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Abstract: This paper first merges two noteworthy aspects of choice. On the one hand, soft sets
and fuzzy soft sets are popular models that have been largely applied to decision making problems,
such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or
international trade. They provide crisp or fuzzy parameterized descriptions of the universe of
alternatives. On the other hand, in many decisions, costs and benefits occur at different points in
time. This brings about intertemporal choices, which may involve an indefinitely large number of
periods. However, the literature does not provide a model, let alone a solution, to the intertemporal
problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose
a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important
gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal
option in intertemporal choice problems with an infinite time horizon. We illustrate its application
with a numerical example involving alternative portfolios of projects that a public administration may
undertake. This allows us to establish a pioneering intertemporal model of choice in the framework
of extended fuzzy set theories.

Keywords: fuzzy soft set; intertemporal choice; comparison table; decision making

1. Introduction

The scientific contribution of this paper is setting up a novel framework for making decisions
that stems from the first cross-fertilization of two features: (a) intertemporal aspects of choice; and
(b) extended fuzzy set models. We also give a novel adjustable algorithm that prioritizes alternatives
with the aforementioned features.

Decisions whose consequences extend across multiple time periods are called intertemporal
choices. The entry “Intertemporal choice” in the Palgrave Dictionary of Economics states: “Most
choices require decision-makers to trade-off costs and benefits at different points in time. Decisions
with consequences in multiple time periods are referred to as intertemporal choices. Decisions about
savings, work effort, education, nutrition, exercise, and health care are all intertemporal choices” [1].
Although its analysis is preeminent in the standard crisp literature, to the best of our knowledge,
the problem of intertemporal choice has never been modeled when the data are imprecise, uncertain or
subjective in the sense of the extended fuzzy set theories. In this paper, we first put forward a model
that fills this important gap. To prove that it can be used to make decisions, we propose a flexible
mechanism that provides a ranking of the alternatives that are characterized by these characteristics.
We also present some examples that illustrate the application of our decision making procedure.

To achieve our goals, we have selected the successful setting of fuzzy soft sets. (Other models
of imprecise knowledge would require an ad hoc analysis, which we postpone for subsequent
investigations to avoid confusions.) The new model that arises (from the amalgamation of the
intertemporal setting of choice and data in the form of fuzzy soft sets) is called intertemporal fuzzy
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soft sets. We put forward various equivalent and complementary definitions of this concept. Some are
more convenient for the purpose of algebraic manipulations and intuitions. Some are better suited to
describe the computational machinery that produces the results from which the decisions are achieved.

In relation with the latter issue, the gist of standard intertemporal problems is that the
consequences of a decision span along an infinite number of periods. However, to decide among
various alternatives, their consequences across time are summarized by an amount called their
respective Net Present Values. In this fashion, the infinite expansion that characterizes an alternative
is summarized by a unique number, for example through a discounted sum. By inspiration of this
widely accepted position, we propose to condense the information of intertemporal fuzzy soft sets
into fuzzy soft sets in order to make optimal decisions. The tool that we introduce to achieve this
target is called a reduction mechanism. Reduction mechanisms can both indicate symmetry in the
valuation of a reward irrespective of the period when it is obtained, or a preference for earlier rewards
(i.e., violation of the symmetric treatment of the periods). We provide several noteworthy examples of
both behaviors. Once this reduction to a fuzzy soft set has been performed, our decision can rely on
widely accepted solutions stated for that setting.

Actually, the main reason for choosing fuzzy soft sets in our pioneering approach is that there is a
fully-developed theory for fuzzy soft set based decision making. To further assess the importance of
this setting, in the next section, we review some general background about soft computing models
with a more explicit explanation about soft set based modelizations and their decision making. We also
dwell on the fundamentals of the intertemporal problem of choice and its applications.

This paper is organized as follows. In Section 2, we give some general background about the main
notions that are used in our research. A fully developed real example helps to clarify the application
of the discounted utility aggregation model. Section 3 recalls some terminology and definitions.
In Section 4, we define our new model of intertemporal fuzzy soft sets and we also offer alternative
formalizations. In Section 5, we define the notion of a reduction mechanism, which we use to state
the decision algorithm that prioritizes alternatives in the framework of intertemporal fuzzy soft sets.
We also illustrate the model with a numerical application to the selection of alternative portfolios of
public projects. Finally, we conclude in Section 6.

2. Background

In this section, we give some background about various pertinent topics. Firstly, we provide some
basic knowledge about the theory and practice of intertemporal choices, inclusive of a fully developed
real example. Secondly, we give a general overview of fuzzy sets and other related models of uncertain
information. Finally, we focus on the specific characteristics of the framework where we develop our
contribution, namely, fuzzy soft sets and their decision making.

2.1. Intertemporal Choice: Theory and Practice

Intertemporal choices are decisions whose consequences (costs and benefits) are distributed over
time [2]. Decisions about investments, spending and savings are standard examples of monetary
intertemporal choices. However, there are also non-monetary intertemporal choices such as decisions
related with sustainability (environmental issues such as forestry [3], climate policy [4] or the use of
energy-using durables [5]), health (diet, exercise, and addictions [6,7]), job search [8], or work effort [9].

