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1 Introduction

In recent years, new hard problems have been proposed in public key cryptography, since those
that we are using might be not secure soon. When two parties want to communicate through an
insecure channel, they need to do a key agreement, which consist on agreeing on a secret shared
key by exchanging information that does not compromise the common key.

The first widely used protocol that allows this to happen was proposed in 1976 by W. Diffie
and M. Hellman [2], and works as follows:

Let two users, Alice and Bob, who want to agree on a common key through an insecure
channel. Let p a prime number, Z∗p the multiplicative group of integers modulo p, and
g a primitive root modulo p public.

1. Alice chooses a secret integer a, and sends Bob pA = ga(mod p).

2. Bob chooses a secret integer b, and sends Alice pB = gb(mod p).

3. Alice computes paB(mod p), and Bob computes pbA(mod p), so both obtain the same
value, which is the secret shared key K = gab(mod p).

Information shared does not compromise the shared key since the underlying problem an at-
tacker would need to solve, the so-called Discrete Logarithm Problem (DLP) is believed to be hard.
This key agreement can be seen as an example of this generalization by Maze et al [9]:

Let S be a finite set, G an abelian semigroup, φ a G−action on S, and a public element
s ∈ S.

1. Alice chooses a ∈ G, and sends Bob pA = φ(a, s).

2. Bob chooses b ∈ G, and sends Alice pB = φ(b, s).

3. Alice computes φ(a, pB), and Bob computes φ(b, pA), so both obtain the secret
shared key K = φ(a, φ(b, s)) = φ(b, φ(a, s)).

whose underlying problem is called the Semigroup Action Problem (SAP).

Semigroup Action Problem. Given a semigroup action φ of the group G on a set S
and elements x ∈ S and y ∈ G, find g ∈ G such that φ(g, x) = y.
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In the context of SAP, we proposed in [4] a new setting, and some protocols. In our case, the
platform is a twisted group ring, a new proposal in the context of group rings, that have also been
recently used in cryptography in works like [3, 6, 5, 7]. And the action proposed is the two-sided
multiplication in a twisted group ring, so the problem is a variation in the twisted case of the
so-called Decomposition Problem (DP), which is a generalization of the Conjugate Search Problem
(CSP).

Decomposition Problem. Given a group G, (x, y) ∈ G×G and S ⊂ G, the problem
is to find z1, z2 ∈ S such that y = z1xz2.

A natural extension is how to extend this kind of schemes to more than two users. In the classic
Diffie-Hellman protocol, a solution is proposed in [10]. And in the more case of SAP, this solution
can be found in [8]. In both cases, it is shown that the extra information shared in the case of a n
users key exchange does not imply information leakage for an attacker compared to the 2-users case.

Our aim in this work is to show that in our setting, that differs from those above given the
non-commutativity of twisted group rings, and which could work better against problems that
threat current communications, this is also true: the extra information shared between n users
does not imply information leakage, so if the 2-users key exchange is computationally secure, then
the extension to n users is also secure.

2 Algebraic Setting

In this section, twisted group rings are defined, and we also show some properties that make the
key exchange possible.

Definition 2.1. Let K be a ring, G be a multiplicative group, and α be a cocycle in U(K), the
units of K. The group ring KαG is defined to be the set of all finite sums of the form∑

gi∈G
rigi,

where ri ∈ K and all but a finite number of ri are zero.

The sum of two elements in KαG is given by( ∑
gi∈G

rigi
)

+
( ∑
gi∈G

sigi
)

=
∑
gi∈G

(ri + si)gi.

And multiplication, which is twisted by a cocycle, is given by( ∑
gi∈G

rigi
)
·
( ∑
gi∈G

sigi
)

=
∑
gi∈G

( ∑
gjgk=gi

rjsk α(gj , gk)
)
gi.

As an example, consider the finite field K, a primitive element t, and the dihedral group of 2m
elements, D2m =< x, y : xm = y2 = 1, yxa = xm−ay >. The group ring R = KαD2m, where α is

α : D2m ×D2m → K∗

with α(xi, xjyk) = 1 and α(xiy, xjyk) = tj i, j = 1, ..., 2m− 1, is a twisted group ring.

Now we establish some useful properties that will allow us to make our key exchange possible.
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Definition 2.2. Let R = KαD2m, where t is the primitive root of unity that generates K and α is
the cocycle defined above. Given h ∈ R,

h =
∑

0≤i≤m−1
k=0,1

rix
iyk,

where ri ∈ K and x, y ∈ D2m. We define h∗ ∈ KαD2m:

h∗ =
∑

0≤i≤m−1
k=0,1

rit
−ixiyk,

where ri ∈ K and x, y ∈ Dm.

