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Why does this magnificent applied science which
saves work and makes life easier bring us so little
happiness? The simple answer runs: because we

have not yet learned to make sensible use of it. [...]
It is not enough that you should understand about

applied science in order that your work may increase
man’s blessings. Concern for the man himself and his

fate must always form the chief interest of all technical
endeavors; [...] concern for the great unsolved problems

of the organization of labor and the distribution of
goods in order that the creations of our mind shall

be a blessing and not a curse to mankind. Never forget
this in the midst of your diagrams and equations.

Albert Einstein
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Resumen

El crecimiento de la población junto con el de las actividades industriales y agrícolas está
provocando que las reservas de agua dulce se encuentren bajo una situación de pronunciado
estrés. Así mismo, los efectos del cambio climático están alterando el ciclo natural del agua
a través de fenómenos meteorológicos extremos como sequías e inundaciones, agravando aún
más la situación y causando que acuíferos de todo mundo se agoten o contaminen. Ante este
panorama, la humanidad se enfrenta a uno de los mayores retos de su historia, el cual se debe abor-
dar urgentemente mediante una modificación del modelo actual de uso y abastecimiento del agua.

Pese a que muchos países de todo el mundo están desarrollando políticas dirigidas a la
realización de un uso racional de este recurso, en la mayoría de los casos estas no son suficientes
y se necesitan nuevas fuentes de agua dulce para satisfacer las demandas. En consecuencia,
la desalación ha emergido como una de las soluciones más prometedoras para extender los
recursos hídricos naturales, provocando que muchos países apuesten por su uso. Sin embargo,
las tecnologías de desalación convencionales presentan dos problemas principales. Por un lado,
aunque los procesos de desalación han sufrido un gran desarrollo en las últimas décadas, estos
siguen siendo energéticamente ineficientes por lo que su uso, junto con fuentes de energía
convencionales, puede hacer que el problema del agua derive en un problema energético. Por
otro lado, estos procesos no pueden ser reducidos fácilmente a plantas de medio o pequeño
tamaño y, además, requieren el uso de infraestructuras específicas y la conexión a la red eléctrica
para evitar operaciones discontinuas. Este hecho impide su implementación en zonas rurales o
aisladas, como islas con bajo consumo per-cápita, lugares donde se concentra una gran parte de
la población que sufre escasez de agua actualmente.

La destilación por membranas es un proceso de desalación alternativo impulsado térmica-
mente a media-baja temperatura (generalmente inferior a 85 oC). Esta característica le permite
ser fácilmente alimentada mediante energía solar o fuentes térmicas de baja entalpía, como
calor residual, reduciendo así la huella de carbón de los procesos convencionales. Además, esta
tecnología permite su uso descentralizado a pequeña escala y la realización de operaciones inter-
mitentes, lo que la convierte en una solución adecuada para ser implantada en lugares remotos
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con buenas condiciones de irradiancia solar. De este modo, la destilación por membranas se erige
como una de las tecnologías más convenientes, eficientes y sostenibles para expandir la gama
de posibilidades de los procesos de desalación convencionales. Sin embargo, esta tecnología
no se encuentra todavía implementada industrialmente y, en la actualidad, está en una etapa
pre-comercial, siendo su gran consumo energético por unidad de destilado producida uno de los
mayores impedimentos para su completa comercialización.

Hasta la fecha, la mayoría de trabajos de investigación en el campo de la tecnología de
destilación por membranas se han centrado en la mejora del diseño interno del módulo y en la
prueba de diferentes membranas, con el objetivo de minimizar el consumo térmico y aumentar la
producción de destilado. Estos trabajos han provocado un gran avance en términos de consumo
térmico, desencadenando que la tecnología entre en una fase de madurez avanzada, lo que se
ha confirmado con la aparición de los primeros módulos a escala comercial y la instalación de
las primeras plantas a escala piloto. Por lo tanto, la tecnología de destilación por membranas
ha entrado en una nueva fase de investigación, en la cual, los trabajos deben estar dirigidos
al desarrollo de estrategias de operación que optimicen el funcionamiento de los módulos en
tiempo real, especialmente cuando estos se alimentan mediante una fuente de energía con una
naturaleza tan intermitente e impredecible como es el caso de la energía solar.

Esta tesis tiene como objetivo el desarrollo de estrategias de operación, mediante el uso de
técnicas de modelado, control y optimización, para plantas de destilación por membranas. Los
métodos de operación propuestos están centrados principalmente en la reducción del consumo
térmico de los módulos y la maximización de su producción de destilado, dos de los puntos
débiles de la tecnología, así como la minimización de los costes operativos tratando de reducir
el precio del agua desalada. El desarrollo de la tesis se ha dividido en cuatro fases, siguiendo
las etapas clásicas de un proyecto de ingeniería de control. En primer lugar, se realizó una
etapa de modelado y diseño de controladores de bajo nivel para plantas de destilación por
membranas alimentadas con energía solar. Para ello, se utilizaron modelos dinámicos basados
en primeros principios ya propuestos en la literatura para el circuito de generación de energía
térmica, y se desarrolló un modelo basado en datos experimentales de un módulo de destilación
por membranas a escala comercial. Estos modelos sirvieron de base para el desarrollo de una
arquitectura de control completa de bajo nivel, formada por cuatro bucles de control gobernados
mediante un generador de referencias, la cual permite mantener una temperatura estable a la
entrada del módulo de destilación por membranas a pesar de perturbaciones en la radiación solar.
Además, esta estrategia fue probada experimentalmente en una planta piloto localizada en la
Plataforma Solar de Almería validando los resultados obtenidos en simulación y evidenciando
cómo, el tiempo para establecer una temperatura adecuada de operación a la entrada del módulo,
se puede reducir entorno al 50 % en comparación con operaciones manuales llevadas a cabo por
operadores cualificados.

La segunda fase de desarrollo de la tesis se centró en el diseño de estrategias de control
jerárquicas. Estos controladores tienen objetivos de alto nivel como la maximización de la
eficiencia térmica, la producción de destilado, o la reducción de los costes operativos, los cuales
se consiguen actuando sobre las referencias de los bucles de control de bajo nivel desarrollados
en la etapa anterior. En particular, se desarrollaron dos arquitecturas de control, una para la fase
de operación, la cual trata de optimizar en tiempo real los objetivos mencionado anteriormente, y
otra para el procedimiento de arranque de la planta, que trata de reducir el tiempo empleado en
dicho procedimiento. Como en la etapa anterior, ambos controladores fueron probados experi-
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mentalmente demostrando, por ejemplo, cómo la producción de destilado se puede aumentar en
torno a un 5-7 %, los costes operativos se pueden reducir en un 9-10 %, y el tiempo empleado en
la fase de arranque se puede reducir también en un 11 % respecto a operaciones manuales.

La tercera fase de desarrollo se focalizó en el diseño de estrategias de control para plantas
de destilación por membranas a escala industrial, donde el paradigma de control difiere de los
enfoques anteriores debido a la presencia de múltiples módulos de destilación por membranas
y a un agente consumidor de agua. Las estrategias de control propuestas tienen como objetivo
reducir el consumo térmico de la unidad de desalación al mismo tiempo que aseguran la demanda
de agua variable del agente consumidor, objetivos que requieren condiciones de operación
contrarias en el caudal de alimentación de los módulos. El principal reto desde el punto de
vista de control en este tipo de aplicaciones radica en el tiempo empleado para calcular las
acciones de control óptimas, el cual crece exponencialmente a medida que crece el número
de módulos en la unidad de desalación. Así, la primera arquitectura de control propuesta se
basó en un controlador predictivo basado en modelo distribuido. En este caso, el controlador
se encarga de gestionar el caudal de alimentación de los diferentes módulos para conseguir
cumplir los objetivos previamente mencionados. Las pruebas realizadas demostraron cómo el
consumo térmico específico de la unidad de desalación se reduce en un 5 % de media respecto a
operaciones manuales, mientras que el tiempo de resolución del problema de optimización se
redujo notablemente respecto a controladores centralizados. Del mismo modo, se propuso un
algoritmo para gestionar no solo el caudal de alimentación, sino también el número de módulos
encendidos en cada instante en base a la demanda de agua del agente consumidor, convirtiendo
el problema de control en un problema de enteros mixtos no lineal. El algoritmo propuesto para
su resolución se basó en la técnica de descomposición de Benders generalizada. Las pruebas
mostraron cómo el tiempo de resolución se puede reducir considerablemente. Por ejemplo, para
un caso con 64 módulos, el tiempo de un resolvedor de enteros mixtos no lineal es de entorno
a 1600 s, mientras que el del algoritmo propuesto es de entorno a 5 s sin que se vea afectada
significativamente la solución. Por otra parte, la cantidad de energía térmica consumida por
la unidad de desalación también se reduce significativamente, ahorrando hasta un 65 % de la
energía requerida en una operación manual en dias soleados.

La última fase de desarrollo de la tesis consistió en la elaboración de un tutorial de técnicas
de modelado y control aplicadas en la tecnología de destilación por membranas. En este tutorial
se resumen todas las técnicas aplicadas durante el desarrollo de la tesis así como otras propuestas
en la literatura, describiendo el desarrollo tecnológico que se consigue con su aplicación.

Para concluir, este resumen termina describiendo la estructura del presente documento, el
cual se ha dividido en cuatro partes de acuerdo a las descritas en la normativa de la Universidad
de Almería para tesis presentadas en la modalidad por compendio:

• En el capítulo 1 se describe la unidad temática de la tesis y se introducen las principales
metodologías empleadas. Además, se indica la estructura de desarrollo de la tesis y las
publicaciones que tratan cada uno de los temas abordados.
• En el capítulo 2 se presentan las publicaciones científicas que avalan el trabajo realizado.
• En el capítulo 3 se recogen las conclusiones que se derivan de las diferentes publicaciones

así como las recomendaciones para trabajos futuros.
• Por último, el capítulo 4 contiene un listado con otras aportaciones científicas que se

derivan de la tesis doctoral.
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Abstract

Population growth coupled with industrial and agricultural activities is placing freshwater re-
serves under severe stress. Also, the effects of climate change are altering the natural water cycle
through extreme meteorological phenomena such as droughts and floods, further aggravating
the situation and causing aquifers worldwide to become depleted or polluted. Considering this
panorama, humanity faces one of the greatest challenges in its history, which must be addressed
urgently by modifying the current model of water use and supply.

Even though many countries around the world are developing policies aimed at achieving
rational use of this resource, in most cases these are not enough and new sources of freshwater
are needed to meet demands. In consequence, desalination has emerged as one of the most
promising solutions for extending natural water resources, promoting many countries opt for its
use. However, conventional desalination technologies present two main problems. On the one
hand, although desalination processes have undergone major development in the last decades,
these are still energy inefficient, so if they are powered with conventional energy sources, the
water problem can turn into an energy problem. On the other hand, these processes cannot easily
be reduced to a medium or small scale. In addition, they require the use of specific infrastruc-
tures and on-grid power connections to avoid discontinued operations. This fact prevents its
implementation in rural or isolated areas, such as islands with low per capita consumption, where
a large part of the population currently suffering from water shortages is concentrated.

Membrane distillation is an alternative thermally-driven desalination process powered at
medium-low temperature (generally below 85 oC). This feature allows this technique to be easily
powered by solar energy or low enthalpy heat sources such as waste heat, thus reducing the
carbon footprint of conventional processes. Besides, this technology allows its decentralized
use on a small scale and the intermittent operation, which makes it a suitable solution to be
implanted in remote places with good conditions of solar irradiance. In this way, membrane
distillation stands out as one of the most convenient, efficient and sustainable technologies to
expand the range possibilities of conventional desalination processes. However, this technology
is not yet industrially implemented and it is currently in a pre-commercial stage, being its high
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energy consumption per unit of distillate produced one of the major impediments to its complete
commercialization.

So far the majority of research works in the field of membrane distillation technology have
focused on improving the internal design of the module and on testing different membranes,
intending to minimize thermal consumption and increase distillate production. These works have
caused a great advance in terms of thermal consumption, allowing the technology to enter in an
advanced stage of maturity, which was confirmed with the appearance of the first modules on
a commercial scale and the installation of the first plants at pilot scale. Therefore, membrane
distillation technology has entered in a new research phase, in which the efforts must be de-
voted to the development of operating strategies that optimize the operation of the modules in
real-time, especially when these are powered by an energy source with such as intermittent and
unpredictable nature as solar energy.

This thesis aims to develop operating strategies, through the use of modelling, control and
optimization techniques for membrane distillation plants. The proposed operating methods are
mainly focused on reducing the thermal consumption of the modules and on maximizing their
distillate production, two of the main weak points of the technology, as well as minimizing
operating costs trying to reduce the price of desalinated water. The development of the thesis has
been divided into four phases, following the classic steps of a control engineering project. First, a
stage of modelling and design of low-level controllers for membrane distillation plants powered
by solar energy was performed. For this, dynamic models based on first principles already
proposed in the literature were used to characterize the heat generation circuit, and a model
based on experimental data for a commercial-scale membrane distillation module was developed.
These models served as the basis for the design of a complete low-level control architecture
consisting of four loops governed by a reference generator, which allows a stable temperature
to be maintained at the inlet of the membrane distillation module despite disturbances in solar
irradiance. This strategy was experimentally tested in a pilot plant located at the Plataforma
Solar of Almería validating the results obtained in simulation and evidencing how, the time for
establishing an adequate operating temperature at the module inlet, can be reduced by 50 %
compared to manual operations performed by qualify operators.

The second phase of the development of the thesis focused on the design of hierarchical
control strategies. These controllers were tasked with high-level control objectives such as
maximizing the thermal efficiency, distillate production, or reducing operating costs, which are
achieved by acting on the references of the low-level control loops developed in the previous
stage. In particular, two control architectures were developed, one for the phase of operation,
which tries to optimize in real-time the objectives mentioned above, and another for the plant
start-up procedure, which tries to reduce the time spent on said procedure. As in the previous
stage, both controllers were experimentally tested, demonstrating, for example, how distillate
production can be increased by around 5-7 %, operating costs can be reduced by 9-10 %, and the
time spent in the start-up phase can be reduced by 11 % compared to manual operations.

The third development phase focused on the design of control strategies for membranes distil-
lation plants at the industrial scale, where the control paradigm differs from previous approaches
due to the presence of multiple membrane distillation modules and a water-consuming agent. The
proposed control strategies aim to reduce the thermal consumption of the desalination unit while
ensuring the variable water demand of the consuming agent, objectives that require contrary
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operating conditions in the fluid flow rate of the modules. The main challenge from a control
point of view in these types of applications lies in the time spent to calculate optimal control
actions, which grows exponentially as the number of distillation modules in the desalination unit
increases. Thus, the first control architecture proposed was based on a distributed model predic-
tive control technique. In this case, the controller was responsible for managing the feed flow
rate of the different modules to achieve the abovementioned goals. The tests carried out showed
how the specific thermal consumption of the desalination unit can be reduced by 5 % on average
compared to manual operations, while the computing time was significantly reduced compared
to centralized controllers. Additionally, a control algorithm was also proposed to manage, apart
from the feed flow rate, the number of modules turned on at each sampling time according to
the water demand of the consuming agent, turning the control problem into a nonlinear mixed
integer problem. The proposed algorithm for its resolution was based on the generalized Benders
decomposition. The tests showed how the computing time can be considerably reduced, for
example, for a case with 64 modules, the time spent by a solver for the nonlinear mixed integer
problem was around 1600 s, while that of the proposed algorithm was 5 s without significantly
affecting the solution. Besides, the amount of thermal energy consumed by the desalination unit
was also significantly reduced, saving up to 65 % of the energy required by manual operation on
a sunny day.

The last development phase of the thesis consisted in the elaboration of a tutorial of mod-
elling and control techniques applied to the membrane distillation technology. In this tutorial,
all the techniques applied during the development of the thesis as well as other proposals in the
literature are summarized, describing the technological development that can be achieved with
its application.

To conclude, this summary ends by depicting the structure of this document, which has been
divided into four parts according to those described in the University of Almería regulation for
Ph.D. theses presented in the compendium modality:

• Chapter 1 describes the framework of the thesis and introduces the main methodologies
used. In addition, this chapter describes the development structure of the thesis and
indicates the publications dealing with each of the topics covered.
• Chapter 2 presents the scientific publications that support the work done.
• Chapter 3 summarizes the conclusions derived from the different publications as well as

the recommendations for future work.
• Finally, Chapter 4 contains a list of other scientific contributions that are directly derived

from the Ph.D. thesis.
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1. Introduction

This chapter is aimed at providing the reader with a general overview of the research work carried
out. Firstly, Section 1.1 describes the frame of reference and the main interest of the Ph.D. thesis
project, standing out the problem of water shortage and the use of desalination processes as a
solution. In addition, Section 1.2 presents a brief description of the Membrane Distillation (MD)
technology in which the work, in essence, is focused. Secondly, as the research lines of the Ph.D.
thesis project cover the application of modelling, control and optimization strategies to MD
based facilities, Sections 1.3, 1.4 and 1.5 briefly depict each, introducing the main techniques
and methodologies used. Finally, Section 1.6 is devoted to explaining the research work done,
including background and main contributions of each task performed.

1.1 Context and motivation
Water is a fundamental resource of our society and the maintenance of its supply both in quantity
and sufficient quality for human consumption is a matter of the survival of humanity. The water
scarcity is increasing steadily so that the planning and the proper management of water resources,
as well as the search for alternative sustainable water sources, are forefront topics in recent
decades [10, 11].

1.1.1 Water: a great problem in our time
The growth of world population, industrial and agricultural activities together with the reduction
of water reserves, due to climate change and contamination, are compounding the problem of
water shortage worldwide. These facts have caused the use of water to increase around 1 %
per year since the 1980s. Agriculture is the leading water consumer, accounting for 69 % of
annual global water consumption while industry and domestic use account for 19 % and 12 %
respectively [1]. The water demand is expected to continue increasing according to the socio-
economic development of the aforementioned activities so that, some studies report that around
5.7 billions people (around 60 % of world population) can suffer water scarcity in 2050 [12].
These figures highlight that conventional water sources are not enough to meet human necessities
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in water-scarce areas, conflicting with goal 6 of the sustainable development goals established by
the United Nations (UN) in 2015, which deals with ensuring access to water and sanitation for
all [13].

Water is not only limited in terms of quantity but also the sufficient quality for human
consumption [14]. One of the main consequences of climate change is the degradation of water
resources since extreme precipitation phenomena transport pathogens and other pollutants to
waterways through runoff and flooding. Thus, the quality of the water resources is another
issue to take into account in this water-scarce panorama [15]. Besides, it must be added other
consequences of climate change such as drought and desertification, which are increasing
significantly in diverse areas of the planet. This fact is especially relevant in Mediterranean
countries, as can be seen in Fig. 1.1, where the water resources are almost exhausted [16].
Nevertheless, Fig. 1.1 only shows the physical water stress which is the ratio between the
freshwater withdrawn and freshwater resources. But at the same time, there are communities
where the water is not physically limited but the limitation appears as a result of a lack of
infrastructures. This phenomenon is known as economic water scarcity and it arises in many
regions of Australia, South America and Sub-Saharan Africa [1].

Figure 1.1: Level of physical water stress, obtained from [1].

Considering the above issues, water-scarce countries need an extreme re-think of water
resources management and planning to avoid irreversible environmental and social problems
very shortly. These efforts should be aimed at performing conscious exploitation of conventional
resources leading to sustainable development in terms of water use [11]. However, even though
some arid regions are already putting into practice actions in this line, in most cases they are not
enough to overcome the problem, and the use of new water sources to close the supply-demand
gap is required [17].

1.1.2 Importance of desalination
The problem associated with the lack of freshwater is paradoxical if one takes into account that
two-thirds of the planet’s surface is covered with water. However, about 99 % of the total is too
salty (brackish or seawater) or inaccessible (ice sheets and aquifers) [18]. Thus, pure water in a
liquid state can hardly be found in nature, and what is called freshwater is a solution of various
salts in water. According to World Health Organization (WHO), water is drinkable if it has a
salinity of less than 500 ppm [19], in this context is where desalination, which is defined as the
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process of removing salts and dissolved minerals from saline water to produce freshwater, can
be a very attractive alternative to alleviate the water deficit.

Desalination of brackish or sea water is getting more and more attention as a way to enhance
water supply options in places where the conventional sources are highly limited. This technology
is increasingly seen as a viable alternative source, as it can extend the freshwater sources beyond
what is available naturally, independently of the weather conditions and providing a steady supply
of high-quality product [20]. These favourable features have made desalination an essential agent
in the freshwater model of regions like the Middle East or some island communities. Indeed,
in countries like Qatar and Kuwait desalination is not a marginal or complementary resource
but these countries totally depend on desalinated water to meet domestic and industrial water
needs [21]. But desalination is not only implemented in these regions in fact, there are around
15,900 desalination facilities in operation which are placed in 177 different countries spread all
over the world, with a total capacity of more than 95 million of m3 per day. However, it should
be remarked that around 45 % of this capacity is installed in regions of the Middle East and
North Africa [10].

1.1.3 Water-energy nexus in desalination
Although desalination is one of the most promising solutions to mitigate the water shortage,
intensive and irresponsible use of this technology can cause serious environmental problems;
mainly related to the high energy consumption of current desalination technologies [22]. By
and large, desalination processes can be divided in two main techniques: i) thermal-powered
processes which are based on an evaporation process, and ii) membrane processes which function
similar to a mechanical filter. In thermal powered desalination techniques, large amounts of
thermal energy are needed to reach the latent heat required for evaporation while, in membrane
techniques, electrical energy is used as power source for the filtration process. It should be noted
that both techniques are considered energy-intensive processes. From 1950 to 2000, thermal-
powered processes predominated the desalination panorama whereas, in the last two decades,
membrane desalination techniques have reversed the situation with around 60 % of the total
capacity due to their low energy requirements compared to thermal powered techniques [23]. For
example, one of the most implemented thermal powered desalination processes in the Middle
East, the Multi-stage Flash Distillation (MSF), has a specific thermal energy consumption of
7.5-12 kWh/m3 and an electrical energy consumption of around 2.5-4 kWh/m3. In contrast,
Reverse Osmosis (RO), which is a membrane technique principally installed in Europe, Australia,
and the USA, requires only electric power with a consumption of about 2-4 kWh/m3 [21].

The freshwater problem can derived in a serious energy problem if one observes that most of
the aforementioned energy requirements come from on-grid power obtained by conventional
sources like fossil fuel. So, current desalination facilities lead to relevant emissions of greenhouse
gasses. For example, if the Sydney RO plant, which has a total capacity of 250,000 m3 per day,
operates at a specific energy consumption of 3.6 kWh/m3, it will emit 950 tons of CO2 per m3

of freshwater produced [22]. What is more, the world desalination industry has an estimated
emission of 120,000,000 tons of CO2 per year [24]. This is partly caused since only about 1 %
of total desalination facilities are powered with renewable energy [22].

Therefore, to reduce the problem of the water-energy nexus and, in order to develop a viable
and environmental-friendly desalination industry, regulatory policies, support schemes, as well
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as a deeper knowledge in alternative and sustainable energy sources are required to be scattered
worldwide [25].

1.1.4 Desalination technologies powered with renewable energy
The problem reported in the previous section makes the case for combining desalination plants
with renewable energy sources. These kinds of systems offer a beneficial and greener solution
to meet the growing desalinated water demand. Accordingly, they are attracting more and
more interest as the price of renewable energy decreases [26]. Nevertheless, desalination plants
powered with renewable energy are not economically competitive yet compared to those plants
powered with conventional energy sources [27, 28].

The coupling between desalination facilities and renewable energy presents a main challenge
that appears as a result of the intermittent nature of renewable energy sources. This circumstance
makes the production of the desalination plant to fluctuate, and consequently, the efficiency of
the system to decrease. In this way, most of these plants are small-medium size facilities and
they are connected to the on-grid power to assure a steady freshwater supply [29].

Figure 1.2: World map of direct normal irradiance, obtained from [2].

Solar energy, wind, geothermal, and wave energy are the main renewable energy sources,
in addition to hydroelectric power and biomass. However, these two last are not suitable for
combining with desalination processes as they require water resources that cannot be available
in places with water deficit. Wave and wind energy are the most suitable for coastal areas. These
sources are mainly combined with membrane processes as they are suitable to generate the
electrical power required by these processes. Geothermal energy is adequate to be combined with
thermal desalination processes as this source takes advantage of the heat of subsoil to produce
vapor or thermal energy. The main advantage of this combination is that geothermal energy
can produce energy throughout a 24 h daily cycle, thus avoiding the use of thermal storage
to perform night operation. However, this source can be only used in determined locations
due to the nature of the soil of the place at hand [30]. Finally, solar energy is the renewable
energy source most widely used to power desalination processes. This source can be employed
to produce both electrical and thermal energy so that it can be combined with membrane and
thermal processes [22]. One of its main advantages is that solar energy is more abundant and
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predictable than the rest of renewable sources. However, what makes it especially appropriate
to power desalination facilities is the usual geographical coincidence between water stress (see
Fig. 1.1) and high solar irradiance (see Fig. 1.2) [2].

Therefore, the combination of desalination plants with renewable energy is a solid technique
to meet small-medium freshwater requirements. Nevertheless, it is required to improve the
performance of these systems to implement large-scale plants. It is also necessary to modify
conventional desalination processes to make them more suitable to be integrated with renew-
able energies, as well as to explore non-conventional desalination techniques that have more
appropriate characteristics to be powered by these sources [22, 28].

1.2 An overview of membrane distillation
In the line of the search for alternative desalination processes that face the drawbacks mentioned
in the previous section, one of the main techniques that is gaining interest in recent decades is the
MD technology. This technique stands out for its low operating temperature which enables the
use of low-grade thermal solar energy, waste heat, or any type of low-grade renewable thermal
energy source for providing the necessary heat [31, 32], thus forming greener and sustainable
plants that reduce the carbon footprint of conventional desalination processes [3]. This section
aims to provide the reader with a general idea of this technology in which this thesis project
focuses. Thus, a brief description of the MD technique is presented. In addition, a revision of its
state of art and development and a description of the plant used as reference are provided.

1.2.1 Membrane distillation: Concept, characteristics and potential applications
Concept

MD technology is a thermally-driven separation process, not yet fully commercialized, based
on the transport of vapor through a hydrophobic and microporous membrane. This vapor is
then condensed somehow with a cooling current on the other side of the membrane [33]. The
surface tension of the membrane prevents liquid compounds of the feed solution from passing
through its pores, while the volatile compounds pass through them thanks to the partial pressure
gradient originated across the membrane; which is established by a temperature difference.
Despite this principle being the basis of the operation of MD modules, they can be classified in
several configurations depending on how the driving force, i.e., the partial pressure gradient, is
maintained in the permeate side of the membrane (see Fig. 1.3):

• Direct contact membrane distillation (DCMD): It is the simplest MD configuration and
it is based on maintaining a fluid colder than the feed solution in direct contact with the
permeate side of the membrane. In this way, the volatile compounds are evaporated in the
liquid-vapor interface originated in the membrane pores, and they are then condensed in
the liquid-vapor interface created by the cooling fluid at the other side of the membrane.
Its main drawback is the high thermal losses across the membrane which are produced by
the low heat transfer resistence provided by the thin membrane layer [34].
• Air-gap Membrane Distillation (AGMD): In this configuration, stagnant air is intro-

duced between the condensation surface and the permeate side of the membrane [35]. This
air acts as an isolation layer helping to reduce the thermal losses regarding the DCMD
configuration. Nevertheless, this air layer also augments the mass transfer resistance
causing the distillate flow to decrease.
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Figure 1.3: MD configurations, obtained from [3].

• Liquid-Gap Membrane Distillation (LGMD): It can be defined as a modification of
the AGMD configuration. The main difference among them is that the gap between the
membrane and the condensation surface is plenty of liquid instead of stagnant air [36].
This fact improves the mass transfer in comparison to the AGMD configuration, however,
the thermal isolation is not as good as in AGMD thus reducing the thermal efficiency [37].
• Sweeping Gas Membrane Distillation (SGMD): In this case, a flow of cold inert gas is

used to withdraw the vapor molecules outside of the membrane where the condensation
takes place [38]. The gas movement makes the mass transfer to enhance in comparison to
the AGMD technique, but it requires additional equipment that increases costs.
• Vacuum Membrane Distillation (VMD): In this configuration, the sweeping gas is re-

placed by the application of a pressure level lower than the saturation pressure of volatile
molecules of feed solution. This pressure level drives the vapor outside of the module
where it is condensed. Thus, in VMD modules the thermal losses are almost negligible, and
the distillate production is notably improved by the higher partial pressure gradient [39].
However, the additional force can produce pore wetting which can decrease distillate
quality.

In any kind of MD configuration, large amounts of heat are required to carry out the evapora-
tion process. For example, the minimum heat requirement in the evaporator channel is defined
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by the latent heat of evaporation, which is 655 kWh per m3 of distillate produced. However, in
real MD processes, the heat losses make this figure even higher. To improve this fact, one of
the approaches proposed has been to promote internal heat recovery in the MD modules [40].
In the main, the basic operation of an MD module with internal heat recovery can be explained
according to Fig. 1.4. The feed solution enters through the feed channel of the module. Along
this channel, it is pre-heated with the sensible heat that crosses the condenser channel. Later,
the pre-heated solution is driven to the heat exchanger where it is warmed up with fluid coming
from the heat generation circuit. Them, the hot solution flows to the evaporation channel of the
module where the volatile compounds are evaporated and pass through the membrane while
the non-volatile ones are rejected in the form of brine. Finally, the evaporated compounds are
condensed obtaining distillated water. Note that apart from the explained solution, other module
configurations and designs can be adopted to improve the heat recovery which are described
elsewhere [40].

Figure 1.4: Schematic diagram of a MD module (DCMD, AGMD, LGMD) with heat recovery,
adapted from [4].

