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Abstract

This paper describes the use of Bayesian networks 
for the reduction of irrelevant features [1,2] in the 
recognition  of  oceanic  structures  in  satellite 
images.  Bayesian  networks  are  used  to  validate 
the  symbolic  knowledge  -provided  by  neuro 
symbolic  or  HLKPs  (High  Level  Knowledge 
Processors)  nets-  and  the  numeric  knowledge. 
This  provides  an  automatic  interpretation  of 
images.  The  main  objective  of  this  work  is  the 
construction  of  an  automatic  recognition system 
for  processing  AVHRR  (Advanced  Very  High 
Resolution  Radiometer)  images  from  NOAA 
(National  Oceanographic  and  Atmospheric 
Administration)  satellites  to  detect  and  locate 
oceanic  phenomena  of  interest  like  upwellings, 
eddies and island wakes. With this aim, this paper 
reports on a methodology of knowledge selection 
and  validation.   In  knowledge  selection,  filter 
measures  are  used.  For  knowledge  validation, 
Bayesian networks (Naïve Bayes, TAN and KDB) 
are evaluated.

1. Introduction

A pattern classification system often involves two 
stages of  development:  Extraction and selection 
of  features that  can  be  used  to  discriminate 
between  pattern  classes,  and  classification,  that 
draws  class  boundaries  in  the  selected  feature 
space.  Feature  selection consists  of  selecting an 
optimal or suboptimal feature subset from a set of 
candidate features.
The  most  common  framework  for  feature 
selection  is  to  define  criteria  for  measuring  the 

goodness of a set of features [3], and then use a 
search algorithm to find an optimal or sub-optimal 
set  of  features  [4].  The  objective  is  to  use 
Bayesian  networks  for  features  selection  in  the 
recognition  of  oceanic  structures  in  satellite 
images [5,6].

The paper is  organized as follows.  The data  set 
used in this study is described in section 2.  The 
symbolic  and  numeric  data  set  is  explained  in 
section 3. A methodology for knowledge selection 
and  validation  by  means  of  Bayesian  networks 
from  data  is  examined  in  section  4.  The 
experiments carried out with this methodology are 
reported in section 5, and the paper ends with the 
conclusions in section 6.

2. Data set

The AVHRR sensor has been a powerful tool in 
environmental, climatic and geophysical research 
tasks for more than twenty years. This sensor, on 
board the Tiros and NOAA satellite series, covers 
5  channels  in  the  infrared  and  visible  spectra. 
Particularly, infrared information has been used in 
oceanic feature identification.
AVHRR  channels  2  and  4  provide  visible  and 
infrared information in the ranges 0.725-1.10  µm 
and 10.50-11.50 µm.
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Figura 1. AVHRR scene and feature map

The region of NW Africa, Iberian Atlantic Coast 
and  Mediterranean  sea  in  which  the  study  was 
carried out is at the easternmost part of the eastern 
Atlantic. A detailed oceanographic description of 
this area can be find in [7,8].
In  the  studied  area  there  are  different  kinds  of 
important  oceanic  mesoscalar  structures: 
Upwellings, cold eddies, warm eddies and wakes. 

Upwelling  is the term used by oceanographers to 
describe the situation where cool, but nutrient-rich 
water from the lower layers of the ocean (too dark 
for  plants  to  grow)  raises  towards  the  surface. 
Brought into the light, such waters become very 
fertile  and  rich  feeding  ground for  fish.  For  an 
upwelling to occur, there must be a divergence of 
the surface currents, and this usually happens as a 
result of the wind field causing surface water drift 
in  the  presence  of  topographic  constraints.  For 
example,  a  longshore  wind  flowing  in  the 
Northern Hemisphere with a coastline to the left 
of  the  direction  of  travel,  sets  up  a  geostrophic 
flow away from the coast, and an upwelling tends 
to occur.  This upwelling is a regular occurrence 
off the NorthWest African coast [7], and off the 
Peruvian  coast,  where  wind  conditions  are 
suitable.  Nonetheless,  upwellings  may  well  be 
intermittent, depending both on the weather and, 
to  a  certain  extent,  on  the  ocean-wide 
thermohaline  circulation.  Because  of  the 
importance  to  commercial  fisheries,  much 
oceanographic  research  has  been  performed  in 
order  to understand and predict  upwellings,  and 
remote sensing from satellites is beginning to be 
used to develop this.

