y150,3 ≈
5.5332546048443552

150
= 0.204112710146875,

y150,4 ≈
7.3019995333254072

150
= 0.355461314564563.

Example 4.3 (Hermite case) Hermite weight function is a particular case of the generalized Freud weight
function x2me−2|x |α on the real line. We choose m= 0, α= 2, j = 8 (r = 4), M̃n = 1/(2560

p
2(n+2)17/2)

and arrive at the following Sobolev inner product (28):

( f , g)S =

∫ +∞

−∞
f (x)g(x)e−2x2

d x +
1

2560
p

2(n+ 2)17/2
f (8)(0)g(8)(0). (31)

Continuing similar to the previous examples, we get

Figure 27: Output the program for the example corresponding to the Hermite case.

After that, we apply Proposition 4.3 a) with g(k) = k− 1/4 and

128
p

2
85π

= L <
g(0) + g(4) + 1

g(4)− g(0)
=

9
8

.

Similar to the Jacobi case, the term g(0)+g(4)+1
g(4)−g(0) can be computed after the program start. Since bn =

p
2n,

by Proposition 4.3 a1) for sufficiently large n, all dSOP zeros with respect to (31) are real, simple and

lim
n→∞

p
2ny2n,i = t i , i ≥ 1,
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cf. [24]. In order to find the first positive zeros of the limit function, we use the command

NSolve[MH[j/2, x, ν] == 0 && 0 < x < 6.5, x, WorkingPrecision -> 16]

thus obtaining

t1 =0.607643840651074,

t2 =2.017034485993581,

t3 =3.600436437073820,

t4 =5.222669794289976.

Choosing n= 150, we obtain

y300,1 ≈
0.607643840651074

p
300

= 0.035082333497132,

y300,2 ≈
2.017034485993581

p
300

= 0.116453540345315,

y300,3 ≈
3.600436437073820

p
300

= 0.207871294614471,

y300,4 ≈
5.222669794289976

p
300

= 0.301530981162185.

Unlike to Example 4.1, the Laguerre and Hermite weights are supported on unbounded sets. Therefore, in
order to get good approximations in Examples 4.2 and 4.3, we take n bigger than in Example 4.1.

Example 4.4 (Nevai-Blumenthal case) If the measure µ is not explicitly given, Propositions 4.2 and 4.3
are even more interesting. For instance, in Subsection 4.1 we demonstrated the program action for the
Sobolev inner product

( f , g)S =

∫ 1

−1

f (x)g(x)dµ+ (n2 − n+ 3) f (5)(1)g(5)(1), (32)

in (General case) with a measure from the Nevai-Blumenthal class M(0,1). The outputs of the program are
displayed in Figs. 12 and 13. Now, knowing that L = +∞, we apply Proposition 4.2 b2) thus obtaining

lim
n→∞

yn,1 = 1, lim
n→∞

n2

2
(1− yn,i) = s2

i−1, i ≥ 2,

where si is the i-th positive zero of the function ϕ1,1,5,∞(x). Furthermore, yn,1 > 1 for n large enough. To
illustrate this result, we compute the first three zeros by using the program

NSolve[MH[j, x, ν] == 0 && 0 < x < 6, x, WorkingPrecision -> 16]
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and obtain

s1 =2.253003516051088,

s2 =4.077745620336094,

s3 =5.835148392017446.

Above, ν is the notation in the program for the term νc . In this example νc = ν1 = 1. Taking n = 50, we
arrive at the following approximations of the first dSOP zeros with respect to (32):

y50,2 ≈ 1−
2× 2.2530035160510882

502
= 0.995939180125329,

y50,3 ≈ 1−
2× 4.0777456203360942

502
= 0.986697592524664,

y50,4 ≈ 1−
2× 5.8351483920174462

502
= 0.972760834594509.

In conclusion, we hope the program will be useful to obtain Mehler-Heine asymptotics for dSOP in a simple
and symbolic way and to help locate the zeros of these nonstandard polynomials. As we have commented
previously, the program is free and it can be downloaded from the website
https://w3.ual.es/GruposInv/Tapo/MHAS.nb.
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