
sensors

Article

Benchmarking Particle Filter Algorithms for Efficient
Velodyne-Based Vehicle Localization

Jose Luis Blanco-Claraco 1 , Francisco Mañas-Alvarez 2 , Jose Luis Torres-Moreno 1,* ,
Francisco Rodriguez 2 and Antonio Gimenez-Fernandez 1

1 Engineering Department, University of Almería, 04120 Almería, Spain
2 Computer Science Department, University of Almería, 04120 Almería, Spain
* Correspondence: jltmoreno@ual.es; Tel.: +34-950-214-232

Received: 7 May 2019; Accepted: 14 July 2019; Published: 17 July 2019
����������
�������

Abstract: Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle
navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal
sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that
is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured
by these sensors, we perform a systematic statistical analysis of how many points are actually required
to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from
adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter
settings required to ensure convergence. Our findings include that a decimation factor between 100 and
200 on incoming point clouds provides a large savings in computational cost with a negligible loss in
localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m2 is required
to achieve 100% convergence success for large-scale (∼100,000 m2), outdoor global localization without
any additional hint from GPS or magnetic field sensors. All implementations have been released as
open-source software.

Keywords: global positioning system; mobile robots; simultaneous localization and mapping;
particle filter; district

1. Introduction

Autonomous vehicles require a robust and efficient localization system capable of fusing all available
information from different sensors and data sources, such as metric maps or GIS databases. Metric maps can
be automatically built by means of Simultaneous Localization and Mapping (SLAM) methods onboard the
vehicle or retrieved from an external entity in charge of the critical task of map building. At present, some
companies already have plans to prepare and serve such map databases suitable for autonomous vehicle
navigation, e.g., Mapper.AI or Mitsubishi’s Mobile Mapping System (MMS). However, at present, most
research groups build their own maps by means of SLAM methods or, alternatively, using precise real-time
kinematic (RTK)-grade global navigation satellite system (GNSS) solutions. For benchmarking purposes,
researchers have access to multiple public datasets including several sensor types in urban environments [1–3].

In the present work, we address the suitability of particle filter (PF) algorithms to localize a
vehicle, equipped with a 3D LiDAR (Velodyne VLP-16, Velodyne Lidar, San Jose, CA, USA),within a
previously-built reference metric map. An accurate navigation solution from Novatel (SPAN IGN INS,
Novatel, Calgary, AB, Canada) is used for RTK-grade centimeter localization, whose purpose is twofold:

Sensors 2019, 19, 3155; doi:10.3390/s19143155 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9745-285X
https://orcid.org/0000-0003-2878-3011
https://orcid.org/0000-0002-0147-9231
https://orcid.org/0000-0001-9536-1922
https://orcid.org/0000-0001-5167-605X
http://dx.doi.org/10.3390/s19143155
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/14/3155?type=check_update&version=2

Sensors 2019, 19, 3155 2 of 19

(i) to help build the reference global map of the environment without the need to apply any particular
SLAM algorithm (see Figure 1), and (ii) to provide a ground-truth positioning to which the output of the
PF-based localization can be compared in a quantitative way.

Figure 1. Overview of the ground-truth 3D map used in the benchmarks, representing ∼100,000 m2 of the
campus of the University of Almeria, points colorized by height.

The main contribution of this work is twofold: (a) providing a systematic and quantitative evaluation
of the trade-off between how many raw points from a 3D-LiDAR must be actually used in a PF, and the
attainable localization quality; and (b) benchmarking the particle density that is required to bootstrap
localization, i.e., the “global relocalization” problem. For the sake of reproducibility, the datasets used in
this work have been released online (refer to Appendix A).

The rest of this paper is structured as follows. Section 2 provides an overview of related works in the
literature, as well as some basic mathematical background on the employed PF algorithms. Then, Section 3
proposes an observation model for Velodyne scans, applicable to raw point clouds. Next, Section 4
provides mathematical grounds of how a decimation in the input raw LiDAR scan can be understood as
an approximation to the underlying likelihood function, and it is experimentally verified with numerical
simulations. The experimental setup is discussed in Section 5. Next, the results of the benchmarks are
presented in Section 6 and we end with some brief conclusions in Section 7.

2. Background

This section provides the required background to put the present proposal in context. We first
review related works in Section 2.1, and next, Section 2.2 provides further details on the relevant particle
filtering algorithms.

2.1. Related Works

As has been known by the mobile robotics community for more than a decade, SLAM is arguably more
efficiently addressed by means of optimizing large sparse graphs of observations (some representative
works are [4–7]) rather than by means of PF methods. The latter remain being advantageous only for
observation-map pairs whose observation model is neither unimodal nor easy to evaluate in closed form,
e.g., raw 2D range scans and occupancy grid maps.

Sensors 2019, 19, 3155 3 of 19

On the other hand, localization on a prebuilt map continues to be a field where PFs find widespread
acceptance, although there are few works in the literature where PFs are applied to the problem of 3D laser
range finder (LRF)-based localization of vehicles, with many works favoring the extraction of features
instead of using the raw sensor data. For example, in [8], the authors propose extracting a subset of features
(subsets of the raw point cloud) from Velodyne (HDL-32E) scans, which are then matched using an iterative
closest point algorithm (ICP) against a prebuilt map. Typical positioning errors obtained with this method
fall in the order of one meter. Plane features are also extracted by Moosmann and Stiller in [9] from
Velodyne (HDL-64E) scans to achieve a robust SLAM method. Interestingly, this work proposes randomly
decimating (sampling) the number of features such that a maximum of 1000 planes are extracted per
scan, although no further details are given regarding the optimality of this choice. Dubé et al. proposed a
localization framework in [10] where features are first extracted from raw 3D LiDAR scans and a descriptor
is computed for them. This approach has the advantage of a more compact representation of large/scale
maps, enabling global re-localization faster than with particle filters, although their computational cost is
higher due to the need to segment point clouds, compute descriptors, and evaluate the matching between
them. As shown in our experimental results, particle filters with decimated 3D LiDAR scans can track a
vehicle pose in ∼10 ms, whereas [10] takes ∼800 ms.

Among the previous proposals to use PFs in vehicle localization and SLAM, we find [11], where a
PF is used for localizing a vehicle using a reflectance map of the ground and an associated observation
likelihood model. A modified PF weight-update algorithm is presented in [12] for precise localization
within lanes by fusing information from visual lane-marking and GPS. Their method is able to handle
probability density functions that mix uniform and Gaussian distributions; such a flexibility would be
also applicable to the optimal-sampling method [13] used in the present work, which is explained in
Section 2.2. The integration of the localization techniques into vehicle systems’ architecture demands more
computationally efficient techniques [14,15]. When high level tasks are demanded, as cooperative driving,
real-time performance is critical [16]. Rao-Blackwellized particle filters (RBPF) have been proposed for
Velodyne-based SLAM in [17], using a pre-processing stage where vertical objects are detected in the raw
scans such that RBPF-SLAM can be fed with a reduced number of discrete features. The flexibility of
observation models in particle filters is exploited there to fuse information from two different metric maps
simultaneously: a grid-map and the above-mentioned feature map. As can be seen, PF based methods
still remain popular in SLAM. Nowadays, much research in this field focus on reducing their algorithms’
computational cost. Thus, in [18], a map-sharing strategy is proposed in which the particles only have
a small map of the nearby environment. In [19], the Rao-Blackwellized particle filter is executed online
by using Hilbert maps. Other fields of interest are the cooperative use of particle filters for multi-robot
systems [20] and the development of more efficient techniques for the integration of Velodyne sensors [21].