Characteristics
From the process point of view, MD technique has a series of favourable characteristics that
place it in the spotlight:

• MD can treat high salinity solutions without pre-treatment requirements [41–43].
• The rejection of solid molecules is theoretically of 100 % [44], being the practical one

higher than 99 % [43].
• Its driving force is originated using a temperature difference rather than a mechanic power

that increases exergy and costs [45].
• It operates at low pressure (around 0.1 MPa), much lower than the one required by

conventional processes as RO (2.5-8.5 MPa) [46].
• It requires a low operating temperature, below 90 oC, allowing MD processes to be com-

bined with low-grade solar energy [44] and other sources of low enthalpy as waste heat [31].

Potential applications
The latter characteristics, together with the simplicity of the process, make MD technology the
most appropriate technique to develop stand-alone desalination plants to be implemented in
off-grids areas with small-medium water requirements and good solar irradiance conditions.
In fact, this is one of the most promising applications of MD technology as other desalination
processes do not allow their down-scaling because their efficiency drastically drops, significantly
increasing costs [47]. This was studied in [48] where a Solar Membrane Distillation (SMD)
plant was analyzed in economical terms, concluding that the price of desalinated water is around
10-11.30 e/m3 for a plant with a capacity of 100 m3/day. These results showed the economic
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viability of the MD technology for medium-small size plants when compared to an installation of
the same capacity based on RO powered by photovoltaic energy, in which the price amounted to
11.7-15.6 e/m3. However, it must be noted that similar research works using newer and efficient
MD modules are required, since prices discussed above can significantly decrease. Additionally,
another problem for conventional desalination processes in this application is that they usually
require access to fundamental supply services such as electricity or fuel, which normally are not
available in isolated regions.

One more possible application of MD technology is the treatment of concentrated feed
solutions. In this sense, MD technology can be used to treat brines from other desalination
processes as RO thanks to its high tolerance to salinity in comparison to conventional desalination
methods [49]. The brine treatment is a recurring problem that has not yet been solved, as brines
cannot be directly dumped into the sea, aquifers, sewage systems or ponds. This problem is
notably aggravated on island locations. In this way, the brines can be further concentrated by
MD based plants reaching zero liquid discharge [50], thus avoiding the use of expensive methods
for its treatment and the environmental problems they can cause.

On balance, MD technology is suitable to be used in fields of application in which other
desalination methods cannot be applied. So, the objective of MD technology is not substituting
conventional desalination methods (as it is not yet economically competitive at large scale),
but extending the variety of possibilities of them. Thus, numerous publications can be found
addressing MD technology as a supplementary process to RO [51, 52], or as an alternative water
source powered by solar energy to be implemented in remote locations [53, 54].

1.2.2 State of art and development
To understand the work developed in this thesis project it is beneficial to briefly revise the state of
art and development of MD technology. MD was first mentioned in a patent published by Bruce
Bodell in 1963 [55]. However, even though it is not a new concept or technique today, it has not
been fully commercialized yet, being its low thermal efficiency one of the major barriers. Thus,
research efforts so far have been dedicated to improve this issue, both designing new modules
and configurations and developing effective operating strategies.

Since the emergence of MD technology in 1963, the most exploited research field has been
the search for new designs of MD modules. These investigations have been focused on the
creation of new membranes, modules and configurations [32], and in comprehend membrane
fouling [56], which consists of the deposition of macromolecules, particles, suspensions, emul-
sions and colloids on or in the membrane, reducing membrane functionality due to pore blocking,
cake formation or foulant absorption [57]. The progress carried out in these kinds of works have
caused a breakthrough in terms of thermal efficiency as MD modules have gone from an initial
thermal consumption of 810 kWh/m3, thermal consumption of MD modules without heat recov-
ery under the best operating conditions [58], to the current consumption of around 49 kWh/m3

also in optimal operating conditions but using modules with internal heat recovery [42]. Despite
thermal consumption still being high compared for example to that reported before of MSF
processes, what makes MD technology especially interesting is that these energy requirements
can be provided by solar energy [3] or low enthalphy thermal energy sources. Consequently,
several publications propose adequate combinations among MD modules and solar fields [59], as
well as integrated compact systems of MD and solar energy [60]. Also, coupling this technique
with waste heat is a possibility [61].
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Although there is still room for improvement and research in the field of MD modules design,
this has been one of the topics more addressed in the literature, and therefore, it is in an advanced
state of maturity. This fact is reinforced with the implementation of the first MD pilot plants
since 2003, and the appearance of the first technology developer companies since 2005 [55].
That is why MD technology is in a new phase of development in which other research areas
mainly focused on the operation of MD modules are gaining interest. These works are aimed at
modelling and optimizing the variables involved in the MD process [62], and at developing con-
trol and optimization methodologies to improve the MD module’s performance in real-time [63].

The development of models in the MD field has become a fundamental tool to predict the
behaviour of these processes under different operating conditions. In particular, the existence
of different MD modules and configurations makes the development of models based on first
principles difficult. Besides, in some cases, MD developer companies do not disclose information
about the internal configuration of the module at hand, which also prevents the development of
these kinds of models. For this reason, the technique most used in literature is the Response
Surface Methodology (RSM), which is a statistical method that employs polynomial functions
to adjusts linear or smooth nonlinear processes. Some examples of MD modules modeled by
RSM can be found in [5, 62, 64]. It should be remarked that these models not only can be
used to analyze and predict the system behavior but also they are a fundamental factor for the
development of control and optimization strategies. Thus, most of these works are focused on
developing RSM models to find optimal operating conditions of MD modules. The procedure
used in these kinds of investigations is the same [65]: i) to design and carry out an experimental
campaign in a determined operating range, ii) to characterize the selected outputs of the model by
the RSM technique, and iii) to find the optimal operating conditions within the studied operating
range by using an optimization method. Nevertheless, although these works show how the
thermal efficiency and distillate production of the MD modules are significantly improved by
following the optimal static operating conditions they suggest, these conditions are difficult to
maintain especially when using an intermittent source like solar energy. Therefore, real-time
operating strategies are required to deal with this circumstance.

The development of real-time operating procedures started receiving attention since the
last decade, when the first SMD pilot plants began to arise [3, 53, 66–68]. However, there
are very few publications in this new research line in the field of MD technology. The first
control works appear as a result of the operating difficulties presented in SMD plants, as they
usually include solar fields and thermal storage devices that provide these plants with a hybrid
nature. So, the main objective of these works was to develop suitable control strategies aimed
at maintaining an adequate temperature in the solar field powering the MD module and, at
increasing heat storage to carry out night operations. In this sense, several publications can
be found in the literature which propose low-level control architectures based on Proportional,
Integral and Derivative (PID) controllers or ON/OFF controllers [63, 69, 70]. But these kinds of
works are not limited to this objective. More recently, advanced control strategies have begun
to be proposed which are tasked with improving metrics related to the MD process, as to maxi-
mize the distillate production or the thermal efficiency. These techniques are mainly based on
the Model Predictive Control (MPC) methodology and some examples were presented in [71–73].

The works carried out in this thesis project are in the line of the papers referenced above.
Thus, the contributions presented encompass the development of models, and control and opti-
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mization strategies that help commercialize MD technology. The main aim is to improve the
thermal efficiency and the distillate production of the process proposing both optimal operating
points and optimal operating procedures in real-time based on advanced control systems. It
should be highlighted that these kinds of works are fundamental for the proper development of
SMD plants as their operation must be optimized in real-time according to solar energy profile.

1.2.3 Solar membrane distillation plant at Plataforma Solar de Almería
In order to validate the research work carried out, most of the developed algorithms have been
tested in the SMD pilot plant at the Plataforma Solar de Almería (PSA, www.psa.es, Southeast
of Spain), a dependency of the Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas (CIEMAT). Fig. 1.5 shows some of the fundamental elements of this facility.
In general, the facility can be divided in two main parts: the heat generation circuit and the
desalination unit.

Figure 1.5: SMD pilot plant at PSA. From top to bottom and from left to right: solar field, Solar
Spring module and Aquastill module.

On the one hand, the heat generation circuit includes a solar thermal field of 20 m2 composed
of two parallel rows with five flat-plate collectors (Solaris CP1 Nova, by Solaris, Spain) in series
each. This field is connected to a thermal storage tank of 1500 L that can be used for thermal
regulation and storage. The solar field has a distribution systems that enables the connection of
several MD units simultaneously. Moreover, the facility allows the direct supply of the heat from
the solar field or the indirect supply by using the storage tank. The nominal thermal power is
7 kW at about 90 oC. All the facility is controlled and monitored enabling heat flow regulation.
A more complete description can be found in [3] and in some publications of this thesis [4, 74].
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On the other hand, the desalination unit is linked to the heat generation circuit trough a heat
exchanger. This part of the plant has a separate cooling water circuit (about 3.5 kWth) that is
used as a device for supplying simulated seawater. Moreover, there are several MD modules
to be connected to the desalination unit. Among them, the Solar Spring and the Aquastill one
have been used in this thesis (see Fig. 1.5). The Solar Spring module consists of a spiral-wound
Permeate-Gap Membrane Distillation (PGMD) commercial module, called Oryx 150, with a
membrane surface of 10 m2. Note that the PGMD configuration is equivalent to the LGMD
one but using permeate to fill the gap. This module was described and analyzed in [64]. The
Aquastill module is a spiral-wound AGMD commercial module with 24 m2 of membrane surface.
More details about this module were presented in [62].

1.3 An overview of systems modelling
Models are effective tools that can be useful to reduce costs and time, and to avoid risk situations
through simulations and exhaustive analysis. The models allow the user to be trained to determine
how one or more changes in the inputs of the modelled system can partially or globally affect
the process without the need to test them in reality. Furthermore, they play a major role in the
design of any kind of optimization or control strategy, as they attempt to capture some aspects of
the process that are relevant for the development of these types of techniques.

1.3.1 Main idea
To define the concept of a model, it is important to review what a process is. A process or system
is a set of elements, components or entities that interact with each other to achieve a common
goal. Thus, a model can be defined as a simplified representation of a determined process, with
which it is intended to increase its understanding, make predictions of its behavior, or design
control and optimization strategies. Note that a system or process can be represented in many
different ways, so it can have different models, depending on each perspective [75].

Although models can be classified attending to different criteria, this section only distin-
guishes between models based on first principles and models based on experimental data because
they are the ones used in this thesis project. The first term is referred to models obtained
from physical laws, which usually are characterized utilizing differential, difference or partial
derivative equations among others [69]. The second term includes the models computed from
experimental data which normally are represented by black or grey box models and statistical
functions [76].

1.3.2 Models based on first principles
This type of modelling methodologies consists of capturing the dynamics of a real process
from the physical-chemical principles that govern its functioning. So, its development requires
detailed prior knowledge of the process. The main advantages of these kinds of models are:
i) they allow to obtain an approximation with high precision of the real process, ii) they are
very useful for simulation tasks, and iii) they facilitate the understanding of the real process and
the different sub-processes that compose it as the model is built. However, these models are
usually difficult to obtain and sometimes it is impossible due to the lack of knowledge about the
physicochemical principles that describe the process.

In MD technology, this modelling methodology is mainly used to characterize the different
devices composing the solar field of an SMD facility, which are modelled by well-known models
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already presented in literature [77, 78]. Some examples can be found in [4, 69, 74, 79, 80].
Nevertheless, there are also numerous publications addressing the modelling of MD modules.
The main objective of these works is to study the dynamical behavior of the modules (especially
of the mass and heat transfer mechanisms that occur in the module) based on various design
parameters, such as the size of the membrane or its porosity, and operating conditions, such as
the temperature at the entrance to both channels of the module, and the concentration and flow of
the feed water [69, 81–89]. However, although all the models presented in the aforementioned
references were experimentally validated, in most cases the data were obtained with lab-scale
MD modules. The validations of this type of models in commercial MD modules are rare, and
only a few examples can be found in the literature as the works presented in [40] and [90]. One
of the problems preventing this is that some of the physical phenomena that happen within
the module are simplified making models less reliable, thereby hindering their validation in
commercial MD modules.

1.3.3 Models based on experimental data

Unlike the models based on first principles, the models based on experimental data do not
require complete knowledge of the process to be modelled. But in this case, their validity and
performance strongly depend on a good selection of the dependent and independent variables,
an adequate design of the experiments to be performed in the real facility, and an appropriate
selection of the structure of the model. This way, these models are easy to obtain as long as the
previous issues are properly addressed and a good set of experimental data is available.

Empirical models are especially suitable for characterizing MD modules as the difficulty
in constructing theoretical models is greater because of the different internal design of each
module. So, these theoretical models have to be continuously modified to adapt them to the
different module configurations and designs [62]. For this reason, the development of empirical
models is a good choice to obtain a mathematical expression in a relatively fast and simple
way. But it must be taken into account that the experimental campaign necessary to validate it
correctly can be extensive. Two of the common modelling techniques employed are the RSM
and the Artificial Neural Networks (ANN) methodologies [91]. These techniques are valid to
fit multi-variable linear and nonlinear processes. However, it should be noted that they cannot
be used to extrapolate the results to other systems and that they are only valid for the range
of operation in which they have been obtained. Furthermore, these types of models directly
represent the final output of the model and do not allow studying the physical phenomenon that
occurs in the system. On the contrary, they are valid to visualize and analyze the operating range
of the module and understand the behavior of the system.

Response surface methodology technique

The RSM methodology [92] is a statistical technique that uses quadratic functions to characterize
linear or smooth nonlinear processes. In this modeling methodology, design of experiment
models are usually employed to plan the experimental campaigns carried out to obtain the
experimental data. These models focus on applying changes in steps, called levels, to one of
the degrees of freedom while the others remain constant. Afterwards, the polynomial model is
adjusted based on the experimental response observed at each level for each independent variable.
The steps necessary to develop an RSM model are: i) selection of the dependent and independent
variables trough screening studies and based on the researcher experience, and delimitation of
the studied region, ii) choice of a design of experiment technique that defines the experiments
to be performed in the real plant, and iii) to adjust a polynomial function through a statistical
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treatment of the experimental data. It should be noted that a unique polynomial function is used
for each of the system outputs. This function, for a case with several input variables, is given by:

q = w0 +
m

∑
i=1

wi · zi +
m

∑
i=1

wii · z2
i +

m

∑
1≤i<k

wik · zi · zk, (1.1)

where m is the number of input variables, w0 is an offset coefficient (also known as bias b), wi are
the coefficients for the linear terms, zi and zk are the input variables of the model, wii represents
the coefficients of the quadratic terms, wik are the coefficients of the interaction terms, and q is
the output of the model. Note that in this modelling methodology the nonlinearity is given by the
quadratic terms. Some examples of RSM models in MD technology can be found in [33, 93–99].

Artificial neural networks
ANN is also a mathematical model composed of simple interconnected elements, which pro-
cess information in response to external inputs mimicking the behavior of biological neural
networks [100]. These simple elements are called neurons, and they act as a computational
processor in which three main operations are performed (see Fig. 1.6):

1. The input vector (z1,z2, . . . ,zm) is multiplied by the different weights (w1,1,w1,2, . . . ,w1,m).
2. In the summing junction, the bias vector b is added to the weighted inputs, so that:

a = z1 ·w1,1 + z2 ·w1,2 + . . .+ zm ·w1,m +b. (1.2)

3. The argument a is transformed into a scalar value q through a transfer function f . This
function can have different profiles such as linear, sigmoidal or Gaussian.

Figure 1.6: Schematic diagram of a neuron, obtained from [5].

The way in which the different neurons composing the net are grouped is known as archi-
tecture or topology of the neural network. Normally, they are grouped in different layers called
hidden and outputs layers. Besides, the inputs can be considered as an additional layer. Among
the different kinds of topologies, one of the most common used to perform function fitting in
the MD field is the Multi-Layer feedforward Perceptron (MLP). In this architecture, the number
of inputs and outputs of the network is defined according to the number of input and output
variables of the system to be modelled. More information about this architecture can be found
elsewhere [101].

In this way, the ANN technique has become an emerging tool in recent years in the MD field
since, compared to the RSM technique, it is capable of adjusting almost all nonlinear processes.
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Thus, it is especially important when independent variables that induce nonlinear behaviors in
the system are used, as is the case of the salinity of the MD module feed solution [102]. Some
examples of ANN models for MD modules were presented in [63, 76, 102–105]

1.4 An overview of automatic control
Automatic control is a fundamental part of any system or scenario of modern engineering. For
instance, it is used in the automotive industry for vehicle controls, in the aerospace industry for
decision making, aerial surveillance or control allocation, in energy production systems, and
even in biological and medical applications [106]. But also they are present in our daily life
since they are employed in many domestic devices as the heating thermostat or the thermostatic
tap and in many household appliances. The major part of this thesis project is focused on the
application of automatic control strategies to MD plants. For this reason, the present section is
aimed at introducing this topic as well as the specific techniques used.

1.4.1 Main idea
To define automatic control, the concept of system or process must be redefined from the point of
view of control engineering. A system or process can be seen as an entity that produces a signal
transformation [107]. Thus, a system has input signals, that can be manipulated and influence
the behavior of the process trough actuators, and output signals, that can be measured by sensors
and that are related to the input ones through the transformations performed in the system (see
Fig. 1.7). Moreover, the system may also be affected by external and internal stimuli that cannot
be manipulated, called disturbances. These disturbances can have a random character (noise)
or a deterministic one (interferences). Thus, automatic control systems aim to govern output
signals, i.e., to maintain them around desired values, through the adequate manipulation of the
inputs ones, regardless of disturbances.

Figure 1.7: Signals flow in a system.

In formal terms, the basis of a control system are: i) to observe the behavior of a real process
(i.e., to measure the outputs of the process), ii) to compare it with the desired behavior, and iii) to
act on the process (i.e., to manipulate the inputs signals) to modify its behavior and achieve the
desired goal. The application of this procedure, which is known as feedback, has given rise to a
step forward in control engineering, in fact, many patents have been granted on this principle [6].
The schematic diagram of a simple feedback control loop is shown in Fig. 1.8. As can be
observed, the loop is composed of two main components, the controller and the process, which
are represented as boxes. Note that the arrows illustrate the relationships among then. On the one
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hand, the input of the process, also called control variable, is denoted by u. On the other hand,
the output of the process, also known as process variables, is denoted by y. Moreover, the desired
value for the process variable, which is called the reference value or set point, is denoted by
ysp, and the control error, that is the difference between the process variable and the set point, by e.

Figure 1.8: Schematic diagram of a unitary feedback control loop, adapted from [6].

To understand the operation of the feedback control loop, it can be assumed a simple process
(one input one output) with a behavior such that the process variable increases as the control
variable is increased. Consequently, the principle of feedback can be described as: increase
the control variable when the error is higher than zero, and decrease it otherwise. In this way,
the error will become smaller and smaller, and may be zero in the ideal case. This means that
the process variable is going to be very close to the desired operating point regardless of the
properties of the process. Apart from this fact, the feedback has a series of beneficial character-
istics that make it especially interesting as it can help to reject the effects of the disturbances,
and it can make the process insensitive to system variations [6]. Nevertheless, feedback has to
be carefully used, mostly in presence of time delay or a high degree of unmodelled dynamics,
noise or disturbances; as stability1 and performance can be compromised. Moreover, any control
design has fundamental limitations on achievable performance [8].

Once the concept of feedback is clear, one can observe that there are basic elements required
to perform it. Sensors and actuators are fundamental items, but also, an essential part of this
method is the controller, which is the mechanism tasked with computing the control actions.
Thus, in the following subsections, the control algorithms employed in the different works
developed in the framework of this thesis project are briefly introduced.

1.4.2 Proportional integral and derivative control
One of the simplest mechanism to calculate the control actions are the PID controllers. In these
kinds of controllers, the control signal, u, is computed as a sum of three terms [6]. Despite this
sum can be represented in several ways, the most typical one (ideal configuration) is given by:

u(t) = K
[

e(t)+
1
Ti

∫ t

0
e(t)dt +Td

de(t)
dt

]
, (1.3)

where e = ysp− y, K is the proportional gain, Ti is the integral time, and Td is the derivative time.
This way, the first term in Eq. 1.3 is known as proportional action and it is related to the present.
The second term represents the past through the integral of the error. The last term is related to
the future as it represents a linear extrapolation of the error Td time units in the future. Therefore,
PID controllers have the ability to eliminate the steady-state errors through the integral term, and

1Here we adopt the bounded-input bounded-output definition of stability, where the system is considered to be
stable if its outputs are bounded for any bounded input.
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to anticipate the future through the derivative term.

Even though PID control is categorized as a basic control technique, it is appropriate for
many control problems, especially for those with favourable dynamics. For this reason, it is one
of the control techniques most implemented in industry [6]. Accordingly, it has been one of the
first control algorithms implemented in the MD field [63, 69].

1.4.3 Model predictive control

MCP is one of the most generic ways of formulating a control problem in the time domain. This
method has expanded notably since it appeared in the late 70s, becoming one of the control
techniques more used in both industry and academia [8]. The main advantages of this control
procedure are: i) it results in a controller easy to apply even for staff with limited knowledge in
control systems, ii) it can deal with a great variety of processes including those with complex
or unstable dynamics, dead times, multivariable, etc., iii) it intrinsically includes disturbance
compensation on a natural way, iv) it can consider process constraints in the problem formulation,
and v) it can use future references if available.

The term MPC is not limited to a single control procedure but it encompasses a family
of control techniques that rely on the use of a model of the system to compute a sequence of
control signals by optimizing a given criterion. More specifically, the basis of any kind of MPC
controller are (see Fig. 1.9) [8]:

Figure 1.9: MPC strategy, adapted from [7].

1. Use of a process model to predict the future process output, ŷ(t + j|t), along a specific o
determined prediction horizon N.

2. Minimization of a given objective function to obtain the set of future control actions
(u(t|t),u(t+1|t), . . . ,u(t+Nu−1|t), being Nu the control horizon. This objective function
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is normally aimed at maintaining the process output as close as possible to a determine
reference ysp(t + j|t).

3. Use of a receding horizon strategy, moving at each sampling time the horizon towards
the future, and sending to the actual system only the first term, that is u(t|t), of the set of
control signals computed at each step.

To implement the above method, the basic architecture presented in Fig. 1.10 is normally
used. Hence, to predict the future process outputs, the model of the system is fed by past
inputs and outputs and by the future optimal control signals. These signals are computed by the
optimizer which considers the objective function, the future tracking errors, and the constraints.
Note that the main differences among the family of MPC strategies are both the process and
noise model, and the cost function.

Figure 1.10: Basic MPC architecture, adapted from [8]

The objective function of the optimization problem can be posed as:

J =
N

∑
j=1

α · [ŷ(t + j|t)− ysp(t + j|t)]2 +
Nu−1

∑
j=0

γ · [∆u(t + j)]2, (1.4)

where the predicted system output (ŷ(t+ j|t)) and the desired reference (ysp(t+ j|t)) are estimated
for sampling time t+ j using the information available at sampling time t. Moreover, ∆u(t+ j) is
the variation in the control signal at sampling time (t + j) whereas α and γ are weighting factors
that penalize the future tracking errors and control efforts, respectively, along their horizons
(notice that in some cases they can be time-dependent). Regarding the constraints, three types of
constraints can be mainly found affecting control actions and process outputs:

∆umin ≤ ∆u(t)≤ ∆umax, ∀t ≥ 0, (1.5a)
umin ≤ u(t)≤ umax, ∀t ≥ 0, (1.5b)
ymin ≤ y(t)≤ ymax, ∀t ≥ 0. (1.5c)

In the equations, the first constraint, Eq. (1.5a), is used to limit the control efforts, trying to
avoid abrupt changes in the actuator that may cause damages. The second one, Eq. (1.5b), is
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involved to the physical hard constraints of the actuator. Finally, the third constraint, Eq. (1.5c),
gives the lower (ymin ) and upper (ymax) limits of the output process variable.

It should be noted that MPC has already been tested with successful results in systems includ-
ing solar thermal fields [108] and also in systems requiring thermal energy management [109],
which are two of the main control problems to be addressed in SMD plants. However, it is
an emerging technique in the MD field with only few works in the framework of MD facili-
ties [71, 73].

1.4.4 Hierarchical control
In many situations it is difficult, or even impossible, to design a control system as a single
entity with centralized decisions, unless the system and control objectives are very simple. In
complex industrial processes, such as an SMD plant, different control objectives must be met
that normally require different time scales. Besides, in some cases, an overall complex control
objective must be met which cannot be directly implemented in a unique controller. The normal
way to deal with the design of a controller in such challenging situations is to use hierarchical
control architectures. The main idea behind this control methodology is to divide the actual
control problem into a sequence of simpler problems hierarchically ordered, which are handled
by dedicated control layers. In this way, the design of the controller is easier since simpler
control structures are defined requiring different technical and theoretical tools. Moreover, the
control reliability and performance are improved [110].

Hierarchical controllers can be formulated according to three basic decomposition meth-
ods. The first one is called functional decomposition. This method is used in processes that
can be treated as a whole, and it consists of assigning a series of partial control goals in a
vertical structure with hierarchical dependency. This structure is known as multilayer struc-
ture [110]. The decision unit of each layer calculates control actions concerning the overall
system, but each one makes decisions of a different type. The second decomposition method
is the spatial decomposition. This methodology is based on the decomposition of the overall
control task into several local subtasks, each one with the same objective of the overall one but
related to an individual spatially isolated part of the entire process. Note that these subtasks
are of smaller dimension and therefore, they have to process less information. This method-
ology drives to so-called multilevel structures or multilayer-multilevel structures [111]. The
last method is called temporal decomposition [112]. This method is applied when the system
has a multi-scale behavior in terms of time, i.e., there is a considerable difference among the
rate of change of slow and fast state variables (and/or disturbances) of the process. Thus, this
method also leads to a multilayer concept, but in this case, each layer has a different time horizon.

Notwithstanding the fact that the three methods described above are the basis of hierarchical
control methodology, they can be also mixed. In this way, in this thesis project, a mix between
the functional and temporal decomposition methods has been used in most of the developed
controllers. An example of the architecture adopted is shown in Fig. 1.11. In this scheme, the
two layers involved in the control structure have different objectives. The regulatory layer is
usually formed by PID controllers and it is in charge of performing low-level control tasks, i.e.,
temperature or flow rate control. On the contrary, the upper layer normally includes advanced
control methodologies as MPC controllers, and it is tasked with carrying out high-level control
tasks. In the case of an SMD plant, it tries to improve metrics related to the distillation process as
to enhance the thermal efficiency or distillate production. It should be noted that in this control
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structure, the function of the upper layer is to calculate the references for the bottom layer based
on the aforementioned criteria. Moreover, it should also be highlighted that the two layers are
decoupled in time, since the upper layer normally deals with slow state variables whereas the
lower one involves fast state variables.

Figure 1.11: Hierarchical control architecture, adapted from [9]. ts is the sampling time.

1.5 An overview of optimization
As described in the previous section, optimization problems must be solved in some of the
control techniques used in this thesis project. For example, in the MPC technique, an opti-
mization problem is solved to compute the optimal control actions. Similarly, in hierarchical
controllers, the upper layer aims to provide the follow-up control layer with the optimal values
for its references, which also means to formulate and solve an optimization problem. Moreover,
optimization algorithms have not only been used in this thesis project for these applications but
also they have been used to find optimal operating conditions for the MD module. Therefore,
optimization is a fundamental part of the developed works.

This section provides the reader with a general overview of optimization, defining its concept,
and presenting a review of strategies to solve these problems. The latter is related to the methods
used in this thesis.

1.5.1 Concept and definition
Optimizing means searching for the best way to carry out an activity, and in mathematical terms,
finding the maximum or minimum of a certain function defined in some domain. In formal
nomenclature, an optimization problem with constraints can be posed as:

min
x

J(x). (1.6)

s. t. h(x) = 0, (1.7)
g(x)≤ 0, (1.8)
x ∈ X ⊆ℜ

nx , (1.9)
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where x is a vector of continuous decision variables, J is the objective function, which is defined
as a real valued function J : X ⊆ℜnx→ℜ, X is a non-empty subset in ℜnx , which is known as the
feasible or search space. Note that ℜnx consists of all n-tuples of real numbers in the x-domain,
i.e., the real vector space delimiting x-domain. h(x) = 0 is the set of equality constraints, with
h : X ⊆ℜnx →ℜ, and g(x)≤ 0 is the set of inequality constraints, with g : X ⊆ℜnx →ℜ.

To solve the problem formulated above, a minimum objective function value, J∗ ∈ℜ related
to every point x∗ ∈ X of the search space, must be found such that:

J∗ = J(x∗)≤ J(x) ∀x ∈ X . (1.10)
h(x∗) = 0, (1.11)
g(x∗)≤ 0. (1.12)

By defining x∗ on this way, it is assumed that x∗ is a global solution of the optimization problem,
i.e., it provides the lowest value of the objective function for the entire search space. However,
there are also local minima whose definition slightly differ from the global ones. Thus, a local
minimum in x∗ ∈ X exists if there are any value ε > 0 such that:

J∗ = J(x∗)≤ J(x) ∀x ∈ X and ||x−x∗||< ε. (1.13)
h(x∗) = 0, (1.14)
g(x∗)≤ 0. (1.15)

The definitions showed above have been performed according to minimization problems.
Nevertheless, they can be adapted directly to maximization problems since to maximize a deter-
mined objective function J(x) is equivalent as to minimize −J(x).

In what follows, different techniques to solve optimization problems are presented. It should
be remarked that optimization problems can be classified taken into account different issues, as
the problem nature (linear, quadratic or nonlinear problems), the nature of the decision variables
(continuous or binary variables or mixed integer problems), or the taxonomy of optimization
methods (exact or heuristic methods). In this thesis, the optimization problems are differentiated
according to their nature as is how they have been used in the different works of this thesis.