Eddies are structures with a high morphologic and 
contextual variability difficult to determine. These 
are  different  from  the  surrounding  water  in 
temperature and salinity. In addition, an eddy can 
travel great distances and for a long period of time 

without mixing itself with the surrounding water. 
On the other hand, the direction of cold or warm 
eddies and the degree of symmetry are controlled 
in  our  case  by  trade  winds,  that  being  more 
intense for the first in conditions of calm, whereas 
with strong winds the seconds are intensified and 
more  symmetrical.  In  cold  eddies  [8]  the 
movement  is  ascending:  cold  water,  rich  in 
nutrients,  arises  towards  the  surface.  However, 
warm  eddies  accumulate  and  sink  warm  water, 
generating a transport  of organic matter towards 
the interior of the ocean.

Wakes  [9]  are  oceanic  structures  that  are 
characterised  by  structures  of  warm  type 
associated with islands. In different studies, wakes 
have  been  observed  leeward  of  the  Canary 
Islands. A wake is generated by the obstacle that 
the  islands  conform for  the  pre  dominant  wind 
field  in  this  region  (trade  winds  direction  NE). 
This implies a reduction of the intensity of winds 
in the southwest of the islands and a heating of the 
surface  of  the  sea  in  these  zones.  Wakes  are 
relatively brief and they are identified by a water 
strip warmer than the rest, this strip is adhered to 
coast and a filament is extended to open sea.

Figure  1(a)  shows  the  ocean  phenomena  like 
upwellings, eddies and island wakes in an AVHRR 
scene (equalized), and figure 1(b) shows classified 
ocean phenomena.

3. Data set

The  starting  point  of  this  study  is  a  symbolic 
knowledge data base. This data base is obtained 
from  the  competitive  networks  of  High  Level 
Knowledge  Processors  [10]  from  the  satellite 
images. 

On the other hand, a numercic knowledge data 
base  is  extracted  from the  same  set  of  satellite 
images. 

3.1. High-Level Knowledge 
Processors (HLKP)

HLKP  are  neural  symbolic  networks  for  data 
classification processes. This classifier builds up a 
neural  network  structure  from  a  set  of 
interconnected  processing  elements  (PEs).  The 
processing elements depend on its input,  building 



a  network  with  learning  ability.  The  processing 
elements  have a  connected architecture  equal  to 
neural classifiers.

HLKP  let  to  use  knowledge  in  non-numerical 
domains and structurally and operationally similar 
to  some  classical  neural  classifiers.  The  basic 
element  in  this  classifier  is  the  High-Level 
Knowledge Processor (HLKP) [10].
In  the  classification  process,  the  processing 
elements save the structure of the knowledge base, 
the  rule  depend  on  this  structure  (these  rules 
follow ideas  of  similarity  between patterns)  and 
each  rule  has  an  associated  priority  value.  The 
competitive structure of HLKPs selects the output 
for which the rule that generated the output has 
the greatest priority.

3.2. Symbolic feature set

The original feature set can be divided into two 
categories:  morphological  features,  described  in 
table 1 and context features, which can be seen in 
table 2.

Label Feature
1,2,3 Size in pixels above or below threshold
3000 Above-average temperature of the region.
3001 Below-average temperature of the region

3002 Region variability above 4 (see Torres et al, 
1997)

3003 Region variability above 6 (see Torres et al, 
1997)

3004 Variability below 4 (see Torres et al, 1997)
8000 Presence of a kernel.
8003 Hat or V-shape (for cold or warm eddies).
1,2 Rounded.

8005 Not on the boundary.
8006 The centroids of the subregions are aligned.

8007 Kernel cold with regard to the rest of the 
region.

8008 Kernel warm with regard to the rest of the 
region.

8010 Oblique Gaussian shape (for upwelling).
8009 Oblique Gaussian shape
8002 Not on any defined region.

Tabla 1. Morphological features.

Label  Feature (using a GIS database)
 Land zone which the region is on

1024  SE Spain
1025  SW Portugal
1026  Melilla
1027  NW Africa
1028  Sahara
1029  Fuerteventura
1030  Isla de Lobos
1031  Lanzarote
1032  Grand Canary Island
1033  Tenerife
1034  Gomera
1035  La Palma
1036  Hierro
1037  N Cape White
1038  S Cape White
1050  Cantabrian Coast and W of France

 Position of the region with regard 
to land

2000  North
2001  South
2002  East
2003  West

 Type of land closest to the region
5000  Island
5001  Continental platform

 Position in the ocean in which the 
region is found

4000  Coast
4001  Transition Zone
4002  High sea

 Hemisphere in which the region is 
found

6000  North
6001  South

 Sea or ocean in which the region 
is found

7000  Mediterranean
7001  Atlantic

8001  The region is not surrounded by 
clouds.

8004
 The region is at less than a 
distance from the islands or  near 
filamentous structures.

Tabla 2. Context features.