Note that R = KαD2m can be written as vector space as

R = R1 ⊕R2,

where R1 = KCm and R2 = KαCmy, and Cm is a cyclic group of order m. In this context, we can
define Aj ≤ Rj as

Aj =
{m−1∑

i=0

rix
iyk ∈ Rj : ri = rm−i

}
.

where j = 1, 2.

Proposition 2.3. Given h1, h2 ∈ R,

• If h1, h2 ∈ R1, then h1h2 = h2h1;

• If h1, h2 ∈ A2, then h1h
∗
2 = h2h

∗
1, and h∗1h2 = h∗2h1;

• If h1 ∈ A1, h2 ∈ A2, then h1h2 = h2h
∗
1.

A proof of this proposition can be found in [4].

3 Key management over twisted group rings

In this section, we explain the protocols proposed in [4], over the twisted group ring R = KαD2m

defined above.

Let h ∈ R be a random public element. The key exchange between two users, Alice and Bob,
is as follows:

1. Alice selects a secret pair sA = (g1, k1), where g1 ∈ R1, k1 ∈ A2 ≤ R2.

2. Bob selects a secret pair sB = (g2, k2), where g2 ∈ R1, k2 ∈ A2 ≤ R2.

3. Alice sends Bob pA = g1hk1, and Bob sends Alice pB = g2hk2.

4. Alice computes KA = g1pBk
∗
1, and Bob computes KB = g2pAk

∗
2, and they get the same secret

shared key.

This protocol works, it was shown in [4]. Let the underlying decisional problem be the following:
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Let R = KαD2m = R1 ⊕ R2, A2 ≤ R2, given (h, g1hk1, g2hk2, r1hr2), decide whether
(r1, r2) = (g2g1, k1k

∗
2) or not, where h ∈ R, gi, r1 ∈ R1, ki ∈ A2, r2 ∈ A1.

It means that if someone breaks this problem, then the key exchange above can also be broken.

To define the general protocol for n users, let us define the action φ : (R1 ×A2)×R −→ R,

φ(si, h) = gihki

where si = (gi, ki). Note that
φ(siφ(sj , h)) = φ(sisj , h)

We will sometimes write φ(sisj , h) to refer to φ(si, φ(sj , h)), to make some definitions more readable.

Let h ∈ R be a random public element, and h ∈ R = R1⊕R2, described before. For i = 1, ..., n,
user Ui has a secret pair si = (gi, ki), where gi ∈ R1 and ki ∈ A2 ≤ R2. Let φ(si, h) = gihki, 2-sided
multiplication. We will denote s∗i = (gi, k

∗
i ). The key establishment for n is as follows:

1. For i = 1, ..., n, user Ui sends to user Ui+1 the message

{C1
i , C

2
i , ..., C

i+1
i },

where C1
1 = h, C2

1 = g1hk1 and

• for i > 1 even, Cji = φ(si, C
j
i−1), when j < i, Cii = Cii−1, C

i+1
i = φ(s∗i , C

i
i−1),

• for i > 1 odd, Cji = φ(s∗i , C
j
i−1), when j < i, Cii = Cii−1, C

i+1
i = φ(si, C

i
i−1).

2. User Un computes φ(sn, C
n
n−1) if n is odd and φ(s∗n, C

n
n−1) if n is even.

3. User Un broadcasts

{C1
n, C

2
n, ..., C

n
n}.

4. User Ui computes φ(si, C
i
n) if n is odd or φ(s∗i , C

i
n) if n is even, and gets the shared key.

This protocol allows all users to obtain a common shared key, as shown in Proposition 3 of [4].
In this case, the underlying decisional problem is the following:

• (n even) Let R = KαD2m = R1 ⊕R2, A2 ≤ R2, given r1hr2, and{
φ(si1s

∗
i2si3 ...s

∗
im−2

sim−1s
∗
im , h) : {i1, ..., im} ( {1, ..., n},m ∈ {1, ..., n− 1}

}
decide whether (r1, r2) = (g1g2g3...gn−1gn, k1k

∗
2k3...kn−1k

∗
n) or not, where h ∈ R, gi, r1 ∈ R1,

ki ∈ A2, r2 ∈ A1.

