Secure Group Communications using Twisted Group Rings

M.D. Gómez Olvera J.A. López Ramos B. Torrecillas Jover

March 2, 2020

1 Introduction

In recent years, new hard problems have been proposed in public key cryptography, since those that we are using might be not secure soon. When two parties want to communicate through an insecure channel, they need to do a key agreement, which consist on agreeing on a secret shared key by exchanging information that does not compromise the common key.

The first widely used protocol that allows this to happen was proposed in 1976 by W. Diffie and M. Hellman [2], and works as follows:

Let two users, Alice and Bob, who want to agree on a common key through an insecure channel. Let p a prime number, \mathbb{Z}_{p}^{*} the multiplicative group of integers modulo p, and g a primitive root modulo p public.

1. Alice chooses a secret integer a, and sends Bob $p_{A}=g^{a}(\bmod p)$.
2. Bob chooses a secret integer b, and sends Alice $p_{B}=g^{b}(\bmod p)$.
3. Alice computes $p_{B}^{a}(\bmod p)$, and Bob computes $p_{A}^{b}(\bmod p)$, so both obtain the same value, which is the secret shared key $K=g^{a b}(\bmod p)$.

Information shared does not compromise the shared key since the underlying problem an attacker would need to solve, the so-called Discrete Logarithm Problem (DLP) is believed to be hard. This key agreement can be seen as an example of this generalization by Maze et al [9]:

Let S be a finite set, G an abelian semigroup, ϕ a G-action on S, and a public element $s \in S$.

1. Alice chooses $a \in G$, and sends $\operatorname{Bob} p_{A}=\phi(a, s)$.
2. Bob chooses $b \in G$, and sends Alice $p_{B}=\phi(b, s)$.
3. Alice computes $\phi\left(a, p_{B}\right)$, and Bob computes $\phi\left(b, p_{A}\right)$, so both obtain the secret shared key $K=\phi(a, \phi(b, s))=\phi(b, \phi(a, s))$.
whose underlying problem is called the Semigroup Action Problem (SAP).
Semigroup Action Problem. Given a semigroup action ϕ of the group G on a set S and elements $x \in S$ and $y \in G$, find $g \in G$ such that $\phi(g, x)=y$.

In the context of SAP, we proposed in [4] a new setting, and some protocols. In our case, the platform is a twisted group ring, a new proposal in the context of group rings, that have also been recently used in cryptography in works like $[3,6,5,7]$. And the action proposed is the two-sided multiplication in a twisted group ring, so the problem is a variation in the twisted case of the so-called Decomposition Problem (DP), which is a generalization of the Conjugate Search Problem (CSP).

Decomposition Problem. Given a group $G,(x, y) \in G \times G$ and $S \subset G$, the problem is to find $z_{1}, z_{2} \in S$ such that $y=z_{1} x z_{2}$.

A natural extension is how to extend this kind of schemes to more than two users. In the classic Diffie-Hellman protocol, a solution is proposed in [10]. And in the more case of SAP, this solution can be found in [8]. In both cases, it is shown that the extra information shared in the case of a n users key exchange does not imply information leakage for an attacker compared to the 2 -users case.

Our aim in this work is to show that in our setting, that differs from those above given the non-commutativity of twisted group rings, and which could work better against problems that threat current communications, this is also true: the extra information shared between n users does not imply information leakage, so if the 2-users key exchange is computationally secure, then the extension to n users is also secure.

2 Algebraic Setting

In this section, twisted group rings are defined, and we also show some properties that make the key exchange possible.

Definition 2.1. Let K be a ring, G be a multiplicative group, and α be a cocycle in $U(K)$, the units of K. The group ring $K^{\alpha} G$ is defined to be the set of all finite sums of the form

$$
\sum_{g_{i} \in G} r_{i} g_{i}
$$

where $r_{i} \in K$ and all but a finite number of r_{i} are zero.
The sum of two elements in $K^{\alpha} G$ is given by

$$
\left(\sum_{g_{i} \in G} r_{i} g_{i}\right)+\left(\sum_{g_{i} \in G} s_{i} g_{i}\right)=\sum_{g_{i} \in G}\left(r_{i}+s_{i}\right) g_{i}
$$

And multiplication, which is twisted by a cocycle, is given by

$$
\left(\sum_{g_{i} \in G} r_{i} g_{i}\right) \cdot\left(\sum_{g_{i} \in G} s_{i} g_{i}\right)=\sum_{g_{i} \in G}\left(\sum_{g_{j} g_{k}=g_{i}} r_{j} s_{k} \alpha\left(g_{j}, g_{k}\right)\right) g_{i}
$$

As an example, consider the finite field K, a primitive element t, and the dihedral group of $2 m$ elements, $D_{2 m}=<x, y: x^{m}=y^{2}=1, y x^{a}=x^{m-a} y>$. The group ring $R=K^{\alpha} D_{2 m}$, where α is

$$
\alpha: D_{2 m} \times D_{2 m} \rightarrow K^{*}
$$

with $\alpha\left(x^{i}, x^{j} y^{k}\right)=1$ and $\alpha\left(x^{i} y, x^{j} y^{k}\right)=t^{j} i, j=1, \ldots, 2 m-1$, is a twisted group ring.
Now we establish some useful properties that will allow us to make our key exchange possible.

Definition 2.2. Let $R=K^{\alpha} D_{2 m}$, where t is the primitive root of unity that generates K and α is the cocycle defined above. Given $h \in R$,

$$
h=\sum_{\substack{0 \leq i \leq m-1 \\ k=0,1}} r_{i} x^{i} y^{k}
$$

where $r_{i} \in K$ and $x, y \in D_{2 m}$. We define $h^{*} \in K^{\alpha} D_{2 m}$:

$$
h^{*}=\sum_{\substack{0 \leq i \leq m-1 \\ k=0,1}} r_{i} t^{-i} x^{i} y^{k}
$$

where $r_{i} \in K$ and $x, y \in D_{m}$.
Note that $R=K^{\alpha} D_{2 m}$ can be written as vector space as

$$
R=R_{1} \oplus R_{2}
$$

where $R_{1}=K C_{m}$ and $R_{2}=K^{\alpha} C_{m} y$, and C_{m} is a cyclic group of order m. In this context, we can define $A_{j} \leq R_{j}$ as

$$
A_{j}=\left\{\sum_{i=0}^{m-1} r_{i} x^{i} y^{k} \in R_{j}: r_{i}=r_{m-i}\right\}
$$

where $j=1,2$.
Proposition 2.3. Given $h_{1}, h_{2} \in R$,

- If $h_{1}, h_{2} \in R_{1}$, then $h_{1} h_{2}=h_{2} h_{1}$;
- If $h_{1}, h_{2} \in A_{2}$, then $h_{1} h_{2}^{*}=h_{2} h_{1}^{*}$, and $h_{1}^{*} h_{2}=h_{2}^{*} h_{1}$;
- If $h_{1} \in A_{1}, h_{2} \in A_{2}$, then $h_{1} h_{2}=h_{2} h_{1}^{*}$.