Discounted utility theory is the normative theory for intertemporal choice, or choices between
outcomes accruing at different points in time; usually between immediate and delayed outcomes [10].
Since its introduction by Samuelson [11] in 1937, the discounted utility (DU) model has dominated the
economic analysis of intertemporal choice (e.g., the aforementioned [4,5,9]). DU model was completed
by Koopmans [12] who clarified its logic and main assumptions. This model presumes that people
evaluate the pleasures and pains resulting from a decision in a similar way that financial markets
evaluate gains and losses spread out over time. Anyone prefers to get 1000 dollars now rather than
1000 dollars in a year. However, people behave differently if they have to choose between receiving
1000 dollars now or 1100 dollars in a year. To compare choices made in different moments of time,
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under DU, it is assumed that agents exponentially discount these costs and benefits according to how
delayed they are in time [13]. Although there is experimental evidence showing that this is not always
the case [2,14,15], a fact that prompted the appearance of other explanatory models such as hyperbolic
discounting [16–18] or q-exponential discounting [19–21], the DU model is nevertheless used as the
common tool for public policy in the evaluation of public projects. The model can be calibrated with
suitable discount factors, for example, using a decreasing sequence of discount rates for projects with
very long-term impacts to account for intergenerational equity [22]. The governments of the United
Kingdom and France, in line with the proposals of several authors for long-term valuations [23],
recommend the use of decreasing discount rates in public projects with long time horizons [24,25].

In real practice, and provided that the DU model is adopted for the evaluation of intertemporal
projects, the expected cash-flows of a project are always discounted to obtain its Net Present Value
(NPV) at instant 0 (time of evaluation), see for example [26]. To that purpose, a well-known formula
is applied which requires using an appropriate discount rate. For private projects, the weighted
average cost of capital or a required profitability are usually used as a discount rate. For public
projects, the social time preference rate is employed to calculate the discount rate, which is then
called social discount rate (SDR). The social time preference rate is a rate used for discounting future
benefits and costs, and it is based on comparisons of utility across different points in time or different
generations [24]. The SDR “is used by society to give relative weight to social consumption or income
accruing at different points in time” [3].

Since we are applying our intertemporal model of choice to concrete examples, we need to fix an
appropriate discount rate. Our choice is not arbitrary. On the contrary, we take advantage of the fact
that, for EU funded projects, the European Commission [26] recommends the use of the exponential
discounting model and a constant 5% European social discount rate for the Cohesion Fund eligible
countries and 3% for the others (countries non-eligible for the Cohesion Fund). Therefore, 5% is our
reference rate unless otherwise stated.

According to the previous discussion, discounted utility computations made for choices in the
present and at various moments in the future (x0, x1, . . . , xT) adopt the form

T

∑
t=0

βtu(xt) (1)

Here, xt is the choice made at moment t, whose utility at that moment is u(xt); βt is the discount
factor for a time period of t periods, usually years (for example, β = 1

1+0.05 under our assumption for
the reference rate); choices are made along periods t = 0 (the present), t = 1, 2, . . . , T; and T may be
+∞. Put otherwise, if we want to assess the temporal sequence (x0, x1, . . . , xT) and the utility u gives
us the degree of satisfaction of each choice xt, which is of course u(xt), then ∑T

t=0 βtu(xt) gives the
discounted utility of this temporal sequence. The β parameter accounts for the fact that people prefer
to enjoy utility as soon as possible.

Let us now give a real example that illustrates the application of our reference model for
intertemporal choice.

Example 1. On 7 November 2017, the Spanish infrastructure operator Ferrovial published a press release
(see https://www.ferrovial.com/en/press-room/press_releases/500-million-euro-2-124-perpetual-hybrid-bond/ ,
retrieved 18 August 2018.) It stated: “Taking advantage of a favorable market environment with low interest
rates, Ferrovial today successfully priced a 500 million euro perpetual hybrid bond. The issue pays a 2.124%
annual coupon until 14 May 2023. Subsequently, it will pay a fixed coupon equal to the applicable swap rate plus
a spread of 2.127% until 14 May 2043 and of 2.877% thereafter. The swap rate will be updated every five years.”

Therefore, Ferrovial perpetual bonds, with a face value of 100 euros, will pay a 2.124% annual coupon
during the first six years, 2.127% (supposing a swap rate of 0%) the following 20 years, and a 2.877% thereafter.
Table 1 expresses this intertemporal situation and gives the computations that produce the NPV at time 0 of such
a bond when we assume a discount rate of 3%, hence β = (1 + 0.03)−1 = 0.97087.

https://www.ferrovial.com/en/press-room/press_releases/500-million-euro-2-124-perpetual-hybrid-bond/
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Table 1. Detailed computations of the NPV, assuming a discount rate of 3%, in the real Example 1. It is
the sum of the present values at the right column of the table.

Period Interest Rate Cash-Flows Annual Coupon Discount Factor Present Value

1 2.124% 2.124 = 100 × 0.02124 0.97087 = (1 + 0.03)−1 = β1 2.0621 = 2.124 × 0.97087
2 2.124% 2.124 0.94260 = (1 + 0.03)−2 = β2 2.0021 = 2.124 × 0.94260
3 2.124% 2.124 0.91514 = β3 1.9438
4 2.124% 2.124 0.88849 = β4 1.8871
5 2.124% 2.124 0.86261 = β5 1.8322
6 2.124% 2.124 0.83748 = β6 1.7788
7 2.127% 2.127 = 100 × 0.02127 0.81309 = β7 1.7294
8 2.127% 2.127 0.78941 = β8 1.6791
...

...
...

...
...

26 2.127% 2.127 0.46369 = β26 0.9863

27 and onwards 2.877% 2.877 = 100 × 0.02877 44.4683 = 2.877
β26

0.03
NPV 82.4761

2.2. A Concise Presentation of Fuzzy Sets and Related Notions

Since Zadeh [27] laid the foundations of fuzzy set theory, whose main feature is the introduction of
partial membership degrees, many authors produced a large amount of literature on their advantages
and potential applications in decision making. Mardani et al. [28] gave a summary of articles about
fuzzy multi-criteria decision making from the period 1994–2014. Other classical references for the
fundamentals of decision making in fuzzy set theory include Tanino [29] and Fodor and Roubens [30].