1.5.2 Linear optimization
In these kinds of problems, also known as Linear Programming (LP) problems, both the objective
and all the constraints are linear functions. Thus, a linear optimization problem can be formulated
as in Eqs. (1.6)-(1.9) but being J(x), h(x) and g(x) linear functions [113].

LP problems cannot be analytically sorted out; however, the resolution of these problems
is in an advanced maturity state and there are a variety of effective techniques to solve them.
Some of the most employed resolution techniques are the Simplex algorithm [114] or the Interior
Point method [115]. These kinds of solvers can handle problems with hundreds of variables and
thousands of constraints being able to solve them in a matter of seconds on a normal desktop
computer. Nevertheless, it should be noted that is still a challenge to deal with very large LP
problems or to solve them with exact real-time requirements [113].

1.5.3 Quadratic optimization
In quadratic optimization or Quadratic Programming (QP) problems the objective function is
quadratic wheres the equality or inequality constraints are linear. So the basic difference with the
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definition in Eqs. (1.6)-(1.9) is the objective function which is given by:

J(x) =
1
2

xT Hx+ cT x, (1.16)

where H ∈ ℜnxn is a symmetric matrix and c ∈ ℜn a vector, being ℜn a sequence of n real
numbers. Note that the nomenclature xT indicates the transpose of variable x.

It should be noted that QP problems have a particularity for the case without constraints since
they can be solved analytically as the quadratic function can be transformed is a set of linear
functions. Conversely, if the problem has constraints, the difficulty in working out a QP problem
has great dependence of the nature of matrix H. On the one hand, in convex QP problems, which
are relatively easy to handle, matrix H is positive semidefinite. On the other hand, if H has
negative eigenvalues (non-convex QP problems) the objective function can have more than a
local minimum [113]. Some of the solvers for these kinds of optimization problems can be found
in [116, 117]. Note that most MPC controllers lead to these QP problems [8].

1.5.4 Nonlinear optimization
Although the optimization problems concerning the vast majority of the processes can be
formulated simply, i.e., as LP or QP problems, in many applications the objective function or
some of the constraints are described by nonlinear functions. These optimization problems are
known as Nonlinear Programming (NLP) problems, and they can be posed also as in Eqs. (1.6)-
(1.9) but being J(x) or h(x) and g(x) nonlinear functions [118]. In these problems, the behaviour
is much different from LP or QP problems as they normally have a set of local minima and a
global minimum that can be located in an interior point, on the boundary, or at an extreme point
of the search space. Consequently, most of the solvers used in LP or QP problems, which perform
derivative-based searches to locate extreme points, may not determine an optimal solution in
NLP problems and therefore, other kind of solvers must be employed. Below the two resolution
techniques used in this thesis are introduced.

Genetic algorithms
These kinds of solvers are classified as heuristic optimization methods, which are techniques
specially designed to explore the entire search space, and with some specific characteristic
to escape from local solutions. Particularly, Genetic Algorithms (GA) are population-based
methods that work with a set of related candidate solutions, which compete with each other
mimicking the processes perceived from biological and natural evolution.

Algorithm 1: Basic GA.
1. Initialize a population of candidate solutions.
2. Evaluate of each candidate solution (or chromosome).
3. Create new candidate solution by using the genetic operators.
4. Evaluate new candidate solutions.
5. Delete some candidate solutions from the augmented population (based on their fitness

value) to maintain the size of the population.
6. Evaluate the stopping criteria, if it is met, stop; otherwise, return to step 3.

In general, natural processes can be ordered and structured forming a step-by-step algorithm,
which is the basis of GA. In this way, GA is based on the use of a population of chromosomes
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(set of candidate solutions) that are created at each generation, i.e., each iteration of the algorithm,
through several operations and transformations making by genetic operators. Each candidate
solution has an associated fitness value, for example, the objective function value, so that those
with better value have more opportunities to survive from one generation to another. The main
steps in a basic GA are depicted in Algorithm 1. Note that a more complete description of GA
can be found elsewhere [119].

Generalized Benders decomposition
In this thesis project, apart from continuous variables, some of the models include binary ones,
leading to Mixed-Integer Nonlinear Programming (MINLP) optimization problems. In these
problems, the nonlinear nature can be imposed by: i) nonlinear terms in the integer variables
domain, ii) nonlinear terms in the continuous variables domain, and iii) nonlinearities in the joint
domain of integer and continuous variables. An MINLP problem can be formulated as:

min
x,φ

J(x,φ). (1.17)

s. t. h(x,φ) = 0, (1.18)
g(x,φ)≤ 0, (1.19)
x ∈ X ⊆ℜ

nx , (1.20)
φ ∈Φ

ny = {0,1}, (1.21)

where φ ∈Φny = {0,1} represents binary variables, being Φny the vector space delimiting the
φ -variables domain. The resolution of an MINLP problem in the form presented in Eqs. 1.17-1.21
has two main types of difficulties to consider. Firstly, as the number of integer variables increases
in the problem, a larger and more complex combinatorial problem must be addressed. Secondly,
the existence of multiple local solutions due to the non-convex nature of nonlinear problems.
Despite these facts, efficient methods for solving these types of problems have been developed
in the literature ensuring global or quasi-global convergence to optimal solutions [118]. One of
the most used is known as Generalized Benders Decomposition (GBD), and it is based on the
use of Lagrange functions and multipliers and duality theory [120].

The basic idea of the GBD technique consists of solving the overall MINLP problem
iteratively, calculating in each iteration an upper and lower band in the solution space of the
MINLP problem. These bands are obtained by decomposing the MINLP problem into two
subproblems: the master problem that provides the lower band, and the primal problem, which
provides the upper one. Thus, the primal problem corresponds to the problem defined in
Eqs. 1.17-1.21 with the φ -variables fixed in a determined solution 0-1, denoted by φ l being l the
iteration counter:

min
x,φ

J(x,φ l). (1.22)

s.t. h(x,φ l) = 0, (1.23)

g(x,φ l)≤ 0, (1.24)
x ∈ X ⊆ℜ

nx . (1.25)

R Note that the solution of this primal problem is the global solution for problem (1.17)-(1.21).

By finding the solution to the problem above, two different situations can be distinguished:
feasible primal and infeasible primal. On the one hand, the feasible primal occurs when the
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solution of the primal problem is feasible at iteration l. If so, the resolution of the problem
provides information of: i) the value of xl , ii) the value of the upper bound, which is the value of
J(xl,φ l), and iii) the value of the optimal Lagrange multipliers vectors λ

l and µ l related to the
set of equality (h) and inequality (g) constraints respectively. This information can be used to
formulate the following Lagrange function, which is called the optimallity cut:

Ll(x,φ ,λ l,µ l) = J(x,φ)+λ
lT

h(x,φ)+µ
lT g(x,φ). (1.26)

On the other hand, if the primal problem at iteration l is detected by the solver to be infeasible,
only the constraints of the primal problem are considered to identify a feasible point, formulating
the infeasible primal problem as:

min
x,υ

υ (1.27)

s.t. h(x,φ l) = 0, (1.28)

g(x,φ l)≤ υ , (1.29)
υ ≥ 0, (1.30)
x ∈ X . (1.31)

The resolution of this new problem provides information about the Lagrange multipliers related
to the equality and inequality constraints, denoted by λ̄

l
and µ̄ l respectively. Thus the feasibility

cut can be posed as:

L̄l(x,φ , λ̄
l
, µ̄ l) = λ̄

lT
h(x,φ)+ µ̄

lT g(x,φ). (1.32)

R Note that at each iteration only one cut is generated, depending if the primal problem is
feasible or infeasible. Also, the upper bound is generated only if the primal problem is
feasible.

The duality theory is used to define the master problem, which is based on the projection of
the overall MINLP problem in the φ -space (see [120] for more details):

min
φ ,µ0

µ0 (1.33)

s.t. µ0 ≥ Ll1
(xl1

,φ ,λ l1
,µ l1

) l1 = 1, . . . ,L1, (1.34)

0≥ L̄l2
(xl2

,φ , λ̄
l2
, µ̄ l2

) l2 = 1, . . . ,L2, (1.35)

where L1 and L2 are the last iteration counters at which the optimallity and feasibility cuts were
updated.

R The master problem is equivalent to the MINLP (1.17)-(1.21). Also, the value of the variable
µ0 is the value of the lower bound.

The whole algorithm is solved on an iterative way according to the method presented in
Algorithm 2.
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Algorithm 2: Basic GBD algorithm.
1. Initialize a feasible solution for the binary variables and solve the primal problem.
2. Solve the master problem. Stop if the gap between the upper (UB) and the lower

bound (LB) is lower than a given tolerance factor (ε), which is, UB≤ LB +ε .
3. Solve the primal problem distinguishing among the two cases: feasible primal and

infeasible primal. Return to step 2.

1.6 Research performed
As described, MD is an emerging separation technology in a pre-commercial phase, with great
potential to be employed in applications in which other desalination technologies cannot be
used. The current development state of the technology requires the creation of proper operating
methods to improve the distillate production and thermal efficiency of the MD modules, two of
the main drawbacks of the technology till now. Accordingly, this thesis is focused on developing
optimal operating strategies for MD based plants, especially for those powered with solar energy
in which the operating management is even more difficult due to the intermittent nature of
this source. Thus, several modelling, control, and optimization methodologies are used for the
development of the aforementioned operating methods.

The following subsections show an introduction to the different works carried out. These
works have been divided and developed in various phases according to the ones of a typical
control engineering project. In the first development phase, a model of both the heat generation
circuit and the MD module of the SMD plant of the PSA was developed. Also, a direct control
layer for the heat generation circuit, mainly aimed at flow and temperature regulation, was pro-
posed. In the second phase, hierarchical control strategies were designed to improve the distillate
production and thermal efficiency of the SMD plant as well as to improve the time required in its
start-up phase. These strategies were based on the models and regulation controllers developed in
the first phase. The third development phase was devoted to the design and creation of advanced
control and optimization strategies to improve the operation of commercial MD plants that
includes multiple MD modules. In this phase, the models and controllers developed for the heat
generation circuit in phases 1 and 2 were also used, and the new strategies were focused on the
management of the desalination unit which has not been addressed in the preceding phases. The
final phase of the thesis was the elaboration of a tutorial that includes all the knowledge acquired
throughout the thesis in the field of modelling and control in MD.

1.6.1 Modelling and low-level control of solar membrane distillation plants
Background
The first work done in the Ph.D. thesis was the development of a model and a regulation control
layer for the heat generation circuit of an SMD plant. This work was motivated as the previous
proposals in literature have not been validated in real systems [69, 121], so that fundamental
dynamics for the development of control systems could be ignored. In addition, the low-level
controllers proposed for SMD plants, also presented in [69, 121], were based on simple control
loops with ON/OFF controllers and focused on maintaining the temperature in specific parts
of the heat generation circuit. However, no work presented a complete control architecture to
maintain the temperature at the outlet of the heat generation circuit, which is fundamental for the
evaluation of MD modules and the development of higher-level control strategies.
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Regarding the MD module modelling, most of the proposals are centered on modelling
lab-scale MD modules. In addition, they only take into account as model output the distillate
production [94, 97], and only a few works consider also metrics related to the thermal efficiency
of the module [62, 64], which is essential to predict its behavior. Besides, very few studies
consider the salinity of the feed water as an input of the model [102] which is also fundamental
to explore some of the applications of MD technology, as the treatment of brines. On balance,
the main gap is the lack of models for commercial MD modules considering both the distillate
production and the thermal efficiency as outputs and the salinity of the feed solution as input.

Contributions
The contributions performed in this research area addressed the literature gaps mentioned above.
Therefore, a complete dynamic model of the heat generation circuit of an SMD plant was
developed and validated in the facility of the PSA. Based on this model, a feedback control
architecture was designed and experimentally tested. This control structure was composed of
four regulatory control loops and a reference governor that enables to fix suitable operating
temperatures in the heat generation circuit to maintain the desired temperature conditions at the
entrance of the MD module. This work was successfully published in the journal in [74] (see
Section 2.1.1) as an extension of the works in [122–124].

The development and implementation of the controller mentioned in the previous paragraph
allowed us to perform an experimental campaign in the SMD plant of the PSA to model a
commercial PGMD module. The experimental data obtained were used to develop both an RSM
and an ANN model. Unlike most modelling approaches presented in the literature, the distillate
production and the thermal energy consumption were considered as predicted performance
parameters. In addition, apart from the typical independent variables used in these kinds of
models, the salinity of the feed solution was included in a range of 35-140 g/L. This work was
published in the journal in [5] (see Section 2.1.2).

1.6.2 Hierarchical controllers for the optimal operation of solar membrane distillation
plants
Background
After finishing the previous research tasks, the project was aimed at developing hierarchical
controllers for SMD plants. This second development phase is the natural evolution of control
engineering projects as first, a regulatory layer is required to perform low-level control tasks,
and then, a hierarchical controller can be formulated in which the bottom layer is formed by the
regulation controllers and the upper layer by advanced control strategies in charge of carrying
out high-level control tasks. In the case of SMD plants, these tasks are aimed at improving both
the distillate production and thermal efficiency of the MD module as well as at reducing the
operating costs.

Until then, the works focused on improving the metrics mentioned above proposed opti-
mization methods providing static operating points [98, 125]. However, in SMD plants these
conditions are difficult to maintain, as they require discontinuous operations and the proper use
of specific buffering systems to deal with the unpredictable nature of solar energy. Consequently,
real-time operating procedures are more suitable for the management of these plants. From this
point of view, the first works published were the approaches presented in [69, 121]. However,
as mentioned above, the control methods proposed in those works were based on regulation
controllers following static references. A more complete approach was presented in [63], in
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which a neural network-based feedforward optimal control system was developed and tested
in a real SMD plant. Nevertheless, the objective of this control architecture was to enhance
the distillate production without considering other fundamental performance parameters in MD
as the thermal energy efficiency. This is the main research gap observed, the lack of real-time
procedures to improve both metrics and to reduce the operating costs of the facility.

Moreover, another gap observed was the lack of methodologies for the start-up procedure
of these plants. The works referenced above propose control methods for the operation phase,
however, another fundamental stage in these facilities is the start-up phase, which was not taken
into account on those works. The MD modules cannot be operated at low temperature (i.e., below
60 oC) since they produce very low distillate losing economic profitability. Thus, a nominal
operating point must be reached in the heat generation circuit before turning on the MD module.
This is not a particular problem of MD processes as most industrial processes powered with solar
thermal energy require a nominal operating point to start the operation. To correctly visualize the
problem, the reader should take into account that these plants normally include thermal storage
devices to improve the dispatchability of solar thermal fields. In this way, if the storage device
is unloaded in terms of energy or widely stratified, the transitory regime can take a long time
until reaching the operating point. Despite being a common problem, only the work in [126]
proposed a methodology to optimally perform this phase. However, the method was based on
an off-line dynamical-optimization strategy, in which it was assumed that there were no model
uncertainties or process disturbances, which is an ideal situation that does not occur in real
operations, particularly if the disturbances are mainly caused by solar irradiance.

Contributions

The research carried out in this area encompasses the two main literature gaps observed. Thus,
the first research goal was tasked with the development of a real-time hierarchical control archi-
tecture that could be configured with different objective functions allowing to optimize both the
distillate production and the thermal efficiency of the MD module and the operating costs of the
whole facility. This hierarchical controller was composed of two layers, the bottom layer was
based on the controllers presented in [74]. The upper layer was formed by an MPC technique
in charge of generating the references for the controllers of the bottom layer by optimizing the
aforesaid objectives. Besides, two control modes were proposed for the efficient operation of
the SMD plant, as well as a start-stop procedure for the solar field and the MD module. The
proposed approach was tested both in simulation and in the SMD pilot plant of the PSA. As a
result of this work, several contributions were presented in the conferences in [127, 128] and a
journal article was published [4] (see Section 2.2.1).

The second work focused on improving the start-up phase of SMD plants and solar thermal
facilities with single-tank storage configuration in general. This work was developed in the
framework of a research stay that the Ph.D. candidate made in the Federal University of Santa
Catarina (Florianopolis, Brazil). The contributions performed in this area were twofold. First,
the use of the mixing valve, see valve 1 in Fig. 1.12, as a control variable. Normally, this valve is
used in fixed positions (i.e., opened or closed) and only the water flow rate is used as manipulated
variable, which is effective for irradiance disturbances but not when temperature stratification
problems appear during the start-up phase due to its physical limits. Second, the development of
a real-time procedure for the start-up phase of solar field plants with direct single-tank storage
configuration. This procedure was based also in a hierarchical controller composed of two layers.
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On the one hand, the bottom layer is composed by one of the direct controllers presented in [74],
which is in charge of controlling the outlet solar field temperature by acting on the water flow
rate, and a new control loop developed specifically for this work, which is tasked with controlling
the inlet solar field temperature by acting on the aperture of the mixing valve. On the other hand,
the upper layer included an MPC strategy considering the operating conditions at each sampling
time for computing the setpoints for the bottom layer, trying to maximize the temperature in
the storage device as fast as possible. The operating strategy was also tested in the pilot SMD
plant of the PSA and the results were published in the journal paper in [9] (see Section 2.2.2)
as an extension of the conference works in [129, 130]. Besides, a similar control structure but
attending also to economic criteria was developed and presented in the conference in [131].

Figure 1.12: Schematic plant diagram obtained from [9].

1.6.3 Control and optimization strategies for membrane distillation industrial applica-
tions
Background
In the two previous development phases of the thesis project, as well as in most of the works
published in the literature, the proposals were aimed at improving the operation of the solar
field, trying to maintain desired temperature operating points at the entrance of the MD module
to optimize determined performance metrics. However, not only the temperature affects the
performance of MD modules, but also the feed water flow rate [62]. The optimal management
of this variable is fundamental as a tradeoff solution must be adopted to maximize both distil-
late production and thermal efficiency in most of the current commercial-scale MD modules
available nowadays [132]. Moreover, the proposed operating strategies were applied to SMD
plants including a single MD module and without taking into account a given water demand
[4, 63, 121]. This is especially significant since, when designing an SMD plant at industrial
scale, it must include multiple MD modules. The reason is that a single commercial MD module
produces a relatively low amount of distillate. Note that current commercial MD modules can
produce up to 60 L/h in optimal operating conditions [42]. This fact completely alters the control
problem, requiring new operating procedures to be posed.

In summary, there is a lack of research works that addressed: i) the optimal real-time
management of the feed flow rate of MD modules according to a given water demand and
operating conditions, and ii) the management of the multiple MD modules composing an
industrial-scale plant.
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Contributions
The contributions performed in this field were focused on the management of the desalination
unit of an industrial scale SMD plant. With this aim, a case study was adopted combining an
SMD plant and a greenhouse. This case study was selected since, to power off-grid greenhouses,
is one of the potential application of thermal powered desalination processes [133, 134]. In
addition, in the case study the solar field powering the desalination unit was operated with the
strategy developed in the previous work [4],

Thus, the first research work was devoted to develop a Distributed MPC (DMPC) strategy
in charge of computing the feed flow rates for each of the MD modules included in the SMD
plant. The objective of the management technique was to reduce the specific thermal energy
consumption of the set of MD modules while ensuring the supply of water for irrigation purposes.
The main advantage of the proposed technique was that each of the MD modules included in the
desalination unit was considered as an agent of the decentralized controller following the ideas
presented in [135]; so, each agent solved a simple MPC problem with the objective mentioned
above, only exchanging information with neighboring agents. This fact allowed the controller to
considerable reduce the computing time in comparison to centralized approaches, enabling to
compute optimal solutions within the required sampling time when considering industrial-scale
SMD facilities. The work was published in the journal in [7] (see Section 2.3.1) as extension
of the conference contribution in [136]. Also, a preliminary version including the results of the
centralized approach was published as a technical report in [137].

In the formulation of the DMPC control system, only continuous variables for the feed water
flow rate (within its operating range 400-600 L/h) were considered. In the second work carried
out, elaborated also during the research stay of the Ph.D. candidate at the Federal University of
Santa Catarina, integer variables were introduced in the problem to manage, apart from the feed
flow rate, the number of MD modules turned on at each sampling time according to water needs
and operating conditions. The contributions performed were: firstly, the RSM models were
adapted to the Mixed Integer Programming (MIP) methodology, in which the binary variables
were related to valve apertures that enabled to turn ON/OFF the MD units included in the plant.
Based on the MIP model, an MINLP optimization problem was formulated aimed at reducing
both the specific thermal energy consumption and the total thermal energy consumption, while
assuring the water requirements. Secondly, an efficient algorithm based on the GBD method was
developed to solve the MINLP problem. This algorithm allowed us to use simpler optimization
solvers (i.e., QP solvers) rather than MINLP for solving the overall problem. This algorithm was
then included in an MPC controller to reflect the operational strategy. The work was published in
the journal in [138] (see Section 2.3.2). Also, a preliminary version showing the results obtained
with the MINLP problem was presented in the conference in [139], and a similar approach but
also adding in the problem the possibility of taking water from the public utility network was
presented in [140].

1.6.4 Tutorial on modelling and control of membrane distillation technology
Background
Ph.D. thesis projects usually start with a review of the state-of-art of the research field at hand.
This step is the basis to identify the research gaps and motivate the thesis framework. In the case
of the present project, this review was also performed however, many few works on automatic
control in MD were found; basically only the ones in [63, 69, 121]. The main reason behind this
is that the application of control techniques is a new research area in the MD field, and almost all
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the previous works were aimed at module design or evaluation purposes as mentioned above.
This way, the works proposed in the framework of this thesis focus from the outset on developing
contributions from the point of view of automatic control, trying to demonstrate how these
techniques could be essential for the industrial development of the technology. Nevertheless,
along with the project development, the interest in the application of control techniques to MD
processes grew up, and other research groups began presenting new proposals [72, 73].

Contributions
Motivated by the emergence of new automatic control approaches and considering the lessons
learned throughout the development of the thesis, the last step of the Ph.D. project was to develop
a tutorial on modelling and control techniques applied to MD processes. In this work, all the
proposals made so far on this topic were revised identifying the different techniques applied and
the improvement reached. The objective was to evidence the technological development achieved
through the application of these techniques as well as to establish the lines to follow in future
works. The work was published in the journal in [141] (see Section 2.4.1) and a preliminary
version was published in the conference in [142].
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2. Contributions to scientific journals

This Ph.D. thesis is presented as a compendium of publications according to modality A of the
normative of the University of Almería (article 24). This normative establishes that any Ph.D.
thesis can be presented in the compendium modality as long as it is supported by at least three
scientific contributions. Two of them must be included in category A of the rating scale contained
in the Research and Transfer Plan from the University of Almería approved in the corresponding
year. The third contribution, different from the previous ones and that does not consist of a
contribution to a congress, must be included in category B of the rating scale mentioned above.
In this rating scale, category A is referred to the journals ranked in the highest position of their
subject category, i.e., Q1 in the Journal Citation Report (JCR), and category B to those journals
ranked in the second-highest place, i.e., Q2 or Q3 in the JCR.

This thesis project is supported by 7 scientific articles in journals ranked in the JCR, which
are classified as shown below:

• Q1 papers: 4.
• Q2 papers: 2.
• Q3 papers: 1.

The articles above have been included in this chapter according to the aforementioned normative.
Moreover, they have been ordered as described in Section 1.6. Particularly, Section 2.1 contains
the works dealing with the modelling and low-level control of SMD plants. More precisely,
Section 2.1.1 includes a work encompassing the modelling of the heat generation circuit and the
design of the low-level control structure used for regulating it. Section 2.1.2 contains a work
presenting the model of an MD module together with an optimization method for finding its
optimal operating conditions.

Then, Section 2.2 shows the works presenting hierarchical control structures for SMD plants.
Section 2.2.1 contains a paper presenting the detailed design of a hierarchical controller for the
optimal operation of an SMD plant, whereas Section 2.2.2 includes a paper also presenting a
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hierarchical controller but in this case for the start-up phase of an SMD plant.

After that, Section 2.3 is devoted to the works proposing control structures for MD plants
at an industrial scale. Namely, Section 2.3.1 shows the design of a distributed controller for
these kinds of plants. Section 2.3.2 contains the work proposing the MINLP problem for the
optimal management of these plants and the design of an efficient algorithm to solve it. Finally,
Section 2.4.1 presents the tutorial on modelling and control methodologies for MD plants.

The reader must take into consideration that each of the papers contains its specific bibliogra-
phy, which is not related to the main bibliography section of the present document. In addition,
it should be remarked that apart from the journal papers, the research work developed during the
Ph.D. project resulted in the following contributions:

• Contributions to a general outreach magazine: 1.
• Contributions to international conferences: 6.
• Contributions to national conferences: 6.

Each of the aforementioned contributions has been referred to in the corresponding section
among the ones described above. Besides, the Ph.D. candidate made two research stays, one at
the Federal University of Santa Catarina (Florianopólis, Brazil) and another one in the research
center Plataforma Solar de Almería (Almería, Spain).

Aside from the outcomes included in this chapter, the Ph.D. candidate has participated in
different contributions directly derived from the activity carried out during the thesis project.
However, these publications have been included in Chapter 4 according to the normative of the
University of Almería.
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2.1 Modelling and low-level control of solar membrane distillation
plants

2.1.1 A feedback control system with reference governor for a solar membrane dis-
tillation pilot facility
Research in this field is supported by the following journal publication:

Title A feedback control system with reference governor for a solar
membrane distillation pilot facility

Authors J. D. Gil, L. Roca, G. Zaragoza, M. Berenguel
Journal Renewable Energy
Year 2018
Volume 120
Pages 536-549
DOI https://doi.org/10.1016/j.renene.2017.12.107
IF (JCR 2018) 5.439
Categories Energy & Fuels (17/103) Q1

Green & Sustainable Science & Technology (7/35) Q1

Contribution of the Ph.D. candidate
The Ph.D. candidate, J. D. Gil, is the main contributor and first author of this paper.

Aside to this publication, it gave rise to the following international conference paper:

• J. D. Gil, A. Ruiz-Aguirre, L. Roca, G. Zaragoza, and M. Berenguel, “Solar membrane
distillation: A control perspective,” in 23th Mediterranean Conference on Control and
Automation (MED 2015). Torremolinos, Spain, 2015, pp. 796–802.

Also, the following contributions to a national conference were presented, which were awarded
for the best work in the section of Control Engineering:

• J. D. Gil, A. Ruiz-Aguirre, L. Roca, G. Zaragoza, M. Berenguel, and J. L. Guzmán,
“Control de plantas de destilación por membranas con apoyo de energía solar–parte 1:
Esquemas,” in XXXVI Jornadas de Automática. Bilbao, España, 2015.
• J. D. Gil, A. Ruiz-Aguirre, L. Roca, G. Zaragoza, M. Berenguel, and J. L. Guzmán,

“Control de plantas de destilación por membranas con apoyo de energía solar–parte2:
Resultados,” in XXXVI Jornadas de Automática. Bilbao, España, 2015.
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a b s t r a c t

This work presents the development of a feedback control system for a pilot membrane distillation fa-
cility powered with solar energy located at Plataforma Solar de Almería (PSA), Spain. The control system
allows to fix a suitable operating temperature at the inlet of the distillation system, improving the
operation quality. Four direct control schemes based on Proportional Integral (PI) controllers and
Feedforward (FF) are designed as well as a reference governor which generates temperature references
for the heat generation circuit direct control layer. Simulations and experimental tests are shown to
demonstrate the effectiveness of the proposed scheme.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and literature review

Nowadays, water scarcity is one of the main challenges of the
World. The demand of fresh water for human use, agriculture and
industrial purposes is increasing steadily, reducing the water res-
ervoirs. Consequently, desalination technologies have become a
necessity, specially in dry areas with water shortage. Due to the
large amount of energy required, desalination technologies must be
associated with renewable energy sources for their economical
sustainability [1,2]. Using renewable energy for desalination not
only sorts out the water problem but also replaces traditional
sources like fossil fuels, thus contributing to efficient environment
development [3]. Due to the high solar irradiance available in places
with lack of water, solar energy is the most suitable renewable
source for desalination processes.

In this context, Solar Membrane Distillation (SMD) is an appro-
priate technology for developing small-scale desalination systems in
remote areas with good solar irradiance conditions [4,5]. This tech-
nology stands out for its independent features such as easy automa-
tion and low thermal energy requirements. It should be noted that
SMD has not been yet commercialized due to some technical design

problems and uncertainties associated with economic and energetic
costs [6]. Therefore, different kinds of modules and Membrane
Distillation (MD) configurations have been evaluated in the recent
years in termsof thermalefficiencyanddistillateproduction [7,8]. The
experimental campaigns carried out in these studies require steady
stateconditions in themainprocessvariables inspiteofchanges in the
energy source (solar radiation), thus demanding adequate control
systems to achieve desired performance [9].

There are a few works in the literature related with control and
modelingof SMDprocesses. InRef. [10], a reviewof theoreticalmodels
was carried out with a description of the main variables involved in
theMDprocess. Amathematicalmodel was developed in Ref. [11], in
order to simulate the daily production of a solar vacuum membrane
distillation unit. In Ref. [12] steady-state simulations, using a wide
range of operating conditions, were carried out for a direct contact
membrane distillation system. A double loop optimization problem
was expressed in MATLAB to solve the nonlinear equations.

From an automatic control point of view, the first work published
[13], implemented and tested two temperature control loops using PI
controllers in a model of a SMD system. Refs. [14,15] also proposed a
dynamic mathematical model of a SMD facility to test a control
system based on PI and on/off controllers aimed at temperature
regulation. A very interesting control approach was presented in
Ref. [16], where a control strategy based on a neural network opti-
mization for a SMD unit was developed and experimentally tested.

* Corresponding author.
E-mail addresses: juandiego.gil@ual.es (J.D. Gil), lidia.roca@psa.es (L. Roca),

guillermo.zaragoza@psa.es (G. Zaragoza), beren@ual.es (M. Berenguel).