A proof of this proposition can be found in [4].

3 Key management over twisted group rings

In this section, we explain the protocols proposed in [4], over the twisted group ring $R=K^{\alpha} D_{2 m}$ defined above.

Let $h \in R$ be a random public element. The key exchange between two users, Alice and Bob, is as follows:

1. Alice selects a secret pair $s_{A}=\left(g_{1}, k_{1}\right)$, where $g_{1} \in R_{1}, k_{1} \in A_{2} \leq R_{2}$.
2. Bob selects a secret pair $s_{B}=\left(g_{2}, k_{2}\right)$, where $g_{2} \in R_{1}, k_{2} \in A_{2} \leq R_{2}$.
3. Alice sends Bob $p_{A}=g_{1} h k_{1}$, and Bob sends Alice $p_{B}=g_{2} h k_{2}$.
4. Alice computes $K_{A}=g_{1} p_{B} k_{1}^{*}$, and Bob computes $K_{B}=g_{2} p_{A} k_{2}^{*}$, and they get the same secret shared key.

This protocol works, it was shown in [4]. Let the underlying decisional problem be the following:

Let $R=K^{\alpha} D_{2 m}=R_{1} \oplus R_{2}, A_{2} \leq R_{2}$, given ($\left.h, g_{1} h k_{1}, g_{2} h k_{2}, r_{1} h r_{2}\right)$, decide whether $\left(r_{1}, r_{2}\right)=\left(g_{2} g_{1}, k_{1} k_{2}^{*}\right)$ or not, where $h \in R, g_{i}, r_{1} \in R_{1}, k_{i} \in A_{2}, r_{2} \in A_{1}$.

It means that if someone breaks this problem, then the key exchange above can also be broken.
To define the general protocol for n users, let us define the action $\phi:\left(R_{1} \times A_{2}\right) \times R \longrightarrow R$,

$$
\phi\left(s_{i}, h\right)=g_{i} h k_{i}
$$

where $s_{i}=\left(g_{i}, k_{i}\right)$. Note that

$$
\phi\left(s_{i} \phi\left(s_{j}, h\right)\right)=\phi\left(s_{i} s_{j}, h\right)
$$

We will sometimes write $\phi\left(s_{i} s_{j}, h\right)$ to refer to $\phi\left(s_{i}, \phi\left(s_{j}, h\right)\right)$, to make some definitions more readable.
Let $h \in R$ be a random public element, and $h \in R=R_{1} \oplus R_{2}$, described before. For $i=1, \ldots, n$, user U_{i} has a secret pair $s_{i}=\left(g_{i}, k_{i}\right)$, where $g_{i} \in R_{1}$ and $k_{i} \in A_{2} \leq R_{2}$. Let $\phi\left(s_{i}, h\right)=g_{i} h k_{i}, 2$-sided multiplication. We will denote $s_{i}^{*}=\left(g_{i}, k_{i}^{*}\right)$. The key establishment for n is as follows:

1. For $i=1, \ldots, n$, user U_{i} sends to user U_{i+1} the message

$$
\left\{C_{i}^{1}, C_{i}^{2}, \ldots, C_{i}^{i+1}\right\}
$$

where $C_{1}^{1}=h, C_{1}^{2}=g_{1} h k_{1}$ and

- for $i>1$ even, $C_{i}^{j}=\phi\left(s_{i}, C_{i-1}^{j}\right)$, when $j<i, C_{i}^{i}=C_{i-1}^{i}, C_{i}^{i+1}=\phi\left(s_{i}^{*}, C_{i-1}^{i}\right)$,
- for $i>1$ odd, $C_{i}^{j}=\phi\left(s_{i}^{*}, C_{i-1}^{j}\right)$, when $j<i, C_{i}^{i}=C_{i-1}^{i}, C_{i}^{i+1}=\phi\left(s_{i}, C_{i-1}^{i}\right)$.

2. User U_{n} computes $\phi\left(s_{n}, C_{n-1}^{n}\right)$ if n is odd and $\phi\left(s_{n}^{*}, C_{n-1}^{n}\right)$ if n is even.
3. User U_{n} broadcasts

$$
\left\{C_{n}^{1}, C_{n}^{2}, \ldots, C_{n}^{n}\right\}
$$

4. User U_{i} computes $\phi\left(s_{i}, C_{n}^{i}\right)$ if n is odd or $\phi\left(s_{i}^{*}, C_{n}^{i}\right)$ if n is even, and gets the shared key.

This protocol allows all users to obtain a common shared key, as shown in Proposition 3 of [4]. In this case, the underlying decisional problem is the following:

- (n even) Let $R=K^{\alpha} D_{2 m}=R_{1} \oplus R_{2}, A_{2} \leq R_{2}$, given $r_{1} h r_{2}$, and

$$
\left\{\phi\left(s_{i_{1}} s_{i_{2}}^{*} s_{i_{3} \ldots} s_{i_{m-2}}^{*} s_{i_{m-1}} s_{i_{m}}^{*}, h\right):\left\{i_{1}, \ldots, i_{m}\right\} \subsetneq\{1, \ldots, n\}, m \in\{1, \ldots, n-1\}\right\}
$$

decide whether $\left(r_{1}, r_{2}\right)=\left(g_{1} g_{2} g_{3} \ldots g_{n-1} g_{n}, k_{1} k_{2}^{*} k_{3} \ldots k_{n-1} k_{n}^{*}\right)$ or not, where $h \in R, g_{i}, r_{1} \in R_{1}$, $k_{i} \in A_{2}, r_{2} \in A_{1}$.

- (n odd) Let $R=K^{\alpha} D_{2 m}=R_{1} \oplus R_{2}, A_{2} \leq R_{2}$, given $r_{1} h r_{2}$, and

$$
\left\{\phi\left(s_{i_{1}} s_{i_{2}}^{*} s_{i_{3} \ldots} s_{i_{m-2}} s_{i_{m-1}}^{*} s_{i_{m}}, h\right):\left\{i_{1}, \ldots, i_{m}\right\} \subsetneq\{1, \ldots, n\}, m \in\{1, \ldots, n-1\}\right\}
$$

decide whether $\left(r_{1}, r_{2}\right)=\left(g_{1} g_{2} g_{3} \ldots g_{n-1} g_{n}, k_{1} k_{2}^{*} k_{3} \ldots k_{n-1}^{*} k_{n}\right)$ or not, where $h \in R, g_{i}, r_{1} \in R_{1}$, $k_{i}, r_{2} \in A_{2}$.