When imprecise individual or collective knowledge cannot be faithfully represented by fuzzy
sets, extensions of this concept and multiple variations offer more suitable models. Atanassov [31,32]
presented the idea of intuitionistic fuzzy sets. Afterwards, Chen et al. [33] or Wei [34] produced
intuitionistic fuzzy multi-attribute group decision making methods, and De Miguel et al. [35] applied
interval-valued Atanassov intuitionistic fuzzy sets in multi-expert decision making. Pythagorean fuzzy
sets are surveyed in Peng and Selvachandran [36], and interval-valued Pythagorean fuzzy sets were
studied by Peng and Yang [37] and Peng [38]. Hesitancy was first merged with fuzzy sets by Torra [39]
(for more information, a good source is Rodríguez et al. [40]; see also Alcantud and Torra [41] for the
first decomposition theorems and extension principles in the framework of hesitant fuzzy sets).

From a different position, rough set theory was established by Pawlak [42] and, in his first
formulation, an equivalence binary relation is the source of granulation of the set of alternatives.

It is at this junction that a different, parameterized description of the alternatives made its
appearance. The idea produced soft sets, extensions and hybrid models. Since they are a benchmark in
our paper, we proceed to describe them succinctly in the next subsection.

2.3. Soft Sets, Extensions and Hybrid Models

The theory of soft sets originates with the seminal paper [43]. Feng and Zhou ([44], Section 1)
cleverly described soft set theory in the following terms: it “is considered as a new mathematical
tool for dealing with uncertainties which is free from the inadequacy of parameter tools. In soft set
theory, the problem of setting the membership function simply does not arise as in fuzzy set theory,
which makes the theory convenient and easy to use in practice.” Its relevancy to decision making in
various fields was already pointed out in [43], which also explained that the models by fuzzy sets
and soft sets are linked to each other. Further relationships are proven in [45–48]. The early works
of Maji et al. [49] and Aktaş and Çağman [50] among others expanded the basic theory of soft sets.
Khameneh and Kılıçman [51] systematically reviewed multi-attribute decision-making based on soft
set theory. Zhan and Alcantud [52] recently summarized parameter reduction of soft sets, a thriving
area that allows for approaches in extended models.
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Indeed, suitable extensions of soft sets come up from the incorporation of ideas such as the
aforementioned fuzziness and hesitancy. Fuzzy soft sets were designed by Maji, Biswas and Roy [53].
Parameter reduction in the context of fuzzy soft sets was developed, e.g., by Khameneh and
Kılıçman [54]. Wang, Li and Chen [55] produced hesitant fuzzy soft sets by adding up hesitancy
to the latter concept. Because data collection and measurement often produce errors or are restricted,
some studies (e.g., [56–58]) are concerned with another extended form of soft sets called incomplete
soft sets, while other [59,60] are concerned with the natural extension called incomplete fuzzy soft sets.

Let us now consider fuzzy soft set based decision making. The performance of the pioneering
analysis by Roy and Maji [61] has been improved by [62,63]. Feng et al. [64] put forward a flexible
method based on level soft sets. They explained that [65] challenges the position in [61] by claiming
that the criterion for making a decision should use scores instead of fuzzy choice values, a point
of view that found little support among other scholars. Liu et al. [66] gave another methodology
for fuzzy soft set based decision-making based on an ideal solution. Feng and Guo [67] intended
to effectively resolve the natural group decision-making problem in the context of fuzzy soft sets.
To achieve their goal, they first design another adjustable method for solving fuzzy soft set based
decision-making problems.

Hybrid models combine the spirit of soft sets with other methodologies. Peng, Dai and Yuan ([68]
and the references therein) contributed to interval-valued fuzzy soft decision making. Park, Kwun and
Son [69] gave an approach to decision making problems based on generalized intuitionistic fuzzy soft
sets (see also [70] for the operations in that framework). Feng et al. [48] used soft approximation spaces
instead of binary relations in rough set theory. Zhan and Wang [71] built five new different types
of soft coverings based rough sets and investigated relationships between soft rough sets and soft
covering based rough sets. Zhan and Alcantud [72] designed a soft rough covering by means of soft
neighborhoods, which they utilized to improve decision making in a multi-criteria group environment.
Ma et al. [73] presented an updated summary of decision making methodologies based on two classes
of hybrid soft set models. Fatimah et al. [74] studied the decision-making implications of probabilistic
and dual probabilistic soft sets.

Now, we proceed to state the formal definitions that we shall use in the remaining of this paper.

3. Definitions: Soft Sets and Fuzzy Soft Sets

In soft set theory and their extensions, we start with U, which is a set of alternatives (or a universe
of objects), and E, which is a universal set of attributes, parameters or characteristics. We let P(U)

denote the set of parts of U, i.e., the set formed by all the subsets of U.

Definition 1 (Molodtsov [43]). A soft set over U is a pair (F, A) with A ⊆ E and F : A −→ P(U).

A soft set over U is a parameterized family of subsets of U, and the set A contains the relevant
parameters. For every e ∈ A, the subset F(e) is the set of e-approximate elements, or also, the subset
of U approximated by e. For example, if U = {s1, s2, s3} is a universe of shirts and A contains
the parameter e that describes “blue color” and the parameter e′ that describes “silk fabric” then
F(e) = {s1}means that the only shirt with blue color is s1 and F(e′) = {s1, s3}means that exactly s1

and s3 have silk fabric.
To model more general situations, the following notion is subsequently proposed and investigated

in [53]:

Definition 2 (Maji, Biswas and Roy [53]). Let FS(U) denote the set of all fuzzy sets on U. The pair (F, A)

is a fuzzy soft set (FSS) over U when A ⊆ E and F : A −→ FS(U).