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier .com/locate/renene

https://doi.org/10.1016/j.renene.2017.12.107
0960-1481/© 2018 Elsevier Ltd. All rights reserved.

Renewable Energy 120 (2018) 536e549



The neural network model of the systemwas employed to identify a
range for the feed flow rate, in which optimal operating conditions
can be obtained. A control system was implemented to maximize
distillate production under variable operating conditions. Besides, a
feedforward (FF) controller was used in order to reject irradiance
disturbances according to the ideas of [17e21]. The first work which
deals with a reference governor for this kind of facilities is [22],
where a feedback control system and a reference governor were
developed for keeping a desired difference temperature between
both sides of the membrane.

In this work a complete feedback control architecture is proposed
for an experimental solar powered membrane distillation facility.
The use of the developed control scheme which improves the
operability and dispatchability of this solar distillation technology
could mean a relevant advance for commercial purposes. Thus, a full
development of preliminary designs presented in Ref. [9] has been
carried out and tested under real operating conditions. The proposed
control strategy is complemented with a reference governor which
allows us to fix suitable operating temperatures in the heat gener-
ation circuit to maintain the desired temperature conditions at the
entrance of the membrane module. Additional objectives have been
the reduction of both operating costs and non-renewable energy
usage by optimizing the solar energy use. Dynamic models of the
main variables involved in the process are presented as well as the
control system design. Simulation and experimental tests of the
control system are also included to evaluate its performance.

2. SMD system

2.1. MD technology

MD is a thermally driven process inwhich a hydrophobic micro-
porous membrane is used to accomplish the separation of volatile

and non-volatile molecules. As result of the difference vapour
pressure at the two membrane sides, achieved by a difference in
temperature, volatile molecules are evaporated and pass through
the membrane, whereas non-volatile components are rejected. The
evaporation process allows this technology to treat solutions with
high salt concentration rejecting almost all the non-volatile com-
ponents to produce high quality distillate. MD systems can be
classified in several configuration according to the vapour pressure
difference across the membrane [23], being Air-Gap Membrane
Distillation (AGMD), the one used in this paper, one of the most
employed.

2.2. Test-bed facility

The test bed facility (see Fig. 1 (a)) used in this work is located at
PSA and it comprises a MD module powered by heat generation
circuit that includes a solar field, an air cooler, a storage tank, a
distribution system (see Fig. 2) and a heat exchanger [4].

The solar field providing the required thermal energy to the
distillation process consists on stationary flat-plate collectors of
2m2 (Solaris CP1 Nova by Solaris, Spain) divided into two rows of
five collectors each one. The solar field has a nominal thermal po-
wer of 7 kWat about 90 �C, using water with antifreeze as heat
transfer medium. An air cooler is located at the outlet of the solar
field to avoid temperature excesses at the inlet of the membrane
module. The solar field is connected to a thermal storage tank
(1500 L) which can be used as energy buffer in order to work near
steady state conditions when needed. As it was presented in
Ref. [9], due to the hybrid nature of the facility it can be operated in
14 modes. Nevertheless, only the direct connection (see Fig. 3)
between the MD module and the solar field is considered in this
work. From a control point of view, direct connection is the most
difficult mode since the damping system (storage tank) is not used
and transients are spread throughout the plant. Notice that the
control algorithms developed in this paper try to be useful for
future development of a control algorithm able to cope with all
operating modes (following the same approach in Ref. [24] for
other kind of installation).

Several MD modules can be coupled to the facility by means of
the distribution system (see Fig. 2), including a Liquid Gap Mem-
brane Distillation (LGMD) configuration (built by Solar Spring), a
Vacuum Membrane Distillation (VMD) module (built by Aquaver)
and two AGMD configurations (built by Aquastill) [4]. Each module
is connected to the distribution system by means of its own heat
exchanger which is used for heating cold sea water with the cir-
culation fluid coming from the heat generation circuit. One of these
Aquastill AGMDmodules (see Fig. 1(b)) is used in this work. Its heat
exchanger has 1.65m2 of exchange surface. The module has an

Fig. 1. SMD facility at PSA.

Fig. 2. Distribution system.
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effective area of 24m2 with a length of 5m, a nominal pore size of
0.3 mm, porosity of 85% and membrane thickness of 76 mm. A pro-
ductivity analysis of this module was presented by Ref. [25].

The feed tank (2m3) contains an aqueous solution with a salt
concentration of 35 g/L. A compressor chiller is used to keep the
feed temperature constant (it is used in this pilot plant to reproduce
different seawater temperatures). The temperature inside the
module is limited at about 84 �C due to the thermal resistance of
the membranes, whereas temperatures lower than 60 �C produce
very low distillate. The feed flow rate to the module, FT3, varies
from 400 L/h to 600 L/h.

The facility is fully monitored using the instruments detailed in
Table 1. Besides, all the system is controlled by means of a Super-
visory Control And Data Acquisition (SCADA) which monitors all
the variables with a sample time of 1 s through an advanced data
acquisition system (National Instruments).

3. System modeling

To develop the control system, a dynamic model of the heat
generation circuit in direct connection mode (see Fig. 3) has been

developed, comprising the solar field, air cooler, distribution sys-
tem, pump 1, pump 2, valve 1 and heat exchanger. Some of these
models are based on first principles and some others have been
developed from experimental data. A detailed description can be
found in the following subsections. The variables and subscripts
involved are included in Appendix A.

3.1. Models based on first principles

3.1.1. Solar field model
Following the ideas presented in Ref. [20], a simplified lumped-

parameters dynamical equation, based on an energy balance, is
used to model the solar field outlet temperature, TT2. This model is
developed by considering an equivalent absorber tube, character-
ized by an equivalent length Leq and an equivalent mass flow rate
_meq, with the same behaviour as the whole solar field. Besides, this
model depends on irradiance, I, ambient temperature, Ta and inlet
solar field temperature, TT1. The energy balance equation is given
by:

Asf $r$cp$
vTT2ðtÞ

vt
¼ b$IðtÞ � H

Leq
$
�
TðtÞ � TaðtÞ

�
� cp$ _meq$

TT2ðtÞ � TT1ðtÞ
Leq

; (1)

where:

Leq ¼ La$ncs; (2)

Fig. 3. Schematic diagram of the active components in direct connection mode.

Table 1
Measurement instruments.

Variable Manufacturer Model

Flow rate Endress & Hauser 50P15
Pressure WIKA S10
Temperature e PT100
Global irradiance Kipp & Zonen CM6B
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_meq ¼ FT1$r
cf

; (3)

TðtÞ ¼ TT1ðtÞ þ TT2ðtÞ
2

: (4)

In this equation b represents the collector efficiency as well as an
attenuating factor, whereas H represents the global thermal losses
coefficient. Both parameters were calibrated by using real tests
with different weather conditions, providing a model which rep-
resents the solar field dynamics. The calibration method is pre-
sented in Section 3.1.4. Notice that the thermal mass capacity of the
solar field material has not been finally considered in Eq. (1) as its
effect in the obtained mean quadratic error is almost negligible,
while introducing an additional differential equation following the
approach in Ref. [26]. So, the model in Eq. (1) represents a good
tradeoff between performance and complexity.

3.1.2. Heat exchanger model
The counter-current heat exchanger available at the facility has

been modeled using a simple first principles steady state model
already tested in other solar systems [27], providing the perfor-
mance around the selected operating point. Therefore, supposing
that there is no phase change and fluid 1 (FT2 in Fig. 3) transfers
energy to fluid 2 (FT3 in Fig. 3) without considering heat losses, the
outlet temperature in both sides, knowing the inputs, is given by:

TT6m ¼ TT5� hhe;1$ðTT5� TT9Þ; (5)

TT8m ¼ TT9þ hhe;2$ðTT5� TT6mÞ; (6)

where:

hhe;1 ¼ 1� eqhe

1� _m1$cp;1
_m2$cp;2

eqhe
; (7)

hhe;2 ¼
_m1$cp;1
_m2$cp;2

; (8)

qhe ¼ ahe$Ahe$

 
1

_m1$cp;1
� 1

_m2$cp;2

!
: (9)

Three temperature ranges are used inside the module (TT8): 60,
70 and 80 �C, using three flow rates (FT3) in each range: 400, 500
and 600 L/h. Hence, the parameter ahe has been calibrated to these
operating points and interpolated by polynomial approaches. This
model has been also calibrated following the calibration method
presented in section 3.1.4.

3.1.3. Distribution system and three-way mixing valve
The distribution system and the mix produced in valve 1 can be

modeled by means of static energy balances. Taking into account
that the fluid is the same throughout the circuit and that FT1 must
be higher than FT2, the equations are:

TT5$FT2 ¼ TT4$g$FT2þ TT6$ð1� gÞ$FT2; (10)

TT7 ¼ TT4$ðFT1� g$FT2Þ þ TT6$g$FT2
FT1

; (11)

where g is the aperture of valve 1. Notice that the nonlinear static
characteristic curve of the valve relating the position of the valve
stem with the fraction of the mass flow g has been modeled by a

piecewise linear approximation and thus the inverse of this
approximation has been used to linearize its behaviour as done in
Ref. [28]. Moreover, a low pass filter has been added to the output of
equations (10) and (11) with a time constant of 5 and 7 s respec-
tively to fit the simulation curves to the observed step-response
tests.

3.1.4. Model calibration and validation
Both solar field and heat exchanger models are classified as gray

box models since there is a first-principles based model structure
and some unknown parameters. Calibration of the model by
identifying these unknown parameters has been done using the
Mean Squared Error (MSE) as objective function (using as error the
difference between the outputs calculated by the model and the
real measurements):

MSE ¼ 1
N

XN
k¼1

�bY ðkÞ � YðkÞ
�2

; (12)

where bY ðkÞ is the value calculated by the model in the discrete time
instant k and YðkÞ is the real measurements at the same instant.N is
the number of measurements used for calibration purposes.

For the solar field model, that is linear in the parameters, the
typical least-squares identification method has been used. In the
nonlinear case (heat exchanger model), a combination of global and
local optimization algorithms has been applied. Genetic Algorithm
(GA) has been chosen as global search due to its randomnature, and
an interior point method as local search algorithm.

The values obtained for solar field model parameters, b and H,
are 0.11m and 5.88 J/s$K respectively. In this case, 15 days with
different environmental conditions have been used for calibration
purposes, whereas 5 days have been considered for validation.
Fig. 4 shows a solar field model illustrative validation tests. The
mean error is 1.05 �C, while the maximum error is 2.85 �C.

In the same way, the heat exchanger model has been calibrated
using the nonlinear calibration method. The value of the parameter
ahe is presented in Table 2 and a representative validation result in
Fig. 5. For this model, 5 days with variable operation conditions
have been considered for calibration and 2 for validation.

A first order filter and a time delay have been added to this static
model to fit real step response data. The representative time con-
stant is 40 s and the time delay is 23 s for TT6m while the time
constant is 20 s and the time delay is 15 s for TT8m. In this case, the
mean error is 0.445 �C, being the maximum error 0.895 �C for TT6
whereas the mean error for TT8 is 0.36 �C and the maximum error
is 0.82 �C. If the heat transfer coefficient is considered constant
(ahe ¼ 670.78W/m2 K) in the full operating range, the mean error
for TT6 would be 0.69 �C, being themaximum error 1.15 �Cwhereas
the mean error for TT8 would be 0.51 �C and the maximum error
1.06 �C.

3.2. Models based on experimental data

In addition to the model based on first principles, transfer
functions experimentally obtained have been considered to model
the relation between the main variables involved in the process to
the controlled variables. Open-loop tests have been performed,
introducing typical step changes and making use of the State-
Variable Filters (SVF) approach and the Generalized Poisson
Moment Functions (GPMF) approach [29], to estimate the param-
eters of the corresponding first order plus dead time (FOPDT)
transfer functions. The metric function used to evaluate the per-
centage of the response reproduced by themodel is the Normalized
Root Mean Square Error (NRMSE, see MSE definition):
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NRMSE ½%� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

�bY ðkÞ � YðkÞ
�2

PN
k¼1

ðYðkÞÞ2

vuuuuuut : (13)

Table 3 summarizes the obtained FOPDT transfer functions in
the form GðsÞ ¼ YðsÞ=UðsÞ ¼ k$e�tds=ðt$sþ 1Þ, where k is the static
gain, t is the representative time constant and td the time delay.

Firstly, to characterize the pumps used in the control system

(Pump 1 and Pump 2 in Fig. 3), step changes of 20% in its variable
frequency drive were applied each 3min to obtain G1ðsÞ and G2ðsÞ
respectively (see Table 3). In the same way, the relationship be-
tween FT1 and the outlet solar field temperature TT2 ðG3ðsÞÞ has
been determined by introducing step changes in the flow rate FT1.
It was accomplished under quasi-steady conditions in the inlet
temperature of the solar field TT1, and around solar midday when
the global irradiance is almost constant. The effect of the air cooler
has been also modeled through reaction curve method to allow us
obtaining G4ðsÞ, relating TT3 with the frequency drive of the air
cooler. As in the previous case, this test was carried out around solar
midday with quasi-steady conditions in TT1. Finally, the relation
between valve 1 and TT5 was obtained ðG5ðsÞÞ by means of several
open loop steps of different values with quasi-steady conditions in
TT4. Apart from this relation, the linear range of the valve was
identified between 40 and 75%.

3.3. Complete model of the heat generation circuit in the direct
connection mode

Using the equations shown in Section 3.1 and the FOPDTmodels
presented in Table 3, a complete model of the heat generation

Table 2
ahe values.

Temperature [
�
C] Flow rate [L/h] ahe[W/m2 K]

60 400 480.29
500 582.81
600 754.05

70 400 530.22
500 689.30
600 857.13

80 400 476.44
500 593.40
600 670.78

Fig. 5. Heat exchanger model validation using a day with oscillations caused by the chiller operation. (1) Water outlet temperature leaving the hot side of the heat exchanger (TT6),
model output (TT6m), inlet temperature to the hot side of the heat exchanger (TT5) and heat exchanger water flow rate (FT2) and (2) water outlet temperature leaving the cold side
of the heat exchanger (TT8), model output (TT8m), inlet temperature to the cold side of the heat exchanger (TT9) and MD water flow rate (FT3).

Fig. 4. Solar field model validation. (1) Outlet solar field temperature (TT2), model output (TT2m) and inlet solar field temperature (TT1) and (2) solar field water flow rate (FT1) and
global irradiance (I).
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circuit in the direct connection mode has been developed
in Simulink (MATLAB). In addition to the models shown in Section
3.1 And 3.2, transport dead times have been added to model delays
caused by the interconnection of the pipes and the sensor position.
These transport delays have been observed from field data and they
do not change significantly with the operating ranges. The dead
time values are presented in Table 4. Fig. 6 shows the comparison
between realmeasures and themodel outputs. The inputs used are:
pump 1, pump 2, air cooler, valve 1, global irradiance, FT3 and TT9.

4. Control system

Themain objective of the control system is tomaintain a desired
operating temperature at the inlet of the MD module. To this pur-
pose, four direct control loops (see Fig. 7) and a reference governor
are proposed. The linear models developed in Section 3.2 have been
used to design the corresponding control laws. Furthermore, the
control scheme includes antiwindup mechanisms to take into ac-
count saturation problems. It should be mentioned that, this con-
trol architecture is proposed rather than other techniques such as

multivariable control with decoupling, since it can be used in all the
operation modes included in Ref. [9].

4.1. Loop 1. Solar field

The transfer functions obtained in Section 3.2 have been used
for control design purposes. A cascade control loop with two PI
controllers (PIðsÞ ¼ Kpð1þ 1=ðTi$sÞÞ has been designed to control
the outlet solar field temperature TT2. The slave control is in charge
of providing the desired water flow rate FT1 by acting on the var-
iable frequency drive of pump 1 and the outer loop calculates the
required water flow rate FT1 which allows to obtain the desired
outlet solar field temperature TT2. The cascade control loop has
been configured with the following parameters:

� Slave PI: Kp ¼ 2:84 %/L and Ti ¼ 0:082 min (AMIGO method,
[28]).

� Outer PI: Kp ¼ �0:42 L/oC and Ti ¼ 1:21 min (SIMC method,
[30]).

Due to the fact that the system is subjected to strong distur-
bances caused by solar irradiance I and inlet solar field temperature
TT1, a FF controller has been included in this loop. This FF is ob-
tained using a static version of the solar field model presented in
section 3.1.1 and it provides the nominal operating flow rate ðFT1FFÞ
taking into account the operating conditions. The static equation
making TT2¼ TT2SP in Eq. (1) is given by:

FT1FF ¼
"

b$Leq
cp$ðTT2SPðtÞ � TT1ðtÞÞ$IðtÞ

� H
cp
$

�
TðtÞ � TaðtÞ

�
ðTT2SPðtÞ � TT1ðtÞÞ

#
$
cf
r
; (14)

TðtÞ ¼ TT1ðtÞ þ TT2SPðtÞ
2

: (15)

Table 3
Transfer functions obtained from experimental data.

GðsÞ YðsÞ UðsÞ k t [s] td [s] NRMSE [%]

G1ðsÞ FT1ðsÞ FP1ðsÞ 0.2344 5 1 96.7
G2ðsÞ FT2ðsÞ FP2ðsÞ 0.1345 8.03 3 97.2
G3ðsÞ TT2ðsÞ FT1ðsÞ �1.37 66.62 16 95.2
G4ðsÞ TT3ðsÞ FacðsÞ �0.1087 27.48 20 96.5
G5ðsÞ TT5ðsÞ FV1ðsÞ 0.1502 14.3 10 86.2

Table 4
Dead time values.

Pipe section Dead time [s]

TT3-TT4 35
TT7-TT1 65

Fig. 6. Comparison between real measurements and model outputs. (1) Inlet and outlet solar field temperature (TT1 and TT2), (2) air cooler water temperature (TT3) and inlet
temperature to the hot side of the heat exchanger (TT5), (3) global irradiance (I) and solar field water flow rate (FT1), (4) valve 1 frequency ðFV1Þ, air cooler frequency ðFacÞ, pump 1
frequency ðFP1Þ and pump 2 frequency ðFP2Þ, (5) outlet distribution system temperature (TT7), water outlet temperature leaving the hot side of the heat exchanger (TT6) and heat
exchanger water flow rate (FT2) and (6) water outlet temperature leaving the cold side of the heat exchanger (TT8) and (FT3) MD water flow rate.
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The nomenclature associated to the equation is presented in
Appendix A. A low pass filter (LPF) has been added to this static
equation with a representative time constant of 75 s to achieve a
better dynamical and smooth response. Finally, a low pass filter of
60 s has been included in the reference signal to find a good tradeoff
between reference tracking and disturbances rejection and to
reduce overshoots against setpoint step changes. Fig. 8 shows the
control scheme.

4.2. Loop 2. Air cooler

This loop is also focused on controlling the outlet solar field
temperature and it acts whenTT2 is higher than desired outlet solar
field temperature, mainly due to flow saturation. Fig. 9 shows the
control scheme. The PI controller has been configured with
Kp ¼ �7:48 %=

�
C and Ti ¼ 0:233 min (Improved SIMC method,

[31]), using the linear model presented in Table 3.

4.3. Loop 3. Valve 1 control loop

Although in direct mode the inlet heat exchanger temperature
TT5 could be controlled with loop 2 described previously (if valve 1
is fully open), a temperature control loop using valve 1 is consid-
ered to improve the setpoint tracking and to reject disturbances
coming from the distribution system (TT4). To this purpose, a PI
controller with a FF is developed. Based on the steady-state energy
balance obtained from Eq. (10), the FF has been designed such as:

FV1;FFð%Þ ¼
TT5SP � TT6
TT4� TT6

$100: (16)

In order to achieve a better dynamical and smooth response, a
low pass filter has been added to the FF with a representative time
constant of 65 s. Fig. 10 shows the control scheme. The parameters
of the PI controller are: Kp ¼ 2:22 %=

�
C and Ti ¼ 0:5 min (Improved

SIMC method, [31]), using the linear model in Table 3.

Fig. 7. Schematic diagram of the active components in direct connection mode with control loops.

Fig. 8. Solar field control scheme.
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4.4. Loop 4. Heat exchanger water flow rate

Although the control system is aimed at temperature control
purposes, variations in valve 1, cause variations in the flow rate and
therefore in the temperature, so it is necessary to fix the water flow
rate FT2 by means of a controller. Besides, by fixing FT2 with the
same value as FT3, the maximum heat transfer is achieved in the
heat exchanger. However, it should be taken into account that FT2
cannot be higher than FT1, due to the fact that the fluid coming
from the solar field and the fluid coming from the heat exchanger
would be mixed in the hotter side of the distribution system. A PI
controller is designed with a setpoint limiter which checks if FT2
setpoint is less than FT1, which varies to maintain the outlet solar
field temperature, loop 1. The PI controller has been configured
with Kp ¼ 4.12 %/L and Ti ¼ 0.1505min (Improved SIMC method,
[31]), using the transfer function presented in Table 3. Fig. 11 shows
the control scheme.

4.5. Reference governor

The proposed temperature control scheme with the reference
governor is shown in Fig. 12. The heat exchanger model presented
in section 3.1.2 is used to calculate suitable setpoints for the direct
control system, helping to obtain the desired temperature at the
inlet of the MD module (TT8).

The equations implemented in the reference governor are the
following ones:

TT6m ¼ TT5� hhe;1$ðTT5� TT9Þ; (17)

TT5SP ¼ TT8SP � TT9þ hhe;2$TT6m
hhe;2

: (18)

Thus, Eq. (18) gives TT5SP and the setpoint for loops 1 and 2 is
TT5SP þ DT. This DT must be characterized for each module in order
to balance the corresponding energy consumption. The nominal
value characterized for Aquastill 24m2-module, based on experi-
ence, is 4 �C. Besides, this DTmaintains the temperature of the solar
field higher than the desired temperature at the inlet of the heat
exchanger, allowing valve 1 acting in its linear range.

It is important to emphasize that this system in direct mode
requires smooth setpoint changes rather than step ones to avoid
oscillations. Therefore, a LPF has been added to each setpoint. The
representative time constants for TT2SP and TT5SP are 85 and 75 s
respectively.

5. Simulation tests

This section shows two simulation tests carried out in order to
analyse the performance of the control system under two different
weather profiles, using data from PSA on 21 and 25 September
2016. The model developed in section 3 has been used in this test to
simulate the plant behaviour. Notice that TT9 is an input to the
control system (see Fig. 12), so this temperature is also required to
test the performance. Since TT9 depends on operating conditions
(sea water flow rate and temperature and flow rate and tempera-
ture of the water coming from the heat exchanger) and the three
first inputs are assumed constant (FT3¼ 500 L/h, sea water tem-
perature¼ 20 �C, and FT2¼ FT3) in the simulations carried out,
only temperature TT8 must be considered to simulate variations in
TT9 and test the control system. In the operational range employed
in TT8 (60e80 �C), the temperature difference observed during the
experimental campaign performed to model the plant varies be-
tween 3.5 and 4.5 �C, so that, a fixed value of 4 �C has been used in
the simulation tests.

Fig. 9. Air cooler control scheme.

Fig. 10. Valve 1 control scheme.

Fig. 11. Heat exchanger water flow rate control scheme.

Fig. 12. Reference governor scheme.
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5.1. Sunny day

Fig. 13 shows the environmental conditions used for this
simulation test. At the beginning, the temperature at the inlet of the
MDmodule is higher than the setpoint fixed, 60 �C (see Fig.16). Due
to this fact the reference governor decreases the setpoints of each
direct control loop (see Figs. 14 and 15) on a smooth way, allowing
to reach the reference. Then, positive step changes of 5 �C are
introduced in TT8SP at times 10.83, 11.94, 12.78 and 13.61 h. In
Figs. 14 and 15, it can be observed how the setpoints of each loop
are increased by the reference governor to reach the desired tem-
peratures at the inlet of the MDmodule. The settling times in these
changes are around 20min and the overshoots are around 10e15%.
Notice that a tradeoff solution between overshoots and settling
times has been reached with this control system configuration.
Thus, better results are obtained in comparison with manual op-
erations; settling times are 20e30min faster and the obtained
overshoots are within the allowed range defined by plant opera-
tors. At times 15 and 16.11 h two negative steps of 5 �C are applied
at TT8SP with similar dynamical results as the positive ones.

In this test, loop 1 is saturated all the time because of irradiance
values as well as the low energy consumption of the module and
solar field oversizing. Thus, the air cooler is used to control the
temperature excess, as can be observed in Fig. 14. Since the refer-
ences of this loop are 4 �C higher than those of loop 3, valve 1 acts in
its linear range (see Fig. 15) getting an accurate control at the inlet
of the heat exchanger. It is important to mention that, this fact is
essential to get an adequate temperature control at the inlet of the
MD module.

5.2. Cloudy day

In this example, the irradiance curve shows fluctuations due to
transient clouds (see Fig. 17). At the beginning, the temperature at
the inlet of the MD module is higher than the desired value (see
Fig. 20), so the reference governor decreases the setpoints of the
direct control system (see Figs. 18 and 19). Then, at times 12.22 and
13.89 h, two positive steps of 5 �C at TT8SP are introduced. In this
case, the overshoots are around 15% and the settling times are
around 25min. It should be taken into account that in this test, the

Fig. 13. Meteorological inputs for the simulation test in a sunny day. Global irradiance (I) and ambient temperature (Ta).

Fig. 14. Simulation results of loops 1 and 2 in a sunny day. (1) Reference ðTT2SPÞ, outlet solar field temperature (TT2), inlet solar field temperature (TT1) and water air cooler
temperature (TT3) and (2) solar field flow rate (FT1) and air cooler frequency ðFacÞ.
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Fig. 15. Simulation results of loop 3 in a sunny day. (1) Inlet temperature to the hot side of the heat exchanger (TT5), water outlet temperature leaving the hot side of the heat
exchanger (TT6), inlet distribution system temperature (TT4) and reference ðTT5SPÞ and (2) valve 1 frequency ðFV1Þ.

Fig. 16. Simulation results at the inlet of the MD module in a sunny day. Water outlet temperature leaving the cold side of the heat exchanger (TT8), reference ðTT8SPÞ and MD
module water flow rate (FT3).

Fig. 17. Meteorological inputs of the simulation test in a partly cloudy day. Global irradiance (I) and ambient temperature (Ta).
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Fig. 18. Simulation results of loops 1 and 2 in a partly cloudy day. (1) Reference ðTT2SPÞ, outlet solar field temperature (TT2), inlet solar field temperature (TT1) and water air cooler
temperature (TT3) and (2) solar field flow rate (FT1) and air cooler frequency ðFacÞ.

Fig. 19. Simulation results of loop 3 in a partly cloudy day. (1) Inlet temperature to the hot side of the heat exchanger (TT5), water outlet temperature leaving the hot side of the heat
exchanger (TT6), inlet distribution system temperature (TT4) and reference ðTT5SPÞ and (2) valve 1 frequency ðFV1Þ.

Fig. 20. Simulation results at the inlet of the MD module in a partly cloudy day. Water outlet temperature leaving the cold side of the heat exchanger (TT8), reference ðTT8SPÞ and
MD module water flow rate (FT3).
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tracking errors of the direct control loops are higher than in the test
above, due to irradiance fluctuations. A time 16.11 h a negative step
of 5 �C at TT8SP is introduced with similar results.

Fig. 18 shows how the solar field water flow rate decreases ac-
cording to the irradiance level, reducing temperature fluctuations.
Besides, these fluctuations are also reduced by loop 3 as can be
observed in Fig. 19 by means of the FF, which rejects disturbances
coming from the distribution system. Finally, at the inlet of the MD
module, the temperature varies in a range less than ±1 �C when
there are irradiance disturbances (see Fig. 17). Notice that the
tracking error accepted by plant operators in a manual operation
with favourable meteorological conditions is ±1 �C.

6. Real experimental test

An experimental campaign has been performed in the solar
distillation facility to test the proposed control strategy under
different operating and weather conditions. One of these tests (on
September 30th, 2016) is presented in this section, clearly

improving (in terms of performance indexes such as overshoot and
settling times) preliminary results presented in Ref. [9].

Figs. 21e23 show the experimental results. Firstly, a setpoint of
55 �C is imposed at the inlet of theMDmodule and FT2 is fixedwith
the same value as FT3, 8.6 L/min. Since the temperature is lower
than the setpoint fixed, the reference governor increases the set-
points for loops 1, 2 and 3 (see Figs. 21 and 22). Once the system
reaches the desired temperature, a step change of 5 �C at TT8SP is
introduced at time 12.01 h. The setpoints for the direct control
loops are increased by the reference governor. As it can be observed
in Fig. 21, when the reference changes, the flow rate decreases due
to the new setpoint and to the inlet temperature disturbance that
modifies the feedforward output. This fact is not only caused by the
setpoint changes but also by disturbances in the inlet solar field
temperature due to recirculation. The settling time in this change is
19min, the overshoot is 22% (see Fig. 23) and the steady state error
is around 0.4 �C. Then, at time 12.6 h the TT8SP is changed to 65 �C.
In this case, the time spent in the change is 18min, the overshoot is
25% and the steady state error is around 0.3 �C. At times 13.53 and

Fig. 21. Experimental results of loops 1 and 2. (1) Reference ðTT2SPÞ, outlet solar field temperature (TT2), inlet solar field temperature (TT1), water air cooler temperature (TT3) and
global irradiance (I) and (2) solar field flow rate (FT1) and air cooler frequency ðFacÞ.