We have described the so-called Initial Key Agreement (IKA), but another important process in group communication is key refreshment through the Auxiliary Key Agreement (AKA), which takes advantage of the information that was sent before to create a new key in a group when necessary, and is more computationally efficient than IKA. There exist three situations: the members of the group stay the same, a member leaves the group, or someone new joins it.

In the first situation, very user U_{i} has the information C_{n}^{i} received from the user U_{n}. The rekeying process can be carried out by any of them. We call this user U_{c}. He chooses a new element $\widetilde{s_{c}}=\left(\widetilde{g_{c}}, \widetilde{k_{c}}\right)$, where $\widetilde{g_{c}} \in R_{1}$ and $\widetilde{k_{c}} \in A_{2}$. If n is odd, he changes his private key to $\widetilde{s}_{c}{ }^{*} s_{c}$ and broadcasts the message

$$
\left\{\phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{1}\right), \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{2}\right), \ldots, \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{c-1}\right), C_{n}^{c}, \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{c+1}\right), \ldots, \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{n}\right)\right\} .
$$

If n is even, he changes his private key to $\widetilde{s_{c}} s_{c}^{*}$ and broadcasts the message

$$
\left\{\phi\left(\widetilde{s_{c}}, C_{n}^{1}\right), \phi\left(\widetilde{s_{c}}, C_{n}^{2}\right), \ldots, \phi\left(\widetilde{s_{c}}, C_{n}^{c-1}\right), C_{n}^{c}, \phi\left(\widetilde{s_{c}}, C_{n}^{c+1}\right), \ldots, \phi\left(\widetilde{s_{c}}, C_{n}^{n}\right)\right\}
$$

Then every user recovers the common key using the private key s_{i} if n is even, and s_{i}^{*} if n is odd. A proof can be found in [4].

In the second case, when some user leaves the group, the corresponding position in the rekeying message is omitted.

In the last case, when a new user U_{n+1} joins the group, if n is odd, then U_{c} adds the element $\phi\left(\widetilde{s_{c}}, C_{n}^{n}\right)$ and sends the following to the new user:

$$
\left\{\phi\left(\widetilde{s_{c}}, C_{n}^{1}\right), \phi\left(\widetilde{s_{c}}, C_{n}^{2}\right), \ldots, \phi\left(\widetilde{s_{c}}, C_{n}^{c-1}\right), C_{n}^{c}, \phi\left(\widetilde{s_{c}}, C_{n}^{c+1}\right), \ldots, \phi\left(\widetilde{s_{c}}, C_{n}^{n-1}\right), \phi\left(\widetilde{s_{c}}, C_{n}^{n}\right)\right\}
$$

If n is even, U_{c} adds the element $\phi\left(\widetilde{s}_{c}{ }^{*}, C_{n}^{n}\right)$ and sends to U_{n+1} the following:

$$
\left\{\phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{1}\right), \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{2}\right), \ldots, \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{c-1}\right), C_{n}^{c}, \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{c+1}\right), \ldots, \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{n-1}\right), \phi\left({\widetilde{s_{c}}}^{*}, C_{n}^{n}\right)\right\} .
$$

Finally, user U_{n+1} proceeds to step 3 of the group key protocol and sends the other users the information to obtain the shared key using their private keys.

4 Secure Group Key Management

In this section, we show that the extra information sent in the protocol of n users does not implies aditional information leakage for an attacker respect to the 2 -users case. For this purpouse, we define the following random variables, choosing X randomly from $\left(R_{1} \times A_{2}\right)^{n}$:

$$
\begin{gathered}
A_{n}=(\operatorname{view}(n, X), y), \text { for } y \in R \text { randomly chosen. } \\
D_{n}=\left\{\begin{array}{c}
\left.\left(\operatorname{view}(n, X), \phi\left(s_{n}^{*} s_{n-1} s_{n-2}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right), h\right)\right), \text { if } n \text { is even. } \\
\left(\operatorname{view}(n, X), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3} s_{2}^{*} s_{1}, h\right)\right), \text { if } n \text { is odd. }
\end{array}\right.
\end{gathered}
$$

where

- $\operatorname{view}(n, X):=$ the ordered set of all $\phi\left(s_{i_{1}} s_{i_{2}}^{*} s_{i_{3}} \ldots s_{m-2}^{*} s_{m-1} s_{m}^{*}, h\right)$, for all proper subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ of $\{1, \ldots, n\} ; m \in\{1, \ldots, n-1\}$.
when n is even, and
- $\operatorname{view}(n, X):=$ the ordered set of all $\phi\left(s_{i_{1}} s_{i_{2}}^{*} s_{i_{3}} \ldots s_{m-2} s_{m-1}^{*} s_{m}, h\right)$, for all proper subsets $\left\{i_{1}, \ldots, i_{m}\right\}$ of $\{1, \ldots, n\} ; m \in\{1, \ldots, n-1\}$.
when n is odd.
Also note that $\left.\phi\left(s_{n}^{*} s_{n-1} s_{n-2}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right), h\right)$, or $\phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3} s_{2}^{*} s_{1}, h\right)$, is the common secret key, is case n is even or odd respectively.

Let the relation \sim be polynomial indistinguishability, as defined in [10]. In this context, it means that no polynomial-time algorithm can distinguish between a key and a random value with probability significantly greater than $\frac{1}{2}$.

Proposition 4.1. The relation \sim is an equivalence relation.
A proof of this proposition can be found in [1]. Before we prove the main result, let us show that

Lemma 4.2. We can write $\operatorname{view}\left(n,\left\{s_{1}, s_{2}\right\} \cup X\right)$, with $X=\left\{s_{3}, \ldots, s_{n}\right\}$ as a permutation of
$V=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right)\right)$
when n is even, and as a permutation of
$V=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} s_{n-2}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right), \operatorname{view}\left(n-1,\left\{s_{1} s_{2}^{*}\right\} \cup X\right)\right)$
when n is odd.

Proof

Now we show that both sets are equal. First, we prove that $\operatorname{view}\left(n,\left\{s_{1}, s_{2}\right\} \cup X\right) \subset V$: Let an element $a \in \operatorname{view}\left(n,\left\{s_{1}, s_{2}\right\} \cup X\right)$:

- If n is even:

1. If a contains $s_{2}^{*} s_{1}\left(=s_{1}^{*} s_{2}\right)$, then it belongs to $\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right) \subset V$.
2. If a does not contain s_{1} (or s_{1}^{*}),

- but it contains all the remaining elements, $s_{2}^{(*)}, \ldots, s_{n}^{(*)}$, then it belongs to $\phi\left(s_{n} s_{n-1}^{*} \ldots s_{3}^{*} s_{2}, h\right) \subset$ V.
- and if it does not contain all the remaining elements, then it belongs to view $(n-1$, $\left.\left\{s_{2}\right\} \cup X\right) \subset V$.