Needless to say, soft sets are an example of fuzzy soft sets. However, fuzzy soft sets are better
suited to model subjectively perceived properties, since partial memberships are designed to express
such subjectivity.
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In the standard instance with finite U and A, both soft and fuzzy soft sets can be displayed in the
form of a table, where rows correspond to the alternatives in U, columns correspond to the attributes
in A, and there is a number from [0, 1] in each cell. Of course, the cells of these matrices contain either
0 or 1 when the fuzzy soft set is a soft set.

To illustrate these ideas and motivate the subsequent decisional analysis, let us put forward an
example in terms of an object recognition problem:

Example 2. A collection of objects U = {o1, ..., o6} is characterized in terms of a space of attributes which
is denoted as A = {p1, . . . , p7}. Here, the attributes represent the relevant combinations of characteristics.
The fuzzy soft set that describes the objects is (F, A), which is given by the tabular representation in Table 2.
For illustration, number 0.650 at the junction of Row o1 and Column p1 means that the degree of membership of
o1 to the objects that verify characteristic p1 is 0.650.

Table 2. Tabular representation of the fuzzy soft set (F, A) in Example 2.

p1 p2 p3 p4 p5 p6 p7

o1 0.650 0.150 0.064 0.216 0.048 0.054 0.405
o2 0.144 0.720 0.360 0.045 0.036 0.020 0.175
o3 0.120 0.084 0.180 0.350 0.096 0.021 0.294
o4 0.504 0.192 0.108 0.090 0.048 0.620 0.280
o5 0.084 0.245 0.036 0.096 0.270 0.200 0.320
o6 0.216 0.315 0.042 0.108 0.224 0.126 0.410

Fuzzy Soft Set Based Decision Making

Soft set based decision making relies on [44,75,76]. However, since the appearance of the
seminal [61], there have been many remarkable approaches to decision making in the framework
of fuzzy soft sets. The most successful contributions include [61–67]. We do not describe them all in
detail here. For our purposes, it should suffice to know their general features and relative advantages,
which are summarized in Table 3. It compares various noteworthy criteria with respect to their
main characteristics.

Table 3. A critical summary of the main fuzzy soft set based decision making procedures.

Ref. Aggregation Methodology Solution Other Issues

[61] Min operator Scores from a Unique Many ties
comparison matrix Loss of information

[63] reformulates algorithm

[65] Not discussed Fuzzy choice values Unique It is too controversial

[64] Not discussed Choice value of level Not unique Ties multiply
soft set Richness at the cost of

indeterminacy
Additional inputs needed
(e.g., threshold fuzzy set)

[62] Product Scores from alternative Unique Improved power of discrimination
operator comparison matrix

[66] Not discussed Similarity measure Unique Application of subjective weights
and substitutable Low time complexity

[67] Not discussed Distance measure for Not unique Two methods for obtaining
Group Decision Making appropriate experts’ weights

As explained in Section 1, ultimately we need to make choices from a fuzzy soft set to solve the
intertemporal choice problem for fuzzy soft sets that we present in Section 4. Therefore, it is convenient
to be familiar with the machinery of at least one such procedure. For the sake of clarity, to apply fuzzy
soft sets in decision making practice, we focus on the proposal by Alcantud [62], who stated a feasible
algorithmic solution to solve problems in the format of Example 2.
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To make this paper self-contained, we recall that the application of Alcantud’s algorithm
proceeds as follows (afterwards Example 3 illustrates the application of Algorithm 1 below to a
concrete situation):

Algorithm 1 (Alcantud [62])

Input: a fuzzy soft set (F, A), which we place in the form of a table. Its cell (i, j) is represented by tij

1: For every attribute j, let Mj denote the maximum membership value of the alternatives, i.e.,
Mj = maxi=1,...,k tij for each j = 1, ..., q.

Produce a k× k comparison matrix A = (aij)k×k as follows: for every i, j, aij is the sum of the
non-negative values in the following finite sequence:

ti1 − tj1

M1
,

ti2 − tj2

M2
, ......,

tiq − tjq

Mq
.

We can display this matrix as a comparison table.
2: For each i = 1, ..., k, calculate Ri as the sum of the elements in row i of A, and Ti as the sum of the

elements in column i of A. For every i = 1, ..., k, calculate the score Si = Ri − Ti of object i.
3: The result of the decision is any object ok such that Sk = maxi=1,...,k Si.

Example 3. Let us assume that we have the input data of Example 2. Its comparison table is given in Table 4,
as computed by Algorithm 1 above. Then, Table 5 shows its associated scores.

As a result, one concludes that o4 should be selected when we consider the input data of Example 2 and we
adhere to Algorithm 1.

Table 4. Comparison table of the fuzzy soft set (F, A) in Example 2 using Algorithm 1.

o1 o2 o3 o4 o5 o6

o1 0 1.93 1.23 0.89 1.5 1.04
o2 1.61 0 1.42 1.43 1.65 1.45
o3 0.88 1.39 0 1.15 1.18 1.07
o4 1.09 1.95 1.71 0 1.52 1.42
o5 1.19 1.66 1.22 1.01 0 0.29
o6 1.01 1.73 1.39 1.19 0.57 0

Table 5. Score table of the fuzzy soft set (F, A), derived from its Comparison table by Algorithm 1.