Fig. 22. Experimental results of loops 3 and 4. (1) Inlet temperature to the hot side of the heat exchanger (TT5), water outlet temperature leaving the hot side of the heat exchanger
(TT6), inlet distribution system temperature (TT4) and reference ðTT5SPÞ and valve 1 frequency ðFV1Þ and (2) heat exchanger water flow rate (FT2), reference ðFT2SPÞ and pump 2
frequency ðFP2Þ.
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15.02 h, two step changes are introduced with similar results as in
the previous cases. At time 13.94 h, both FT2 and FT3 are changed to
10 L/min. This fact produces that the temperature at the inlet of the
MD module decreases. Therefore, the reference governor increases
the setpoints of the direct controllers to reject this disturbance.

As can be observed in Fig. 21 the outlet solar field temperature is
mainly controlled with the air cooler, since loop 1 is saturated due
to high irradiance levels. The settling times obtained in the step
changes are around 6min and the steady state error is less than
0.2 �C without overshoots.

As was tested in simulation, when valve 1 works in its linear
range, an accurate control at the inlet of the heat exchanger is
achieved (see Fig. 22). The settling times in this loop are around
15min and the mean steady state error is less than 0.2 �C. However,
the overshoots are around 20%. This fact is caused by FF actions,
because it tries to reject disturbances produced by temperature
coming from the distribution system (TT4). These disturbances
occur because there is a time period where the outlet solar field
temperature varies until it is established in its reference by loops 1
and 2. This situation produces the overshoots inside the module.
Although these overshoots are undesirable, a tradeoff solution
between settling time and overshoot allowed by plant operators in
this operation mode has been reached, as has been pointed out
before.

7. Conclusions

This paper has addressed the development of a feedback control
system in a solar membrane distillation facility. It has been
accomplished using the most difficult operation mode, which is a
challenge from a control point of view. Promising results have been
obtained which allow us to draw the two following conclusions:

1. Settling times are considerably reduced. In a manual operation
the time spent to establish an operating temperature inside the
module is around 40e50min, whereas with the control system
is 20min.

2. A suitable operating temperature at the inlet of the distillation
module, in the direct connection mode, can be obtained using
the model-based reference governor and the control system in
spite of disturbances. This task was highly difficult to follow in
experimental campaigns with manual operation.

Future works will include the implementation of a control sys-
tem able to manage all operating modes, following the approach in
Ref. [24], as we can take advantage of all the work developed in this
paper, and also testing multivariable-decoupling strategies. More-
over, the developed control layer should be integrated into a hier-
archical control architecture aimed at maximizing the efficiency
according to different metrics used in distillation processes or
maximizing the daily production while reducing operational costs.
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Appendix A. Nomenclature

Ahe Heat exchanger area, 1.65m2

Asf Collector absorber cross-section area, 0.007m2

cf Conversion factor to account for connections, number of

modules and L/min conversion, 9$2$6$104 (s L)/(min
m3)

cp Specific heat capacity, J/(kg �C)
DT1 Distillate production, L/h
F Input frequency, %
FT1 Solar-field water flow rate, L/min
FT2 Heat exchanger water flow rate, L/min
FT3 MD water flow rate, L/min
H Global thermal losses coefficient, 5.88 J/(s K)
I Global irradiance, W/m2

k Static gain of FOPDT transfer functions
La Collector absorber tube length, 1.95m
Leq Equivalent absorber tube length, 9.75m
LPF Low pass filter, e
_m Mass flow, kg/s
ncs Number of serie-connections in a collectors group, 5
T Equivalent absorber tube mean temperature, �C
Ta Ambient temperature, �C
td Representative time delay of FOPDT transfer functions, s
TT1 Inlet temperature of the solar field, �C
TT2 Outlet temperature of the solar field, �C

Fig. 23. Experimental results at the inlet of the MD module. (1) Water outlet temperature leaving the cold side of the heat exchanger (TT8), reference ðTT8SPÞ, inlet temperature to
the cold side of the heat exchanger (TT9) and MD module water flow rate (FT3) and (2) distillate production (DT1).
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TT3 Air cooler water temperature, �C
TT4 Inlet temperature of the distribution system, �C
TT5 Inlet temperature to the hot side of the heat exchanger,

�C
TT6 Water outlet temperature leaving the hot side of the

heat exchanger, �C
TT7 Outlet distribution system temperature, �C
TT8 Water outlet temperature leaving the cold side of the

heat exchanger, �C
TT9 Inlet temperature to the cold side of the heat exchanger,

�C
ahe Heat exchanger heat transfer coefficient, W/(m2$K)
В Irradiance model parameter, 0.11m
g V1 aperture, -
hhe Heat exchanger auxiliary factor 1, e
t Representative time constant of FOPDT transfer

functions, s
qhe Heat exchanger auxiliary factor 2, e
r Water density, 975 kg/m3

Subscript
ac Air cooler
C Feedback control
eq Equivalent
FF Feedforward
m Model output
P1 Pump 1
P2 Pump 2
SP Setpoint
V1 Valve 1
1 Relative to FT2
2 Relative to FT3
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A B S T R A C T

Desalting brines from Reverse Osmosis (RO) plants is one of the most promising applications of Membrane
Distillation (MD) systems. The development of accurate models to predict MD system performances plays a
significant role in the design of this kind of industrial applications. In this paper, a commercial-scale Permeate-
Gap Membrane Distillation (PGMD) module was modelled by means of two different approaches: Response
Surface Methodology (RSM) and Artificial Neural Networks (ANN). Condenser inlet temperature, evaporator
inlet temperature, feed flow rate and feed water salt concentration were selected as inputs of the model, while
permeate flux and Specific Thermal Energy Consumption (STEC) were chosen as responses. The prediction
abilities of both RSM and ANN models were compared with further experimental data by using the Analysis of
Variance (ANOVA) and the Root Mean Squared Error (RMSE). The results show that the ANN model is able to
predict in a more precise way the behaviour of the module for the whole range of input variables. Thus, ANN
model was used to find the optimal operating conditions, for the module operating at feed water salinity of 70
and 105 g/L, concentrations that can be reached when desalting RO brines.

1. Introduction

Due to the high tolerance of MD systems to high salinity feeds, one
of the possible industrial applications of this technology consists of
desalting seawater RO brines. Integrating MD technology in RO plants
could be an essential factor to obtain efficient desalination lines in
terms of recovery [1-4]. However, the uncertainty associated with the
performance of MD technology at large scale has prevented the devel-
opment of this kind of applications so far [5-8]. Therefore, investigating
the performance of large scale MD systems, under the operating con-
ditions imposed by RO brine, is required for assessing the energy effi-
ciency which is one of the main barriers of the MD technology [6]. In
this context, the development of accurate theoretical (first principles-
based) or empirical models, to predict the performance of MD processes
is fundamental. Models not only allow designers to simulate and ana-
lyse MD systems under the required operating conditions [9-12], but
can also be used for developing real time optimization strategies
[13,14], or to develop optimization algorithms aimed at obtaining
optimal designs of the application at hand [15].

The construction of first principles based models requires a total
knowledge of the process to be modelled, and it is usually a laborious
task. On the contrary, this knowledge is not as necessary to elaborate
empirical models, but in this case a good selection of the dependent and
independent variables, and a good design of experiments are needed.
Additionally, in the case of MD systems, the difficulty in constructing
theoretical models is greater as the different internal design of each
module influences its performance. So, internal modifications of this
theoretical models have to be done to adapt them to the different
module designs, which in many cases are non-disclosed information.
For that reason, the use of empirical models is a good option to obtain a
mathematical expression in a relatively fast and simple way. Two of the
most common empirical models used in the field of membrane sciences
to visualize the operational space and to understand the system beha-
viour are RSM and ANN [16,17]. These models, also known as black
blox models, are able to fit both linear and nonlinear multi-variable
problems. It should be remarked that these kind of empirical models
cannot be used to extrapolate the results to other systems, and they are
only valid for the range of operation in which they have been

https://doi.org/10.1016/j.desal.2018.07.022
Received 17 April 2018; Received in revised form 22 July 2018; Accepted 26 July 2018

* Corresponding author.
E-mail addresses: juandiego.gil@ual.es (J.D. Gil), ara399@ual.es (A. Ruiz-Aguirre), lidia.roca@psa.es (L. Roca), guillermo.zaragoza@psa.es (G. Zaragoza),

beren@ual.es (M. Berenguel).

Desalination 445 (2018) 15–28

Available online 31 July 2018
0011-9164/ © 2018 Elsevier B.V. All rights reserved.

T



calculated.
RSM is a statistical method extensively used for characterizing

membrane distillation systems. This methodology is an efficient mod-
elling tool providing quadratic functions to fit responses in linear or
smooth nonlinear processes. As can be seen in Table 1, most works
presented until now in the literature use RSM in order to optimize MD
systems in terms of two of the most important parameters in this
technology: permeate production and thermal energy efficiency. How-
ever, not all works treat these two parameters in a simultaneous way [9,
18-24]. In addition, in most papers the feed water salt concentration,
one of the most important parameters influencing the performance of
MD systems, is not taken into account as an input of the model
[9,12,18,19,22,23,25,26].

ANN is an emerging modelling tool in the field of MD systems. The
main advantage of this methodology is that it is able to fit almost all
nonlinear processes. Besides, the way in which the model is built allows
retraining the model with further experimental data for improving
predictions. Table 2 summarizes the proposals made up to now in the
literature for modelling MD systems by means of ANN based models. As
can be seen, almost all the works use ANN for characterizing only the
permeate production of a MD unit [10,11,14,27,28], and only Shiba-
zian and Alibabaei [29] consider also the thermal energy. Furthermore,
the feed water salt concentration is only considered by Cao et al. [27]
and Tavakolmoghadam and Safavi [28].

The goal of this work is to develop empirical models able to predict,
in a precise way, the performance of a commercial-scale PGMD module

Table 1
Existing RSM modelling approaches in MD systems. AGMD is the Air-Gap membrane Distillation configuration, DCMD is the Direct Contact Membrane Distillation
configuration, VMD is the Vacuum Membrane Distillation one, and SGMD is the Sweeping Gas Membrane Distillation configuration.

Reference MD configuration Inputs and ranges Outputs

[30] VMD Feed inlet temperature (30–70 °C) Water permeate flux (kg/(h⋅m2))
NaCl concentration in feed solution (1–9%) Water productivity per unit volume of module (kg/(h⋅m3))
Feed velocity (1–17m/min) Gained Output Ratio (GOR)
Module packing density (5–45%) Comprehensive index
Length-diameter ratio of module (3.3–16.7)

[31] - Feed solution (0.4–0.9 L/min) Permeate salt concentration (g/L)
Flow rate draw solution (0.3–0.7 L/min)
Feed solution salt concentration (3–5M)

[12] PGMD Feed flow rate (400–600 L/h) Permeate flux (L/(h⋅m2))
Condenser inlet temperature (20–30 °C) STEC (kWh/m3)
Evaporator inlet temperature (60–80 °C)

[32] AGMD Hot feed inlet temperature (40–80 °C) Permeate flux (kg/(h⋅m2))
Cold feed inlet temperature (10–50 °C) Specific performance ratio
Feed conductivity (500–10000 μS/cm)
Feed flow rate (4–8 L/min)

[18] AGMD Feed flow rate (1–5 L/min) Permeate flux (L/(h⋅m2))
Feed temperature (60–80 °C)
Coolant temperature (60-80 °C)
Coolant flow rate (1–3 L/min)
Air gap width (3–7mm)

[19] DCMD Feed temperature (46.6–63.4 °C) Permeate flux (kg/(h⋅m2))
Permeate temperature (6.6–23.4 °C)
Feed flow rate (199–451 L/h)
Permeate flow rate (199–451 L/h)

[25] DCMD Feed inlet temperature (40–80 °C) Average permeate flux (kg/(h⋅m2))
Permeate inlet temperature (15–35 °C) Production per unit volume of module (kg/(h⋅m3))
Flow velocity of feed solution (6–54m/min) Production per unit energy consumption (kg/kJ)
Module packing density (5–45%) Comprehensive index
Length-diameter ratio of module (2.9–8.35)

[20] VMD Feed temperature (25–55 °C) Permeate flux (kg/(h⋅m2))
Vacuum pressure (10–90mbar)
Feed flow rate (15–60mL/s)
Feed concentration (100–300 g/L)

[26] AGMD Cold feed inlet temperature (23.2–56.8 °C) Permeate flux (L/(h⋅m2))
Hot feed inlet temperature (58.5–91.8 °C) GOR
Feed inlet flow rate (23.7–84.3 L/h)

[21] DCMD Vapor pressure difference (3.5–35.5 103Pa) Permeate flux (L/(h⋅m2))
Permeate flow rate (5.2–28.8 L/h)
Feed flow rate (6.4–73.6 L/h)
Feed ionic strength (21.4–338mM)

[22] AGMD Cooling inlet temperature(13.9–26.1 °C) Specific performance index (kg/kWh)
Feed inlet temperature(59–71 °C)
Feed flow rate (145–205 L/h)

[9] SGMD Water inlet temperature (58–72 °C) Permeate flux (kg/(s⋅m2))
Air inlet temperature (17.2–22.8 °C)
Water circulation velocity (0.16–0.25m/s)
Air circulation velocity (1.03–2.13m/s)

[23] DCMD Hot fluid flow rate (1–4 10−2kg/s) Recovery ratio (%)
Hot fluid temperature (45.2–84.74 °C)
Cold fluid flow rate (1.5–4 10−2m3/s)
Membrane thickness (30–150 μm)

[23] AGMD Hot fluid flow rate (1.72–4.17 10−2kg/s) Recovery ratio (%)
Hot fluid temperature (45–75 °C)

[24] DCMD Stirring velocity (88.2–786.8 rpm) Permeate flux (m/s)
Feed temperature (22.3–52.7 °C)
NaCl concentration (0.007–2.193M)
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for desalting RO brines. For this purpose, three main objectives are
developed: i) obtaining empirical forecasting models based on RSM and
ANN, under the required operating conditions, ii) comparing the pre-
diction abilities of the two modelling approaches, and iii) finding the
optimal operating conditions of this module for two of the salinity
concentrations that can be reached when desalting RO brines, 70 and
105 g/L. Compared to most modelling approaches presented until now
in the literature (see Tables 1 and 2), in this work, both the permeate
production and the thermal energy consumption were selected as pre-
dicted performance parameters. In addition, apart from the typical in-
dependent variables considered in this technology (condenser inlet
temperature, evaporator inlet temperature, and feed flow rate), the feed
water salt concentration (35–140 g/L) has been used as an input, in
order to visualize the effect of this parameter in the responses. It should
be pointed out that most of the studies presented in the literature use
bench-scale modules, whereas this study has been performed using a
commercial-scale module, which can be very relevant to commercial
purposes.

2. Methodology

2.1. Test-bed facility

In this study, a spiral wound MD commercial module called Oryx
150 was evaluated (see Fig. 1-b). The module was designed by the
Fraunhofer Institute for Solar Energy systems and is marketed by the

company Solar Spring (Freiburg, Germany). It had a Permeate Gap
Membrane Distillation (PGMD) configuration. The location of the dif-
ferent channels of the module was placed to minimize heat losses to the
environment. All inlets and outlets were located at the top of the
module. The permeate outlet was located on the outer perimeter of the
coil to facilitate the recovery of sensible heat from the permeate. This
module had a length, a height and a channel width of 7m, 0.7 m and
3.2 mm respectively. The membrane surface area was 10m2. The
membrane used in the module was a commercial membrane of W. L.
Gore Associates. The membrane was constituted by an active Poly-
tetrafluoroethylene (PTFE) layer with a nominal pore size of 0.2 μm, a
thickness of 70 μm and a porosity of 80% and a support of Poly-
propylene (PP) with a thickness of 280 μm and a porosity of 50%. The
spacers were made of Low-Density Polyethylene (LDPE) and the con-
densation foil was made of Ethylene Tetrafluoroethylene (ETFE). The
permeate gap was created by a PP spacer of 1mm. The Oryx 150
module was integrated into a structure that was formed by a feed tank
(475 L), a filter of 300 μm placed after the outlet of the feed tank and
before the inlet of the MD module, the pump to circulate the feed so-
lution, a deaerator and the heat exchanger. Four PT100 temperature
sensors were placed directly at the inlet of the evaporator and con-
densation channels and at the outlets of them (see Fig. 2). The fifth
temperature sensor was located at the inlet of the heat exchanger on the
side of the heating fluid (see Fig. 2). The volumetric flow rate (F in
Fig. 2) was measured with a flow meter placed before the inlet of the
condenser channel. A pressure sensor (WIKA) was located at the inlet of

Table 2
Existing ANN modelling approaches in MD systems. All the approaches used Multi-Layer feedforward Perceptron Networks.

Reference MD configuration Inputs and ranges Outputs Topology

[29] AGMD Cold inlet temperature (23.2–56.8 °C) Permeate flux (L/(h⋅m2)) -
Hot feed inlet temperature (65–91.8 °C) Cold outlet temperature (°C)
Feed-in flow rate (36–84.3 L/h) GOR

[27] VMD Feed inlet temperature (60–70.44 °C) Permeate flux (kg/(s⋅m2)) 4:3:1
Vacuum pressure (0.037–0.089MPa)
Feed flow rate (69.89–111 L/h)
Feed water salt concentration (30–45 g/kg)

[14] PGMD Feed flow rate (L/h) Permeate flow rate (L/h) 3:5:1
Cold inlet temperature (°C)
Irradiance (W/m2)

[11] SGMD Feed inlet temperature (54–68 °C) Permeate flux (kg/(s⋅m2)) 3:9:1
Air flow rate (0.966–2.028m/s)
Feed flow rate (0.140–0.206m/s)

[10] AGMD Air gap thickness (3.0–7.4 mm) Permeate flux (kg/(s⋅m2)) 4:10:1
Cold inlet temperature (13.9–26.1 °C)
Feed inlet temperature (30–71 °C)
Feed flow rate (145–205 L/h)

[28] VMD Vacuum pressure (10–80mbar) Permeate flux (kg/(s⋅m2)) 4:3:1
Feed temperature (25–55 °C)
Salt concentration (50–300 g/L)
Feed flow rate (15–60mL/s)

Fig. 1. Test-bed facility at Plataforma Solar de Almería (PSA).
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the condenser channel to avoid overpressure. The permeate was mea-
sured with a weight (W in Fig. 2), using a tank to collect the permeate,
and then, returning it to the feed tank. All the temperature and pressure
measurements were monitored and registered by a Supervisory Control
And Data Acquisition (SCADA) system connected through a Program-
mable Logic Controller (PLC).

The MD module was tested in the Solar Membrane Distillation
(SMD) pilot facility of Plataforma Solar de Almería (PSA, www.psa.es)
(see Fig. 1-a). In this facility, the module was connected to a solar field
through a heat exchanger. The solar field was formed by 10 flat plate
collectors (Solaris CP1 Nova, Solaris, Spain) divided into two files with
5 collectors each one. The nominal thermal power supplied was 7 kWth

at a temperature of 90 °C. The heat rate supplied to the heat exchanger
was controlled by means of the feedback control structure presented in
[33].

The operation of the MD system consisted of pumping the cold feed
solution to the condenser inlet. The low temperature of the feed solu-
tion helped the condensation of the permeate. The circulation of the
feed solution along the condensation channel allowed preheating the
solution thanks to the latent heat of condensation and to the sensible
heat that crossed the membrane. After leaving the condensation
channel, the solution passed to the deaerator to eliminate the non-
condensable gases from the feed solution and later it was circulated
towards the inlet of the heat exchanger. Afterwards, the hot feed went
into the evaporator channel and circulated countercurrent with respect
to the circulation in the condensation channel. As the feed circulated
along the evaporator channel, the vapour passed through the pores of
the membrane driven by the vapour pressure difference created on both
sides of the membrane due to the temperature difference. The con-
centrated feed solution (brine) left the module through the outlet of the
evaporator channel and was poured into the feed tank for recirculation.
Since the brine had a temperature above that of the feed solution, it was
cooled down with a chiller.

2.2. Thermal energy performance metric

The thermal efficiency of the distillation process can be evaluated

by means of several metrics, being the Specific Thermal Energy
Consumption (STEC), the one adopted in this work, one of the most
employed [12,34-36]. This metric provides the thermal energy required
per volume unit of distillate, and it can be calculated as follows:

= ⋅ ⋅ ⋅ −⋅kWh m
ρ c

c
STEC( / )

F (T T )
D

,feed p3 evap in cond out

(1)

where c is a conversion factor (3.6⋅ 106 s⋅W/(h⋅kW)), ρfeed is the feed
water density (kg/m3), cp is the heat water capacity (J/(kg⋅° C)), D is the
permeate flow rate (L/h), and the rest of variables are according to
Fig. 2.

2.3. Response Surface Methodology (RSM)

RSM is a set of mathematical and statistical techniques based on the
fitting of empirical models to the experimental data obtained through
an experimental design. The RSM procedure consists of the develop-
ment of a linear or quadratic polynomial function that adjusts the re-
sponse (permeate production, energy efficiency and so on) depending
on the operating conditions (temperatures, flow rates and so on).
Therefore, polynomial functions are used to describe the studied system
and consequently, to explore (model and displace) the experimental
conditions up to their optimization to achieve the best performance of
the system [37].

The development of a RSM has several steps: (i) selection of the
main variables that exert the highest effect on the system through the
screening studies and the delimitation of the experimental region, in
accordance with the goal of the study and the experience of the re-
searcher; (ii) choice of an experimental design that defines which ex-
periments should be carried out in the experimental region and con-
duction of the experiments according to the selected experimental
matrix; (iii) mathematical-statistical treatment of the experimental data
by adjusting a polynomial function (see Eq. (2)); (iv) evaluation of the
validity of the model.∑ ∑ ∑= + ⋅ + ⋅ + ⋅ ⋅= = ≤ ≤y β β x β x β x x ,
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Fig. 2. Schematic diagram of the test-bed facility.
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where k is the number of variables, β0 is the offset term coefficient, βi
represents the coefficients of the linear effects, xi and xj represent the
variables, βij represents the coefficients of the interaction of effects, and
βii represents the coefficients of the quadratic parameters. To estimate
the coefficients of the equation, the experimental design must ensure
that all the studied variables are carried out for at least three levels of
each variable. Among the most used second order designs are the three-
level factorial design, the Box-Behnken design and the central compo-
site design. These designs differ from each other in their selection of
experimental points, number of levels for the variables and number of
executions. In particular, central composite design is a fractional fac-
torial or factorial design with extended central points with a group of
axial points also called star points. So, for example, to optimize a pro-
cess with three variables (k=3), the first block is a factorial 23, the
second block is a set of 2×3 tests and the third blocks are repetitions in
the center [38]. There are three types of central composite design,
specifically, circumscribed, inscribed and face-centred central compo-
site. In the last one, the star points are the centre of each face of the
vector space, so this variety requires only three levels of each factor.
After the experimental plan proposed by the design has been carried out
and the values of the responses have been obtained for each experi-
mental point, it is necessary to evaluate the quality of the adjusted
model by applying the ANOVA [39]. With the ANOVA, the variation
due to the treatment (change in the combination of the levels of the
variables) is compared with the variation due to the random errors
inherent in the measurements of the generated responses. From this
comparison, it is possible to evaluate the significance of the regression
used to predict the answer.

2.4. Artificial Neural Network (ANN)

An ANN is also a mathematical model which is composed of simple
interconnected elements, that process information in response to ex-
ternal inputs, trying to imitate the behaviour of biological neural net-
works. These simple elements, called neurons, are computational pro-
cessors in which three main operations (see Fig. 3) are carried out
[40,41]:

1. The n-element input vector (z1, z2, ...zn) is multiplied by weights
(w1,1, w1,2, ...w1,n).

2. In the summing junction, the weighted inputs are added together
with the bias vector b, obtaining the argument a:= ⋅ + ⋅ + + ⋅ +a bz w z w ... z w .n n1 1,1 2 1,2 1, (3)

3. Finally, the argument a is converted into a scalar value Out by
means of the transfer function f (see Fig. 3):= +Out f bzW( ). (4)

In the transfer function block (f in Fig. 3), several functions can be
employed, two of the most adopted being the linear (purelin) and the
log-sigmoid (logsig) transfer functions [40,41]. Thus, the outputs of
neurons calculated by these transfer functions can be expressed as:= =Out f a aPurelin : ( ) , (5)

= = +Out f a
e

Logsig : ( ) 1
1

.a (6)

The form in which neurons are grouped and connected is known as
topology or architecture of the neural network. In general, neurons are
grouped in different layers such as hidden and output layers. Moreover,
the inputs can be treated as an additional layer. Between the different
kinds of architectures, one of the most used to perform function fitting
is the Multi-Layer feedforward Perceptron (MLP) [42]. In this archi-
tecture, the number of inputs and outputs of the network is defined
according to the number of input and output variables of the system to
be modelled. On the other hand, the optimal selection of the number of
layers, and the number of neurons required in each layer, is still an
active research area and it is usually obtained by trial and error. In
practice, most neural networks have only two or three hidden layers
[42].

Once the architecture of the network is chosen, the weights and
biases are adjusted by means of a training algorithm. Back Propagation
(BP) algorithm is the most commonly employed for training MLP net-
works [10,11,17,42]. This algorithm tries to minimize a performance
function by iteratively adjusting network weights and biases. The index
used as performance function in this work is the Root Mean Square
Error (RMSE):

= ∑ ∑ −⋅= = Y Ŷ
M N

RMSE
( )

,i
M

j
N

i j i j1 1 , ,
2

(7)

where M is the number of network outputs, N is the number of data
used for training, and Y i,j and Ŷi j, are the experimental and predicted
responses respectively. Thus, in each iteration BP algorithm modifies
weights and biases in the direction in which RMSE decreases. One
iteration of this algorithm is given by [42]:= −+λ λ δΔ ,k k k1 (8)

where λk is a vector containing current network weights and biases, δ is
the learning rate, Δk is the current gradient of RMSE function, and k
being the iteration number.

2.5. Multi-objective optimization

The space of solutions of the RSM model can be easily explored by a
conventional gradient-based optimization method, as it is quadratic.
However, the ANN model does not guarantee a linear or smooth non-
linear solution space to be explored. Therefore, other global techniques
such as genetic-based algorithms should be considered. In this work, a
multi-objective evolutionary algorithm NSGA-II was employed to carry
out the optimization. NSGA-II is a fast and elitist optimizing approach
which stands out for obtaining spread solutions near the optimal Pareto
Front. In general, the algorithm can be roughly divided in the following
steps:

1. Creation of an initial population randomly selected according to the
problem and constraints

2. Non-dominated sorting of the population initialized previously
3. Calculation of the crowding-distance
4. Selection of individuals based on a crowded-comparison operator
5. Use crossover and mutation operators to generate a new population

All the steps are widely explained in [43]. The optimization wasFig. 3. Schematic diagram of an artificial neuron.
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carried out with Matlab R2018a (the Mathworks, USA). The population
size of the algorithm was fixed at 10, the maximum number of itera-
tions at 500, and the convergence tolerance was 1e-100.

3. Results and discussion

3.1. Response Surface Methodology based model

RSM was used to characterize the performance of MD module
through the specific thermal energy consumption (STEC) and permeate
flux (Pflux), as a function of the main parameters that affect the per-
formance in this technology, which are summarized in Table 3. Notice
that the variables have been selected according to the allowed opera-
tional limits of the module [12], since the objective is to perform a
realistic study in commercial-scale. After choosing the variables, the
Design of the Experiment (DoE) was carried out with Statgraphics
centurion, a highly specific multivariate analysis package. The chosen
design to obtain the experimental campaign was the Face-centred
Central Composite (CCF) design which required three levels of each of
the variables. The data proposed by the CCF design for modelling are
presented in Appendix A.

After carrying out the experimental campaign and introducing the
experimental values of the responses of interest, the experimental de-
sign was analysed. The ANOVA analysis was used to verify if the re-
gression equations were statistically valid. The statistical parameters
used to evaluate the goodness of the fit was the p-value, the coefficient
of determination (R2) and the adjusted coefficient of determination
(adjusted-R2). Specifically, the p-value was used to determine which
terms of the equation were statistically significant. For that, the p-value
was compared with the level of significance to decide which terms were
excluded from the final model. A value of 0.05 was used for the level of
significance, meaning that if the p-value was lower than 0.05, the
coefficient was significantly different from zero with a confidence level
of 95%. Therefore, the coefficients with a p-value higher than 0.05 were
not included in the final equations. Table 4 shows the p-values of the
coefficients for both responses (STEC and Pflux). Thus Tevap, Tcond, F, S,
Tevap ⋅F, Tevap ⋅S, Tcond ⋅S, F⋅S and S2 were significant for Pflux while for

STEC, only Tevap, S and Tevap ⋅S were statistically significant. Non-sig-
nificant terms were removed from the model to obtain the simplified
equations for both Pflux and STEC:= − + ⋅ − ⋅ − ⋅− ⋅ + ⋅ ⋅ − ⋅ ⋅− ⋅ ⋅ − ⋅ ⋅ + ⋅
P 0.8868 0.0291 T 0.0104 T 0.0008 F

0.0087 S 0.000061 T F 0.0002 T S
0.0001 T S 0.000009 F S 0.0001 S

flux evap cond

evap evap

cond
2 (9)= − + ⋅ + ⋅ − ⋅ ⋅STEC 317.712 5.874 T 24.296 S 0.273 T Sevap evap (10)

The simplified equations were also subjected to an analysis of var-
iance. Table 5 shows the values of the statistics for the simplified
models for Pflux and STEC. The p-value and the coefficients of de-
termination determined a good fit for Pflux but the R2 and adjusted-R2

were low for the STEC. The comparison between the observed values
and the adjusted values by the models is shown in Fig. 4. An excellent
fit can be observed between the experimental and predicted responses
for Pflux (see Fig. 4-1). On the other hand, the adjustment in the STEC
response is not so good (see Fig. 4-2), as expected in view of the results
of the ANOVA. Notice that the RSM model is composed of linear, in-
teraction and quadratic terms, which are good at adjusting linear or
quadratic behaviours, however it provides unsuccessful fitting when it
comes to nonlinear behaviour, as the one obtained by the feed water
salt concentration influence on the STEC. When the feed water salt
concentration is not taken into account as an input of the model, RSM
provides satisfactory adjustments [12].