• (n odd) Let R = KαD2m = R1 ⊕R2, A2 ≤ R2, given r1hr2, and{
φ(si1s

∗
i2si3 ...sim−2s

∗
im−1

sim , h) : {i1, ..., im} ( {1, ..., n},m ∈ {1, ..., n− 1}
}

decide whether (r1, r2) = (g1g2g3...gn−1gn, k1k
∗
2k3...k

∗
n−1kn) or not, where h ∈ R, gi, r1 ∈ R1,

ki, r2 ∈ A2.
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We have described the so-called Initial Key Agreement (IKA), but another important process
in group communication is key refreshment through the Auxiliary Key Agreement (AKA), which
takes advantage of the information that was sent before to create a new key in a group when nec-
essary, and is more computationally efficient than IKA. There exist three situations: the members
of the group stay the same, a member leaves the group, or someone new joins it.

In the first situation, very user Ui has the information Cin received from the user Un. The
rekeying process can be carried out by any of them. We call this user Uc. He chooses a new
element s̃c = (g̃c, k̃c), where g̃c ∈ R1 and k̃c ∈ A2. If n is odd, he changes his private key to s̃c

∗sc
and broadcasts the message

{φ(s̃c
∗, C1

n), φ(s̃c
∗, C2

n), ..., φ(s̃c
∗, Cc−1n ), Ccn, φ(s̃c

∗, Cc+1
n ), ..., φ(s̃c

∗, Cnn )}.

If n is even, he changes his private key to s̃cs
∗
c and broadcasts the message

{φ(s̃c, C
1
n), φ(s̃c, C

2
n), ..., φ(s̃c, C

c−1
n ), Ccn, φ(s̃c, C

c+1
n ), ..., φ(s̃c, C

n
n )}.

Then every user recovers the common key using the private key si if n is even, and s∗i if n is
odd. A proof can be found in [4].

In the second case, when some user leaves the group, the corresponding position in the rekeying
message is omitted.

In the last case, when a new user Un+1 joins the group, if n is odd, then Uc adds the element
φ(s̃c, C

n
n ) and sends the following to the new user:

{φ(s̃c, C
1
n), φ(s̃c, C

2
n), ..., φ(s̃c, C

c−1
n ), Ccn, φ(s̃c, C

c+1
n ), ..., φ(s̃c, C

n−1
n ), φ(s̃c, C

n
n )}.

If n is even, Uc adds the element φ(s̃c
∗, Cnn ) and sends to Un+1 the following:

{φ(s̃c
∗, C1

n), φ(s̃c
∗, C2

n), ..., φ(s̃c
∗, Cc−1n ), Ccn, φ(s̃c

∗, Cc+1
n ), ..., φ(s̃c

∗, Cn−1n ), φ(s̃c
∗, Cnn )}.

Finally, user Un+1 proceeds to step 3 of the group key protocol and sends the other users the
information to obtain the shared key using their private keys.

4 Secure Group Key Management

In this section, we show that the extra information sent in the protocol of n users does not implies
aditional information leakage for an attacker respect to the 2-users case. For this purpouse, we
define the following random variables, choosing X randomly from (R1 ×A2)

n:

An =
(
view(n,X), y

)
, for y ∈ R randomly chosen.

Dn =


(
view(n,X), φ(s∗nsn−1s

∗
n−2...s3s

∗
2s1, h), h)

)
, if n is even.(

view(n,X), φ(sns∗n−1sn−2...s3s
∗
2s1, h)

)
, if n is odd.

where

• view(n,X) := the ordered set of all φ(si1s
∗
i2
si3 ...s

∗
m−2sm−1s

∗
m, h), for all proper subsets

{i1, ..., im} of {1, ..., n}; m ∈ {1, ..., n− 1}.
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when n is even, and

• view(n,X) := the ordered set of all φ(si1s
∗
i2
si3 ...sm−2s

∗
m−1sm, h), for all proper subsets

{i1, ..., im} of {1, ..., n}; m ∈ {1, ..., n− 1}.

when n is odd.

Also note that φ(s∗nsn−1s
∗
n−2...s3s

∗
2s1, h), h), or φ(sns

∗
n−1sn−2...s3s

∗
2s1, h), is the common secret

key, is case n is even or odd respectively.

Let the relation ∼ be polynomial indistinguishability, as defined in [10]. In this context, it
means that no polynomial-time algorithm can distinguish between a key and a random value with
probability significantly greater than 1

2 .

Proposition 4.1. The relation ∼ is an equivalence relation.