Row-Sum (Ri) Column-Sum (Ti) Score (Si)

o1 6.58 5.79 0.79
o2 7.57 8.65 −1.08
o3 5.68 6.97 −1.29
o4 7.7 5.68 2.02
o5 5.37 6.43 −1.06
o6 5.9 5.27 0.63

4. A New Model: Intertemporal Fuzzy Soft Sets

Thus far, the literature has dealt with alternatives with a very simple structure: for each
characteristic, we know the degree of membership of the alternative to the set of elements that
verify the characteristic. However, it is not difficult to find examples where the performance of the
options is far more complex. Particularly, in this paper, we are concerned with an intertemporal setting.
Indeed, in the general framework of project selection (e.g., solar energy projects [77], environmental
impact assessment [78], financial portfolio [79], etc.), each alternative has a performance along an
indefinite number of periods, typically years. Therefore, if we want to decide which of a list of projects
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should be selected, we face an infinite number of fuzzy soft sets (one that represents each possible
period). Neither of the existing approaches to fuzzy soft set based decision making can deal with this
potentially infinite structure.

To tackle this new problem, now we proceed to formalize our model. It accounts for the
intertemporal setting that we have motivated. Afterwards, we interpret the formal statement of
the model in terms of tables when the number of alternatives and attributes is finite, which facilitates
their computational manipulation. In the next section, we give a procedure for making decisions in this
novel framework. In addition, in that section, an example illustrates the decision making algorithm in
a situation motivated by public projects evaluation. For comparison, recall that Example 1 shows a
recent, real situation in a financial environment with crisp data.

4.1. The Structure of Intertemporal Fuzzy Soft Sets

Molodtsov’s notion of parameterized descriptions of the universe has already been combined
with features that do not pertain to the original formulation of soft sets. Here, we propose a model
where for each of a possibly infinite number of periods, each attribute produces a possibly different
fuzzy parameterization of the universe.

The statement of the model is simple but powerful:

Definition 3. An intertemporal fuzzy soft set (ItFSS) over U is a sequence F = {(Fi, A)}i∈N of fuzzy soft sets
over the common universe U.

In Section 4.2, we specify two alternative formulations of this definition, that are amenable for
calculations with computers.

The basic idea is that the fuzzy parameterization of the universe is allowed to vary with time.
According to this model, a fixed set of attributes is given, and then for each period i a parameterized
description of the common universe produces a fuzzy soft set (Fi, A) which accounts for the situation
at that period. To emphasize differences, on occasions, we refer to these standard FSSs as static FSSs.

Remark 1. When the sequence in Definition 3 is constant (in other words, we use {(Fi, A)}i∈N with Fi = F
for each i), then we identify the ItFSS with a standard FSS. Therefore, our model of ItFSSs is a natural extension
of FSSs in Definition 2.

Henceforth, we assume that the common attributes in A are all positive (otherwise, we can
proceed as in [80] to convert the input into this format). Therefore, the higher is the membership
degree, the better. The decision problem that arises consists of determining an optimal alternative
from the list U. We propose a flexible solution in Section 5.

The next motivating example illustrates the structure of our model above. Observe that in this
simplified statement it is possible to display the information pertaining to an intertemporal fuzzy soft
set in one table, even though it concerns an infinite number of periods:

Example 4. A civil project (e.g., building a bridge or a dam) will have a long-term impact on the population of a
certain geographical area. There are two targets that should be achieved: environmental effects (e1) and economic
development (e2). Let A = {e1, e2}. There are two possible projects, namely, p1 and p2. Their respective yearly
effects are captured by the ItFSS G = {(Gi, A)}i∈N over U shown in Table 6, where U = {p1, p2}.

It is not difficult to check that, in every period i, the positive effects of p1 exceed the effects of p2 at any of
the two target attributes:

0.3 +
1

i + 1
> 0.2 +

1
i + 2

for each i

0.4 +
1

i + 1
> 0.3 +

1
i + 2

for each i

Therefore, project p1 should be selected.
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Table 6. A tabular representation of the intertemporal fuzzy soft set G = {(Gi, A)}i∈N in Example 4.

(Gi, A) e1 e2

p1 0.3 + 1
i+1 0.4 + 1

i+1
p2 0.2 + 1

i+2 0.3 + 1
i+2

The streamlined Example above is very simple for two reasons. Firstly, even though there are an
infinite number of different FSSs for the infinite periods, the ItFSS can be represented by one parametric
table, which is often not the case. Secondly, we do not need to use the theoretical contribution of
Section 5 because the decision about which project should be selected is trivial: there is a sort of
domination of the first project over the second in all attributes and for all periods that makes the
decision obvious. Now, we proceed to give a different example where the modelling power of ItFSSs is
more apparent. We can also infer the need for a formal analysis of decision making in that context,
hence the next example motivates Section 5.

Example 5. A new regulation will have long-term effects on the population of a country. There are three
groups that are potentially affected in terms of satisfaction: students (e1), working class (e2) and retired
people (e3). There are two possibilities, namely, passing the law (p1) and retaining the current regulation (p2).
Their respective yearly effects on the satisfaction across groups are captured by Table 7, which embodies an ItFSS
F = {(Fi, A)}i∈N over U = {p1, p2} where A = {e1, e2, e3}.

We read, for example, that in year 1 the students’ degree of membership to being satisfied with the new
regulation is 0.3, and it is 0.2 under the current law. For the working class, the respective degrees of satisfaction
are 0.4 and 0.6. For retired people, the respective degrees of satisfaction are 0.7 and 0.8.

From the third year onwards, the students’ degree of membership to being satisfied with the new regulation
is 0.6, and it is 0.3 under the current law. For the working class, the respective degrees of satisfaction are 0.6 and
0.4. For retired people, the respective degrees of satisfaction are 0.8 and 0.6.

Table 7. Tabular representation of the intertemporal fuzzy soft set in Example 5.