3. If a does not contain s_{2} (or s_{2}^{*}),

- but it contains all the remaining elements, $s_{1}^{(*)}, s_{3}^{(*)}, \ldots, s_{n}^{(*)}$, then it belongs to $\phi\left(s_{n} s_{n-1}^{*} \ldots s_{3}^{*} s_{1}, h\right) \subset V$.
- and if it does not contain all the remaining elements, then it belongs to view $(n-1$, $\left.\left\{s_{1}\right\} \cup X\right) \subset V$.

4. Finally, if a does not contain s_{1} neither s_{2}, it belongs to any of the following view $(n-1$, $\left.\left\{s_{1}\right\} \cup X\right)$, view $\left(n-1,\left\{s_{2}\right\} \cup X\right), \operatorname{view}\left(n-1,\left\{s_{1} s_{2}^{*}\right\} \subset V\right.$.

- If n is odd:

1. If a contains $s_{2}^{*} s_{1}\left(=s_{1}^{*} s_{2}\right)$, then it belongs to $\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right) \subset V$.
2. If a does not contain s_{1} (or s_{1}^{*}),

- but it contains all the remaining elements, $s_{2}^{(*)}, \ldots, s_{n}^{(*)}$, then it belongs to $\phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{2}, h\right) \subset$ V.
- and if it does not contain all the remaining elements, then it belongs to view $(n-1$, $\left.\left\{s_{2}\right\} \cup X\right) \subset V$.

3. If a does not contain s_{2} (or s_{2}^{*}),

- but it contains all the remaining elements, $s_{1}^{(*)}, s_{3}^{(*)}, \ldots, s_{n}^{(*)}$, then it belongs to $\phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right) \subset V$.
- and if it does not contain all the remaining elements, then it belongs to view $(n-1$, $\left.\left\{s_{1}\right\} \cup X\right) \subset V$.

4. Finally, if a does not contain s_{1} neither s_{2}, it belongs to any of the following view $(n-1$, $\left.\left\{s_{1}\right\} \cup X\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right)$, $\operatorname{view}\left(n-1,\left\{s_{1} s_{2}^{*}\right\} \subset V\right.$.
The reverse inclusion, $V \subset \operatorname{view}\left(n,\left\{s_{1}, s_{2}\right\}\right)$ is true since all the elements in V belong to $\operatorname{view}\left(n,\left\{s_{1}, s_{2}\right\} \cup\right.$ $X)$ by definition.

Let us finally prove, following the idea of [10], that if the 2-users underlying decisional problem is hard, then the n-users is hard as well, or equivalently:

Theorem 4.3. For any $n>2, A_{2} \sim D_{2}$ implies that $A_{n} \sim D_{n}$.
Proof
We show this is true by induction on n. Assume that $A_{2} \sim D_{2}$ and $A_{i} \sim D_{i}, i \in\{3, \ldots, n-1\}$. Thus, we have to show that $A_{n} \sim D_{n}$. We define the random variables B_{n}, C_{n}, and show that $A_{n} \sim B_{n} \sim C_{n} \sim D_{n}$, and since \sim is a equivalence relation, by transitivity, this implies that $A_{n} \sim D_{n}$.

We split the proof in two cases:
a) Assume n is even:

We redefine A_{n}, D_{n} using Lemma 4.2, and define B_{n}, C_{n} as follows:

- $A_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right)\right.$, $\left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), y\right)$
- $B_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right)\right.$, $\operatorname{view}(n-1,\{c\} \cup X), y)$
- $C_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right)\right.$, $\left.\operatorname{view}(n-1,\{c\} \cup X), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*} s_{3} c, h\right)\right)$
- $D_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right)\right.$, $\left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*} s_{3} s_{2}^{*} s_{1}, h\right)\right)$
choosing $s_{1}, s_{2} \in R_{1} \times A_{2}, c \in R_{1} \times A_{1}$; and $X \in\left(R_{1} \times A_{2}\right)^{n-2}, y \in R_{1} h A_{1}$ randomly. Note that only the last two components vary.
$\underline{A_{2} \sim D_{2} \Longrightarrow A_{n} \sim B_{n}}$
Suppose, for the sake of contradiction, that an adversary Eve distinguishes A_{n} and B_{n}. We produce an instance of $A_{n} \nsim B_{n}$ for Eve

$$
\begin{aligned}
A_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), y\right) \\
= & \left(\boldsymbol{g}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n},\right. \\
& \boldsymbol{g}_{\mathbf{2}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{2}}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}, \\
& \left.\boldsymbol{g}_{\mathbf{2}} \boldsymbol{g}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}} \boldsymbol{k}_{\mathbf{2}}^{*}, \ldots, g_{n-1} g_{n-2} \ldots g_{3}\left(g_{2} g_{1}\right) h\left(k_{1} k_{2}^{*}\right) k_{3 \ldots} \ldots k_{n-2}^{*} k_{n-1}, y\right\} \\
B_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \operatorname{view}(n-1,\{c\} \cup X), y) \\
= & \left(\boldsymbol{g}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n},\right. \\
& \boldsymbol{g}_{\mathbf{2}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{2}}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}, \\
& \boldsymbol{c}_{\mathbf{1}}^{\left.\boldsymbol{h} \boldsymbol{c}_{\mathbf{2}}, \ldots, g_{n-1} g_{n-2} \ldots g_{3}\left(c_{1}\right) h\left(c_{2}\right) k_{3} \ldots k_{n-2}^{*} k_{n-1}, y\right\}}
\end{aligned}
$$

if Eve distinguishes A_{n} and B_{n}, then in particular, she distinguishes $g_{2} g_{1} h k_{1} k_{2}^{*}$ from $c_{1} h c_{2}$ (given $g_{1} h k_{1}$ and $g_{2} h k_{2}$), which means that she distinguishes

$$
\begin{aligned}
A_{2} & =\left(\operatorname{view}\left(2,\left\{s_{1}, s_{2}\right\}\right), y\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, y\right) \\
D_{2} & =\left(\operatorname{view}\left(2,\left\{s_{1}, s_{2}\right\}\right), \phi\left(s_{2}^{*} s_{1}, h\right)\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, g_{2} g_{1} h k_{1} k_{2}^{*}\right)
\end{aligned}
$$