3.2. Neural Network based model

The Neural Network based model was developed considering as
inputs S, Tcond, Tevap and F (see Table 3), and as outputs Pflux and STEC.
In this case, the data used in the RSM method were complemented with
more samples. It should be remarked that, although DoE ensures data
well distributed throughout all the input data range, the ANN model,
which is exclusively data-based, can present abrupt nonlinearities in the
responses if the amount of data is not large enough, and if the data set is
not well distributed. This fact can be especially significant when the
range of the input data is large, and some of these parameters have a
clear nonlinear influence on the responses, as is the case of feed water
salt concentration in this study. Thus, Appendix A shows all the ex-
perimental data. Besides, it should be commented that, as in the case of
experimental data used in RSM model, four measurements were taken
for each experimental point.

The experimental data set was divided in 3 subsets: i) training
subset (75% of samples), ii) validation subset (20% of samples), and iii)
test subset (5% of samples). Moreover, in order to avoid overfitting
during the training process, both the input and output variables were
normalized in the range 0.1–0.9 by means of the following expression
[10]:= − − ⋅ −− +y U L

y y
y y

L(1 ) ,n
k min

max min (11)

where yn is the normalized sample, yk is the actual sample, ymax and ymin

are the maximum and minimum values of the variable to be normal-
ized, and U and L are the upper and lower bounds considered to define
the output network range (U= L=0.1).

The training process was accomplished in the Neural Network
Toolbox of MATLAB, using the Lavenberg-Marquardt BP algorithm

Table 3
Input model variables.

Variable Nomenclature Range

Evaporator inlet temperature (°C) Tevap 60–80
Condenser inlet temperature (°C) Tcond 20–30
Feed flow rate (L/h) F 400–600
Feed water salt concentration (g/L) S 35–140

Table 4
Values of the regression coefficients and their statistical significance.

Terms Pflux(L/(h⋅m2)) STEC(kWh/m3)

Coefficient P-value Coefficient P-value

Tevap 0.039820 0.0000 −75.525 0.0006
Tcond −0.000171 0.0000 105.672 0.0505
F 0.002683 0.0000 −6.079 0.1223
S -0.010709 0.0000 26.804 0.0000
Tevap

2 −0.000065 0.7800 0.613 0.5504
Tevap ⋅Tcond −0.000063 0.7383 −1.365 0.1147
Tevap ⋅F 0.000062 0.0000 0.059 0.1651
Tevap ⋅S −0.000208 0.0000 −0.273 0.0042
Tcond

2 −0.000181 0.8463 0.613 0.8804
Tcond ⋅F 0.000006 0.7383 −0.113 0.1838
Tcond ⋅S −0.000107 0.0104 0.368 0.0336
F2 −0.000004 0.1374 0.005 0.5966
F⋅S −0.000009 0.0002 −0.014 0.0758
S2 0.000132 0.0000 −0.024 0.5127

Table 5
Goodness of the adjustment of the simplified models of Pflux and STEC.

Statistical estimator Condition for a good fit Pflux STEC

P-value ≤0.05 ≤0.01 ≤0.02
R2 Closed to 1 0.998 0.704
Adjusted-R2 In agreement with R2 0.996 0.664
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[40]. Several ANN architectures were tested varying the number of
hidden layers between 1 and 3 and the number of neurons in each layer
between 1 and 10. The transfer function adopted in the hidden layers
was the logsig, whereas the one employed in the output layer was the
purelin. The optimal architecture was selected according to the perfor-
mance function (RMSE).

The optimal ANN model (see Fig. 5) is composed of 4 inputs, two
hidden layers containing 7 and 2 neurons respectively, and two outputs.
This feedforward neural network topology can be described as MLP
(4:7:2:2). Notice that the training process was iteratively performed (as
was mentioned in Section 2.4) until reaching a RMSE sufficiently small,
according to the imposed goal for the training subset (RMSE≤ 5 ⋅ 10−4,
normalized value according to Eq. (11)). In the optimal network case,
the training process was stopped after 13 iterations obtaining a
RMSE=2.61⋅ 10−4 for the training data subset, while the RMSE of the
validation and test subsets was lower than 1⋅ 10−3. Table 6 summarizes
the optimal values of network weights and bias in a matrix-vector
format. The ANN model can be expressed as:

 = + + +LW LW IW x b b bY Φ ( Φ ( Φ ( ) ) ),(3) (3,2) (2) (2,1) (1) (1,1) (1) (2) (3) (12)

where Φ(i) is the transfer function correspondent to layer i (i=1-3), L
W(2,1) and L W(3,2) are the layer weight matrices, where the superscripts

indicate the destination and source connections, I W(1,1) is the input
weight matrix, x is the network input, and Y is the network output. It
should be commented that the same notation has been employed in
Table 6 and Fig. 5.

The fit between the experimental data used in the training and va-
lidation processes, and the predicted values by the ANN model are
shown in Fig. 6. Besides, Table 7 shows the analysis of variance
(ANOVA) for these two subsets. As can be observed, the obtained p-
values (lower than 0.05) and coefficients of determination (close to 1)
evidence the good fit obtained by ANN model in both cases Pflux and
STEC. Notice that in the next subsection more experimental data will be
used to test the performance of the ANN model.

3.3. Comparison between the prediction abilities of the two modelling
approaches

In order to compare in the same conditions the prediction abilities
of the RSM and ANN models, additional experimental data were em-
ployed (see Table 8). The comparisons were performed based on the
Root Mean Square Error (RMSE), the coefficient of determination (R2)
and the adjusted-R2.

Fig. 7 shows the correlation between the additional experimental
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Fig. 5. Schematic diagram of the optimal network architecture. x1, x2, x3 and x4 are S, Tcond, Tevap and F, while Y1 and Y2 are STEC and Pflux.
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data and the predicted values, and Table 9 shows the performance
metrics. On the one hand, in the case of the permeate flux (Pflux), the R2

and the adjusted-R2 values obtained with both models were similar
(very close to 1, see Fig. 7), whereas the obtained RMSE error was 0.06
and 0.10 (L/(h⋅m2)) for the ANN and RSM model respectively, which

evidences the good results obtained with both models. On the other
hand, in the STEC case, the R2 and the adjusted-R2 values obtained with
the ANN model were 0.982 and 0.981 respectively, whereas the ones
obtained with the RSM model were 0.770 and 0.742 respectively. The
RMSE of the ANN model was 27.01 (kWh/m3) while the RMSE of the

Table 6
Optimal network weights and bias.

Input weight matrix

=
− −− −− −− −−− −

IW

1.441 0.890 0.372 2.015
1.528 1.047 0.516 2.105
0.831 0.541 0.926 0.213

2.115 1.427 0.796 0.612
1.957 0.117 0.139 0.472

0.023 0.053 0.177 0.210
0.698 0.842 1.351 0.953

(1,1)

Hidden layer 1 bias vector

= −−−−
b

2.148
2.269
2.840

0.788
1.478
0.042
4.384

(1)

Hidden layer 2 weight matrix

=
− −− −−− −− −−

LW

0.610 0.593
0.450 0.461

1.086 0.257
0.011 0.049
0.593 0.408
0.974 1.613
0.280 0.467

(2,1)T

Hidden layer 2 bias vector = −b 0.680
1.162(2)

Output layer weight matrix −− −LW 1.860 0.030
0.094 1.518

(3,2)

Output layer bias vector
b(3) =

0.844
0.398
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Fig. 6. Comparison between predicted values by ANN model (STECpred and Pflux,pred) and experimental data (STECexp and Pflux,exp).

Table 7
Goodness of the adjustment of ANN model.

Pflux STEC

Training Validation Training Validation

P-value ≤0.01 ≤0.01 ≤0.01 ≤0.01
R2 0.994 0.991 0.993 0.990
Adjusted-R2 0.993 0.990 0.992 0.989

Table 8
Additional experimental data used to compare the two modelling approaches.

S (g/L) Tcond(°C) Tevap(°C) F(L/h) STEC(kWh/m3) Pflux(L/(h⋅m3))

35 20 75 600 297.563 2.303
35 25 75 400 246.323 1.568
35 30 65 500 286.500 1.311
60 20 65 600 506.388 1.141
60 25 65 500 535.293 0.756
60 30 65 400 453.794 0.580
60 30 75 600 368.303 1.524
140 20 75 500 499.528 1.054
140 25 65 600 678.193 0.736
140 30 65 400 1172.35 0.214
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RSM model was 85.70 (kWh/m3). It should be taken into account that
the low grade of adjustment obtained by the RSM model in the STEC
case can be explained for two main reasons: (1) the nonlinear behaviour
of STEC with respect to feed water salt concentration, and (2) the
simplified equation modelling STEC does not consider the influence of
Tcond and F in the responses, hence it adds uncertainty to the model (see
Eq. (10)). Thus, it can be concluded that the ANN model is more sui-
table for predicting STEC, especially when working at high feed water
salt concentration.

In addition to the comparison carried out previously, 3D response
surfaces were displayed to observe the influence of the feed water salt
concentration in both Pflux and STEC, and also to compare the surfaces
provided by RSM and ANN models. It should be taken into account that
the influence of the rest of input variables was studied in [12]. Thus,
Figs. 8 and 9 show the 3D response surfaces for RSM and ANN models
respectively.

On the one hand, the influence of the feed water salt concentration
and the other input variables (Tevap, Tcond and F) in the Pflux predicted
by the RSM and ANN models respectively can be observed in Fig. 8-1, 3
and 5, and in Fig. 9-1, 3 and 5. It can been seen that Pflux decreases
significantly with increasing feed water salt concentration. Notice that,
the 3D response surfaces obtained by the two models were similar, due
to Pflux being almost linear in all the input data range.

On the other hand, in Fig. 8-2, 4 and 6, and in Fig. 9-2, 4 and 6 the
effects of S, Tevap, Tcond and F on the STEC predicted by the RSM and
ANN models are shown. In this case, the opposite behaviour than in
Pflux can be observed, STEC augments when increasing feed water salt
concentration. Therefore, an increase in the salinity implies a decrease
in thermal efficiency. Besides, some differences can be seen in the 3D
response surfaces of both models. RSM model provides almost linear
surfaces for the whole input data range, whereas ANN model provides
nonlinear surfaces which represent in a more accurate way the beha-
viour of STEC observed from experimental data (see Appendix A). In
addition, ANN model takes into consideration the influence of Tcond and
F in the response (see Fig. 9-4 and 6), whereas RSM model does not
consider these variables (see Eq. (10)) as was commented before.

According to the results obtained, different interaction effects can
be seen among the input variables. Considering Tevap and S, the increase
of Tevap yields to an increase of the performance, namely, an increase of
Pflux and a decrease of STEC, and this effect is stronger the higher the S
values. The increase of S leads to a decrease of the performance and this
effect is stronger for smaller Tevap. Regarding the interaction effect
between F and S, an increase of F at different S values causes an en-
hancement of Pflux. However, the effect of increasing F on STEC de-
pends on S. For a salinity value of 35 g/L, an increase of F causes a
negative effect on STEC, while for high S values, an increase of F pro-
duces the contrary effect. This is because at high S and low F, the
permeate production decreases at a higher rate than the decrease of the
external heat necessary by working with a low F. Finally, the effect of
Tcond on the Pflux is negative. An increase of this variable, yields to a
decrease of the driving force, diminishing Pflux and this effect is stronger
for high S. Regarding the STEC, at a salinity of 35 g/L, an increase of
Tcond favours the decline of the STEC, however, at high S values, the
increase of Tcond leads to an increase of STEC because the decrease of
Pflux at high S is more pronounced.

From an optimization point of view, two interesting conclusions can
be drawn. Firstly, in Fig. 9-6 it can be observed how STEC decreases at
low F when S is in a low-medium range, and then, at high S, STEC has
an almost curvilinear behaviour with respect to F where the minimum
value is located around 500 L/h. Secondly, it can be observed that the
STEC does not present large variations with respect to Tevap at low S,
around 80 kWh/m3 at 500 L/h (see Fig. 9-1). However, at high salinity
concentrations (i.e. 140 g/L), the influence is remarkable, around
500 kWh/m3 at 500 L/h (see Fig. 9-1). This fact can be very relevant in
solar powered batch operations since the result of an optimization
problem with a time horizon of 1 day could be: working at low Tevap at
low salinity concentrations and storing thermal energy to be able to
operate at high temperature, significantly improving performance,
when high salinity ranges are reached.

3.4. Multi-objective optimization

Once the models were developed, validated and compared, a multi-
objective optimization was carried out using NSGA-II algorithm. The
objective was to find a set of solutions that ensure a trade-off between
the two performance parameters (maximizing Pflux and minimizing
STEC), that require contrary operating conditions in some variables
such as Tcond and F. This set of optimal solutions is known as Pareto
Front or nondominant solutions. Thus, two optimization cases were
proposed according to the levels of feed water salt concentration that
can be reached when performing batch operation for desalting RO
brines. In the first optimization problem, the feed water salt
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Table 9
Comparison of predictive abilities of RSM and ANN.

RSM ANN

STEC Pflux STEC Pflux

RMSE 85.70 0.10 27.01 0.06
R2 0.770 0.985 0.982 0.988
Adjusted-R2 0.742 0.984 0.981 0.987
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concentration was fixed at 70 g/L, whereas in the second optimization
problem, the feed water salt concentration was fixed at 105 g/L. Notice
that the optimized variables in both cases are Tcond, Tevap, and F, since
they can be easily manipulated to achieve the desired performance. The
optimization was carried out using only the ANN model as it takes into
account all the input variables for the two performance parameters, as
was commented in the previous section. The results obtained for both
optimization cases are reported in Fig. 10 and Table 10. In addition,
three experimental runs randomly selected were performed in order to

validate the optimal points obtained in the two optimization problems
(see Table 11).

Attending to the results, Table 10 shows that different operating
conditions are required in some of the parameters depending on the
level of feed water salinity. Notice that the pareto fronts must be ana-
lysed by assigning different importance for responses, according to the
specific desirability of the application. In general, it can be seen that in
the two studied cases, for applications that require higher distillate
production it is better to operate with larger F and smaller Tcond.
However, if the thermal efficiency is the decisive factor in the appli-
cation, it is better to operate with smaller F and larger Tcond at the feed
water salinity of 70 g/L. On the other hand, at the feed water salinity of
105 g/L, larger Tcond and larger F are required. It is also important to
remark that in the two optimization problems, the inlet evaporator
channel temperature is at the maximum (80 °C) for all the pareto so-
lutions. Nevertheless, in real solar powered operations, this tempera-
ture will be limited by the irradiance conditions at every moment and,
therefore, the optimal operating conditions can be obtained by mod-
ifying only Tcond and F. It should be pointed out that Tcond steadily
increases when performing batch operations, but it could be manipu-
lated using cooling devices in order to work in the optimal operating
points, thus increasing MD module performance.

Moreover, Table 12 shows the salt rejection factor (SRF) for three of
the studied salinities. For the three salinities, the SRF was close to
100%, confirming that in this case, in accordance with the MD funda-
mentals, the operating conditions do not affect the salinity of permeate
[44].

4. Conclusion

Response Surface Methodology (RSM) and Artificial Neural
Networks (ANN) were used for modelling the performance of a com-
mercial-scale PGMD module, under the operating conditions required
by one of its possible potential industrial implementation: desalting
brines from RO plants. The independent variables chosen for the models
were the condenser inlet temperature (20–30 °C), the evaporator inlet
temperature (60–80 °C), the feed flow rate (400–600 L/h) and the feed
water salt concentration (35–140 g/L), while permeate flux (L/(h⋅m2))
and Specific Thermal Energy Consumption (STEC, kWh/m3) were se-
lected as predicted variables. The prediction abilities of the two
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Fig. 10. Pareto fronts of the two optimization cases. (1) Results related to optimization problem 1, and (2) results related to optimization problem 2.

Table 10
Values of the Pareto fronts obtained by ANN model for both optimization
problems.

Run Tcond(°C) Tevap(°C) F(L/h) STECpred (kWh/m3) Pflux,pred (L/(h⋅m2))

Pareto front values of optimization problem 1
1 20.00 80.00 600.00 389.31 1.83
2 20.31 80.00 577.04 381.85 1.82
3 21.09 80.00 557.45 370.53 1.79
4 28.81 80.00 599.86 355.03 1.67
5 30.00 80.00 597.49 353.26 1.64
6 26.64 80.00 436.35 353.26 1.22
7 26.84 80.00 426.97 350.05 1.18
8 26.85 80.00 401.38 341.36 1.10
9 29.67 80.00 412.29 329.42 0.98
10 30.00 80.00 400.00 320.47 0.91

Pareto front values of optimization problem 2
1 20.00 80.00 600.00 470.67 1.51
2 21.02 80.00 598.73 468.58 1.46
3 21.49 80.00 595.28 467.35 1.44
4 20.62 80.00 556.64 455.28 1.43
5 21.11 80.00 557.07 452.81 1.41
6 21.40 80.00 548.95 446.56 1.40
7 21.33 80.00 532.78 440.51 1.38
8 30.00 80.00 600.00 421.48 1.38
9 29.86 80.00 585.48 416.96 1.36
10 30.00 80.00 580.10 416.20 1.35

Table 11
Validation of the optimal operating points.

Run in the
optimization

STECpred

(kWh/m3)
Pflux,pred (L/
(h⋅m2))

STECexp

(kWh/m3)
Pflux,exp (L/
(h⋅m2))

Confirmation runs of optimization problem 1
3 370.53 1.79 361.50 1.79
6 353.26 1.22 360.10 1.18
8 341.36 1.10 357.15 1.02

Confirmation runs of optimization problem 2
1 470.67 1.51 474.97 1.48
4 455.28 1.43 456.08 1.46
5 452.81 1.41 454.38 1.40

Table 12
Salt rejection factor for each salinity.

S (g/L) Tcond(°C) Tevap(°C) F(L/h) SRF (%)

35 20.00 80.00 583.00 99.99%
60 21.10 80.00 558.00 99.99%
140 20.60 80.00 557.45 99.99%
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modelling tools were compared with further experimental data. In ad-
dition, the optimal operating conditions (maximizing and minimizing
Pflux and STEC respectively) for two of the feed salinity concentrations
(70 and 105 g/L) that can be reached when performing batch operation
for desalting RO brines were determined.

Regarding the models, the ANN model achieved higher accuracy in
predicting the responses, especially in the STEC case. This fact can be
explained since the feed water salt concentration affects the STEC on a
nonlinear way, which cannot be well represented by a quadratic
equation. Therefore, ANN model is shown to be more adequate than
RSM for developing models in which the feed water salt concentration
is considered as an input. However, it should be also commented that it
required more experimental data.

The multi-objective optimization carried out revealed that, de-
pending on the level of feed water salinity, different operating

conditions are required in some of the parameters. Therefore, real time
multi-objective optimization could be essential for performing batch
operations aimed at desalting RO brines, especially when the MD fa-
cility is powered by solar energy.

In the future works, the models presented in this paper will be used
for developing optimization algorithms able to perform optimal designs
of a solar powered MD facility to be integrated in a RO plant. In the
same way, models will be used for optimizing the solar powered op-
eration of the MD module in batch mode operation.
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Appendix A. Experimental data

Table 13
Experimental data used for RSM and ANN modelling.

Run ANN subset Used in RSM S (g/L) Tcond(°C) Tevap(°C) F(L/h) STEC(kWh/m3) Pflux (L/(h⋅m2))

1 Validation Yes 35 20 60 400 300.305 0.995
2 Training No 35 20 70 400 369.411 1.440
3 Training Yes 35 20 80 400 222.526 1.973
4 Training No 35 20 60 500 356.991 1.257
5 Training No 35 20 70 500 300.350 1.867
6 Training No 35 20 80 500 229.492 2.545
7 Validation Yes 35 20 60 600 359.706 1.487
8 Training No 35 20 70 600 298.275 2.077
9 Training Yes 35 20 80 600 260.154 2.656
10 Training No 35 25 60 400 298.676 0.954
11 Training No 35 25 70 400 255.285 1.378
12 Training No 35 25 80 400 222.468 1.856
13 Validation No 35 25 60 500 320.154 1.130
14 Validation Yes 35 25 70 500 264.936 1.756
15 Training No 35 25 80 500 254.171 2.293
16 Training No 35 25 60 600 356.744 1.391
17 Training No 35 25 70 600 300.857 2.048
18 Training No 35 25 80 600 250.845 2.306
19 Validation Yes 35 30 60 400 282.328 0.854
20 Training No 35 30 70 400 271.258 1.281
21 Training Yes 35 30 80 400 202.907 1.320
22 Training No 35 30 60 500 319.819 1.043
23 Training No 35 30 70 500 271.653 1.525
24 Training No 35 30 80 500 219.481 2.241
25 Training Yes 35 30 60 600 319.630 1.365
26 Validation No 35 30 70 600 269.584 2.019
27 Training Yes 35 30 80 600 240.578 2.583
28 Validation No 60 20 60 400 483.201 0.618
29 Validation No 60 20 70 400 407.835 0.888
30 Training No 60 20 80 400 257.824 1.560
31 Training No 60 20 60 500 515.713 0.745
32 Training No 60 20 70 500 416.734 1.230
33 Training No 60 20 80 500 404.528 1.281
34 Training No 60 20 60 600 521.765 1.016
35 Training No 60 20 70 600 491.363 1.313
36 Training No 60 20 80 600 309.722 2.076
37 Training No 60 25 60 400 420.777 0.612
38 Training No 60 25 70 400 342.163 0.931
39 Training No 60 25 80 400 294.926 1.240
40 Test No 60 25 60 500 545.728 0.654
41 Training No 60 25 70 500 378.013 1.166
42 Test No 60 25 80 500 305.985 1.620

(continued on next page)
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Table 13 (continued)

Run ANN subset Used in RSM S (g/L) Tcond(°C) Tevap(°C) F(L/h) STEC(kWh/m3) Pflux (L/(h⋅m2))

43 Validation No 60 25 60 600 453.292 0.884
44 Training No 60 25 70 600 420.574 1.347
45 Test No 60 25 80 600 334.478 1.978
46 Validation No 60 30 60 400 498.438 0.466
47 Training No 60 30 70 400 340.396 0.840
48 Validation No 60 30 80 400 289.640 1.095
49 Training No 60 30 60 500 533.780 0.591
50 Training Yes 60 30 70 500 367.792 1.032
51 Training No 60 30 80 500 310.756 1.566
52 Training No 60 30 60 600 529.871 0.720
53 Training No 60 30 70 600 430.971 1.194
54 Training No 60 30 80 600 325.401 1.782
55 Training Yes 87.5 25 60 500 705.05 0.506
56 Training Yes 87.5 20 70 500 501.44 0.996
57 Training Yes 87.5 25 70 400 615.29 0.544
58 Training Yes 87.5 25 70 500 500.06 0.882
59 Training Yes 87.5 25 70 600 496.07 1.148
60 Training Yes 87.5 30 70 500 532.01 0.760
61 Training Yes 87.5 25 80 500 420.44 1.246
62 Training Yes 140 20 60 400 927.252 0.324
63 Validation No 140 20 70 400 706.733 0.496
64 Training Yes 140 20 80 400 478.825 0.853
65 Validation No 140 20 60 500 853.079 0.501
66 Training No 140 20 70 500 626.960 0.790
67 Training No 140 20 80 500 459.124 1.120
68 Training Yes 140 20 60 600 777.253 0.663
69 Validation No 140 20 70 600 611.118 0.958
70 Training Yes 140 20 80 600 475.667 1.407
71 Training No 140 25 60 400 1137.747 0.147
72 Training No 140 25 70 400 713.008 0.441
73 Validation No 140 25 80 400 586.875 0.628
74 Test No 140 25 60 500 960.347 0.396
75 Training Yes 140 25 70 500 601.207 0.732
76 Training No 140 25 80 500 467.379 1.060
76 Training No 140 25 60 600 870.252 0.511
78 Training No 140 25 70 600 618.107 0.861
79 Training No 140 25 80 600 455.628 1.345
80 Training Yes 140 30 60 400 1960.897 0.118
81 Training No 140 30 70 400 723.315 0.385
82 Training Yes 140 30 80 400 607.823 0.600
83 Validation No 140 30 60 500 1418.157 0.220
84 Training No 140 30 70 500 647.301 0.630
85 Training No 140 30 80 500 497.021 1.068
86 Training Yes 140 30 60 600 1054.110 0.376
87 Training No 140 30 70 600 663.802 0.753
88 Training Yes 140 30 80 600 533.632 1.135
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a  b  s  t  r  a  c  t

Solar  Membrane  Distillation  (SMD)  is  an under-investigation  desalination  process  suitable  for  developing
self-sufficient  small  scale  applications.  The  use of solar  energy  considerably  reduces  the  operating  costs,
however,  its  intermittent  nature  requires  a non-stationary  optimal  operation  that  can  be  achieved  by
means  of advanced  control  strategies.  In  this  paper,  a hierarchical  control  system  composed  by two
layers  is  used  for optimizing  the  operation  of  a SMD  pilot  plant,  in terms  of  thermal  efficiency,  distillate
production  and  cost  savings.  The  upper  layer  is formed  by a Nonlinear  Model  Predictive  Control  (NMPC)
scheme  that  allows  us to obtain  the  optimal  operation  by  optimizing  the  solar  energy  use.  The lower
layer  includes  a direct  control  system,  in  charge  of  attaining  the  variable  references  provided  by the
upper  layer.  Simulation  and experimental  tests  are  included  and  commented  in  order  to  demonstrate
the  benefits  of  the  developed  control  system.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Desalination technologies require intensive generation energy
processes for the production of fresh water. For this reason, most
of the costs depend directly on the way the energy is obtained
and managed. The conventional use of non-renewable energy
resources, like fossil fuels, represents a non-sustainable solu-
tion from an economic and environmental point of view. Recent
research focuses on combining renewable energy sources and
desalination processes, as a way of developing efficient and sus-
tainable systems.

In this context, Membrane Distillation (MD) is a thermally
driven desalination process that can be powered with low grade
solar thermal energy (Zaragoza et al., 2014; Cipollina et al., 2012).
The main drawback of using solar energy as source is its unpre-
dictable nature that requires discontinuous operation and the use
of specific energy buffering systems. Hence, to develop sustainable
SMD  commercial systems it is necessary to combine a good tech-
nical design and adequate control techniques able to optimize the
system operation according to the solar energy behaviour.

∗ Corresponding author.
E-mail addresses: juandiego.gil@ual.es (J.D. Gil), lidia.roca@psa.es (L. Roca),

ara399@ual.es (A. Ruiz-Aguirre), guillermo.zaragoza@psa.es (G. Zaragoza),
beren@ual.es (M.  Berenguel).

There exist numerous examples of the use of offline opti-
mization techniques in the literature aimed at finding optimum
operating parameters in terms of thermal efficiency and distillate
production. In He et al. (2014), the response surface methodology is
used to model an Air Gap Membrane Distillation (AGMD) module.
Then, a non-dominated sorting genetic algorithm II was employed
to determinate the optimum operating conditions that maximize
both distillate production and thermal efficiency. In Khayet and
Cojocaru (2012), regression models are proposed to predict the
energy module consumption as function of different variables. An
optimization problem using Monte-Carlo stochastic methodology
was applied in order to maximize the thermal efficiency. How-
ever, the optimal operating conditions presented in these works
require steady state conditions around the defined points, which
are difficult to achieve under real solar-powered operation. As sug-
gested in Gil et al. (2015a,b,c), specific control systems can be used
to maintain the main variables of SMD  facilities near steady state
conditions. From this automatic control point of view, two interest-
ing control approaches are described in Chang et al. (2010, 2012),
where a control system formed by conventional Proportional Inte-
gral (PI) controllers is employed in order to track optimal operating
conditions calculated by means of an offline optimization study
focused on maximizing the distillate production. This control sys-
tem was  tested in simulation, obtaining results near the optimum
only for clear sky operation. Nevertheless, for coupling desalina-
tion processes and solar energy, real time optimization techniques

https://doi.org/10.1016/j.compchemeng.2017.11.012
0098-1354/© 2017 Elsevier Ltd. All rights reserved.
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can provide better results in terms of energy efficiency, distillate
production and cost savings, since these techniques take into con-
sideration the plant conditions at each sample time. In Karam and
Laleg-Kirati (2015) a Newton-based extremum seeking controller is
proposed to optimize the permeate flux and the inlet feed according
to the variance of the temperature. A dynamic model of the system
was used to test the control architecture. The use of a real time opti-
mization system for a real SMD  facility has been only addressed by
Porrazzo et al. (2013), in which a neural network-based feedfor-
ward optimal control system is proposed to maximize the daily
production of distillate.

This paper presents a hierarchical control architecture with two
layers, focused on optimizing the solar-powered operation of a MD
pilot plant. The upper layer includes a Practical Nonlinear Model
Predictive Control (PNMPC) strategy (Plucenio et al., 2007) which
provides temperature and flow rate setpoints for the heat gener-
ation SMD  circuit. Besides, a double Exponential Smoothing (DES)
technique (NIST, 2016; Pawlowski et al., 2011) combined with the
application of Lagrange interpolation method for signal reconstruc-
tion (Pawłowski et al., 2014) has been used to perform irradiance
estimation. On the other hand, the lower layer (Gil et al., 2015a,b,c)
is formed by PI and feedforward controllers which are in charge
of tracking the references calculated by the upper layer. Moreover,
two control modes are proposed for the efficient operation of the
facility, as well as a start-stop procedure for the solar field and
the MD  module. In comparison with the work in Porrazzo et al.
(2013), the proposed approach has several differences. Whereas
in Porrazzo et al. (2013) the feedforward-based controller is used
to maximize the distillate production, in the proposed hierar-
chical control approach different objective functions have been
tested (using the same control architecture) allowing to optimize,
apart from distillate production, thermal efficiency and cost sav-
ings. Additionally, instead of using a complete nonlinear model
of the system to determine the optimal operation, the PNMPC
strategy calculates an approximated linear model at each sample
time. Although this fact can cause a small loss of accuracy, the
complexity to solve the optimization problem as well as the com-
putational effort are decreased. The proposed control approach has
been tested in the MD-solar pilot plant located at Plataforma Solar
de Almería (PSA, www.psa.es), Spain. Simulation and experimen-
tal tests are included, showing that the adoption of the proposed
control scheme could represent a significant advance towards the
development of autonomous commercial SMD  systems.