2.2. Particle Filter Algorithms

Particle filtering is a popular name for a family of sequential Bayesian filtering methods based on
importance sampling [22]. Most commonly, PF in the mobile robot community is used as a synonymous
for the Sequential Importance Sampling (SIS) with resampling (SIR) method, which is a modification of
the Sequential Importance Sampling (SIS) filter to cope with particle depletion by means of an optional
resampling step [23].

If we let xt denote the vehicle pose for time step t, the posterior distribution of the vehicle pose can be
computed sequentially by (the full derivation can be found elsewhere [24]):

p(xt|zt, ut) ∝

Observation likelihood︷ ︸︸ ︷
p(zt|xt, ut)

Prior︷ ︸︸ ︷
p(xt|zt−1, ut), (1)

Sensors 2019, 19, 3155 4 of 19

where zt and ut represent the sequences of robot observations and actions, respectively, for all past
timesteps up to t. The posterior is approximated by means of a discrete set of i = 1, . . . , N weighted
samples x[i]t (called particles) that represent hypotheses ofthe current vehicle pose. To propagate particles
from one timestep to the next, a particular proposal distribution q(xt|xt−1,[i], zt, ut) must be used, then the
weights are updated accordingly by:

ω
[i]
t ∝ ω

[i]
t−1

p(zt|xt, xt−1,[i], zt−1, ut)p(xt|x[i]t−1, ut)

q(xt|xt−1,[i], zt, ut)
. (2)

Most works in robot and vehicle localization assume that q(·) is the robot motion model p(xt|x[i]t−1, ut)

for convenience, since, in that case, Equation (2) simplifies to just evaluating the sensor observation
likelihood function p(zt|xt, · · ·). Following [13], we will refer to this choice as the “standard proposal”
function. Despite its widespread use, it is far from the optimal proposal distribution [25], which by
design minimizes the variance of particle weights, i.e., it maximizes the representativity of particles as
samples of the actual distribution being estimated. Unfortunately, the optimal solution does not have a
closed-form solution in many practical problems, hence our former proposal of a rejection sampling-based
approximation to the optimal PF algorithm in [13]. In the present work, we will evaluate both PF
algorithms, the “standard” (SIR with q(·) the motion model from vehicle odometry) and the “optimal”
proposal distributions (as described in [13]), applied to the problem of vehicle localization. It is worth
highlighting that the latter method is based on the general formulation of a PF, avoiding the need to
perform scan matching (ICP) between point clouds and hence preventing potential localization failures in
highly dynamic scenarios or in feature-less areas, where information from other sensors (e.g., odometry) is
seamlessly fused in the filter leading to a robust localization system.

Our implementation of both PF algorithms features dynamic sample size, using the technique
introduced in the seminar work [26], to adapt the computation cost to the actual needs depending on how
much uncertainty exists at each timestep.

3. Map and Sensor Model

A component required by both benchmarked algorithms is the pointwise evaluation of the sensor
likelihood function p(zt|xt, m), hence we need to propose one for Velodyne 360◦ scans (zt) when the robot
is at pose x ∈ SE(3) along a trajectory x(t) given a prebuilt map m.

Regarding the metric map m, we will assume that it is represented as a 3D point cloud. We employed
a Novatel’s inertial RTK-grade GNSS solution to build the maps for benchmarking and also to obtain
the ground-truth vehicle path to evaluate the PF output. This solution provides us with accurate WGS84
geodetic coordinates, as well as heading, pitch and roll attitude angles. Using an arbitrary nearby geodetic
coordinate as a reference point, coordinates are then converted to a local ENU (East-North-Up) Cartesian
frame of reference. Time interpolation of x(t) is used to estimate the ground-truth path of the Velodyne
scanner and the orientation of each laser LED as they rotate to scan the environment; this is known as
de-skewing [9] and becomes increasingly important as vehicle dynamics become faster. From each
such interpolated pose, we compute the local Euclidean coordinates of the point corresponding to each
laser-measured range, then project it from the interpolated sensor pose in global coordinates. Repeating
this for each measured range over the entire data set leads to the generation of the global point cloud of
the campus employed as ground-truth map in this work.

Once a global map is built for reference, we evaluate the likelihood function p(zt|xt, m) as depicted
in Algorithm 1. First, it is worth mentioning the need to work with log-likelihood values when working
with a particle filter to extend the valid range of likelihood values that can be represented within machine

Sensors 2019, 19, 3155 5 of 19

precision. The inputs of the observation likelihood (line 1) are the robot pose x(t), a decimation parameter,
the list of all N points pi

l in local coordinates with respect to the scanner, the reference map as a point
cloud, a scaling σ value that determines how sharp the likelihood function is, and a smoothing parameter
dmax that prevent underflowing. Put in words, from a decimated list of points, each point is first projected
to the map coordinate frame (line 6), and the nearest neighbor is searched for within all map points using
a K-Dimensional tree (KD-tree) (line 7). Next, the distance between each such local point and its candidate
match in the global map is clipped to a maximum dmax and the squared distances accumulated into d2.
Finally, the log likelihood is simply −d2/σ2, which implies that we are assuming a truncated (via d_max)
Gaussian error model as a likelihood function. Obviously, the decimation parameter linearly scales the
computational cost of the method: larger decimation values provide faster computation speed at the price
of discarding potentially valuable information. A quantitative experimental determination of an optimal
value for this decimation is presented later on.

Algorithm 1 Observation likelihood.

Input: x, decim, {pi
l}

i=N
i=1 , map, σ, dmax

Output: loglik

1: begin
2: loglik← 0
3: d2 ← 0
4: foreach i in 1:decim:N
5: pi

g ← x⊕ pi
l

6: pi
map closest ←map.kdtree.query(pi

g)
7: d2 ← d2 + min{d2

max, ||pi
g − pi

map closest||
2}

8: end
9: loglik←−d2/σ2

10: return loglik
11: end

It is noteworthy that the proposed likelihood model in Algorithm 1 can be shown to be
equivalent to a particular kind of robustified least-square kernel function in the framework of
M-estimation [27]. In particular, our cost function is equivalent to the so-called truncated least
squares [28,29], or trimmed-mean M-estimator [30,31].