Figura 2. Methodology of knowledge selection and validation

3.3. Numeric feature set

Some of the original feature set can be seen in 
table 3.

Simple features Level of gray

First Point.
Area.

Perimeter
Density
Volume.
Volume2

Equivalent diameter.

Min level of gray
Max level of gray
Mean level of gray
Standard deviation
Barycenter level of 

grays

Bounding box
First point

Height
Width
Area

Extended

Bounding ellipsoid

Centroid.
Major Axis.
Minor Axis.
Orientation
Excentricity
Irradiance

      Inerce moments
Moments of Hu

Moments of Maitra
Moments of Zernike
Tensorial moments

Tabla 3. Numeric features

4. Methodology for knowledge selection 
and validation 

A new methodology is proposed in figure 2. The 
goal is to achieve a better knowledge selection 
by means of filter metrics, Bayesian classifiers 
and cross-validation.  

Knowledge optimization is shown by means 
of  Bayesian  classifiers.  This  allows  several 
kinds of causal reasoning: inductive,  deductive-
predictive  and  intercausal.  In  figure  2,  it  is 
observed  a  knowledge  feedback  flow;  this 
makes possible the knowledge validation.

4.1. Knowledge adaptation.

Discretization  algorithms  [11]  can  be  divided 
into two categories:
• unsupervised  (class-blind)  algorithms  that 

discretize  attributes  without  taking  into 
account  respective  class  labels.  The 
representative algorithm is equal-frequency 
discretizations. 

• supervised  algorithms  discretize  attributes 
by  taking  into  account  the  class-attribute 
interdependence.  The  representative 
algorithm is the K-means method.

Discretization  should  significantly  reduce  the 
number  of  possible  values  of  the  continuous 
attribute since large number of possible attribute 



values  contributes  to  a  slow  and  ineffective 
process of inductive machine learning. Thus, a 
supervised discretization algorithm should seek 
for  the minimum number of  discrete  intervals, 
and at the same time it should not weaken the 
interdependency  between  the  attribute  values 
and the class label.

The  goal  is  to  search  the  best  discretice 
aproximation. We applied Wrapper method with 
bayesian  classifier  (Naïve  Bayes).  The  best 
result is shown in experimetal results.

4.2. Knowledge Selection. 

Dimension  reduction  is  often  used  in 
clustering,classiffication,and  many  other 
machine learning and data mining applications. 
It usually retains the most important dimensions 
(attributes),removes  the  noisy  dimensions 
(irrelevant attributes)and reduces computational 
cost. 
We have tried different filter methods [12] for 
feature selection:
• Mutual information (MI).
• Euclidean distance (ED).
• Matusita distance (MD).
• Kullback-Leibler (KL)
• Shannon entropy (SE)
• Bhattacharyya metric (BM)
• Correlation  based  Features  Seleccion 

(CFS).

4.3. Constructing of bayesian 
networks classifiers

Bayesian networks [13] have been successfully 
used as  models  for  representing uncertainty in 
knowledge bases. The uncertainty is represented 
in  terms  of  a  probability  distribution  whose 
induced independence relations are encoded by 
the network structure.
Formally,  a  Bayesian  network  for  a  set  of 
variables  X = {X1, ..., Xn} consist of a directed 
acyclic graph where each vertex is labeled with 
a  variable  in  X,  and  a  set  of  conditional 
distributions  for  each  variable  Xi given  its 
parents in the graph, which is denoted as  p(xi|
xpa(i)).

A Bayesian network can be used as a classifier, 
as  long  as  one  of  its  variables  represents  the 
class  and  the  other  ones  are  the  features  that 
describe the object that is going to be classified.
Classification is carried out by instantiating the
value of the feature variables and then carrying 
out a probability propagation [13] over the class 
variable,  which  consists  of  computing  the 
posterior  probability  of  each  class  given  the 
observed features. Afterwards, the assigned class 
is that one with higher posterior probability.

We have tried three simple methods for learning 
the Bayesian network from the set  of numeric 
data:
1. Naive­Bayes: this  method  is  oriented  to 

classification, and is based on the assumption 
that  all  the  features  are  conditionally 
independent  when  the  class  is  known.  This 
assumption  implies  that  the  structure  of  the 
network is rather simple, since the only arcs in 
the network link the class variable with each 
one  of  the  features,  and  there  are  no  arcs 
among the feature variables. The advantage of 
this  naive  approach  is  that  the  number  of 
parameters  to  learn  from  the  data  is  low, 
improving  in  this  way  the  accuracy  of  the 
estimations [14].