A proof of this proposition can be found in [1]. Before we prove the main result, let us show that

Lemma 4.2. We can write view(n, {s1, s2} ∪X), with X = {s3, ..., sn} as a permutation of

V =
(
view(n−1, {s1}∪X), φ(sns

∗
n−1...s2, h), view(n−1, {s2}∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h), view(n−1, {s∗2s1}∪X)

)
when n is even, and as a permutation of

V =
(
view(n−1, {s1}∪X), φ(s∗nsn−1s

∗
n−2...s2, h), view(n−1, {s2}∪X), φ(s∗nsn−1...s

∗
3s1, h), view(n−1, {s1s∗2}∪X)

)
when n is odd.

Proof
Now we show that both sets are equal. First, we prove that view(n, {s1, s2} ∪X) ⊂ V : Let an

element a ∈ view(n, {s1, s2} ∪X):

• If n is even:

1. If a contains s∗2s1(= s∗1s2), then it belongs to view(n− 1, {s∗2s1} ∪X) ⊂ V .

2. If a does not contain s1 (or s∗1),

– but it contains all the remaining elements, s
(∗)
2 , ..., s

(∗)
n , then it belongs to φ(sns

∗
n−1...s

∗
3s2, h) ⊂

V .

– and if it does not contain all the remaining elements, then it belongs to view(n− 1,
{s2} ∪X) ⊂ V .

3. If a does not contain s2 (or s∗2),

– but it contains all the remaining elements, s
(∗)
1 , s

(∗)
3 , ..., s

(∗)
n , then it belongs to

φ(sns
∗
n−1...s

∗
3s1, h) ⊂ V .

– and if it does not contain all the remaining elements, then it belongs to view(n− 1,
{s1} ∪X) ⊂ V .

4. Finally, if a does not contain s1 neither s2, it belongs to any of the following view(n−1,
{s1} ∪X), view(n− 1, {s2} ∪X), view(n− 1, {s1s∗2} ⊂ V .
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• If n is odd:

1. If a contains s∗2s1(= s∗1s2), then it belongs to view(n− 1, {s∗2s1} ∪X) ⊂ V .

2. If a does not contain s1 (or s∗1),

– but it contains all the remaining elements, s
(∗)
2 , ..., s

(∗)
n , then it belongs to φ(s∗nsn−1...s

∗
3s2, h) ⊂

V .

– and if it does not contain all the remaining elements, then it belongs to view(n− 1,
{s2} ∪X) ⊂ V .

3. If a does not contain s2 (or s∗2),

– but it contains all the remaining elements, s
(∗)
1 , s

(∗)
3 , ..., s

(∗)
n , then it belongs to

φ(s∗nsn−1...s
∗
3s1, h) ⊂ V .

– and if it does not contain all the remaining elements, then it belongs to view(n− 1,
{s1} ∪X) ⊂ V .

4. Finally, if a does not contain s1 neither s2, it belongs to any of the following view(n−1,
{s1} ∪X), view(n− 1, {s2} ∪X), view(n− 1, {s1s∗2} ⊂ V .

The reverse inclusion, V ⊂ view(n, {s1, s2}) is true since all the elements in V belong to view(n, {s1, s2}∪
X) by definition.

�

Let us finally prove, following the idea of [10], that if the 2-users underlying decisional problem
is hard, then the n-users is hard as well, or equivalently:

Theorem 4.3. For any n > 2, A2 ∼ D2 implies that An ∼ Dn.

Proof
We show this is true by induction on n. Assume that A2 ∼ D2 and Ai ∼ Di, i ∈ {3, ..., n− 1}.

Thus, we have to show that An ∼ Dn. We define the random variables Bn, Cn, and show that
An ∼ Bn ∼ Cn ∼ Dn, and since ∼ is a equivalence relation, by transitivity, this implies that
An ∼ Dn.

We split the proof in two cases:

a) Assume n is even:

We redefine An, Dn using Lemma 4.2, and define Bn, Cn as follows:

• An =
(
view(n−1, {s1}∪X), φ(sns

∗
n−1...s2, h), view(n−1, {s2}∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {s∗2s1} ∪X), y
)

• Bn =
(
view(n−1, {s1}∪X), φ(sns

∗
n−1...s2, h), view(n−1, {s2}∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {c} ∪X), y
)

• Cn =
(
view(n−1, {s1}∪X), φ(sns

∗
n−1...s2, h), view(n−1, {s2}∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {c} ∪X), φ(s∗nsn−1...s
∗
4s3c, h)

)
• Dn =

(
view(n−1, {s1}∪X), φ(sns

∗
n−1...s2, h), view(n−1, {s2}∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {s∗2s1} ∪X), φ(s∗nsn−1...s
∗
4s3s

∗
2s1, h)

)
7



choosing s1, s2 ∈ R1 × A2, c ∈ R1 × A1; and X ∈ (R1 × A2)
n−2, y ∈ R1hA1 randomly. Note

that only the last two components vary.