(F1, A) e1 e2 e3

p1 0.3 0.4 0.7
p2 0.2 0.6 0.8

(F2, A) e1 e2 e3

p1 0.4 0.4 0.7
p2 0.3 0.5 0.7

(Fi, A) e1 e2 e3

p1 0.6 0.6 0.8
p2 0.3 0.4 0.6

∀i > 2

Example 5 shows the intrinsic difficulty of dealing with these problems. The snapshots at different
moments can vary substantially from each other, and of course they are not always as obvious as the
situation of Example 4. Additionally, the “attributes” can have different weights, for example because
they represent characteristics of groups with different proportions in the society.

For the purpose of favoring implementability, now we proceed to state an equivalent formulation
of our intertemporal model. It allows us to work with a tabular format that is amenable
for computations.
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4.2. An Alternative Representation of Intertemporal Fuzzy Soft Sets

In practical terms, when both U = {o1, . . . , om} and A = {e1, . . . , en} are finite, we can represent
the information that describes an ItFSS in a table where the cells are either finite or infinite sequences
of membership degrees. Table 8 gives the general form of such a representation.

Table 8. The tabular representation of our novel intertemporal model for fuzzy soft sets.

e1 e2 . . . en

o1 (u1
11, u2

11, . . . , ut
11, . . .) (u1

12, u2
12, . . . , ut

12, . . .) . . . (u1
1n, u2

1n, . . . , ut
1n, . . .)

...
om (u1

m1, u2
m1, . . . , ut

m1, . . .) (u1
m2, u2

m2, . . . , ut
m2, . . .) . . . (u1

mn, u2
mn, . . . , ut

mn, . . .)

Let us analyze this alternative description. To that purpose, the set of infinite sequences of
numbers from [0, 1] (or infinite utility streams [81–83]) is denoted by S . Our intertemporal model of
fuzzy soft sets over U can also be defined by F̄ : A −→ S(U) where S(U) represents the mappings
U −→ S . Consequently, for each attribute, we capture the degree of membership of any alternative in
each moment of time.

Indeed, in Table 8, we can define F̄(ej)(oi) = (u1
ij, u2

ij, . . . , ut
ij, . . .) ∈ S , hence ut

ij means the
degree of membership of alternative oi to the fuzzy set of elements that verify attribute ej in period t.
Conversely, every F̄ : A −→ S(U) produces a table with the structure of Table 8 under the finiteness
restriction for both A and U.

We can also swap between the tabular form and the notation of Definition 3.
From the aforementioned tabular representation of F̄ : A −→ S(U), we can define the corresponding

ItFSS over U as the sequence F = {(Fi, A)}i∈N where the tabular form of each FSS (Fi, A) is described
in Table 9.

Table 9. The tabular representation of the fuzzy soft set (Fi, A) corresponding to moment i in the ItFSS
F = {(Fi, A)}i∈N represented by Table 8.

e1 e2 . . . en

o1 ui
11 ui

12 . . . ui
1n

...
om ui

m1 ui
m2 . . . ui

mn

Conversely, an ItFSS given by the construction in Section 4.1 can be trivially transformed into the
tabular form presented in this subsection. We do this in Table 10 for the case of G in Example 4.

Table 10. The tabular representation of G = {(Gi, A)}i∈N in Example 4.

G e1 e2

p1 (0.3 + 1
2 , 0.3 + 1

3 , 0.3 + 1
4 , . . .) (0.4 + 1

2 , 0.4 + 1
3 , 0.4 + 1

4 , . . .)
p2 (0.2 + 1

3 , 0.2 + 1
4 , 0.2 + 1

5 , . . .) (0.3 + 1
3 , 0.3 + 1

4 , 0.3 + 1
5 , . . .)

5. Choices from Intertemporal Fuzzy Soft Sets

When it comes to prioritizing alternatives in the framework of intertemporal fuzzy soft sets, the
most natural course of action is to associate a FSS with our original ItFSS and then apply Algorithm 1
(or any other existing proposal, see Table 3) to the latter fuzzy soft set.
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To implement this solution, now we proceed to describe some procedures that from each ItFSS
produce a static or standard fuzzy soft set (cf., Section 5.1). Afterwards, we show how we can integrate
these procedures with decision making based on FSSs to design an intertemporal fuzzy soft set based
decision making procedure (cf., Section 5.2).

5.1. Static FSSs Associated with an Intertemporal FSS

In this subsection, we formalize some methods that associate a static FSS (Definition 2) with any
intertemporal FSS (Definition 3). We refer to these methods as reduction mechanisms.

The simplest reduction mechanisms act cell-by-cell on the tabular representation. For instance,
one can pinpoint the evaluation at a distinguished moment (e.g., the first period); or, in the case of
finite time horizon, their lowest or highest evaluation, their (either arithmetic or geometric) average,
etc. Under a genuine infinity of periods, we can use the natural modifications by infimum, supremum
or discounted sums for the same purpose.

Let us now formalize a few explicit reduction mechanisms. We fix F = {(Fi, A)}i∈N, an
intertemporal fuzzy soft set over U. We can obtain a reduced FSS associated with F by the application
of one of the following expressions:

1. The pessimistic FSS associated with F is (Fp, A) such that the fuzzy parameterization Fp : A −→
FS(U) verifies that for each a ∈ A, Fp(A) = inf{Fi(a) : i ∈ N}.

2. The optimistic FSS associated with F is (Fo, A) such that the fuzzy parameterization Fo : A −→
FS(U) verifies that for each a ∈ A, Fo(A) = sup{Fi(a) : i ∈ N}.

3. Let δ ∈ [0, 1) be a factor. The δ-discounted FSS associated with F is (Fδ, A), where the fuzzy
parameterization Fδ : A −→ FS(U) verifies that for each a ∈ A,

Fδ(A) =
1− δ

δ

∞

∑
i=1

δiFi(a). (2)

Observe that these definitions are correct: the only non-trivial case is justified in the following
auxiliary result.