2. MD-solar pilot plant

2.1. The MD  technology

MD  consists on a thermally-driven desalination process that
uses a hydrophobic micro-porous membrane to separate the water
vapour from sea or brackish water. The driving force of the pro-
cess is the pressure gradient originated at both membrane sides,
which is achieved by a temperature difference. In consequence,
volatile molecules are evaporated and transported through the
porous membrane whereas non-volatile compounds are rejected.
The vapour can then be condensed inside the module or out-
side in an external condenser, depending of the MD  configuration
employed (Alkhudhiri et al., 2012). The most adopted configura-
tions are Direct Contact Membrane Distillation (DCMD), Permeate
Gap Membrane Distillation (PGMD) and AGMD, in which conden-
sation takes place inside the module, and Sweeping Gas Membrane
Distillation (SGMD) and Vacuum Membrane Distillation (VMD),
where condensation occurs outside the module in an external
device.

Table 1
Variables monitored in the SMD facility.

Variable Description Units

DT1 Distillate production L/min
FT1 Solar field water flow rate L/min
FT2 Water flow rate between the tank and the distribution

system
L/min

FT3 Heat exchanger water flow rate L/min
FT4 Feed water flow rate L/min
I  Global irradiance measured at 36◦ tilted W/m2

Ta Ambient temperature ◦C
TT1  Solar field inlet temperature ◦C
TT2  Solar field outlet temperature ◦C
TT3  Temperature at the top of the tank ◦C
TT4  Distribution system inlet temperature ◦C
TT5  Heat exchanger inlet temperature, hot side ◦C
TT6  Heat exchanger outlet temperature, hot side ◦C
TT7  Distribution system outlet temperature ◦C
TT8  Temperature at the bottom of the tank ◦C
TT9  Heat exchanger inlet temperature, cold side ◦C
TT10 Heat exchanger outlet temperature, cold side ◦C
TT11 Feed water temperature ◦C

MD systems have several advantages that make this technology
specially suitable for developing self-sufficient small scale desali-
nation applications. Among the several advantages, the main ones
are: (1) an intensive pre-treatment of the feed water is not required,
just a simple filtration process; (2) the simplicity of the process
reduces the maintenance requirements and enables easy automa-
tion; (3) it can be operated under intermittent conditions without
damaging the membrane; (4) the operating temperature is low,
between 60 and 85 ◦C. Particularly, the last two  make possible the
use of solar energy as source, thus enabling the development of effi-
cient autonomous systems (Zaragoza et al., 2014; Cipollina et al.,
2012).

2.2. The SMD pilot plant

The SMD  pilot plant at PSA (Zaragoza et al., 2014; Ruiz-Aguirre
et al., 2017b) is formed by an AGMD module and a heat generation
circuit which comprises a solar thermal field, a storage tank and a
distribution system (see Fig. 1).

The MD commercial unit (built by Aquastill) consists on a spiral
wound module based on the AGMD technology (Alkhudhiri et al.,
2012). The effective surface area is 24 m2 with a length of 5 m.  Pro-
ductivity tests and a full characterization of the AGMD module were
presented in (Ruiz-Aguirre et al., 2015). The unit has its own  heat
exchanger, which is used to warm up the feed water, which is pre-
heated after acting as a coolant in the condenser channel of the
module, with the fluid coming from the heat generation circuit.

The required thermal energy is provided by a solar field formed
by stationary flat-plate collectors Solaris CP1 Nova purchased from
Solaris (Spain), which are set in two  rows of five collector each one.
A complete description of the solar field was presented in (Zaragoza
et al., 2014). The facility is also equipped with a thermal storage
tank (1500 L) that is used as energy buffer device to store and man-
age the thermal energy coming from the solar field. The storage
tank permits the operation of the plant in several modes, as it was
described in Gil et al. (2015a). In this paper the MD  module is fed by
the storage tank, which is heated by recirculating the fluid through
the solar field (see Section 2.3). Finally, a distribution system is
available to connect the heat generation circuit and the MD  mod-
ule. Notice that the distribution system enables the simultaneous
connection of several MD units.

The plant is completely monitored and controlled trough a Pro-
grammable Logic Controller (PLC) and a Supervisory Control And
Data Acquisition (SCADA) system with a sample time of 1 s. All
the monitored variables are presented in Table 1. Details about
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Fig. 1. Schematic diagram of the plant.

instrumentation can be found in Zaragoza et al. (2014), Gil et al.
(2015a).

2.3. System configuration and nominal operating ranges

As it has been highlighted before, the SMD  plant can be oper-
ated in different modes (Gil et al., 2015a). In this case, the fluid
coming from the solar field flows directly to the tank, which is
used to feed the module. By using this operating mode, the con-
tinuity of the operation is improved, since most of the transients
caused by irradiance disturbances are attenuated by the buffer sys-
tem. In addition, in this paper, only the solar-powered operation is
investigated, assuming that there are not other thermal sources.

On the other hand, pump 4 (see Fig. 1) drives feed water into
the condenser channel of the module (see Fig. 2). This feed flow
rate varies between 400 and 600 L/h, that is the maximum allowed
by the module. Moreover, the feed tank temperature is kept at
20 ◦C and the salinity is 35 g/L, representing mean values of the
seawater conditions adopted in this work. Once the feed water
reaches the heat exchanger, it is heated with the recirculating fluid
coming from the heat generation circuit. Then, the hot feed water
flows into the evaporator channel of the module. The inlet evapora-
tor temperature varies from 60 to 84 ◦C, since temperatures lower
than 60 ◦C produce very low distillate flow, and 84 ◦C is the max-
imum allowed by membrane materials. The volatile molecules of
the hot feed water are evaporated in the evaporator channel and
pass trough the membrane, whereas the non-volatile components
exit from the evaporator channel as brine. The volatile molecules
are then condensed in contact with the condensation foil of the
membrane, thus transferring some of the heat to the feed water
that circulates in the condensation channel, which is pre-heated
before reaching the heat exchanger. It should be noted that both
the brine and the distillate are returned to the feed tank, which
causes an increase of the temperature during the operation. Thus,

an auxiliary tank equipped with a chiller is used to keep the desired
feed tank conditions.

3. System modeling

In order to achieve a successful implementation of the PNMPC
control system, it is necessary to develop a model which accurately
represents the behaviour of the facility. According to the SMD  plant
configuration, the model has to include the solar field, thermal stor-
age tank, distribution system, heat exchanger, pump 1, pump 2,
pump 3 and MD  module. It should be taken into account that the
model of the heat generation circuit has been already presented and
validated in (Gil et al., 2015a,b,c). The definition of all the parame-
ters used in Eqs. (1)–(13) is presented in Table 2 (those not included
in Table 1).

Thus, the solar field was modeled using the lumped-parameters
model included in Roca et al. (2009), that is given by:

Asf · � · cp · ∂TT2(t)
∂t

=  ̌ · I(t) − H

Leq
·

(T̄(t) − Ta(t)) − cp · ṁeq · TT2(t) − TT1(t)
Leq

, (1)

where:

Leq = La · ncs, (2)

ṁeq = FT1 · �

c1
, (3)

T̄(t) = TT1(t)  + TT2(t)
2

. (4)
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Fig. 2. Schematic diagram of the MD module.

Table 2
Model parameters.

Variable Description Units

Ahe Heat exchanger area 1.65 m2

Asf Collector absorber cross-section area 0.007 m2

c1 Conversion factor to account for
connections, number of modules and
L/min conversion

9 · 2 ·6 · 104 (s L)/(min m3)

c2 Conversion factor to kWh  3.6 · 106 J/kWh
cp Specific heat capacity of demineralized

water
J/(kg ◦C)

cp,sw Specific sea water heat capacity J/(kg ◦C)
F  Input frequency %
H Solar field global thermal losses coefficient 5.88 J/(s K)
k  Static gain of FOPDT transfer functions
La Collector absorber tube length 1.95 m
Leq Equivalent absorber tube length 9.75 m
ṁds Water mass flow rate between the tank

and the distribution system
kg/s

ṁeq Equivalent solar-field mass flow rate kg/s
ṁsf Water mass flow rate between the tank

and the solar field
kg/s

ṁ1 Heat generation circuit mass flow rate kg/s
ṁ2 MD module circuit mass flow rate kg/s
ncs Number of series-connections in a

collectors group
5

T̄ Equivalent absorber tube mean
temperature

◦C

TT6m TT6 estimated by the model ◦C
TT10m TT10 estimated by the model ◦C
td Representative time delay of FOPDT

transfer functions
s

UA 1 Tank thermal losses coefficient, lower part 3.6 J/(s K)
UA 2 Tank thermal losses coefficient, upper part 3.8 J/(s K)
V  Tank volume 1.5 m3

˛he Heat exchanger heat transfer coefficient 670.80 W/(m2 K)
ˇ  Irradiance model parameter 0.11 m
�T  Temperature difference between TT10 and

TT9

◦C

�he Heat exchanger auxiliary factor –
� Representative time constant of FOPDT

transfer functions
s

�he Heat exchanger auxiliary factor –
� Demineralized water density kg/m3

�feed Feed water density kg/m3

A two-nodes stratified dynamic model was employed for the stor-
age tank, as suggested in Duffie and Beckman (1980):

∂TT3(t)
∂t

= 1
� · V

·
(

ṁsf · TT2(t) + ṁds · TT8(t)  − ṁsf · TT3(t)

−ṁds · TT3(t)  − UA1 · (TT3(t) − Ta(t))
cp

)
,

(5)

∂TT8(t)
∂t

= 1
� · V

·
(

ṁsf · TT3(t) + ṁds · TT7(t)  − ṁsf · TT8(t)

−ṁds · TT8(t)  − UA2 · (TT8(t) − Ta(t))
cp

)
.

(6)

Table 3
Transfer functions obtained from experimental data.

G(s) Y(s) U(s) k � [s] td [s]

G1(s) FT1(s) FP1(s) 0.2344 5 1
G2(s) FT2(s) FP2(s) 0.1674 7.65 3.01
G3(s) FT3(s) FP3(s) 0.1345 8.03 3

A first principles-based static model was  used to characterize the
heat exchanger, according to the ideas presented in de la Calle et al.
(2016):

TT6m = TT5 − �he,1 · (TT5 − TT9),  (7)

TT10m = TT9 + �he,2 · (TT5 − TT6m), (8)

where:

�he,1 = 1 − e�he

1 − ṁ1 · cp

ṁ2 · cp,sw
e�he

, (9)

�he,2 = ṁ1 · cp

ṁ2 · cp,sw
, (10)

�he = ˛he · Ahe ·
(

1
ṁ1 · cp

− 1
ṁ2 · cp,sw

)
. (11)

Moreover, a first order filter and a time delay have been added to
this static model to fit real response data. The representative time
constant is 40 s and the time delay is 23 s for TT6m, whereas the
time constant is 20 s and the time delay is 15 s for TT10m.

The distribution system was  modeled by means of a static
energy balance, taking into account that in a normal operation,
with FT2 higher than FT3, a mixture is produced between the fluid
coming from the tank and the cold fluid coming from the heat
exchanger:

TT7 = TT4 · (FT2 − FT3) + TT6 · FT3
FT2

. (12)

Besides, as in the previous case, a low pass filter has been added
to the output of Eq. (12) with a representative time constant of 7 s
based on experimental results.

Pumps were modeled trough First Order Plus Dead Time
(FOPDT) transfer functions obtained from experimental data, see
Table 3.

Finally, an experimental campaign was  carried out to obtain a
static model of the AGMD module distillate production (DT1) and
�T, that is the difference between the inlet evaporator channel
temperature (TT10) and the outlet condensation channel temper-
ature (TT9). More details about the experimental procedure were
shown in (Ruiz-Aguirre et al., 2015).

DT1 = 24 · (0.135 + 0.003 · TT10 − 0.0204 · TT11 − 0.001 · FT4

+0.00004 · TT10 · FT4),
(13)

�T = −0.739 + 0.078 · TT10 − 0.067 · TT11 + 0.0019 · FT4. (14)
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Fig. 3. 3D response surface plot of distillate flow rate.

Fig. 4. 3D response surface plot of �T.

4. Optimal operation of the MD  module

When coupling a thermal desalination process with solar
energy, the plant thermal efficiency is an essential factor. It should
be noted that the thermal efficiency varies according to the MD con-
figuration and module design. Thus, the optimal operation strategy
in terms of energy efficiency as well as distillate production should
be characterized for each MD  module. Several performance indices
can be adopted to evaluate thermal efficiency, being the Specific
Thermal Energy Consumption (STEC), which is widely employed in
the literature to evaluate the energy consumption of MD systems
(Duong et al., 2016; Guillén-Burrieza et al., 2012; Zaragoza et al.,
2014,b; Ruiz-Aguirre et al., 2017a,b), the one used in this work:

STEC[kWh/m3] = FT4 · �feed · cp,sw · �T
c2 · DT1

, (15)

this index provides the thermal energy required per volume unit of
distillate produced.

In order to observe the influence of each variable in the STEC
value and to assess the optimal operation of the AGMD module
employed in this work, 3D response surface plots have been dis-
played. The performance of STEC, �T  and DT1 have been evaluated
with respect to the inlet evaporation channel temperature (TT10)
and the feed water flow rate (FT4), maintaining TT11 fixed at 20 ◦C
(mean seawater temperature considered in this work).

Fig. 3 shows the 3D distillate flow rate response surface plot.
It can be seen that the distillate production flow rate augments
when FT4 and TT10 increase. Nevertheless, TT10 affects more sig-
nificantly than FT4. Moreover, in accordance with Eq. (15), STEC is
a function of FT4, DT1 and �T. Fig. 4 and 5 show the effects of TT10
and FT4 in �T  and STEC. It should be taken into account that TT10
has more influence than FT4 in both parameters. Besides, although
�T increases when high TT10 is applied (see Fig. 4), DT1 increases

more significantly (see Fig. 3). This fact reduces STEC, which implies
a greater thermal efficiency in the operation.

Hence, to obtain an optimal operation in terms of thermal effi-
ciency and distillate production, the temperature should be the
highest reachable one by the heat generation circuit at each instant,
taking into account that this temperature varies in accordance with
the operating conditions. On the other hand, the minimum STEC
and the maximum distillate production is achieved with low and
high FT4, respectively. Nevertheless, the distillate flow rate produc-
tion difference achieved when the maximun and minimum FT4 is
applied, is much greater than the STEC one, from 17.8 to 28.44 L/h
for the distillate flow rate and from 117.2 to 119.6 kWh/m3 for the
STEC. Therefore, FT4 will be operated at 600 L/h in order to achieve
the maximum flow rate of distillate.

5. Control system architecture

After the previous analysis, it has been concluded that the key for
the optimal operation of the SMD  facility is the proper management
of temperature TT10, by means of the heat generation circuit. For
this purpose, the two  chosen controlled variables are TT2 and FT2,
which enable to control the thermal power to load and unload the
tank. It should be considered that FT2 has a significant influence in
the inlet solar field temperature as well as in the outlet distribution
system temperature, due to the mix  produced in the distribution
system and in the lower part of the tank. This fact produces that its
operation is not trivial, thus justifying its inclusion in the control
system.

On the other hand, to obtain a profitable economic balance of
the plant, pump 2, 3 and 4 should not be operated when TT10 is
lower than 60 ◦C, since the MD module produces very low distil-
late flux in comparison with the electric consumption of pumps. In
this way, two different control modes are proposed. The first one
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Fig. 5. 3D response surface plot of STEC.

consists on a tank fast heating mode, in which the PNMPC strategy
optimizes the solar field outlet temperature (TT2) in order to warm
up the tank quickly, until reaching a temperature that allows us to
operate the MD  module with 60 ◦C. The second one is the normal
operating mode, which is used as long as the MD  module is oper-
ated. When this mode is selected, the control system acts on TT2
and FT2 setpoints (TT2SP and FT2SP) according to the two different
objective functions proposed for this mode. The switching mech-
anism (decision maker in Fig. 6) between both modes is based on
the start-stop procedure explained in Sections 5.4 and 5.5.

Therefore, the proposed control architecture (see Fig. 6) consists
on a classical hierarchical control system, in which the optimiza-
tion layer, the top one, acts as reference governor, by using a PNMPC
strategy (Plucenio et al., 2007) providing temperature and flow rate
references. Besides, a DES technique (Pawlowski et al., 2011) is
used to predict the irradiance and to improve the system behaviour
estimation. The inner layer, which is composed by a direct control
system, manipulates the input frequency of pump 1 and 2 (FP1 and
FP2) to maintain the setpoints calculated by the upper layer in spite
of irradiance disturbances.

5.1. Lower layer: direct control system

The direct control layer includes two loops, and all the details
about its configuration were presented in Gil et al. (2015a,b,c). The
aim of this control layer is to maintain the two controlled variables,
TT2 and FT2, near steady state conditions despite disturbances,
which mainly are ambient temperature (Ta), inlet solar field tem-
perature (TT1) and global irradiance (I). Firstly, TT2 is controlled
using a cascade control loop (see Fig. 7), acting in the input fre-
quency of pump 1 (FP1). Besides, a feedforward (FF) that uses a
static version of the solar field model (see Section 3), provides the
nominal flow rate FT1 in accordance with irradiance disturbances
and operating conditions. A Low Pass Filter (LPF) has been added to
this static FF to achieve a better dynamical behaviour and a smooth
response. In the same way, a LPF has been also included in the refer-
ence signal to find a good tradeoff between reference tracking and
disturbances rejection and to reduce overshoots against setpoint
step changes. The representative closed-loop time constant of this
controller is 72 s.

Secondly, a classical feedback loop with a PI controller (see Fig. 8)
is employed to control the feed flow rate FT2 by means of the
input frequency of pump 2 (FP2). In this occasion, the representative
closed-loop time constant is 6.5 s.

Notice that an antiwindup scheme was added to each control
loop. Pump 1 values range from 7.5 to 16 L/min and the pump 2 one
from 15 to 25 L/min. This direct control layer has been implemented
with a sample time of 5 s, allowing the solar field control loop
detecting irradiance changes quickly. It should be mentioned that
the original control architecture presented in Gil et al. (2015a,b,c)

Fig. 6. Hierarchical control strategy scheme.

also includes a temperature control loop aiming at controlling the
temperature at the inlet of the heat exchanger, by acting on valve
5. However, in this work, instead of using this control loop, valve
5 is kept fully open and it acts only commanded by means of a
security mechanism that closes the valve when the temperature
coming from the distribution system is higher than 95 ◦C, avoiding
damages in the membrane.

5.2. Upper layer: PNMPC strategy

As it has been pointed out before, the optimization layer
manages the thermal energy storage in the tank by generating
appropriate setpoints to the outlet solar field temperature (TT2SP)
and to the feed flow rate FT2 (FT2SP), according to the selected
control mode and the objective function employed in the nor-
mal  operating mode. For this purpose, a PNMPC strategy has been
adopted (Plucenio et al., 2007), which has already been successfully
tested in other nonlinear systems (Castilla et al., 2014; Álvarez et al.,
2013), being also possible to increase robustness of the approach
by filters shown in Andrade et al. (2013).

PNMPC algorithms are identified by the use of a vector Ŷ that
includes predictions of the future system outputs in a determined
prediction horizon N, as a function of the future movements of the
control signal �U:

Ŷ = F + G · �U, (16)

where F is the free response and G · �U is the forced response. In

linear MPC  algorithms, Ŷ is estimated using a linear model of the

system at hand. However, in the PNMPC control approach, Ŷ is cal-
culated using the nonlinear SMD  plant model presented in Section
3. It should be mentioned that, in order to save computational time,
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Fig. 7. Solar field control scheme. FT1FF is the FF control signal and FT1c is the feedback control signal.

difference equations have been employed for the solar field and
tank models instead of the differential ones.

Firstly, in the tank fast heating mode (related with J1, see Section
5.2.1), the input used for the PNMPC technique (UJ1) are the actual
and future values of TT2SP, whereas the output (ŶJ1) includes the
future predicted values of TT3. Thus, the PNMPC formulation for
the first control mode is given by:

ŶJ1 = F + GPNMPC · �U, (17)

where

�U = �UJ1, (18)

F = f (yJ1,p, �uJ1,p, �vp), (19)

GPNMPC =
[

∂ŶJ1

∂UJ1

]
, (20)

yJ1,p, �uJ1,p and �vp are sets of past values of outputs, inputs and
disturbances respectively.

Secondly, the two chosen input vectors of actual and future con-
trol actions, U1 and U2, for the normal operating mode (related
with J2 and J3, see Section 5.2.1) are TT2SP and FT2SP respectively,
whereas the predicted output vector, Ŷ, is TT10. Thus, the PNMPC
formulation is:

Ŷ = F + GPNMPC · �U,  (21)

F = f (yp, �up, �vp), (22)

�U =
[
�U1; �U2

]
, (23)

GPNMPC =
[

∂Ŷ
∂U1

∂Ŷ
∂U2

]
, (24)

yp, �up and �vp are sets of past values of outputs, inputs and
disturbances respectively.

It should be taken into account that this technique provides only
an approximation of the predictions, nevertheless it reproduces
better the system performance than a linear model, due to GPNMPC
being computed using linearized models at each instant, while F is
estimated with the nonlinear model, maintaining the future control
movements constants and using the prediction of the measurable
disturbances (see Section 5.3). Thus, to calculate F and GPNMPC for
each control mode at each sample time, the algorithm presented in
Algorithm 1 and described in Plucenio et al. (2007) should be used.
Additionally, as pointed out in Plucenio et al. (2007), Andrade et al.
(2013), for the treatment of disturbances, prediction errors and
noises, the implementation of the PNMPC algorithm in this work
uses an explicit form of generalized predictive control where the
integral of the filtered prediction error is added to the predicted sys-
tem output to correct open loop predictions (not explicitly included
in Algorithm 1 for the sake of simplicity).

Fig. 8. FT2 control scheme.

Algorithm 1. Procedure to estimate F and GPNMPC

1. To obtain Ŷ
0
, which is a vector of N elements, where N is

the prediction horizon, the model should be executed
using past inputs, outputs and the prediction of the
measurable disturbances (see Section 5.3), witha

�U = [0 0 . . . 0]t . So that, F = Ŷ
0
.

2. To calculate the first column of GPNMPC. Ŷ
1

is obtained as it
has been detailed in the previous step, but in this case
�U = [� 0 . . . 0]t , where � is a small increment in the
control signal, e.g. u(k−1)

1000 .

GPNMPC(:, 1) = Ŷ
1−Ŷ

0

� .
3.  The second column of the GPNMPC, is estimated by

calculating Ŷ
2

with �U = [0 � . . . 0]t . GPNMPC(:, 2) = Ŷ
2−Ŷ

0

� .
4.  Continue with the remaining columns of GPNMPC using the

same procedure as in the two previous steps. Notice that
number of column of GPNMPC is determined by the control
horizon Nu , so the last column is given by:

GPNMPC(:, Nu) = Ŷ
Nu −Ŷ

0

� .

5.2.1. Cost functions
In PNMPC controllers, the control signal is calculated by mini-

mizing a cost function. In this case, three different cost functions
have been formulated. It should be taken into account that the con-
trol architecture includes two  control modes. Thus, the first cost
function is the one used by the PNMPC strategy in the tank fast
heating mode, whereas the other two  are the ones proposed for
the normal operating mode.

The tank fast heating mode cost function is aimed at finding out
the actual and future control changes (�UJ1 = TT2SP) maximizing
TT3 (ŶJ1):

J1 = −
N1∑

j=1

ŶJ1(k + j|k), (25)

where N1 is the prediction horizon and ŶJ1(k + j|k) is the prediction
of TT3 at instant k + j, calculated with the information available at
instant k.

The first cost function proposed for the normal operating mode
tries to maximize TT10 (Ŷ) in order to increase the thermal effi-
ciency and the distillate production, in accordance with the analysis
presented in Section 4. This cost function also penalizes the future
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control changes �U (U1 = TT2SP and U2 = FT2SP) by means of a
weight factor 	i:

J2 = −
N∑

j=1

Ŷ(k + j|k) +
2∑

i=1

Nu∑

j=1

	i[�Ui(k + j − 1)]2, (26)

where N is the prediction horizon, Nu is the control horizon, Ŷ(k +
j|k) is the prediction of TT10 estimated at sample time k + j with the
information acquired up to discrete-time instant k, �U(k + j − 1) is
the future increment in the control variable i, where U1 is TT2SP and
U2 is FT2SP, and 	1 and 	2 are weighting factors affecting U1 and
U2 respectively.

The second cost function proposed for the normal operat-
ing mode provides the actual and future control changes �U
(U1 = TT2SP and U2 = FT2SP) minimizing the relation between the
distillate production (D̂) [m3] and its associated electric costs (ÊCost)
[D ]:

J3 =
N∑

j=1

ÊCost(k + j|k)

D̂(k + j|k)
. (27)

In this cost function, D̂Flux(k + j|k) is estimated using the MD  module
model (Eq. (13)), with the prediction of TT10 (Ŷ) provided by the
PNMPC strategy:

D̂Flux(k + j|k) = 24 · (0.135 + 0.003 · Ŷ(k + j|k) − 0.0204 · TT11

−0.001 · FT4

+0.00004 · Ŷ(k + j|k) · FT4),

(28)

where TT11 and FT4 are constant at 20 ◦C and 600 L/h, respectively.
The electric costs associated to the operation can be divided in

two parts, a fixed part that is not included in the cost function,
produced by pumps which are operated with constant references
(pump 3 and 4), and a variable part, included in the cost func-
tion, produced by pumps which are in charge of controlling TT2
and FT2 (pump 1 and 2). The electric power consumed by pumps
is estimated with the characteristic pump curves provided by the
manufacturer:

PPump1(k + j|k) [kW] = 34.91 · FT1(k  + j|k) · 0.06 + 120
1000

, (29)

PPump2(k + j|k) [kW] = 22.72 · U2(k + j|k) · 0.06 + 39.54
1000

. (30)

Notice that the electric power consumption of pump 2 can be
included directly in the optimization problem because it depends
on one of the outputs (FT2SP). However, Eq. (29) depends on FT1
which is the control variable used to reach the other optimization
output (TT2SP), so this equation must be rewritten in terms of TT2SP:

FT1(k  + j|k) =
[

 ̌ · Leq

cp · (U1(k + j|k) − TT1(k  + j|k))
· I(k + j|k)

− H

cp
· (T̄(k + j|k) − Ta(k + j|k))

(U1(k + j|k) − TT1(k  + j|k))

]
· c1

�
,

(31)

with

T̄(k) = TT1(k  + j|k) + U1(k + j|k)
2

, (32)

where TT1 and Ta are considered constants in the ahead instant
times, whereas I is predicted with the method showed in Section
5.3. Finally, ÊCost is calculated as the product of the electric power
consumed by pumps during N and the mean electricity price in
Spain (0.14 D /kWh).

To solve the optimization problem, the fmincon solver of MAT-
LAB has been chosen. This algorithm is based on the interior-point

method, and it has been selected due to the problem being sub-
jected to linear constraints (see next section) and it presents a
smooth nonlinear behaviour.

5.2.2. Constraints
The cost functions presented in the previous section are sub-

jected to three different kind of constraints. The first one, Eq. (33),
limits the maximum and minimum changes allowed in the con-
trol signals (slew rate ones) at each sample time. These limits are
imposed in order to obtain small setpoint movements trying to
avoid security problems caused by transients. Thus, outlet solar
field temperature steps are limited to 5 ◦C, whereas the steps in
FT2 are limited to 1 L/min.

�Umin ≤ �U(k + j|k) ≤ �Umax

j = 0, . . .,  Nu − 1.
(33)

The second constraint, Eq. (36), defines the physical limits of the
controlled variables. Pump 2 reachable ranges are 15–25 L/min. On
the other hand, the maximum and minimum temperatures (Tmax

and Tmin) reachable by the solar field are not constants and vary in
accordance with the operational conditions. To address this prob-
lem, these limits are calculated at each sample time, using a static
version of the solar field model:

Tmin(k) = TT1(k) + ˇ · Leq · I(k) ·
cp

− H · (T̄(k) − Ta(k) · c1

FT1max · cp · �
, (34)

Tmax(k) = TT1(k) + ˇ · Leq · I(k) ·
cp

− H · (T̄(k) − Ta(k) · c1

FT1min · cp · �
,  (35)

where FT1min is 7.5 L/min and FT1max is 16 L/min.

Umin ≤ U(k + j|k) ≤ Umax

j = 0, . . .,  Nu − 1.
(36)

Finally, the third constraint limits the output vector TT10 to 80 ◦C
that is the maximum temperature allowed by materials of the
membranes. It should be taken into account that it is not necessary
to limit TT3 (ŶJ1) when the fast heating tank mode is used, since it
is switched before reaching a high temperature (see Section 5.5).