With x ∈ SE(3) the vehicle pose to be estimated, a least-squares formulation to find the optimal pose
x? that minimizes the total square error between N observed points and their closest correspondences in
the map reads:

x? = arg min
x

N

∑
i=1

c2
i (x), (3)

with: ci(x) =
∣∣∣∣∣∣(x⊕ pi

l

)
− pi

map closest

∣∣∣∣∣∣ . (4)

However, this naive application of least-squares suffers from a lack of robustness against outliers: it is
well known that a single outlier ruins a least-squares estimator [30]. Therefore, robust M-estimators are
preferred, where Equation (3) is replaced by:

x? = arg min
x

N

∑
i=1

f (ci(x)) (5)

Sensors 2019, 19, 3155 6 of 19

with some robust kernel function f (c). Regular least-squares correspond to the choice f (c) = c2,
while other popular robust cost functions are the Huber loss function [27] or the truncated
least-squares function:

f (c) =

{
c2 |c| < θ,
θ2 |c| ≥ θ,

(6)

which is illustrated in Figure 2. The parameter θ establishes a threshold for what should be considered an
outlier. The insight behind M-estimators is that, by reducing the error assigned to outliers in comparison
to a pure least-squares formulation, the optimizer will tend to ignore them and “focus” on minimizing the
error of inliers instead that is of those observed points that actually do correspond to map points.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

c

0

0.5

1

1.5

2

2.5

3

3.5

4
f(c)

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

c

0

0.5

1

1.5

2

2.5

3

3.5

4
f(c)

(b)

Figure 2. The cost function for regular least squares (a) and for truncated least squares (b) with θ = 1.
The latter significantly reduces the associated cost of outliers, thus removing their contribution to the actual
cost function to be optimized.

Furthermore, this robust least-squares formulation can be shown to be exactly equivalent to an
maximum a posteriori (MAP) probabilistic estimator if observations are assumed to be corrupted with
additive Gaussian noise. To prove this, we start from the formulation of a MAP estimator:

x? = arg max
x

p(z|x) = arg max
x

log(p(z|x)), (7)

where, for simplicity of notation, we used z = {z1, . . . , zN} and x to refer to the set of N observed points
and the vehicle pose for an arbitrary time step of interest, and we took logarithms (a monotonic function
that does not change the found optimal value) for convenience in further derivations. Assuming the
following generative model for observations:

zi ∼ m̄i +N (0, Σi), (8)

m̄i = pi
map 	 x, (9)

Σi = diag(σ2, σ2, σ2), (10)

Sensors 2019, 19, 3155 7 of 19

where p	 x means the local coordinates of point p as seen from the frame of reference x, N (m, Σ) is the
multivariate Gaussian distribution with mean m and variance Σ, and σ is the standard deviation of the
assumed additive Gaussian error in measured points. Then, replacing Equation (8) into Equation (7), using
the known exponential formula for the Gaussian distribution, we find:

x? = arg max
x
{log(p(z|x))} (11)

= arg max
x

{
log

(
N

∏
i=1

p(zi|x)
)}

(Statistical independence of N observations) (12)

= arg max
x

N

∑
i=1
{log (p(zi|x))} (13)

= arg max
x

N

∑
i=1

log
((

(2π)3|Σ|
)−1/2

exp
(
−1

2
(zi − m̄i)>Σ(zi − m̄i)

))
(14)

= arg max
x

N

∑
i=1�����������

log
((

(2π)3|Σ|
)−1/2

)
︸ ︷︷ ︸

Does not depend on x

+��log
(
��exp

(
−1

2
(zi − m̄i)>Σ(zi − m̄i)

))
(15)

= arg max
x

N

∑
i=1
−1

2
(zi − m̄i)>Σ(zi − m̄i) (16)

= arg min
x

N

∑
i=1 �

��1
2︸︷︷︸

Constant

(zi − m̄i)>Σ(zi − m̄i) (17)

= arg min
x

N

∑
i=1

∣∣∣∣∣∣∣∣ zi − m̄i

σ

∣∣∣∣∣∣∣∣2 (Since Σ is diagonal). (18)

Identifying the last line above with Equation (3), it is clear that the MAP statistical estimator is

identical to a least squares problem with error terms ci = zi−m̄i

σ . By using a truncated Gaussian in
Equation (8), i.e., by modeling outliers as having a uniform probability density, one can also show that the
corresponding MAP estimator becomes the robust least-squares problem in Equation (5).

Therefore, the proposed observation likelihood function in Algorithm 1 enables an estimator to
find the most likely pose of a vehicle while being robust to outlier observations, for example, from
dynamic obstacles.

4. Justification of Decimation as an Approximation to the Likelihood Function

A key feature of the proposed likelihood model in Algorithm 1, and which is being benchmarked
in this work, is the decimation ratio, that is, how many points from each observed scan are actually
considered, with the rest being plainly ignored.

The intuition behind this simple approach is that information in point clouds is highly redundant,
such that, by using only a fraction of the points, one could save a significant computational cost while still
achieving good vehicle localization. From the statistical point of view, justifying the decimation is only
possible if the resulting likelihood functions (which in turn are probability density functions, p.d.f.) are

Sensors 2019, 19, 3155 8 of 19

still similar. From Equations (11)–(18) above, solving the decimated problem is finding optimal pose x̂? to
the approximated p.d.f. with decimation ratio D:

x̂? = arg min
x ∑

i=1,D,2D,...

∣∣∣∣∣∣∣∣ zi − m̄i

σ

∣∣∣∣∣∣∣∣2 . (19)

Numerically, the decimated and the original p.d.f. are clearly not identical, but this is not an issue
for we are mostly interested in the location of the global optimum and the shape of the cost function
in its neighborhood. The sum of convex functions is convex. In our case, we have truncated square
cost functions (recall Figure 2b), but the overall p.d.f. will still be convex near the true vehicle pose.
Note that, since associations between observed and map points are determined based solely on pairwise
nearness, in practice, the observation likelihood is not convex when evaluated far from the real vehicle
pose. However, this fact can be exploited by the particular kind of estimator used in this work (particle
filters) to obtain multi-modal pose estimations, where localization hypotheses are spread among several
candidate “spots”—for example, during global relocalization, as will be shown experimentally.