2. Tree  Augmented  Naïve  Bayes  Classifier  
(TAN):  [15]  TAN  models  are  a  restricted 
family  of  Bayesian  networks  in  which  the 
class  variable  has  no  parents  and  each 
attribute has as parents the class variable and 
at most another attribute.

3. k-Dependence  Bayesian Classifier (KDB): 
[16] a k-dependence Bayesian classifier is  a 
Bayesian  network  which  contains  the 
structure of the Naive Bayesian classifier and 
allows each feature to have a maximum of k 
feature nodes as parents. 

4.4. Validation of Classifiers

Instead  of  fixed  train-test  partitions  we  have 
performed the experiments  with  10-fold cross-
validation. This  means that the whole dataset is 
partitioned into 10 sub-datasets, nine are used as 
training set  and the remainder  one is reserved 
initially as test set, and is then used to evaluate 
the results in the second stage. This is done for 
the ten possible subdatasets.



4.5. Selection of the best classifier

Selecting  classifiers  based  only  on  their 
accuracy,  it  may  often  be  more  effective  to 
attempt  to  select  the  classifiers  based on  their 
simplicity,  for  which  several  measures  have 
been  observed:  dimension  reduction  and 
dependence  relationship  between  features.  For 
classification  purposes  it  may  be  useful  to 
examine especially the errors.

5. Experimental results

In order to test the performance of the Bayesian 
classifiers  in our  system, we have simulated a 
series  of  symbolic  and  numeric  data  sets  as 
described in section 3, and for each data set the 
three Bayesian networks have been constructed, 
using the Elvira tool [17], which is available at 
http://leo.ugr.es/~elvira.

In  evaluation  process  of  the  symbolic 
knowledge,  a  discretization  (equal  frecuency) 
has been used for 2 intervals (present or absence 
of the value). The results of Bayesian classifiers 
is displayed in table 4, where the accuracy rate 
and the average number of relevant features can 
be found. With respect to the accuracy rate, 80% 
is  obtained  by  HLKPs.  This  accuracy  rate  is 
practycally  the  maximum that  can  be  reached 
taking into account the original data, unless new 
features were included in the system [10]. It can 
be  seen that  the  classifiers  based on  Bayesian 
networks  reach  the  same  accuracy  level 
achieved  by  the  neural  network  (HLKP),  but 
reducing the number of features significantly (12 
variables (CFS) instead of 50 (HLKP)).

In the case of numeric data the accuracy rate is 
shown in table 5. The best discretization is K-
Means  with  k  =  100.  It  is  observed,  that  the 
methodology improves to HLKPs since its best 
classification is 89.18 % whereas HLKP is 80 % 
and dimension reduction is 14 (CFS) instead of 
50  (HLKP)  or  80  (all  numeric  features). 
Examples  of  the  networks  obtained  in  the 
experiments can be seen in figures 3 and 4.

6. Conclusion

We have explored the use of Bayesian networks 
as a mechanism for feature selection in a system 
for  automatic  recognition  of  oceanic  satellite 
images.  The  use  of  Bayesian  networks  has 
provided  benefits  with  respect  to  HLKPs,  not 
only  in  the  reduction  of  relevant  features,  but 
also  in  discovering  the  structure  of  the 
knowledge,  in  terms  of  the  conditional 
independence relations among the variables.
In future works we plan to improve the accuracy 
rate  of  the  system  including  more  variables. 
Furthermore,  we  expect  to  use  models  for 
avoiding  the  discretisation  of  the  continuous 
features when learning Bayesian networks.
More  precisely,  we  will  use  mixtures  of 
truncated exponentials [17].

Filter No. of 
Vars NB TAN KDB

MI 19 78.84 78.85 78.82
ED 19 78.84 78.84 78.84
MD 19 78.83 78.77 78.77
KL 19 78.82 78.87 78.76
SE 48 79.00 79.10 78.96
BM 13 77.60 77.60 77.60
CFS 12 77.44 77.36 77.38

Tabla 4. Evaluation with symbolic features 
(number of variables and accuracy).

Filter No. of 
Vars NB TAN

IM 60 84.78 84.08
DE 24 88.48 85.78
MA 61 85.28 82.48
KL-1 61 85.08 81.98
KL-2 19 87.68 84.38
SH 1 30.03 31.33
CFS 14 89.18 87.08
All 80 85.88 78.47

Tabla 5. Evaluation with numeric features 
(number of variables and accuracy)



Figura 3. Naive Bayes – CFS, numeric data set.

Figura 4. TAN – SH, symbolic data set.
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