A2 ∼ D2 =⇒ An ∼ Bn
Suppose, for the sake of contradiction, that an adversary Eve distinguishes An and Bn. We
produce an instance of An 6∼ Bn for Eve

An =
(
view(n− 1, {s1} ∪X), φ(sns

∗
n−1...s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {s∗2s1} ∪X), y
)

=
(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

g2g1hk1k
∗
2, ..., gn−1gn−2...g3(g2g1)h(k1k

∗
2)k3...k

∗
n−2kn−1, y}

Bn =
(
view(n− 1, {s1} ∪X), φ(sns

∗
n−1...s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {c} ∪X), y
)

=
(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

c1hc2, ..., gn−1gn−2...g3(c1)h(c2)k3...k
∗
n−2kn−1, y}

if Eve distinguishes An and Bn, then in particular, she distinguishes g2g1hk1k
∗
2 from c1hc2

(given g1hk1 and g2hk2), which means that she distinguishes

A2 =
(
view(2, {s1, s2}), y

)
= (g1hk1, g2hk2, y)

D2 =
(
view(2, {s1, s2}), φ(s∗2s1, h)

)
= (g1hk1, g2hk2, g2g1hk1k

∗
2)

which contradicts our hypothesis.

An−2 ∼ Dn−2 =⇒ Bn ∼ Cn
Suppose towards the sake of contradiction that an adversary Eve distinguishes Bn and Cn.
We produce and instance of Bn 6∼ Cn for Eve
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Bn =
(
view(n− 1, {s1} ∪X), φ(s∗nsn−1...s

∗
3s2, h), view(n− 1, {s2} ∪X), φ(s∗nsn−1...s

∗
3s1, h),

view(n− 1, {c} ∪X), y
)

=
(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

c1hc2, ..., gn−1...g5g4(g3c1)h(c2k3)k∗
4k5...kn−2k

∗
n−1, y}

Cn =
(
view(n− 1, {s1} ∪X), φ(s∗nsn−1...s

∗
3s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1...s

∗
3s1, h),

view(n− 1, {c} ∪X), φ(sns
∗
n−1...s5s

∗
4s3c, h)

)
=

(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

c1hc2, ..., gn−1...g5g4(g3c1)h(c2k3)k∗
4k5...kn−2k

∗
n−1, gn...g4(g3c1)h(c2k3)k∗

4k5...kn}

if Eve distinguishes Bn and Cn in polynomial time, in particular, she distinguishes y and

φ(s∗nsn−1...s
∗
4(s3c), h) (given view(n−1, {c}∪X)). Let

(
(view(n−2, {cs3, s4, s5, ..., sn−1, sn}), y

)
be an instance of An−2, Dn−2:

An−2 =
(

(view(n− 2, {s3c, s4, s5, ..., sn−1, sn}), y
)

= ((g3c1)h(c2k3), g4hk4, ..., gnhkn, g4(g3c1)h(c2k3)k
∗
4..., gn(g3c1)h(c2k3)k

∗
n,

g5g4(g3c1)h(c2k3)k
∗
4k5, ..., gngn−1...g4g3hk3k

∗
4...kn−1kn, y)

Dn−2 =
(
view(n− 2, {s3c, s4, s5, ..., sn−1, sn}), φ(s∗nsn−1...s

∗
4(s3c), h)

)
= ((g3c1)h(c2k3), g4hk4, ..., gnhkn, g4(g3c1)h(c2k3)k

∗
4..., gn(g3c1)h(c2k3)k

∗
n,

g5g4(g3c1)h(c2k3)k
∗
4k5, ..., gngn−1...g5g4hk4k

∗
5...kn−1kn, gngn−1...g4(g3c1)h(c2k3)k

∗
4...kn−1kn)

since Eve can distinguish y and φ(s∗nsn−1...s
∗
4(s3c), h) given view(n − 1, {c} ∪ X), then in

particular

she distinguishes y and φ(s∗nsn−1...s
∗
4(s3c), h) given view(n − 2, {s3c, s4, s5, ..., sn−1, sn}) ⊂

view(n− 1, {c} ∪X), and this means An−2 6∼ Dn−2, but this contradicts our hypothesis.
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A2 ∼ D2 =⇒ Cn ∼ Dn

Suppose, for the sake of contradiction, that an adversary Eve distinguishes Cn and Dn. We
produce and instance of Cn 6∼ Dn for Eve