As a motivational example, we propose measuring the similarity between the decimated p̂(z|xi)

and the original p.d.f. p(z|xi) using the Kullback–Leibler divergence (KLD) [32] using the following
experimental procedure. Given a portion of the reference point cloud map, and a scan observation from a
Velodyne VLP-16, we have numerically evaluated both the original and the decimated likelihood function
in the neighborhood of the known ground-truth solution for the vehicle pose. In particular, we evaluated
the functions in a 6D grid (since SE(3) poses have six degrees of freedom) within an area of ±3 m for
translation in (x, y, z), ±7.5◦ for yaw (azimuth), and ±3◦ for pitch and roll, with spatial and angular
resolutions of 0.15 m and 5◦, respectively. For such discretized model of likelihood functions, we applied
the discrete version of KLD that is:

KLD(p|| p̂) = −∑
i

p(z|xi) log
p̂(z|xi)

p(z|xi)
, (20)

which has been summed for the 3.1× 106 grid cells around the ground truth pose, for a set of decimation
ratio values. The result KLD is shown in Figure 3, and some example planar slices of the corresponding
likelihood functions are illustrated in Figure 4. Decimated versions are clearly quite similar to the original
one up to decimation ratios of roughly ∼500, which closely coincides with statistical localization errors
presented later on in Section 6.

200 400 600 800 1000 1200 1400 1600 1800 2000

Decimation

2

4

6

8

10

12

14

K
L

D
(p

|q
)

Figure 3. Kullback–Leibler divergence (KLD) between the original and decimated version of the proposed
likelihood model for point cloud observations. Note that the decimated versions are remarkably similar to
the original one up to decimation ratios of roughly ∼500.

Sensors 2019, 19, 3155 9 of 19

p(z|x) for decimation of 1

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

p(z|x) for decimation of 1

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

(a)

p(z|x) for decimation of 100

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

p(z|x) for decimation of 100

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

1

2

3

4

5

6

7
10

-3

(b)

p(z|x) for decimation of 300

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

p(z|x) for decimation of 300

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

(c)

p(z|x) for decimation of 1000

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

p(z|x) for decimation of 1000

-3 -2 -1 0 1 2 3

y [m]

-3

-2

-1

0

1

2

3

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

(d)

Figure 4. Some planar slices of 6D likelihood functions evaluated for different decimation ratios, as both an
intensity color plot and a contour diagram. Ground-truth vehicle pose is marked as a large block dot in
all the figures. (a) Original p.d.f. p(z|x); (b) Approximate p̂(z|x) for D = 100; (c) Approximate p̂(z|x) for
D = 300; (d) Approximate p̂(z|x) for D = 1000.

5. Experimental Platform

In order to perform the experimental test of this work, a customized urban electric vehicle has
been used (Figure 5). Among the sensors and actuators that have been installed in the vehicle are
a steering-by-wire system, which comprises a DC motor (Maxon RE50, Maxon Motor AG, Sachseln,
Switzerland, diameter 50 mm, graphite brushes and 200 Watts) coupled to the conventional steering
mechanism, commanded by a Pulse width modulation (PWM) signal and two encoders to close the control
loop. The main feedback sensor is an incremental encoder HEDL5540 with a resolution of 500 pulses per
revolution, and a redundant angle measurement is performed by an absolute encoder EMS22A with 10 bits
of resolution. Another couple of encoders are mounted in the rear wheels to serve as odometry. Finally,
the prototype is equipped with a Novatel SPAN ING GNSS solution and a Velodyne VLP-16 3D LiDAR.
More details about both mechanical characteristics and sensors placement are provided in Appendix A.

Figure 5. The autonomous vehicle prototype employed in this work.

Sensors 2019, 19, 3155 10 of 19

The software architecture runs on top of a PC (64 bit Ubuntu GNU/Linux) and under Robotics
Operative System (ROS) [33] (version Kinetic), with additional applications from the Mobile Robot
Programming Toolkit (MRPT) (https://www.mrpt.org/), version 1.9.9.

We provide open-source C++ implementations for all the modules employed in this work.
Sensor acquisition for Novatel GNSS and Velodyne scanners were implemented as C++ classes in
the MRPT project. We also plan to release ROS wrappers in the repository mrpt_sensors (https:
//github.com/mrpt-ros-pkg/mrpt_sensors). Our implementation supports programmatically changing
all Velodyne parameters (e.g., rpm), reading in dual range mode, etc. Odometry and low-level control are
implemented in an independent (https://github.com/ual-arm-ros-pkg/ual-ecar-ros-pkg) ROS repository.
Particle filter algorithms are also part of the MRPT libraries and have ROS wrappers in mrpt_navigation
(https://github.com/mrpt-ros-pkg/mrpt_navigation).

6. Results and Discussion

Next, we discuss the results for each individual experiment and benchmark. All experiments ran
within a single-thread on an Intel i5-4590 CPU, (Intel Corporation, Santa Clara, CA, USA) @ 3.30 GHz.
Due to the stochastic nature of PF algorithms, statistical results are presented for all benchmarks, which
have been evaluated a number of times feeding the pseudorandom number generators with different seeds.

6.1. Mapping

We acquired a dataset in the UAL campus (see Figure 6) with the purpose of serving to build a
reference metric map and also to benchmark PF-based localization algorithms. As described in former
sections, we used centimeter-accurate GPS positioning and Novatel SPAN INS attitude estimation for
orientation angles. Poses were recorded at 20 Hz along the path shown in Figure 6b. Since time has been
represented in the vertical axis, it is easy to see how the vehicle was driven through the same areas several
times during the dataset. In particular, we manually selected a first fragment of this dataset to generate a
metric map (segment A–B in Figure 6b), then a second non-overlapping fragment (segment C–D) to test
the localization algorithms as discussed in the following. The global map obtained for the entire dataset is
depicted in Figure 6a, whereas the corresponding ground-truth path can be seen in Figure 7.

(a)

Figure 6. Cont.

https://www.mrpt.org/
https://github.com/mrpt-ros-pkg/mrpt_sensors
https://github.com/mrpt-ros-pkg/mrpt_sensors
https://github.com/ual-arm-ros-pkg/ual-ecar-ros-pkg
https://github.com/mrpt-ros-pkg/mrpt_navigation

Sensors 2019, 19, 3155 11 of 19

(b)

Figure 6. Bird-eye view of (a) the ground-truth map used in the benchmark, along with (b) a corresponding
satellite image of the UAL campus.

0

-400

1000

ti
m

e
 (

s
)

2000

-300

-200

Ground truth path

x (m)

-100

1000
0

y (m)

100 -100
-200

200 -300

A

C

B
D

Figure 7. The whole ground-truth path of the presented dataset, with time used as vertical axis to help
identifying the loops. Please compare with Figure 6 for reference.

6.2. Relocalization, Part 1: Aided by Poor-Signal GPS

Global localization, the “awakening problem” or “relocalization” are all names of specific instances of
the localization problem: those in which uncertainty is orders of magnitude larger than during regular
operation. Depending on the case and available sensors, uncertainty may span a few square meters within
one room, or an entire city-scale area. Since our work addresses localization in outdoor environments,
we will assume that a consumer-grade, low-cost GPS device is available during the initialization of the
localization system. To benchmark such a situation, we initialize the PF with different number of particles
(ranging from 20 to 4000) spread over an area of 30× 30 m2 that includesthe actual vehicle pose. No clue is
given for orientation (despite the fact that it might be easy to obtain from low-cost magnetic sensors) and
no GPS measurements are used in subsequent steps of the PF, whose only inputs are Velodyne scans and

Sensors 2019, 19, 3155 12 of 19

odometry readings. The size of this area has been chosen to cover a typical worst-case GPS positioning
data with poor precision, that is, with a large dilution of precision (DOP). Such a situation is typically
found in areas where direct sight of satellites is blocked by obstacles (e.g., trees, buildings). Refer to [34]
for an experimental measurement of such GPS positioning errors.