which contradicts our hypothesis.
$\underline{A_{n-2}} \sim D_{n-2} \Longrightarrow B_{n} \sim C_{n}$
Suppose towards the sake of contradiction that an adversary Eve distinguishes B_{n} and C_{n}. We produce and instance of $B_{n} \nsim C_{n}$ for Eve

$$
\begin{aligned}
B_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \operatorname{view}(n-1,\{c\} \cup X), y) \\
= & \left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n},\right. \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}, \\
& \left.\boldsymbol{c}_{\mathbf{1}} \boldsymbol{h \boldsymbol { c } _ { 2 }}, \ldots, \boldsymbol{g}_{\boldsymbol{n}-\mathbf{1}} \ldots \boldsymbol{g}_{\mathbf{5}} \boldsymbol{g}_{\mathbf{4}}\left(\boldsymbol{g}_{\mathbf{3}} \boldsymbol{c}_{\mathbf{1}}\right) \boldsymbol{h}\left(\boldsymbol{c}_{\mathbf{2}} \boldsymbol{k}_{\mathbf{3}}\right) \boldsymbol{k}_{\mathbf{4}}^{*} \boldsymbol{k}_{\mathbf{5}} \ldots \boldsymbol{k}_{\boldsymbol{n - 2}} \boldsymbol{k}_{\boldsymbol{n}-\mathbf{1}}, \boldsymbol{y}\right\} \\
C_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \left.\operatorname{view}(n-1,\{c\} \cup X), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{5} s_{4}^{*} s_{3} c, h\right)\right) \\
= & \left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1 \ldots} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n},\right. \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1 \ldots} g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}, \\
& \left.\boldsymbol{c}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{c}_{\mathbf{2}}, \ldots, \boldsymbol{g}_{\boldsymbol{n}-1} \ldots \boldsymbol{g}_{\mathbf{5}} \boldsymbol{g}_{\mathbf{4}}\left(\boldsymbol{g}_{\mathbf{3}} \boldsymbol{c}_{\mathbf{1}}\right) \boldsymbol{h}\left(\boldsymbol{c}_{\mathbf{2}} \boldsymbol{k}_{\mathbf{3}}\right) \boldsymbol{k}_{\mathbf{4}}^{*} \boldsymbol{k}_{\mathbf{5}} \ldots \boldsymbol{k}_{\boldsymbol{n - 2}} \boldsymbol{k}_{\boldsymbol{n - 1}}^{*}, \boldsymbol{g}_{\boldsymbol{n}} \ldots \boldsymbol{g}_{4}\left(\boldsymbol{g}_{\mathbf{3}} \boldsymbol{c}_{\mathbf{1}}\right) \boldsymbol{h}\left(\boldsymbol{c}_{\mathbf{2}} \boldsymbol{k}_{\mathbf{3}}\right) \boldsymbol{k}_{\mathbf{4}}^{*} \boldsymbol{k}_{\mathbf{5}} \ldots \boldsymbol{k}_{\boldsymbol{n}}\right\}
\end{aligned}
$$

if Eve distinguishes B_{n} and C_{n} in polynomial time, in particular, she distinguishes y and $\phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*}\left(s_{3} c\right), h\right)$ (given $\left.\operatorname{view}(n-1,\{c\} \cup X)\right)$. Let $\left(\left(\operatorname{view}\left(n-2,\left\{c s_{3}, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right), y\right)\right.$ be an instance of A_{n-2}, D_{n-2} :

$$
\begin{aligned}
A_{n-2}= & \left(\left(\operatorname{view}\left(n-2,\left\{s_{3} c, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right), y\right)\right. \\
= & \left(\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right), g_{4} h k_{4}, \ldots, g_{n} h k_{n}, g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} \ldots, g_{n}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{n}^{*},\right. \\
& \left.g_{5} g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} k_{5}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}, y\right) \\
D_{n-2}= & \left(\operatorname{view}\left(n-2,\left\{s_{3} c, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*}\left(s_{3} c\right), h\right)\right) \\
= & \left(\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right), g_{4} h k_{4}, \ldots, g_{n} h k_{n}, g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} \ldots, g_{n}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{n}^{*},\right. \\
& \left.g_{5} g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} k_{5}, \ldots, g_{n} g_{n-1} \ldots g_{5} g_{4} h k_{4} k_{5}^{*} \ldots k_{n-1} k_{n}, g_{n} g_{n-1} \ldots g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} \ldots k_{n-1} k_{n}\right)
\end{aligned}
$$

since Eve can distinguish y and $\phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*}\left(s_{3} c\right), h\right)$ given $\operatorname{view}(n-1,\{c\} \cup X)$, then in particular
she distinguishes y and $\phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*}\left(s_{3} c\right), h\right)$ given $\operatorname{view}\left(n-2,\left\{s_{3} c, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right) \subset$ $\operatorname{view}(n-1,\{c\} \cup X)$, and this means $A_{n-2} \nsucc D_{n-2}$, but this contradicts our hypothesis.

$$
\underline{A_{2}} \sim D_{2} \Longrightarrow C_{n} \sim D_{n}
$$

Suppose, for the sake of contradiction, that an adversary Eve distinguishes C_{n} and D_{n}. We produce and instance of $C_{n} \nsim D_{n}$ for Eve

$$
\begin{aligned}
& C_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \left.\operatorname{view}(n-1,\{c\} \cup X), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*} s_{3} c, h\right)\right) \\
& =\left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}\right. \text {, } \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n} \text {, } \\
& \left.\boldsymbol{c}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{c}_{\mathbf{2}}, \ldots, g_{n-1} g_{n-2} \ldots g_{3} c_{1} h c_{2} k_{3} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{4} g_{3} c_{1} h c_{2} k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}\right\} \\
& D_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), K\left(n-1,\left\{s_{1}\right\} \cup X\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), K\left(n-1,\left\{s_{2}\right\} \cup X\right),\right. \\
& \left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*} s_{3} s_{2}^{*} s_{1}, h\right)\right) \\
& =\left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}\right. \text {, } \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n} \text {, } \\
& \left.\boldsymbol{g}_{\mathbf{2}} \boldsymbol{g}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}} \boldsymbol{k}_{\mathbf{2}}^{*}, \ldots, g_{n-1} g_{n-2} \ldots g_{3}\left(g_{2} g_{1}\right) h\left(k_{1} k_{2}^{*}\right) k_{3} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3}\left(g_{2} g_{1}\right) h\left(k_{1} k_{2}^{*}\right) k_{3 \ldots} k_{n-1} k_{n}^{*}\right\}
\end{aligned}
$$

as in the first case, if Eve distinguishes A_{n} and B_{n}, then in particular, she distinguishes $g_{2} g_{1} h k_{1} k_{2}^{*}$ from $c_{1} h c_{2}$ (given $g_{1} h k_{1}$ and $g_{2} h k_{2}$), which means that she distinguishes

$$
\begin{aligned}
A_{2} & =\left(v i e w\left(2,\left\{s_{1}, s_{2}\right\}\right), y\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, y\right) \\
D_{2} & =\left(v i e w\left(2,\left\{s_{1}, s_{2}\right\}\right), \phi\left(s_{2}^{*} s_{1}, h\right)\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, g_{2} g_{1} h k_{1} k_{2}^{*}\right)
\end{aligned}
$$

which contradicts our hypothesis.
b) Similarly, if n is odd:

We redefine A_{n}, D_{n} using Lemma 4.2, and define B_{n}, C_{n} as follows:

- $A_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{2}, h\right)\right.$, view $\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right)$, $\left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), y\right)$
- $B_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right)\right.$, $\operatorname{view}(n-1,\{c\} \cup X), y)$
- $C_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right)\right.$, $\left.\operatorname{view}(n-1,\{c\} \cup X), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{5} s_{4}^{*} s_{3} c, h\right)\right)$
- $D_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right)\right.$, $\left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{5} s_{4}^{*} s_{3} s_{2}^{*} s_{1}, h\right)\right)$
choosing $s_{1}, s_{2} \in R_{1} \times A_{2}, c \in R_{1} \times A_{1}$; and $X \in\left(R_{1} \times A_{2}\right)^{n-2}, y \in R_{1} h A_{2}$ randomly.
$\underline{A_{2} \sim D_{2} \Longrightarrow A_{n} \sim B_{n}}$.
Suppose towards the sake of contradiction that an adversary Eve distinguishes A_{n} and B_{n}. We produce an instance of $A_{n} \nsim B_{n}$ for Eve

$$
\begin{aligned}
A_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), y\right) \\
= & \left(\boldsymbol{g}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1} k_{n}^{*},\right. \\
& \boldsymbol{g}_{\mathbf{2}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{2}}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1} k_{n}^{*}, \\
& \left.\boldsymbol{g}_{\mathbf{2}} \boldsymbol{g}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}} \boldsymbol{k}_{\mathbf{2}}^{*}, \ldots, g_{n-1} g_{n-2} \ldots g_{3}\left(g_{2} g_{1}\right) h\left(k_{1} k_{2}^{*}\right) k_{3} \ldots k_{n-2} k_{n-1}^{*}, y\right\} \\
B_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n}^{*} s_{n-1} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \operatorname{view}(n-1,\{c\} \cup X), y) \\
= & \left(\boldsymbol{g}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1} k_{n}^{*},\right. \\
& \boldsymbol{g}_{\mathbf{2}} \boldsymbol{h} \boldsymbol{k}_{\mathbf{2}}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1} k_{n}^{*}, \\
& \left.\boldsymbol{c}_{\mathbf{1}} \boldsymbol{h} \boldsymbol{c}_{\mathbf{2}}, \ldots, g_{n-1} g_{n-2} \ldots g_{3}\left(c_{1}\right) h\left(c_{2}\right) k_{3} \ldots k_{n-2} k_{n-1}^{*}, y\right\}
\end{aligned}
$$

if Eve distinguishes A_{n} and B_{n}, then in particular, she distinguishes $g_{2} g_{1} h k_{1} k_{2}^{*}$ from $c_{1} h c_{2}$ (given $g_{1} h k_{1}$ and $g_{2} h k_{2}$), which means that she distinguishes

$$
\begin{aligned}
A_{2} & =\left(\operatorname{view}\left(2,\left\{s_{1}, s_{2}\right\}\right), y\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, y\right) \\
D_{2} & =\left(\operatorname{view}\left(2,\left\{s_{1}, s_{2}\right\}\right), \phi\left(s_{2}^{*} s_{1}, h\right)\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, g_{2} g_{1} h k_{1} k_{2}^{*}\right)
\end{aligned}
$$

which contradicts our hypothesis.
$\underline{A_{n-2} \sim D_{n-2} \Longrightarrow B_{n} \sim C_{n}}$.
Suppose, for the sake of contradiction, that an adversary Eve distinguishes B_{n} and C_{n}. We produce and instance of $B_{n} \nsim C_{n}$ for Eve

$$
\begin{aligned}
& B_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \operatorname{view}(n-1,\{c\} \cup X), y) \\
& =\left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}\right. \text {, } \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n} \text {, } \\
& \left.c_{1} h c_{2}, \ldots, g_{n-1} \ldots g_{5} g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} k_{5} \ldots k_{n-2}^{*} k_{n-1}, y\right\} \\
& C_{n}=\left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \left.\operatorname{view}(n-1,\{c\} \cup X), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{4}^{*} s_{3} c, h\right)\right) \\
& =\left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}\right. \text {, } \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n} \text {, } \\
& \left.c_{1} h c_{2}, \ldots, g_{n-1} \ldots g_{5} g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} k_{5} \ldots k_{n-2}^{*} k_{n-1}, g_{n} \ldots g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} k_{5} \ldots k_{n}^{*}\right\}
\end{aligned}
$$

if Eve distinguishes B_{n} and C_{n} in polynomial time, in particular, she distinguishes y and $\phi\left(s_{n} s_{n-1}^{*} \ldots s_{5} s_{4}^{*}\left(s_{3} c\right), h\right)($ given $\operatorname{view}(n-1,\{c\} \cup X))$. Let $\left(\left(\operatorname{view}\left(n-2,\left\{c s_{3}, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right), y\right)\right.$ be an instance of A_{n-2}, D_{n-2} :

$$
\begin{aligned}
A_{n-2}= & \left(\left(v i e w\left(n-2,\left\{s_{3} c, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right), y\right)\right. \\
= & \left(\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right), g_{4} h k_{4}, \ldots, g_{n} h k_{n}, g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} \ldots, g_{n}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{n}^{*},\right. \\
& \left.g_{5} g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} k_{5}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1}^{*} k_{n}, y\right) \\
D_{n-2}= & \left(\operatorname{view}\left(n-2,\left\{s_{3} c, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{5} s_{4}^{*}\left(s_{3} c\right), h\right)\right) \\
= & \left(\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right), g_{4} h k_{4}, \ldots, g_{n} h k_{n}, g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} \ldots, g_{n}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{n}^{*},\right. \\
& \left.g_{5} g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} k_{5}, \ldots, g_{n} g_{n-1} \ldots g_{5} g_{4} h k_{4} k_{5}^{*} \ldots k_{n-1}^{*} k_{n}, g_{n} g_{n-1} \ldots g_{4}\left(g_{3} c_{1}\right) h\left(c_{2} k_{3}\right) k_{4}^{*} \ldots k_{n-1}^{*} k_{n}\right)
\end{aligned}
$$