Cn =
(
view(n− 1, {s1} ∪X), φ(sns

∗
n−1...s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {c} ∪X), φ(s∗nsn−1...s
∗
4s3c, h)

)
=

(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

c1hc2, ..., gn−1gn−2...g3c1hc2k3...k
∗
n−2kn−1, gngn−1...g4g3c1hc2k3k

∗
4...kn−1kn}

Dn =
(
view(n− 1, {s1} ∪X),K(n− 1, {s1} ∪X), view(n− 1, {s2} ∪X),K(n− 1, {s2} ∪X),

view(n− 1, {s∗2s1} ∪X), φ(s∗nsn−1...s
∗
4s3s

∗
2s1, h)

)
=

(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

g2g1hk1k
∗
2, ..., gn−1gn−2...g3(g2g1)h(k1k

∗
2)k3...k

∗
n−2kn−1, gngn−1...g3(g2g1)h(k1k

∗
2)k3...kn−1k

∗
n}

as in the first case, if Eve distinguishes An and Bn, then in particular, she distinguishes
g2g1hk1k

∗
2 from c1hc2 (given g1hk1 and g2hk2), which means that she distinguishes

A2 =
(
view(2, {s1, s2}), y

)
= (g1hk1, g2hk2, y)

D2 =
(
view(2, {s1, s2}), φ(s∗2s1, h)

)
= (g1hk1, g2hk2, g2g1hk1k

∗
2)

which contradicts our hypothesis.

b) Similarly, if n is odd:

We redefine An, Dn using Lemma 4.2, and define Bn, Cn as follows:

• An =
(
view(n−1, {s1}∪X), φ(s∗nsn−1...s

∗
3s2, h), view(n−1, {s2}∪X), φ(s∗nsn−1...s

∗
3s1, h),

view(n− 1, {s∗2s1} ∪X), y
)

• Bn =
(
view(n−1, {s1}∪X), φ(s∗nsn−1...s2, h), view(n−1, {s2}∪X), φ(s∗nsn−1...s

∗
3s1, h),

view(n− 1, {c} ∪X), y
)

• Cn =
(
view(n−1, {s1}∪X), φ(s∗nsn−1...s2, h), view(n−1, {s2}∪X), φ(s∗nsn−1...s

∗
3s1, h),

view(n− 1, {c} ∪X), φ(sns
∗
n−1...s5s

∗
4s3c, h)

)
• Dn =

(
view(n−1, {s1}∪X), φ(s∗nsn−1...s2, h), view(n−1, {s2}∪X), φ(s∗nsn−1...s

∗
3s1, h),

view(n− 1, {s∗2s1} ∪X), φ(sns
∗
n−1...s5s

∗
4s3s

∗
2s1, h)

)

10



choosing s1, s2 ∈ R1 ×A2, c ∈ R1 ×A1; and X ∈ (R1 ×A2)
n−2, y ∈ R1hA2 randomly.

A2 ∼ D2 =⇒ An ∼ Bn.

Suppose towards the sake of contradiction that an adversary Eve distinguishes An and Bn.
We produce an instance of An 6∼ Bn for Eve

An =
(
view(n− 1, {s1} ∪X), φ(s∗nsn−1...s2, h), view(n− 1, {s2} ∪X), φ(s∗nsn−1...s

∗
3s1, h),

view(n− 1, {s∗2s1} ∪X), y
)

=
(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...kn−1k

∗
n,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...kn−1k

∗
n,

g2g1hk1k
∗
2, ..., gn−1gn−2...g3(g2g1)h(k1k

∗
2)k3...kn−2k

∗
n−1, y}

Bn =
(
view(n− 1, {s1} ∪X), φ(s∗nsn−1...s2, h), view(n− 1, {s2} ∪X), φ(s∗nsn−1...s

∗
3s1, h),

view(n− 1, {c} ∪X), y
)

=
(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...kn−1k

∗
n,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...kn−1k

∗
n,

c1hc2, ..., gn−1gn−2...g3(c1)h(c2)k3...kn−2k
∗
n−1, y}

if Eve distinguishes An and Bn, then in particular, she distinguishes g2g1hk1k
∗
2 from c1hc2

(given g1hk1 and g2hk2), which means that she distinguishes

A2 =
(
view(2, {s1, s2}), y

)
= (g1hk1, g2hk2, y)

D2 =
(
view(2, {s1, s2}), φ(s∗2s1, h)

)
= (g1hk1, g2hk2, g2g1hk1k

∗
2)

which contradicts our hypothesis.

An−2 ∼ Dn−2 =⇒ Bn ∼ Cn.