Notice that the particle density is small even for the largest case (N = 4000, density is
4000/900 ≈ 4.4 particles/m2), but the choice of the optimal-sampling PF algorithm makes it possible
to successfully converge to the correct vehicle pose within a few timesteps.

We investigated what is the minimum particle density required to ensure a high probability of
converging to the correct pose, since oversizing might lead to excessive delays while the system waits for
convergence. Relocalization success was assessed by running a PF during 100 timesteps and checking
whether (i) the average particle pose is close to the actual (known) ground truth solution (closer than
two meters), and (ii) the determinant of the covariance fitting all particles is below a threshold (|Σ| < 2).
Together, these conditions are a robust indicator of whether convergence was successful. The experiment
was run 100 times for each initial population size N, using a point cloud decimation of 100, and automatic
sample size was in effect in the second and subsequent time steps. The success ratio results can be seen
in Figure 8a, and demonstrate that the optimal-sampling PF requires, in our dataset, a minimum of
4000 particles (4.4 particles/m2) to ensure convergence. Obviously, the computational cost grows with
N as Figure 8b shows, hence the interest in finding the minimum feasible population size. Note that
the computational cost is not linear with N due to the complex evolution of the actual population size
during subsequent timesteps. Normalized statistics regarding number of initial particles per area are
also provided in Table 1, where it becomes clear that an initial density of ∼2 particles/m2 seems to be the
minimum required to ensure convergence for the proposed model of observation likelihood.

20 50 100 200 500 1000 2000 4000

Initial particle count

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
ti
o

 (
%

)

(a)

20 50 100 200 500 1000 2000 4000

Initial particle count

0

20

40

60

80

100

A
v
r.

 e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

(b)

Figure 8. Statistical results for the relocalization benchmark. Refer to Section 6.2 in the text for further
details. (a) Success ratio of relocalization; (b) Computation cost.

6.3. Relocalization, Part 2: LiDAR Only

Next, we analyze the performance of the particle filter algorithm to localize, from scratch, our vehicle
without any previous hint about its approximate pose within the map of the entire campus.

For that, we draw N random particles following a uniform distribution (in x, y, and also in the vehicle
azimuth φ) as the initial distribution, with different values of N, and after 100 time steps, we detect
whether the filter has converged to a single spot, and whether the average estimated pose is actually close
to the ground truth pose. The experiment has been repeated 150 times for each initial particle count N.
The area where particles are initialized has a size of 420× 320 m2 = 134, 400 m2. Notice that the dynamic
sample size algorithm ensures that computational cost quickly decreases as the filter converges, hence
the higher computational cost associated with a larger number of particles only affects the first iterations
(typically, less than 10 iterations).

Sensors 2019, 19, 3155 13 of 19

Table 1. Statistical results for the relocalization benchmark with an initial uncertainty area of 30× 30 m2.
Refer to Section 6.2.

Initial Density (Particles/m2) Convergence Ratio

0.02 21.7%
0.08 50.0%
0.17 68.3%
0.33 80.0%
0.83 96.7%
1.67 100%
3.33 100%
6.67 100%

The summary of results can be found in Table 2, and are consistent with the relationship between
initial particle densities and convergence success ratio in Table 1. A video for a representative run of this
test is available online for the convenience of the reader (Video available in: https://www.youtube.com/
watch?v=LJ5OV-KMQLA).

Table 2. Statistical results for the relocalization benchmark with an initial uncertainty area of the entire
campus. Refer to Section 6.3.

Initial Particle Count Initial Density (Particles/m2) Convergence Ratio

1000 0.007 2.0%
2000 0.014 12.0%
5000 0.037 24.0%

10,000 0.074 32.0%
20,000 0.149 56.6%
30,000 0.223 63.3%
40,000 0.298 66.6%
50,000 0.373 75.3%
60,000 0.447 80%
70,000 0.522 81.3%
80,000 0.597 86.0%

100,000 0.746 89.3%
125,000 0.932 89.3%
150,000 1.119 92.6%
175,000 1.305 92.6%
200,000 1.492 96.0%

6.4. Choice of PF Algorithm

In this benchmark, we analyzed the pose tracking accuracy (positioning error with respect to
ground-truth) and efficiency (average computational cost per timestep) of a PF using the standard proposal
distribution in contrast to another using the optimal proposal. Please refer to [13] for details on how this
algorithm achieves a better random sampling of the target probability distribution, by simultaneously
taking into account both the odometry model and the observation likelihood p(zt|xt, m) in Algorithm 1.

Experiments were run 25 times and average errors and execution times were collected for each
algorithm, then data fitted as a 2D Gaussian as represented in Figure 9. The minimum population size of
the standard PF was set to 200, while it was 10 for the optimal PF. However, their “effective” number of
particles are equivalent since each particle in the optimal algorithm was set to employ 20 terations in the
internal sampling-based stage. The optimal PF achieves a slightly better accuracy with a relatively higher
computational cost, which still falls below 20 ms per iteration. Therefore, the conclusion is that the optimal

https://www.youtube.com/watch?v=LJ5OV-KMQLA
https://www.youtube.com/watch?v=LJ5OV-KMQLA

Sensors 2019, 19, 3155 14 of 19

algorithm is recommended, but with a small practical gain, a finding in accordance with previous works
that revealed that the advantages of the optimal PF become more patent when applied to SLAM, while only
representing a substantial improvement for localization when the sensor likelihood model is sharper [13].

15 16 17 18 19

Execution time (ms)

0.7

0.705

0.71

0.715

0.72

0.725

E
rr

o
r

(m
)

← Standard proposal

Rej. sampling-based

optimal proposal →

Figure 9. Execution time and average pose tracking error for two different PF algorithms. Ellipses represent
95% confidence interval as reconstructed from data of 25 repetitions of the same pose tracking experiment
with different random seeds. Point cloud decimation was set to 100 in both algorithms. See Section 6.4 in
the text for a discussion.

6.5. Tracking Performance

To demonstrate the suitability of the proposed observation model, we run 10 instances of a pose
tracking PF using the standard proposal distribution, point cloud decimation of 100, and a dynamic
number of samples with a minimum of 100. We evaluated the mean and 95% confidence intervals for
the localization error over the vehicle path, and compared it to the error that would accumulate from
odometry alone in Figure 10. As can be seen, the PF keeps track of the actual vehicle pose with a error
median of 0.6 m (refer to Table 3).