since Eve can distinguish y and $\phi\left(s_{n} s_{n-1}^{*} \ldots s_{5} s_{4}^{*}\left(s_{3} c\right), h\right)$ given $\operatorname{view}(n-1,\{c\} \cup X)$, then in parti-
cular she distinguishes y and $\phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*}\left(s_{3} c\right), h\right)$ given view $\left(n-2,\left\{s_{3} c, s_{4}, s_{5}, \ldots, s_{n-1}, s_{n}\right\}\right) \subset$ $\operatorname{view}(n-1,\{c\} \cup X)$, and this means $A_{n-2} \nsucc D_{n-2}$, but this contradicts our hypothesis.
$\underline{A_{2} \sim D_{2} \Longrightarrow C_{n} \sim D_{n} .}$
Suppose towards the sake of contradiction that an adversary Eve distinguishes C_{n} and D_{n}.

We produce and instance of $C_{n} \nsim D_{n}$ for Eve

$$
\begin{aligned}
C_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \left.\operatorname{view}(n-1,\{c\} \cup X), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{4}^{*} s_{3} c, h\right)\right) \\
= & \left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4} \ldots k_{n-1}^{*} k_{n},\right. \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3} g_{2} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}, \\
& \left.\boldsymbol{c}_{1} \boldsymbol{h} \boldsymbol{c}_{2}, \ldots, g_{n-1} g_{n-2} \ldots g_{3} c_{1} h c_{2} k_{3} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{4} g_{3} c_{1} h c_{2} k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}\right\} \\
D_{n}= & \left(\operatorname{view}\left(n-1,\left\{s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{2}, h\right), \operatorname{view}\left(n-1,\left\{s_{2}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} s_{n-2} \ldots s_{3}^{*} s_{1}, h\right),\right. \\
& \left.\operatorname{view}\left(n-1,\left\{s_{2}^{*} s_{1}\right\} \cup X\right), \phi\left(s_{n} s_{n-1}^{*} \ldots s_{4}^{*} s_{3} s_{2}^{*} s_{1}, h\right)\right) \\
= & \left(g_{1} h k_{1}, \ldots, g_{n} g_{n-1} \ldots g_{4} g_{3} h k_{3} k_{4}^{*} \ldots k_{n-1} k_{n}^{*}, g_{n} g_{n-1} \ldots g_{3} g_{1} h k_{1} k_{3}^{*} k_{4 \ldots} \ldots k_{n-1}^{*} k_{n},\right. \\
& g_{2} h k_{2}, \ldots, g_{n-1} \ldots g_{3} g_{2} h k_{2} k_{3}^{*} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1 \ldots} \ldots g_{3} h k_{1} k_{2}^{*} k_{4} \ldots k_{n-1}^{*} k_{n}, \\
& \left.\boldsymbol{g}_{2} \boldsymbol{g}_{1} \boldsymbol{h} \boldsymbol{k}_{\mathbf{1}}^{*} \boldsymbol{k}_{2}^{*}, \ldots, g_{n-1} g_{n-2} \ldots g_{3}\left(g_{2} g_{1}\right) h\left(k_{1} k_{2}^{*}\right) k_{3} \ldots k_{n-2}^{*} k_{n-1}, g_{n} g_{n-1} \ldots g_{3}\left(g_{2} g_{1}\right) h\left(k_{1} k_{2}^{*}\right) k_{3 \ldots} k_{n-1} k_{n}^{*}\right\}
\end{aligned}
$$

as in the first case, if Eve distinguishes A_{n} and B_{n}, then in particular, she distinguishes $g_{2} g_{1} h k_{1} k_{2}^{*}$ from $c_{1} h c_{2}$ (given $g_{1} h k_{1}$ and $g_{2} h k_{2}$), which means that she distinguishes

$$
\begin{aligned}
A_{2} & =\left(\operatorname{view}\left(2,\left\{s_{1}, s_{2}\right\}\right), y\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, y\right) \\
D_{2} & =\left(\operatorname{view}\left(2,\left\{s_{1}, s_{2}\right\}\right), \phi\left(s_{2}^{*} s_{1}, h\right)\right) \\
& =\left(g_{1} h k_{1}, g_{2} h k_{2}, g_{2} g_{1} h k_{1} k_{2}^{*}\right)
\end{aligned}
$$

which contradicts our hypothesis.

So in the Initial Key Agreement the n-users underlying decisional problem is as hard as the 2-users decisional problem. This is also true in the Auxiliary Key Agreement. We can say the protocol provides on forward and backward security, i.e. any former or future users cannot distinguish future or past distributed keys, as it is shown in the following result.

Corollary 4.4. The AKA provides on forward and backward security.

Proof

Let Eve be a powerful adversary, that knows all the information of a past user or a future user. She would know a subset of $\operatorname{view}(k, \varepsilon)$, where k is the number of current users, and ε the secret keys.

In the first case, when the members of the group stay the same, note that the key update adds a new secret key (and we consider it as a new user). Then we substitute n with $k=n+1, \phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*} s_{3} s_{2}^{*} s_{1}, h\right)$ (or $\phi\left(s_{n} s_{n-1}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right)$) with $\phi\left(\widetilde{s_{c}} s_{n}^{*} s_{n-1} \ldots s_{3} s_{2}^{*} s_{1}, h\right)$ (resp. $\phi\left({\widetilde{\widetilde{c}_{c}}}^{*} s_{n} s_{n-1}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right)$) if n is even (if n is odd), and X with $\varepsilon=\left\{s_{1}, s_{2}, \ldots, s_{c-1}, s_{c}, s_{c+1}, \ldots, s_{n-1}, s_{n}, s_{c}^{\prime}\right\}$ in Theorem 4.3. It follows that

$$
A_{k}=(\operatorname{view}(k, \varepsilon), y), \text { for } y \in R \text { randomly chosen. }
$$

$$
D_{k}=\left\{\begin{array}{l}
\left(\operatorname{view}(k, \varepsilon), \phi\left(\widetilde{s_{c}} s_{n}^{*} s_{n-1} \ldots s_{3} s_{2}^{*} s_{1}, h\right)\right), \text { if } k \text { is odd. } \\
\left.\left(\operatorname{view}(k, \varepsilon), \phi\left({\widetilde{s_{c}}}^{*} s_{n} s_{n-1}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right)\right)\right), \text { if } k \text { is even }
\end{array}\right.
$$

and it still verifies that if $A_{2} \sim D_{2}$, then $A_{k} \sim D_{k}$.
When a user leaves, the key update also adds a new secret key, so we replace n with $k=n+1$ (the user left, but we suppose that Eve had access to the communications before that happened, and that private key is still part of the common secret key). The rest is the same, so we get again the first case, and the AKA benefits form the same security benefits in this case.