Suppose, for the sake of contradiction, that an adversary Eve distinguishes Bn and Cn. We
produce and instance of Bn 6∼ Cn for Eve

11



Bn =
(
view(n− 1, {s1} ∪X), φ(sns

∗
n−1...s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {c} ∪X), y
)

=
(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

c1hc2, ..., gn−1...g5g4(g3c1)h(c2k3)k∗
4k5...k

∗
n−2kn−1, y}

Cn =
(
view(n− 1, {s1} ∪X), φ(sns

∗
n−1...s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {c} ∪X), φ(sns
∗
n−1...s

∗
4s3c, h)

)
=

(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

c1hc2, ..., gn−1...g5g4(g3c1)h(c2k3)k∗
4k5...k

∗
n−2kn−1, gn...g4(g3c1)h(c2k3)k∗

4k5...k
∗
n}

if Eve distinguishes Bn and Cn in polynomial time, in particular, she distinguishes y and

φ(sns
∗
n−1...s5s

∗
4(s3c), h) (given view(n−1, {c}∪X)). Let

(
(view(n−2, {cs3, s4, s5, ..., sn−1, sn}), y

)
be an instance of An−2, Dn−2:

An−2 =
(

(view(n− 2, {s3c, s4, s5, ..., sn−1, sn}), y
)

= ((g3c1)h(c2k3), g4hk4, ..., gnhkn, g4(g3c1)h(c2k3)k
∗
4..., gn(g3c1)h(c2k3)k

∗
n,

g5g4(g3c1)h(c2k3)k
∗
4k5, ..., gngn−1...g4g3hk3k

∗
4...k

∗
n−1kn, y)

Dn−2 =
(
view(n− 2, {s3c, s4, s5, ..., sn−1, sn}), φ(sns

∗
n−1...s5s

∗
4(s3c), h)

)
= ((g3c1)h(c2k3), g4hk4, ..., gnhkn, g4(g3c1)h(c2k3)k

∗
4..., gn(g3c1)h(c2k3)k

∗
n,

g5g4(g3c1)h(c2k3)k
∗
4k5, ..., gngn−1...g5g4hk4k

∗
5...k

∗
n−1kn, gngn−1...g4(g3c1)h(c2k3)k

∗
4...k

∗
n−1kn)

since Eve can distinguish y and φ(sns
∗
n−1...s5s

∗
4(s3c), h) given view(n − 1, {c} ∪X), then in

parti-

cular she distinguishes y and φ(s∗nsn−1...s
∗
4(s3c), h) given view(n−2, {s3c, s4, s5, ..., sn−1, sn}) ⊂

view(n− 1, {c} ∪X), and this means An−2 6∼ Dn−2, but this contradicts our hypothesis.

A2 ∼ D2 =⇒ Cn ∼ Dn.

Suppose towards the sake of contradiction that an adversary Eve distinguishes Cn and Dn.
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We produce and instance of Cn 6∼ Dn for Eve

Cn =
(
view(n− 1, {s1} ∪X), φ(sns

∗
n−1...s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {c} ∪X), φ(sns
∗
n−1...s

∗
4s3c, h)

)
=

(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

c1hc2, ..., gn−1gn−2...g3c1hc2k3...k
∗
n−2kn−1, gngn−1...g4g3c1hc2k3k

∗
4...kn−1kn}

Dn =
(
view(n− 1, {s1} ∪X), φ(sns

∗
n−1...s2, h), view(n− 1, {s2} ∪X), φ(sns

∗
n−1sn−2...s

∗
3s1, h),

view(n− 1, {s∗2s1} ∪X), φ(sns
∗
n−1...s

∗
4s3s

∗
2s1, h)

)
=

(
g1hk1, ..., gngn−1...g4g3hk3k

∗
4...kn−1k

∗
n, gngn−1...g3g1hk1k

∗
3k4...k

∗
n−1kn,

g2hk2, ..., gn−1...g3g2hk2k
∗
3...k

∗
n−2kn−1, gngn−1...g3g2hk1k

∗
2k4...k

∗
n−1kn,

g2g1hk1k
∗
2, ..., gn−1gn−2...g3(g2g1)h(k1k

∗
2)k3...k

∗
n−2kn−1, gngn−1...g3(g2g1)h(k1k

∗
2)k3...kn−1k

∗
n}

as in the first case, if Eve distinguishes An and Bn, then in particular, she distinguishes
g2g1hk1k

∗
2 from c1hc2 (given g1hk1 and g2hk2), which means that she distinguishes

A2 =
(
view(2, {s1, s2}), y

)
= (g1hk1, g2hk2, y)

D2 =
(
view(2, {s1, s2}), φ(s∗2s1, h)

)
= (g1hk1, g2hk2, g2g1hk1k

∗
2)

which contradicts our hypothesis.