Lemma 1. The δ-discounted FSS is well-defined, i.e., it is a FSS.

Proof. We just need to observe that, because each (Fi, A) is a FSS, ∑∞
i=1 δiFi(a) is bounded above by

∑∞
i=1 δi = δ

1−δ . Hence, ∑∞
i=1 δiFi(a) converges for each a ∈ A, and 1−δ

δ ∑∞
i=1 δiFi(a) 6 1. Obviously,

1−δ
δ ∑∞

i=1 δiFi(a) > 0.

The first two reduction mechanisms are symmetric, in the standard sense: when Fσ =

{(Fσ(i), A)}i∈N is the ItFSS derived from a permutation of the periods σ : N −→ N, one has Fp
σ = Fp

and Fo
σ = Fo. However, the δ-discounted reduction mechanism violates the symmetric treatment of the

periods, i.e., the statement Fδ
σ = Fδ is in general false in the aforementioned conditions.

However, the δ-discounted reduction mechanism has an important advantage over the pessimistic
and optimistic reduction mechanisms. The pessimistic and optimistic reduction mechanisms produce
a considerable loss of information because they discard the data about the degrees of membership that
are not minimal and maximal respectively, whereas the δ-discounted reduction mechanism uses all the
information available to produce the reduced FSS.

Our next remark insists on the importance of this mechanism in decision making.

Remark 2. The deduction of the δ-discounted FSS is motivated by a successful solution to the problem of
aggregating intergenerational utilities [81–83]. In Section 2.1, we explained that according to the popular DU
model [11,12,84], decision-makers evaluate the alternatives on the basis of the weighted addition of utilities,
these weights being discount factors based on temporal delays. In our benchmark case, these delays can extend
to infinity.
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Due to the aforementioned advantages, henceforth we adopt the δ-discounted reduction
mechanism as the standard mechanism for transforming an ItFSS into a FSS in practical problems.

5.2. Decision Making in Intertemporal FSSs

We are ready to put forward a procedure for ranking a finite list of alternatives when the
decision-making problem is characterized by an intertemporal FSS. It consists of three basic steps.

Put shortly, the algorithm suggests to reduce the ItFSS to a FSS (Step 1) and then order the
alternatives according to standard decision-making in this framework (Step 2). The ordering in the
reduced FSS carries forward in the ItFSS for which it is a natural representation (Step 3), which solves
our problem. The next subsection illustrates how this can be put into practice in a concrete example of
project appraisal.

5.3. An Example of Decision Making in the Framework of ItFSSs

In this section, we develop an example that serves two purposes. Firstly, we describe the structure
of the problem in a practical fashion that is different from the description in Section 4.2. Secondly, it
illustrates the application of Algorithm 2.

Algorithm 2 Algorithm for decision making

Inputs: An intertemporal table of fuzzy soft sets (in the notation of Table 8 or, otherwise, see Section 5.3).
A reduction mechanism (e.g., from Section 5.1). A fuzzy soft set decision making procedure (e.g., from
Table 3).

1: Apply the selected reduction mechanism to the ItFSS in order to obtain a (reduced) FSS.
2: Rank the alternatives in this FSS by the decision making procedure that we have singled out.
3: Any object that is at the top of the ranking in the previous step is an optimal choice of the

intertemporal statement of the problem.

Example 6. For the convenience of presentation, we are going to evaluate two alternative portfolios of projects
that a public administration may undertake. Portfolios 1 and 2 are parameterized in terms of four attributes
along an infinite number of periods, and each of these characteristics can also be regarded as a project on its own
(e.g. bike lanes, urban parks, sports facilities, and sewage treatment plants). The objective of this evaluation is to
choose the best alternative.

For each project, a value for its social suitability in each period is assigned. To simplify, we consider
projects whose utilities follow the following patterns: increasing and then constant; decreasing and then constant;
decreasing, then increasing and finally constant; and constant.

Tables 11 and 12, respectively, describe these two portfolios P1 and P2. At their bottoms they contain
additional values whose meaning we explain below.

These tables jointly define an ItFSS that we have displayed in Table 13, albeit in incomplete form due
to obvious restrictions: we cannot display the infinite digits that appear at each cell. According to Step 1 of
Algorithm 2, with this element we associate a standard FSS that we denote as (S, P), by the application of the
DU reduction mechanism with a 0.05 discount rate, hence δ = 1

1.05 ≈ 0.952381. The suitability of this rate
has been argued in Section 2.1. Let us denote T = 1−δ

δ = 0.05. The reduced fuzzy soft set (S, P) is displayed
in Table 14. The results of the computations that produce it already appear at the bottom of Tables 11 and 12,
and now we explain how we have obtained them (see Equation (2), and Remark 2 for inspiration). In the case of
Portfolio 1,

A1 = 13.085321 = 0.05δ + 0.10δ2 + 0.15δ3 + 0.20δ4 + . . .

A2 = 10.60642701 = 1δ + 0.95δ2 + 0.90δ3 + 0.85δ4 + . . .

A3 = 14 = 0.70δ + 0.70δ2 + 0.70δ3 + 0.70δ4 + . . .

A4 = 18.3258941 = 0.05δ + 0.10δ2 + 0.15δ3 + 0.20δ4 + . . . + 0.70δ9 + 0.75δ10 + . . .
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Therefore, in the reduced FSS (S, P), Equation (2) states that the degrees of membership for Portfolio 1 are
T ∗Ai. We proceed similarly to obtain the degrees of membership for Portfolio 2.