When a new users joins the group, we need to replace $k=n+2$ (the new secret key and the key update), $\phi\left(s_{n}^{*} s_{n-1} \ldots s_{4}^{*} s_{3} s_{2}^{*} s_{1}, h\right)$ (or $\phi\left(s_{n} s_{n-1}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right)$) with $\phi\left(s_{n+1}^{*} \widetilde{s_{c}} s_{n}^{*} s_{n-1} \ldots s_{3} s_{2}^{*} s_{1}, h\right)$ (resp. $\phi\left(s_{n+1}{\widetilde{s_{c}}}^{*} s_{n} s_{n-1}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right)$) if n is even (if n is odd), and X with $\varepsilon=\left\{s_{1}, s_{2}, \ldots, s_{n-1}, s_{n}, s_{n+1}, s_{c}^{\prime}\right\}$ in Theorem 4.3. It follows that

$$
\begin{gathered}
A_{k}=(\operatorname{view}(k, \varepsilon), y), \text { for } y \in R \text { randomly chosen. } \\
D_{k}=\left\{\begin{array}{l}
\left(\operatorname{view}(k, \varepsilon), \phi\left(s_{n+1}^{*} \widetilde{s}_{c} s_{n}^{*} s_{n-1} \ldots s_{3} s_{2}^{*} s_{1}, h\right)\right), \text { if } k \text { is even. } \\
\left.\left(\operatorname{view}(k, \varepsilon), \phi\left(s_{n+1}{\widetilde{s_{c}}}^{*} s_{n} s_{n-1}^{*} \ldots s_{3} s_{2}^{*} s_{1}, h\right)\right)\right), \text { if } k \text { is odd. }
\end{array}\right.
\end{gathered}
$$

and it still verifies that if $A_{2} \sim D_{2}$, then $A_{k} \sim D_{k}$, so the Auxiliary Key Agreement benefits from the same security properties.

Note that we could also consider D_{k} as

$$
D_{k}=\left\{\begin{array}{l}
\left.\left(\operatorname{view}(k, \varepsilon), \phi\left(\widetilde{s_{c}}, K_{p}\right)\right)\right), \text { if } k \text { is odd. } \\
\left.\left(\operatorname{view}(k, \varepsilon), \phi\left({\widetilde{s_{c}}}^{*}, K_{p}\right)\right)\right), \text { if } k \text { is even }
\end{array}\right.
$$

where K_{p} would be the previous key, when the number of users stay the same or someone left, and

$$
D_{k}=\left\{\begin{array}{l}
\left.\left(\operatorname{view}(k, \varepsilon), \phi\left(s_{n+1}^{*}{\widetilde{s_{c}}}_{c}, K_{p}\right)\right)\right), \text { if } k \text { is even } \\
\left.\left(\operatorname{view}(k, \varepsilon), \phi\left(s_{n+1}{\widetilde{s_{c}}}^{*}, K_{p}\right)\right)\right), \text { if } k \text { is odd. }
\end{array}\right.
$$

when a new user joins the group.
Also note that in the key refresh, we consider $k=n+1$ in the first two cases, but the set of secret keys are $\left\{s_{1}, s_{2}, \ldots, s_{c-1},{\widetilde{s_{c}}}^{*} s_{c}, s_{c+1}, \ldots, s_{n-1}, s_{n}\right\}$ when n is odd, and $\left\{s_{1}, s_{2}, \ldots, s_{c-1}, \widetilde{s_{c}} s_{c}^{*}, s_{c+1}, \ldots, s_{n}\right\}$ when n is even, i.e. the number of stored keys stay the same, and the private key of the user U_{c} is $\widetilde{s_{c}^{*}} s_{c}$ or $\widetilde{s_{c}} s_{c}^{*}$ depending on whether the number of users is even or odd. Finally when $k=n+2$, the set of secret keys has just one new key, from the new user U_{n+1}, so it is $\left\{s_{1}, s_{2}, \ldots, s_{c-1}, \widetilde{s}_{c}{ }^{*} s_{c}, s_{c+1}, \ldots, s_{n-1}, s_{n}, s_{n+1}\right\}$ when n is odd, and $\left\{s_{1}, s_{2}, \ldots, s_{c-1}, \widetilde{s}_{c} s_{c}^{*}, s_{c+1}, \ldots, s_{n}, s_{n+1}\right\}$ when n is even

References

[1] Barak, B. Computational indistinguishability, pseudorandom generators, Lecture Notes, Princeton University, https://www.cs.princeton.edu/courses/archive/fall07/cos433/lec4.pdf (2007).
[2] Diffie, W.; Hellman, M. New Directions in Cryptography, IEEE Transactions on Information Theory, IT-22, n. 6, 644-654 (1976).
[3] Eftekhari, M. A Diffie-Hellman key exchange protocol using matrices over group rings, Groups Complex. Cryptol., vol. 4, n. 1, 167-176 (2012).
[4] Gómez Olvera, M.D.; López Ramos, J.A.; Torrecillas Jover, B. Public Key Protocols over Twisted Dihedral Group Rings, Symmetry, vol. 11, n. 8, 1019 (2019).
[5] Gupta I.; Pandey A.; Kant Dubey U. A Key Exchange Protocol using Matrices over Group Rings, Asian-European Journal of Mathematics, vol. 5, n. 5 (2018).
[6] Habeeb M.; Kahrobaei D.; Koupparis C.; Shpilrain V. Public key exchange using semidirect product of (semi)groups, Lecture Notes Comp. Sc., Springer, vol. 7954, 475-486 (2013).
[7] Kahrobaei D.; Koupparis C.; Shpilrain V. Public key exchange using matrices over group rings, Groups Complex. Cryptol., vol. 5, n. 1, 97-115 (2013).
[8] López Ramos, J.A.; Rosenthal, J.; Schipani, D.; Schnyder, R. Group key management based on semigroup actions, Journal of Algebra and its Applications, vol. 16, n. 8 (2017).
[9] Maze, G.; Monico, C.; Rosenthal J. Public key cryptography based on semigroup actions, Advances in Mathematics of Communications, vol. 1, n. 4, 489-507 (2007).
[10] Steiner, M.; Tsudik, G.; Waidner, M. Key Agreement in Dynamic Peer Groups. IEEE Trans. Parallel Distrib. Syst., vol. 11, 769-780 (2000).