�

So in the Initial Key Agreement the n-users underlying decisional problem is as hard as the
2-users decisional problem. This is also true in the Auxiliary Key Agreement. We can say the pro-
tocol provides on forward and backward security, i.e. any former or future users cannot distinguish
future or past distributed keys, as it is shown in the following result.

Corollary 4.4. The AKA provides on forward and backward security.

Proof
Let Eve be a powerful adversary, that knows all the information of a past user or a future user.

She would know a subset of view(k, ε), where k is the number of current users, and ε the secret keys.

In the first case, when the members of the group stay the same, note that the key up-
date adds a new secret key (and we consider it as a new user). Then we substitute n with
k = n + 1, φ(s∗nsn−1...s

∗
4s3s

∗
2s1, h) (or φ(sns

∗
n−1...s3s

∗
2s1, h)) with φ(s̃cs

∗
nsn−1...s3s

∗
2s1, h) (resp.

φ(s̃c
∗sns

∗
n−1...s3s

∗
2s1, h)) if n is even (if n is odd), andX with ε = {s1, s2, ..., sc−1, sc, sc+1, ..., sn−1, sn, s

′
c}

in Theorem 4.3. It follows that

Ak =
(
view(k, ε), y

)
, for y ∈ R randomly chosen.
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Dk =


(
view(k, ε), φ(s̃cs

∗
nsn−1...s3s

∗
2s1, h)

)
, if k is odd.(

view(k, ε), φ(s̃c
∗sns∗n−1...s3s

∗
2s1, h))

)
, if k is even.

and it still verifies that if A2 ∼ D2, then Ak ∼ Dk.

When a user leaves, the key update also adds a new secret key, so we replace n with k = n+ 1
(the user left, but we suppose that Eve had access to the communications before that happened,
and that private key is still part of the common secret key). The rest is the same, so we get again
the first case, and the AKA benefits form the same security benefits in this case.

When a new users joins the group, we need to replace k = n+2 (the new secret key and the key
update), φ(s∗nsn−1...s

∗
4s3s

∗
2s1, h) (or φ(sns

∗
n−1...s3s

∗
2s1, h)) with φ(s∗n+1s̃cs

∗
nsn−1...s3s

∗
2s1, h) (resp.

φ(sn+1s̃c
∗sns

∗
n−1...s3s

∗
2s1, h)) if n is even (if n is odd), and X with ε = {s1, s2, ..., sn−1, sn, sn+1, s

′
c}

in Theorem 4.3. It follows that

Ak =
(
view(k, ε), y

)
, for y ∈ R randomly chosen.

Dk =


(
view(k, ε), φ(s∗n+1s̃cs

∗
nsn−1...s3s

∗
2s1, h)

)
, if k is even.(

view(k, ε), φ(sn+1s̃c
∗sns∗n−1...s3s

∗
2s1, h))

)
, if k is odd.

and it still verifies that if A2 ∼ D2, then Ak ∼ Dk, so the Auxiliary Key Agreement benefits
from the same security properties.

�
Note that we could also consider Dk as

Dk =


(
view(k, ε), φ(s̃c,Kp))

)
, if k is odd.(

view(k, ε), φ(s̃c
∗,Kp))

)
, if k is even.

where Kp would be the previous key, when the number of users stay the same or someone left, and

Dk =


(
view(k, ε), φ(s∗n+1s̃c,Kp))

)
, if k is even.(

view(k, ε), φ(sn+1s̃c
∗,Kp))

)
, if k is odd.

when a new user joins the group.

Also note that in the key refresh, we consider k = n+1 in the first two cases, but the set of secret
keys are {s1, s2, ..., sc−1, s̃c∗sc, sc+1, ..., sn−1, sn} when n is odd, and {s1, s2, ..., sc−1, s̃cs∗c , sc+1, ..., sn}
when n is even, i.e. the number of stored keys stay the same, and the private key of the user Uc is s̃∗csc
or s̃cs

∗
c depending on whether the number of users is even or odd. Finally when k = n+2, the set of

secret keys has just one new key, from the new user Un+1, so it is {s1, s2, ..., sc−1, s̃c∗sc, sc+1, ..., sn−1, sn, sn+1}
when n is odd, and {s1, s2, ..., sc−1, s̃cs∗c , sc+1, ..., sn, sn+1} when n is even
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