We now apply Algorithm 1 to the FSS (S, P). Table 15 gives the necessary computations.
From the last computation in Table 15, we conclude that the first portfolio should be selected.

Table 11. Portfolio 1.

Period Attribute 1 Attribute 2 Attribute 3 Attribute 4

1 0.05 1.00 0.70 1.00
2 0.10 0.95 0.70 0.95
3 0.15 0.90 0.70 0.90
4 0.20 0.85 0.70 0.85
5 0.25 0.80 0.70 0.80
6 0.30 0.75 0.70 0.75
7 0.35 0.70 0.70 0.70
8 0.40 0.65 0.70 0.65
9 0.45 0.60 0.70 0.70

10 0.50 0.55 0.70 0.75
11 0.55 0.50 0.70 0.80
12 0.60 0.45 0.70 0.85
13 0.65 0.40 0.70 0.90
14 0.70 0.35 0.70 0.95
15 0.75 0.35 0.70 1.00
16 0.80 0.35 0.70 1.00
17 0.85 0.35 0.70 1.00
18 0.90 0.35 0.70 1.00
19 0.95 0.35 0.70 1.00
20 1.00 0.35 0.70 1.00
21 1.00 0.35 0.70 1.00
22 1.00 0.35 0.70 1.00

23 and onwards 1.00 0.35 0.70 1.00

Ai 13.085321 10.60642701 14 18.3258941

Ai*T 0.65427 0.530321351 0.7 0.91629471
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Table 12. Portfolio 2.

Period Attribute 1 Attribute 2 Attribute 3 Attribute 4

1 0.00 1.00 0.60 1.00
2 0.10 0.94 0.60 0.90
3 0.20 0.88 0.60 0.80
4 0.30 0.82 0.60 0.70
5 0.40 0.76 0.60 0.60
6 0.50 0.70 0.60 0.50
7 0.60 0.64 0.60 0.40
8 0.70 0.58 0.60 0.30
9 0.80 0.52 0.60 0.40
10 0.90 0.52 0.60 0.50
11 1.00 0.52 0.60 0.60
12 1.00 0.52 0.60 0.70
13 1.00 0.52 0.60 0.80
14 1.00 0.52 0.60 0.90
15 1.00 0.52 0.60 1.00
16 1.00 0.52 0.60 1.00
17 1.00 0.52 0.60 1.00
18 1.00 0.52 0.60 1.00
19 1.00 0.52 0.60 1.00
20 1.00 0.52 0.60 1.00
21 1.00 0.52 0.60 1.00
22 1.00 0.52 0.60 1.00

23 and onwards 1.00 0.52 0.60 1.00

Ai 15.44 12.24 12.00 16.65

Ai*T 0.772173493 0.612207234 0.6 0.832589415

Table 13. A (necessarily incomplete) tabular representation of the intertemporal fuzzy soft set in
Example 6. Each cell actually contains an infinite sequence.

Attribute 1 Attribute 2 Attribute 3 Attribute 4

P1 (0.05, 0.10, 0.15, 0.20, 0.25, . . .) (1.00, 0.95, 0.90, 0.85, 0.80, . . .) (0.70, 0.70, 0.70, 0.70, . . .) (1.00, 0.95, 0.90, 0.85, 0.80, . . .)
P2 (0.00, 0.10, 0.20, 0.30, 0.40, . . .) (1.00, 0.94, 0.88, 0.82, 0, 76, . . .) (0.60, 0.60, 0.60, 0.60, . . .) (1.00, 0.90, 0.80, 0.70, 0.60, . . .)

Table 14. Tabular representation of the reduced fuzzy soft set (S, P) in Example 6.

Attribute 1 Attribute 2 Attribute 3 Attribute 4

P1 0.65 0.53 0.70 0.92
P2 0.77 0.61 0.60 0.83

Table 15. Computing the Comparison table and scores of the reduced fuzzy soft set (S, P) through
Algorithm 1.

Attribute 1 Attribute 2 Attribute 3 Attribute 4

Diff. memberships P1 vs. P2 −0.12 −0.08 0.10 0.08
Diff. memberships P2 vs. P1 0.12 0.08 −0.10 −0.08

Mj 0.77 0.61 0.70 0.92

P1 P2

P1 0 0.29
P2 0.23 0

Row-Sum (Ri) Column-Sum (Ti) Score (Si)

P1 0.29 0.23 0.06
P2 0.23 0.29 −0.06
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6. Discussion and Concluding Remarks

We have designed a pioneering framework for making choices in soft computing models. For the
first time in this broad area, we have considered the situation where the consequences of a decision
extend along an unlimited number of periods, such as a financial investment or a social project. Existing
models universally refer to a finite framework, hence they are incapable of dealing with these practical
issues. We have set the grounds for a correct extension to this critical aspect of decision making.

In this paper, our reference model for uncertainty has been fuzzy soft sets, which allows for
fuzzy parameterized description of the alternatives in terms of a list of attributes. We have opted for
working with this environment because fuzzy soft sets are especially amenable for decision making,
with plenty of interesting approaches in the literature. Future research should expand the scope of the
intertemporal analysis that we have founded to other frameworks such as incomplete fuzzy soft sets,
rough sets, hesitant fuzzy sets, or hesitant fuzzy soft sets among many others. Whatever the selected
format for the input data, when choices extend along an infinite number of periods, the fundamental
roadmap for making decisions has been established in this paper.

Obviously, it may also be possible to approach the exact problem that we have described in this
paper by alternative methodologies to improve the performance of our proposal, or make it more
faithfully adapted to the circumstances of the problem under inspection.

Overall, we believe that the intertemporal modelization may become a thriving area of research
in the extended theories of fuzziness, vagueness and uncertainty.
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