Figure 10. Pose tracking error and odometry-only error. See Section 6.5 in the text for more details.

6.6. Decimating Likelihood Evaluations

Finally, we addressed the issue of how much information can be discarded from each incoming scan
while preventing the growth of positioning error. Decimation is the single most crucial parameter regarding
the computational cost of pose tracking with PF, hence the importance of quantitatively evaluating its range
of optimal values. The results, depicted in Figure 11, clearly show that decimation values in the range 100
to 200 should be the minimum choice since error is virtually unaffected. In other words, Velodyne scans
apparently have so much redundant information that we can keep only 0.5% of them and still remain
well-localized. Statistical results of these experiments, and the corresponding error histograms, are shown
in Table 3 and Figure 12, respectively. As can be seen from the results, the average error is relatively stable
for decimation values of up to 500, and quickly grows afterwards.

Sensors 2019, 19, 3155 15 of 19

10
1

Execution time (ms)

10
0

10
1

E
rr

o
r

(m
)

D=40D=60D=80D=125 D=20D=150 D=100D=175D=200D=500

D=700

D=800

D=1000

D=1500

D=2000

Figure 11. Positioning error and computational cost per timestep for different values of the likelihood
function decimation parameter. Black: 95% confidence intervals (ellipses deformed due to the logarithmic
scale) for 25 experiments, red: mean values. Note that the initial error and uncertainty are larger than
during the steady state of the tracking algorithm, since particles are initially uniformly-distributed over an
area of 30× 30 m2. See Section 6.6 in the text for more details.

Table 3. Localization error statistics for different decimation ratios applied to the input sensory data.

Decim. Mean (m) Median (m) Standard Deviation (m)

20 0.615 0.585 0.250
40 0.620 0.585 0.257
60 0.626 0.590 0.261
80 0.635 0.579 0.282
100 0.635 0.587 0.279
150 0.641 0.591 0.290
200 0.656 0.586 0.315
300 1.207 0.623 3.528
500 0.951 0.641 1.182
700 8.356 0.746 20.023
800 6.497 0.765 17.832

1000 8.915 0.892 17.405
1500 21.674 4.325 30.847
2000 30.895 9.638 37.628

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

1000

2000

3000

(a)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

1000

2000

3000

(b)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

1000

2000

3000

(c)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

1000

2000

3000

(d)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

1000

2000

3000

(e)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

1000

2000

3000

(f)

Figure 12. Cont.

Sensors 2019, 19, 3155 16 of 19

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(g)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(h)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

(i)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

8000

(j)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

(k)

Sensors 2019, xx, 5 15 of 18

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(g)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(h)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

(i)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

8000

(j)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

(k)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

8000

10,000

(l)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

5000

10,000

(m)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

5000

10,000

15,000

(n)

Figure 12. Histograms of the pose tracking localization error for different decimation ratios. Note that
errors larger than 2.5 m are clipped into one single bin for the largest decimation ratios, for the
sake of providing a uniform horizontal scale in all plots. (a) Decimation = 20; (b) Decimation = 40;
(c) Decimation = 60; (d) Decimation = 80; (e) Decimation = 100; (f) Decimation = 150; (g) Decimation
= 200; (h) Decimation = 300; (i) Decimation = 500; (j) Decimation = 700; (k) Decimation = 800;
(l) Decimation = 1000; (m) Decimation = 1500; (n) Decimation = 2000.

7. Conclusions

In this work, we proposed an observation model for Velodyne scans, suitable for use within a
PF, which has been successfully validated experimentally. Benchmarks showed that the optimal-PF
algorithm is preferable in general due to its superior accuracy during pose tracking and its suitability
to cope with the relocalization problem with an exiguous density of particles. Furthermore, one of
the most remarkable results is the finding that PFs are robust enough to keep track of a vehicle pose
while decimating the input point cloud from a Velodyne sensor by factors of two orders of magnitude.
Such an insight, together with the use of a KD-tree for efficient querying the reference map, allows for
running an entire localization update step within 10 to 20 ms.

Author Contributions: J.L.B.-C. conceived the idea and stated the methodology. F.M.-A. and J.L.T.-M. conducted
the experiments. F.R. and A.G.-F. supervised the research and collaborated in the redaction the paper.

Funding: This work was partly funded by the National R+D+i Plan Project DPI2017-85007-R of the Spanish
Ministry of Economy, Industry, and Competitiveness and European Regional Development Fund (ERDF) funds.

Conflicts of Interest: The authors declare no conflict of interest.

(l)

Sensors 2019, xx, 5 15 of 18

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(g)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(h)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

(i)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

8000

(j)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

(k)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

8000

10,000

(l)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

5000

10,000

(m)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

5000

10,000

15,000

(n)

Figure 12. Histograms of the pose tracking localization error for different decimation ratios. Note that
errors larger than 2.5 m are clipped into one single bin for the largest decimation ratios, for the
sake of providing a uniform horizontal scale in all plots. (a) Decimation = 20; (b) Decimation = 40;
(c) Decimation = 60; (d) Decimation = 80; (e) Decimation = 100; (f) Decimation = 150; (g) Decimation
= 200; (h) Decimation = 300; (i) Decimation = 500; (j) Decimation = 700; (k) Decimation = 800;
(l) Decimation = 1000; (m) Decimation = 1500; (n) Decimation = 2000.

7. Conclusions

In this work, we proposed an observation model for Velodyne scans, suitable for use within a
PF, which has been successfully validated experimentally. Benchmarks showed that the optimal-PF
algorithm is preferable in general due to its superior accuracy during pose tracking and its suitability
to cope with the relocalization problem with an exiguous density of particles. Furthermore, one of
the most remarkable results is the finding that PFs are robust enough to keep track of a vehicle pose
while decimating the input point cloud from a Velodyne sensor by factors of two orders of magnitude.
Such an insight, together with the use of a KD-tree for efficient querying the reference map, allows for
running an entire localization update step within 10 to 20 ms.

Author Contributions: J.L.B.-C. conceived the idea and stated the methodology. F.M.-A. and J.L.T.-M. conducted
the experiments. F.R. and A.G.-F. supervised the research and collaborated in the redaction the paper.

Funding: This work was partly funded by the National R+D+i Plan Project DPI2017-85007-R of the Spanish
Ministry of Economy, Industry, and Competitiveness and European Regional Development Fund (ERDF) funds.

Conflicts of Interest: The authors declare no conflict of interest.

(m)

Sensors 2019, xx, 5 15 of 18

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(g)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

2500

(h)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

500

1000

1500

2000

(i)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

8000

(j)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

(k)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

2000

4000

6000

8000

10,000

(l)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

5000

10,000

(m)

0 0.5 1 1.5 2 2.5

Absolute error [m]

0

5000

10,000

15,000

(n)

Figure 12. Histograms of the pose tracking localization error for different decimation ratios. Note that
errors larger than 2.5 m are clipped into one single bin for the largest decimation ratios, for the
sake of providing a uniform horizontal scale in all plots. (a) Decimation = 20; (b) Decimation = 40;
(c) Decimation = 60; (d) Decimation = 80; (e) Decimation = 100; (f) Decimation = 150; (g) Decimation
= 200; (h) Decimation = 300; (i) Decimation = 500; (j) Decimation = 700; (k) Decimation = 800;
(l) Decimation = 1000; (m) Decimation = 1500; (n) Decimation = 2000.

7. Conclusions

In this work, we proposed an observation model for Velodyne scans, suitable for use within a
PF, which has been successfully validated experimentally. Benchmarks showed that the optimal-PF
algorithm is preferable in general due to its superior accuracy during pose tracking and its suitability
to cope with the relocalization problem with an exiguous density of particles. Furthermore, one of
the most remarkable results is the finding that PFs are robust enough to keep track of a vehicle pose
while decimating the input point cloud from a Velodyne sensor by factors of two orders of magnitude.
Such an insight, together with the use of a KD-tree for efficient querying the reference map, allows for
running an entire localization update step within 10 to 20 ms.

Author Contributions: J.L.B.-C. conceived the idea and stated the methodology. F.M.-A. and J.L.T.-M. conducted
the experiments. F.R. and A.G.-F. supervised the research and collaborated in the redaction the paper.

Funding: This work was partly funded by the National R+D+i Plan Project DPI2017-85007-R of the Spanish
Ministry of Economy, Industry, and Competitiveness and European Regional Development Fund (ERDF) funds.

Conflicts of Interest: The authors declare no conflict of interest.

(n)

Figure 12. Histograms of the pose tracking localization error for different decimation ratios. Note that
errors larger than 2.5 m are clipped into one single bin for the largest decimation ratios, for the
sake of providing a uniform horizontal scale in all plots. (a) Decimation = 20; (b) Decimation = 40;
(c) Decimation = 60; (d) Decimation = 80; (e) Decimation = 100; (f) Decimation = 150; (g) Decimation = 200;
(h) Decimation = 300; (i) Decimation = 500; (j) Decimation = 700; (k) Decimation = 800;
(l) Decimation = 1000; (m) Decimation = 1500; (n) Decimation = 2000.

7. Conclusions

In this work, we proposed an observation model for Velodyne scans, suitable for use within a PF,
which has been successfully validated experimentally. Benchmarks showed that the optimal-PF algorithm
is preferable in general due to its superior accuracy during pose tracking and its suitability to cope with
the relocalization problem with an exiguous density of particles. Furthermore, one of the most remarkable
results is the finding that PFs are robust enough to keep track of a vehicle pose while decimating the input
point cloud from a Velodyne sensor by factors of two orders of magnitude. Such an insight, together with
the use of a KD-tree for efficient querying the reference map, allows for running an entire localization
update step within 10 to 20 ms.

Author Contributions: J.L.B.-C. conceived the idea and stated the methodology. F.M.-A. and J.L.T.-M. conducted the
experiments. F.R. and A.G.-F. supervised the research and collaborated in the redaction the paper.

Sensors 2019, 19, 3155 17 of 19

Funding: This work was partly funded by the National R+D+i Plan Project DPI2017-85007-R of the Spanish Ministry
of Economy, Industry, and Competitiveness and European Regional Development Fund (ERDF) funds.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Vehicle Description and Raw Dataset

Table A1. Main characteristics of the prototype vehicle.

Mechanic Characteristics Value

Lenght ×Width × Height 2680× 1525× 1780 mm3

Wheelbase 1830 mm
Front/rear track width 1285/1260 mm
Weight without/with batteries 472/700 kg

Electric Characteristics Value

DC motor XQ − 4.3 4.3 kW
Batteries (gel technology) 8× 6 V −210 Ah
Autonomy 90 km

Encoders

Front
SICK

LMS200

Steer-by-wire
system

Secondary GNNS
antenna

Velodyne
VLP-16

Main GNNS+IMU
(Novatel SPAN IGM)

Velodyne
vertical FOV: 30º

Secondary IMU
(XSens)

Stereo camera
(Bumblebee2)

(a)

Vehicle
reference frame

Z

X

𝑻ீ
ோ

𝑻௏
ோ

𝑻ி
ோ

𝑻஼
ோ

Z

Y

X

Z
X

Y

Z

Y
X

𝑻ூ
ோ

(b)

Velodyne
VLP-16

Secondary IMU
(XSens)

Stereo camera
(Bumblebee2)

Main GNNS
antenna

Front
SICK

LMS200

(c)

Vehicle
reference frame

Z

Y

X
Z

Y

X

𝑻ி
ோ

𝑻஼
ோ

𝑻ூ
ோ

𝑻ீ
ோ

𝑻௏
ோ

Z

YX

Z

YX

Z

YX

Z Y

X

(d)

Figure A1. Electric vehicle prototype used in the experimental tests. (a) Side view: sensors; (b) Side view:
frames; (c) Top view: sensors; (d) Top view: frames.

Sensors 2019, 19, 3155 18 of 19

The main characteristics of the experimental vehicle used are summarized in Table A1. A pack
of eight batteries Trojan TE35-Gel 210Ah 6V propels the vehicle ensuring an autonomy of 90 km at a
maximum travel speed of 45 km/h by means of a 48 V DC motor controlled by a permanent magnet
motor. Speed is controlled by a Curtis PMC controller (model 1268-5403). Three voltmeters are employed
to measure the voltage in the rotor, the field, and the batteries. In addition, the prototype is equipped
with three ampere-meters (LEM DHR 100, LEM, Fribourg, Switzerland) to measure instantaneous current
consumption, at the same three elements.

Figure A1 shows all the installed sensors, together with their relative poses with respect to the vehicle
frame of reference. Approximate values for each such poses, together with the raw dataset, are available
online (https://ingmec.ual.es/datasets/lidar3d-pf-benchmark/).

References

1. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013,
32, 1231–1237. [CrossRef]

2. Blanco-Claraco, J.L.; Moreno-Dueñas, F.Á.; González-Jiménez, J. The Málaga urban dataset: High-rate stereo and
LiDAR in a realistic urban scenario. Int. J. Robot. Res. 2014, 33, 207–214. [CrossRef]

3. Gaspar, A.R.; Nunes, A.; Pinto, A.M.; Matos, A. Urban@CRAS dataset: Benchmarking of visual odometry and
SLAM techniques. Robot. Auton. Syst. 2018, 109, 59–67. [CrossRef]

4. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. g2o: A general framework for graph
optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, 9–13 May 2011; pp. 3607–3613.

5. Ila, V.; Polok, L.; Solony, M.; Svoboda, P. SLAM++—A highly efficient and temporally scalable incremental
SLAM framework. Int. J. Robot. Res. 2017, 36, 210–230. [CrossRef]

6. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and
mapping using the Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [CrossRef]

7. Blanco, J.L. A Modular Optimization Framework for Localization and Mapping. In Proceedings of the Robotics:
Science and Systems, Freiburg im Breisgau, Germany, 22–26 June 2019.

8. Yoneda, K.; Tehrani, H.; Ogawa, T.; Hukuyama, N.; Mita, S. Lidar scan feature for localization with highly
precise 3D map. In Proceedings of the IEEE Intelligent Vehicles Symposium, Ypsilanti, MI, USA, 8–11 June 2014;
pp. 1345–1350.

9. Moosmann, F.; Stiller, C. Velodyne SLAM. In Proceedings of the IEEE Intelligent Vehicles Symposium,
Baden-Baden, Germany, 5–9 June 2011; pp. 393–398.

10. Dubé, R.; Dugas, D.; Stumm, E.; Nieto, J.; Siegwart, R.; Cadena, C. Segmatch: Segment based place recognition in
3D point clouds. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 5266–5272.

11. Levinson, J.; Montemerlo, M.; Thrun, S. Map-Based Precision Vehicle Localization in Urban Environments.
In Proceedings of the Robotics: Science and Systems, Atlanta, GA, USA, 27–30 June 2007; Volume 4, p. 1.

12. Rabe, J.; Stiller, C. Robust particle filter for lane-precise localization. In Proceedings of the 2017 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), Vienna, Austria, 27–28 June 2017; pp. 127–132.

13. Blanco, J.L.; González-Jiménez, J.; Fernández-Madrigal, J.A. Optimal Filtering for Non-Parametric Observation
Models: Applications to Localization and SLAM. Int. J. Robot. Res. 2010, 29. [CrossRef]

14. Song, W.; Yang, Y.; Fu, M.; Kornhauser, A.; Wang, M. Critical Rays Self-Adaptive Particle Filtering SLAM. J. Intell.
Robot. Syst. Theory Appl. 2018, 92, 107–124. [CrossRef]

15. Maalej, Y.; Sorour, S.; Abdel-Rahim, A.; Guizani, M. Vanets Meet Autonomous Vehicles: Multimodal Surrounding
Recognition Using Manifold Alignment. IEEE Access 2018, 6, 29026–29040. [CrossRef]

16. Xu, P.; Dherbomez, G.; Hery, E.; Abidli, A.; Bonnifait, P. System Architecture of a Driverless Electric Car in the
Grand Cooperative Driving Challenge. IEEE Intell. Transp. Syst. Mag. 2018, 10, 47–59. [CrossRef]

https://ingmec.ual.es/datasets/lidar3d-pf-benchmark/
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1177/0278364913507326
http://dx.doi.org/10.1016/j.robot.2018.08.004
http://dx.doi.org/10.1177/0278364917691110
http://dx.doi.org/10.1177/0278364911430419
http://dx.doi.org/10.1177/0278364910364165
http://dx.doi.org/10.1007/s10846-017-0742-z
http://dx.doi.org/10.1109/ACCESS.2018.2839561
http://dx.doi.org/10.1109/MITS.2017.2776135

Sensors 2019, 19, 3155 19 of 19

17. Choi, J. Hybrid Map-Based SLAM Using a Velodyne Laser Scanner. In Proceedings of the 2014 IEEE 17th
International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014;
pp. 3082–3087.

18. Jo, H.; Cho, H.M.; Jo, S.; Kim, E. Efficient Grid-Based Rao-Blackwellized Particle Filter SLAM with Interparticle Map
Sharing. IEEE/ASME Trans. Mechatron. 2018, 23, 714–724. [CrossRef]

19. Vallicrosa, G.; Ridao, P.; Vallicrosa, G.; Ridao, P. H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert
Maps. Sensors 2018, 18, 1386. [CrossRef]

20. Wen, S.; Chen, J.; Lv, X.; Tong, Y. Cooperative simultaneous localization and mapping algorithm based on
distributed particle filter. Int. J. Adv. Robot. Syst. 2019, 16. [CrossRef]

21. Grant, W.S.; Voorhies, R.C.; Itti, L. Efficient Velodyne SLAM with point and plane features. Auton. Robots 2019,
43, 1207–1224. [CrossRef]

22. Doucet, A.; De Freitas, N.; Gordon, N. An introduction to sequential Monte Carlo methods. In Sequential Monte
Carlo Methods in Practice; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–14.

23. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]

24. Blanco-Claraco, J.L. Contributions to Localization, Mapping and Navigation in Mobile Robotics. Ph.D. Thesis,
Universidad de Malaga, Malaga, Spain, 2009.

25. Doucet, A.; Godsill, S.; Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering.
Stat. Comput. 2000, 10, 197–208. [CrossRef]

26. Fox, D. Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. 2003, 22, 985–1003.
[CrossRef]

27. Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg,
Germany, 1992; pp. 492–518.

28. Audibert, J.Y.; Catoni, O. Robust linear least squares regression. Ann. Stat. 2011, 39, 2766–2794. [CrossRef]
29. Yang, H.; Carlone, L. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates.

In Proceedings of the Robotics: Science and Systems, Freiburg im Breisgau, Germany, 22–26 June 2019. [CrossRef]
30. Ruppert, D.; Carroll, R.J. Trimmed least squares estimation in the linear model. J. Am. Stat. Assoc. 1980,

75, 828–838. [CrossRef]
31. Chen, J.H. M-estimator based robust kernels for support vector machines. In Proceedings of the 17th International

Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; Volume 1, pp. 168–171.
32. MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press:

Cambridge, UK, 2003.
33. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source

Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
12–17 May 2009; Volume 3, p. 5.

34. Dutt, V.S.I.; Rao, G.S.B.; Rani, S.S.; Babu, S.R.; Goswami, R.; Kumari, C.U. Investigation of GDOP for Precise
User Position Computation with All Satellites in View and Optimum Four Satellite Configurations. J. Ind.
Geophys. Union 2009, 13, 139–148.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMECH.2018.2795252
http://dx.doi.org/10.3390/s18051386
http://dx.doi.org/10.1177/1729881418819950
http://dx.doi.org/10.1007/s10514-018-9794-6
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1177/0278364903022012001
http://dx.doi.org/10.1214/11-AOS918
http://dx.doi.org/10.15607/RSS.2019.XV.003
http://dx.doi.org/10.1080/01621459.1980.10477560
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Related Works
	Particle Filter Algorithms

	Map and Sensor Model
	 Justification of Decimation as an Approximation to the Likelihood Function
	Experimental Platform
	Results and Discussion
	Mapping
	Relocalization, Part 1: Aided by Poor-Signal GPS
	 Relocalization, Part 2: LiDAR Only
	Choice of PF Algorithm
	Tracking Performance
	Decimating Likelihood Evaluations

	Conclusions
	 Vehicle Description and Raw Dataset
	References