Ymin ≤ Y(k + j|k) ≤ Ymax

j = 0, . . .,  N.
(37)

5.3. Irradiance estimation

To complete the PNMPC strategy and to improve its perfor-
mance, the irradiance behaviour is estimated by means of the DES
technique (Pawlowski et al., 2011). Notice that ambient tempera-
ture could be also estimated with the same technique, however, it
does not suffer significant changes along the sample time adopted.
In this manner, the irradiance estimation is given by:

Sk =  ̨ · Ik + (1 − ˛) · (Sk−1 + bk−1), (38)

bk = � · (Sk − Sk−1) + (1 − �) · bk−1, (39)

where S is the estimated series value, and b is the estimated
trend, which are calculated using actual and past series values. The
constants  ̨ and � ∈ (0, 1) have been characterized by means of opti-
mization techniques using experimental irradiance values. Thus,
the estimation of m periods is given by:

Îk+m = Sk + m · bk. (40)

Several methods can be employed to set the initial values for S and
b according to NIST (2016). In this case:

So = Ik, (41)
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bo = 1
3

2∑

j=0

Ik−j − Ik−j−1 (42)

It should be considered that this forecasting irradiance method
calculates N future values according to the prediction horizon of
the PNMPC controller. Hence, to reconstruct the signal according
to the sample time of the lower layer, the Lagrange interpolation
method has been employed, in consonance with the ideas pre-
sented in (Pawłowski et al., 2014). Thus, supposing that the discrete
data set is composed by N samples, such as {(t0, I0), . . . (tN, IN)}, the
Lagrange polynomial applied to this problem is given by:

L(t) =
k∑

j=0

Ij · lj, (43)

where

lj(t) =
k∏

i=0,i /=  j

t − ti

tj − ti
= t − t0

tj − t0
. . .

t − tj−1

tj − tj−1

t − tj+1

tj − tj+1
. . .

t − tk

tj − tk
. (44)

5.4. Start-stop procedure

Based on the facility configuration and in the MD  module oper-
ating limits (see Section 2.3), a start-stop procedure has been
developed for the solar field and the MD  module.

Due to irradiance conditions, TT2 can be lower than the tank
temperature, causing the tank to cool down. To avoid this situation,
the static model of the solar field is used to estimate the global
irradiance value which ensures that TT2 is going to be higher that
the tank temperature:

I(k) =
[

FT1(k) · �

c1
− H

cp
· (T̄(k) − Ta(k))

TT2(k) − TT1(k)

]
·

cp · (TT2(k) − TT1(k))
 ̌ · Leq

, (45)

where TT2 is fixed at the same value as the top tank temperature
and TT1 at the same value as the bottom tank temperature. There-
fore, pump 1 is tuned on or off if the real irradiance value is higher
or lower than the calculated one. This condition is evaluated each
5 min, in accordance with the sample time of the PNMPC strategy
(see Section 6). Furthermore, to avoid chattering problems, a mean
irradiance value of the last 10 min  sampled each second is used.

In the same way, as it has been previously commented, it does
not makes sense to operate the MD  module with temperatures
lower than 60 ◦C. To tackle this problem, the heat exchanger model
has been used to calculate if the tank temperature allows to operate
the MD  module over 60 ◦C:

TT6m(k) = TT5(k) − �he,1 · (TT5(k) − TT9(k)), (46)

TT5m(k) = TT10min(k) − TT9(k) + �he,2 · TT6m(k)
�he,2

. (47)

where it is assumed that TT5 has the same value as the top tank
temperature and TT10min is equal to 60 ◦C. TT9 is calculated with
�T model (Eq. (14)). Hence, pump 2, 3 and 4 are turned on or off
whether TT5m is respectively higher or lower than the tank tem-
perature. This condition is also executed with a sample time of
5 min.

5.5. Decision maker

The aim of this block (see Fig. 6) is to switch between the two
proposed control modes. Thus, this block selects the fast heating

tank mode or the normal operating mode according to the following
situations:

1. The tank temperature does not allow to operate the MD module
over 60 ◦C. Thus, the start-stop procedure is in charge of turning
on pump 1 according to the irradiance level, and this block selects
the fast heating tank mode, which activates the optimization
problem related to J1 (see Eq. (25)).

2. The global irradiance level permits to obtain an outlet solar field
temperature higher than the tank temperature, and the tank
temperature allows to operate the MD module over 60 ◦C. In this
situation, the start-stop procedure turns on pumps 1, 2, 3 and 4
and the decision maker selects the normal operating mode, cost
functions J2 or J3 (see Eq. (26, 27)).

3. The solar field cannot be operated with a temperature higher
than the tank temperature, but the tank temperature allows to
operate the MD  module over 60 ◦C. Consequently, the start-stop
procedure only turns on pump 2, 3 and 4, and the decision maker
selects the normal operating mode. It should be stressed that, in
this situation, the PNMPC strategy only provides setpoint for FT2,
maintaining TT2SP equal to 0.

6. Simulation results

This section presents the simulation results obtained with the
proposed control system, during a week with variable weather pro-
files. Fig. 9 shows the meteorological data from PSA used in the tests,
corresponding to the days of March 6–12, 2017. Firstly, the control
system performance is analyzed, making a comparison between the
performance of the two control objective functions formulated for
the normal operating mode. Secondly, the results obtained with the
proposed control architecture are compared with a case in which
only the direct control layer is employed with constant references.
In addition, two potential industrial applications are suggested in
order to evidence the benefits achieved with the proposed hier-
archical control system in terms of thermal efficiency and cost
savings.

The tests have been carried out with a sample time of 5 min  in
the upper layer and 5 s in the lower one. The control and predic-
tion horizon in both modes, the fast heating tank mode and the
normal operating mode, were 2. These values have been selected
taking into account the closed-loop characteristic time constant of
the solar field controller, the characteristic time constant of the
intermediate buffer (tank) and the heat exchanger, and chattering
problems observed in pump 1 when small values of the sample time
are used and the start-stop procedure is evaluated. On the other
hand, the use of a larger prediction horizon implies higher errors
in the irradiance prediction, leading to inaccurate control actions.
Besides, lower sample times have been tested without improving
the results obtained with a sample time of 5 min. The weighting
factor values adopted in J2 were 	1 = 0.1 and 	2 = 1.1, decided after
simulating different combinations, while the DES technique param-
eters were  ̨ = 0.1 and � = 0.9. Besides, FT4 has been fixed at 600 L/h,
according to the study presented in Section 4, and FT3 is operated
at the same value in order to achieve a maximum heat transfer in
the heat exchanger.

6.1. Control system performance

In order to compare the performance of the hierarchical control
system with the two  objective functions proposed for the normal
operating mode, the last simulation day is shown in Fig. 10 and 11
for J2 and J3 respectively.

The start-stop procedure enables that, at the beginning of the
operation, the initial tank temperature is similar all the days, since
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Fig. 9. Meteorological data from PSA.

Fig. 10. Control system performance with J2. (a) meteorological conditions, (b) solar field variables, (c) tank and distribution system variables and (d) MD module variables.

the start and stop conditions are the same, as it has been previ-
ously mentioned in Section 5.4. Thus, the operation in both cases
starts at instant time 153.9 h. As the tank temperature is not high
enough to operate the MD  module, the decision maker selects the
fast heating tank mode. Initially, this mode provides TT2SP close
to the lower optimization temperature limit (normal behaviour in
clear sky days), when FT1 is close to the maximum, to increase
the water flow rate and increase the thermal power delivered to
the tank. However, this operation is subjected to strong irradiance
disturbances, so that, TT2SP and therefore FT1 vary according to
disturbances. At instant 154.4 h, the start-stop procedure turns off
pump 1 because the irradiance level is too low. After 12 min, pump
1 is turned on and the control system uses the fast heating tank
mode to continue augmenting the tank temperature. It must be
kept in mind that, in this kind of days, if the condition to turn on
and off pump 1 was checked with instant irradiance values rather
than mean ones, chattering problems might occur. In this way,
even though the outlet solar field temperature is lower than the
top tank temperature (TT3) in short time periods, the operation is
more efficient and continuous.

At instant 155 h, the tank temperature reaches 62.4 ◦C which
is high enough to operate the MD  module over 60 ◦C. From this

moment the operation is different in both cases, due to the fact
that decision maker selects the normal operating mode. Notice that
in a clear sky day, when using J2, TT2SP is operated as in the fast
heating mode (close to the Tmin curve) whereas FT2SP is almost
constant at the minimum when the solar field is used, and it is
smoothly increased when the solar field is turned off. This increase
is justified because, when the solar field is turned off and the tank
temperature is high, the control system tries to keep the thermal
energy stored in the tank, by maintaining as much as possible the
temperature of the mixture produced in the distribution system
(TT7). This procedure is displayed in Fig. 10 and 11.

On the other hand, when using J3, TT2SP is operated close to the
upper limit (which causes FT1 to be close the minimum). Thus, the
electric energy consumption of pump 1 is lower. Conversely, FT2SP
is not operated at the minimum when the solar field is operating, as
happens when using J2, since it varies in accordance with the oper-
ational conditions trying to increase the thermal energy stored in
the tank. It should be taken into account that the electric consump-
tion of pump 1 is higher than that of pump 2 (see Eq. (29 and 30)),
in this way, the control system mainly acts over FT2SP to increase
the distillate production. Then, when the solar field is not operated,
FT2SP is smoothly increased again, as when J2 is used.
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Fig. 11. Control system performance with J3. (a) meteorological conditions, (b) solar field variables, (c) tank and distribution system variables and (d) MD module variables.

Table 4
Comparison of simulation results.

PNMPC N MD-OH [h] Distillate [L] STEC [kWh/m3] Costs [D /m3]

No – 97.49 1945 140.17 1.48

J2 2  102.50 2082 138.96 1.36
3  102.47 2073 139.01 1.37
4  102.42 2074 138.99 1.35

J3 2  100.50 2043 139.31 1.34
3  100.83 2021 139.52 1.35
4  101.33 2018 139.76 1.35

The operational procedure described previously can be observed
in Fig. 10 and 11, but in this occasion the references experiment
more changes due to irradiance variation. At instant 155.56 h and
155.55 h in Fig. 10 and 11 respectively, the solar field and the MD
module are turned off because of strong disturbances. After 16 min,
the operation is reestablished carrying on with the normal control
operating procedure.

6.2. Comparison of results and discussion

Table 4 shows the comparison between the results obtained
with the hierarchical control architecture, adopting different pre-
diction horizons in the normal operating mode, and the ones
obtained using only the direct control layer with TT2SP equal to
85 ◦C and FT2SP equal to 25 L/min. The stored distillate production
during the seven days, supposing that it is not removed at the end
of the operation, the mean STEC and the mean electric costs per
volume unit of distillate in the seven days have been employed
as performance indexes. Besides, the MD  module operating hours
(MD-OH) are also reported.

As can be observed in Table 4, all the performance parameters
are improved by using the proposed hierarchical control system.
One of the main advantages is that the PNMPC strategy permits to
operate the MD  module for longer time, between 30 and 40 min
each day, depending on the objective function used in the nor-

mal  operating mode. This fact, together with the increase of the
evaporator inlet temperature, causes the distillate production to
augment between 14 and 20 L each day. Notice that, in terms of
distillate production, the results obtained with J2 are the best, as
was expected.

Moreover, the mean STEC is also diminished in all the cases.
It should be considered that STEC is an index that varies in accor-
dance with the temperature. In this manner, although the optimum
operation point is achieved working at the maximum temperature,
when operating only with solar energy, the STEC tendency varies
according to the irradiance behaviour. Thus, at the beginning of the
operation the STEC value is high, around the solar midday when the
thermal energy of the tank is maximum, STEC reaches its minimum
value, and at the end of the operation when the thermal energy of
the tank drops, STEC increases. It should be also taken into account
that, as the PNMPC strategy makes the operation longer, working at
low temperature during more time, the mean STEC value is penal-
ized. Nevertheless, the STEC value is clearly improved, obtaining the
best result by using J2 with N = 2 as expected, that provides a mean
value of 1.21 kWh/m3 less than the case without the PNMPC strat-
egy, which means that the proposed technique requires 1.21 kWh
of thermal energy less to produce a volume unit of distillate.

In order to highlight STEC improvements and to compare in the
same conditions both cases, a simulation has been carried out using
the second day of meteorological data (see Fig. 9), establishing as
stopping condition a distillate production of 200 L. Fig. 12 shows the
variables affecting STEC for the case with PNMPC strategy (the ones
with the subscript J2) using J2 with N = 2, and for the case without
PNMPC strategy. As it has been discussed in Section 4, an increase in
the evaporator inlet temperature (TT10) causes an augment in �T
and the distillate production. According to Eq. (15), the increase of
�T produces higher values of STEC, however, this increase is almost
insignificant in comparison with the one achieved in the distillate
production, thus minimizing STEC as can be observed in Fig. 12.
Therefore, the use of the PNMPC strategy enables the STEC to be
almost 3 kWh/m3 lower than the case without PNMPC while the
solar field is used, and around 0.8 kWh/m3 when the solar field is
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Fig. 12. STEC calculation. (a) variables affecting STEC, and (b) STEC and accumulative distillate production.

not operative. This fact evidences that the PNMPC strategy manages
properly the solar energy, obtaining the maximum temperature
reachable at each moment, and enabling the MD module to operate
with a high thermal efficiency.

In addition, Fig. 12 highlights how the PNMPC strategy allows
starting operation before, thanks to the fast heating tank mode, and
reaches the desired distillate production before, thanks to the solar
energy management produced by normal operating mode.

From an economic point of view, the results obtained are quite
significant. Notice that to calculate the cost index, the fixed costs
associated to the operation of pump 3 and 4 have not been taken
into account. In the same way, it should be pointed out that, in the
pilot facility pumps are oversized, so the absolute value of the elec-
tric costs presented in Table 4 are high, however the relative ones
are valid. Thus, when J3 is used with N = 2 in the normal operating
mode, 0.14 D /m3 of distillate produced can be saved.

At this point, it is important to mention that the SMD facility
is a small-scale pilot plant one. In potential industrial cases the
improvements in terms of thermal efficiency and economic costs
can be very relevant. Consider the following two potential applica-
tions of MD  technology:

1. Offgrid areas water supply. One of the main future application of
SMD  processes is the fresh water supply in offgrid areas with
sea or brackish water access. In Spain, an inhabitant has an
average water consumption of 142 L/day (Instituto Nacional de
Estadística, 2013). In this way, in a small area of 3654 inhabi-
tants, population of Tabernas (Almería) where the pilot facility is
located, the use of the proposed control system, with J3 and N = 2,
can save around 26514.15 D each year in comparison with an
operation without PNMPC. In addition, the plant would require
around 627.83 kWh  less thermal energy each day, by using J2
with N = 2.

2. Crops water supply. An other potential application is to use
MD  technology to fulfil the irrigation water demand of cultiva-
tion areas close to the coast. According to the studio presented
in Becerra and Bravo (2010), tomato crop growth, one of the
most extended in the south of Spain, has a water demand of
4.11 m3/ha. Assuming a cultivation area of 20 ha (typical of
small-medium size farmers in Almería, south of Spain), the use
of the proposed control architecture, with J3 and N = 2, can save
around 4200.42 D each year, requiring around 99.46 kWh  less
thermal energy each day if J2 with N = 2 is employed.

7. Experimental results

An experimental campaign has been carried out to evaluate the
performance of the hierarchical control system in the SMD  plant
at PSA during March 2017. Figs. 13, 14 and 15 show the most rep-
resentative results. The control system configuration employed in

these tests is the same that the one used in the simulation tests
(Section 6.1).

Firstly, Fig. 13 presents a test using J2 in a clear sky day. The
operation starts at 10.85 h, using the normal operating mode since
the tank temperature and irradiance level permit to operate the
MD module and the solar field. As happened in simulation when
using J2, TT2SP is close to the lower limit, thus maintaining FT1
at maximum and augmenting the thermal power delivered from
the solar field to the tank (see Fig. 13b and c). On the other hand,
FT2SP is kept close to the minimum. As there are not disturbances in
the global irradiance, the operating evaporator temperature inside
the module (TT10) increases over the course of the operation. At
instant 14.8 h, TT10 reaches 79 ◦C, as can be observed in Fig. 13d,
close to the temperature limit (80 ◦C) which can cause damage in
the module membrane. Due to the fact that this limit is included
in the optimization problem constraints, the algorithm increases
TT2SP, so that, FT1 decreases and the tank temperature is almost
constant around 15.5 h. This action helps controlling the evaporator
inlet temperature TT10, thus preventing it to reach 80 ◦C, as can be
seen in Fig. 13d. Notice that in this test, the maximum distillate
production (see Fig. 13d) reached is 30 L/h.

Secondly, Fig. 14 shows another test using J2 in the normal
operating mode, but in this occasion there are irradiance distur-
bances caused by passing clouds. The operation starts at 9.85 h,
using the fast heating tank mode because the tank temperature
is not high enough to operate the MD module over 60 ◦C. As the
tank temperature at the beginning is too low, the algorithm gener-
ates references close to Tmin, thus maximizing the tank temperature
working with FT1 close to the maximum. At instant 10.5 h, TT2SP
begins to approach the lower limit, thus augmenting FT1, how-
ever, at 10.7 h irradiance disturbances cause the control algorithm
to increase TT2SP again (see Fig. 14b).

At 11.26 h, the tank temperature reaches 63 ◦C and the MD
module is turned on. In this moment, the inlet solar field temper-
ature decreases due to cold recirculating fluid being introduced in
the lower part of the tank, so that, FT1 decreases to maintain the
desired reference TT2SP. Then, from 11.4 to 12 h, TT2SP and FT1 vary
according to irradiance disturbances (see Fig. 14b). In the same
way, during this time period, TT2SP approaches the lower limit,
thus increasing FT1, as expected in a normal operation (clear sky
conditions). Until 15 h, the operation continues with this proce-
dure, nevertheless, it should be remarked that FT1 experiments
variations because of irradiance disturbances. Finally, at 15 h the
irradiance level varies strongly, therefore FT1 decreases until satu-
rating. As the strong irradiance disturbances lasts more than 10 min
(see Fig. 14b), the mean irradiance value during this period abruptly
decreases, thereby, the start-stop procedure turns off the solar field.
Notice that, although the solar field is turned off, the MD  module
is kept operating (see Fig. 14c and d) since the tank temperature
enables the module to operate over 60 ◦C.
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Fig. 13. Experimental results with J2 in a clear sky day. (a) meteorological conditions, (b) solar field variables, (c) tank and distribution system variables and (d) MD module
variables.

Fig. 14. Experimental results with J2 in a cloudy day. (a) meteorological conditions, (b) solar field variables, (c) tank and distribution system variables and (d) MD module
variables.

Thirdly, Fig. 15 shows a test using J3 in the normal operating
mode. As in the previous case, at the beginning of the operation the
tank temperature is low, so the decision maker selects the fast heat-
ing tank mode. In this way, as there are not irradiance disturbances
and the tank temperature is not as low as in the previous case, the
algorithm keeps TT2SP close to the lower limit as expected in a clear

sky operation day. Then, at 12.4 h, the decision maker changes to the
normal operating mode, at this point, the inlet solar field tempera-
ture strongly decreases, due to the fact that cold fluid coming from
the distribution system is introduced in the lower part of the tank. In
this way, according to Eq. (34 and 35) the optimization temperature
limits, and therefore TT2SP, decrease (see Fig. 15b). Then, according
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Fig. 15. Experimental results with J3 in a cloudy day. (a) meteorological conditions, (b) solar field variables, (c) tank and distribution system variables and (d) MD module
variables.

to the simulation tests with J3, the control algorithm varies FT2SP
in accordance with disturbances and TT2SP, trying to maximize the
thermal energy stored in the tank, as it can be observed in Fig. 15c.
It should be mentioned that, in this kind of days with large irra-
diance variations, there are some periods in which the references
calculated by the upper layer cannot be reached by the lower one,
as can be observed in Fig. 15 from 14.5 h. Although the method
presented in Section 5.2.2 to calculate the maximum and mini-
mum temperatures reachable by the solar field provides reliable
results, it is based on a static model and some errors are obtained
when sudden disturbances occur such as in the case of irradiance in
cloudy days. This fact is specially remarkable when using J3, since
this objective function tries to maintain FT1 close to the lower limit
to minimize the costs, and the solar field controller is saturated or
close to saturation, so it is not able to reach or regulate around the
setpoint.

8. Conclusions

This work focuses on optimizing the solar-powered operation
of a MD  facility in terms of distillate production, thermal energy
and economic costs, taking into account the intermittent availabil-
ity of energy caused by the use of solar energy as source. To deal
with this problem, a hierarchical control system composed by two
layers is proposed. The upper layer is based on a PNMPC controller
that includes an optimization problem, whereas the inner one con-
sists on a direct control system formed by PI plus feedforward
controllers. In addition, two control modes and a start-stop pro-
cedure have been developed to complete the hierarchical control
system.

The proposed control system has been tested in simulation, in
the nonlinear test-bed model, and experimentally, in the solar-MD
pilot plant at PSA. The results obtained in the pilot plant, show
that the proposed control system is able to improve the daily dis-
tillate production in 14–20 L, reduce the thermal energy demand
in 0.41–1.21 kWh/m3 and diminish the costs in 0.11–0.14 D /m3,

depending on the objective function adopted in the PNMPC strat-
egy. These results have been extrapolated to two  real potential
applications of MD technology, evidencing that the control system
can save around 26514 D /year and 627.83 kWh/m3 in the supply of
a small representative area of 3654 inhabitants, and 4200.42 D /year
and 99.46 kWh/m3 in the supply of a greenhouse tomato growth
area of 20 ha.

In future works, the proposed control architecture will be
extended to the non renewable resources, in order to undertake
the night operation of the facility. Then, the full control strategy
will be integrated in an optimization problem that allows to obtain
an optimal design of a SMD  facility, according to the water demand
of the application scenario.
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Ruiz-Aguirre, A., Andrés-Mañas, J., Fernández-Sevilla, J., Zaragoza, G., 2017a.
Comparative characterization of three commercial spiral-wound membrane
distillation modules. Desalin. Water Treat. 61, 152–159.
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A B S T R A C T

Thermal energy storage tanks are habitually combined with solar thermal fields to improve the dispatchability
of these facilities. From the dynamical point of view, the start-up phase is relevant since if the storage device
is unloaded in terms of energy or widely stratified, the transitory regime can take long time until reaching the
operating point. In this paper, an optimal real-time procedure based on a hierarchical controller for improving
the start-up phase is proposed. The hierarchical controller is composed of two layers based on a Model
Predictive Control (MPC) technique and Proportional Integer Derivative (PID) controllers. Real experimental
tests were performed in a pilot facility located at Plataforma Solar de Almería (Almería, Spain). In addition,
a comparison in simulation with the typical manual procedure and with two techniques proposed previously
in the literature for the same plant is provided. The results demonstrate the benefits obtained by using the
proposed method; since it reduces the start-up phase in 34 [min] in comparison with the manual operation,
and in 26 and 6 [min] with respect to the two previous techniques.

1. Introduction

In recent decades, the depletion of non-renewable energy resources
such as fossil fuels, as well as the growing concern for atmospheric pol-
lution, have led to an intensive search for alternative energy solutions,
among which, solar thermal energy stands out. This technology plays
a major role in any scenario of sustainable and efficient development
with adequate conditions of solar irradiance, both to generate electric-
ity and to feed thermal powered processes. Although the installation of
solar thermal plants is spread throughout the world, there is still room
for investigating and improving aspects that range from the design to
the operation of these kind of plants (Kumar, Prakash, & Dube, 2018).

From the design point of view, as solar energy is an intermittent
source, the integration of thermal storage systems in these kind of
facilities has become a key factor to increase the performance of the
technology (Gibb et al., 2018; Pelay, Luo, Fan, Stitou, & Rood, 2017;
Rovira, Montes, Valdes, & Martínez-Val, 2011). Considering the solar
field, the storage device, and the power block or the thermal load
(depending of the kind of process powered), several layout configura-
tions can be found in the literature attending to the number of storage
tanks used in the facility, and the way in which they are connected to
the system (Biencinto, Bayón, Rojas, & González, 2014). These layouts
mainly are (see Fig. 1 (a)–(d)): (i) two-tank with indirect storage, as the

∗ Corresponding author.
E-mail addresses: juandiego.gil@ual.es (J.D. Gil), lidia.roca@psa.es (L. Roca), guillermo.zaragoza@psa.es (G. Zaragoza), julio.normey@ufsc.br

(J.E. Normey-Rico), beren@ual.es (M. Berenguel).

ANDASOL 3 plant which is described in Dinter and Gonzalez (2014),
(ii) single-tank with indirect storage, as the facility analysed in Kolb
(2011) and most of the low concentration solar plants (Abid, Yousef,
Assad, Hepbasli, & Saeed, 2018), (iii) two-tank with direct storage, as
the GEMASOLAR plant (Casella, Casati, & Colonna, 2014), and (iv) sin-
gle tank with direct storage as the ACUREX plant (Camacho & Gallego,
2013). It should be remarked that this last layout is also used in most of
low concentration applications (Artur, Neves, Cuamba, & Leão, 2018).
These configurations are the most used in the literature but not the
only ones, since this is an open research field in which there are many
authors proposing new designs (Sebastián, Abbas, Valdés, & Casanova,
2018) and connection modes between the different devices (Li et al.,
2019; Rovira et al., 2011).

Even though the use of storage devices enables longer or continuous
operations of the powered systems, and helps to balance transients
caused by irradiance disturbances, only around 50% of the concen-
trated solar power facilities currently in operation include these kind
of devices (Pelay et al., 2017). However, the continuous progress in
thermal energy storage technology (Kuravi, Trahan, Goswami, Rahman,
& Stefanakos, 2013), and the necessity of using it to make solar thermal
energy competitive, have caused around 70% of the facilities in con-
struction to include storage systems (Pelay et al., 2017). In this way,
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Fig. 1. Simplified schematic diagrams of the main thermal solar fields described in the literature. (a) Two-tank with indirect storage, adapted from Dinter and Gonzalez (2014),
(b) single tank with indirect storage, adapted from Kolb (2011), (c) two-tank with direct storage, adapted from Casella et al. (2014), and (d) single tank with direct storage,
adapted from Camacho and Gallego (2013).

the development of accurate operation strategies aimed at maximizing
the performance of these facilities is essential.

Various works have been presented in the literature proposing
operating methodologies for the plant configurations shown in Fig. 1.
For the case of two-tank with indirect storage, in Relloso and Delgado
(2009) the operating modes for the day and night times of ANDASOL 1
plant were described. In the same way, the operation of the ANDASOL
3 plant was documented in Dinter and Gonzalez (2014), presenting
several operating modes to maximize the economic benefits. In Bienc-
into et al. (2014), different modes for charging and discharging the
tanks were presented and analysed using a simulation environment,
and in Guédez, Spelling, and Laumert (2015), an operating mode for
minimizing the number of turbine starts was proposed. The operating
strategy can be a solution of an optimization problem such as that
presented in Usaola (2012); with the aim of maximizing the rev-
enues and taking into consideration the daily electricity prices. Besides,
an optimal-control framework was proposed in Rubio, Navas, Ollero,
Lemos, and Ortega (2018) to maximize the thermal power supplied
by the solar field. Regarding the single-tank with indirect storage
configuration, an operating mode aimed at minimizing the thermocline
degradation was presented in Biencinto et al. (2014), and compared
with the operation of a two-tank with indirect storage based plant. Sim-
ilarly, in Kolb (2011), the operating modes of these two configurations
were compared. In the case of two-tanks with direct storage, in Casella
et al. (2014), an optimal control procedure was presented for the opera-
tion of these kind of plants according to the variable electricity tariffs.
A more extended control algorithm was proposed in Casati, Casella,
and Colonna (2015) with the same aim. Moreover, optimal start-up
policies were presented in Lopez-Alvarez, Flores-Tlacuahuac, Ricardez-
Sandoval, and Rivera-Solorio (2018) which were obtained by means
of a dynamical-optimization problem. Finally, in the case of single-
tank with direct connection, a hierarchical control architecture was
proposed in Berenguel et al. (2005); with the objective of maximizing
the electricity production by optimizing in real-time the operation of
the facility. A similar approach was proposed in Camacho and Gallego
(2013), but in this case aimed at reducing thermal losses in the solar
field.

Although all these works present optimal operating methodologies,
the start-up procedure has hardly been addressed. A suitable start-up
policy is essential not only for the first operation days, but also for
the daily operation, especially in configurations with direct storage.
In these kind of plants, the start-up procedure is usually performed
using heuristic-rules, which are formulated according to the storage
device states (Cirre, 2007). However, these rules can be inefficient since
they do not explicitly take into consideration the operating constraints
and the process disturbances. In facilities with two tanks with direct
storage (see Fig. 1-(c)), the start-up problem has been already addressed
by Lopez-Alvarez et al. (2018). In that work, an off-line dynamical-
optimization problem was proposed for computing the optimal flow
rate according to the states of the hot and cold tanks and irradiance
conditions, trying to achieve full operation from shut-down as fast as
possible. Nevertheless, in this off-line dynamical-optimization method,
it was assumed that there were no process disturbances or model
uncertainties, which is an ideal situation that does not happen in
real operations, particularly if the disturbances are mainly caused by
irradiance.

Motivated by the previous literature review, the main contributions
of this work are: first, the use of the mixing valve as control variable,
apart from the water flow rate (typical control variable in solar thermal
fields), which allows the controller to cope with both the irradiance
disturbance and temperature stratification problems during the start-up
phase. It should be commented that there is no works in the literature
that use this valve as control variable. Second, the development of a
real-time procedure for the start-up phase of solar field plants with
direct single-tank storage configuration. Note that this question has
not been well discussed in literature as most published works proposed
offline optimization techniques or rule-based procedures. The proposed
technique is based on hierarchical controller composed by two layers.
The upper layer includes a Model Predictive Control (MPC) strategy,
which takes into account the operating conditions at each sampling
time for computing the setpoints for the lower layer; trying to maximize
the temperature in the storage device as fast as possible. The lower
one is formed by Proportional Integral Derivative (PID) controllers
which are in charge of tracking the setpoints provided by the upper
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Fig. 2. Real facility at PSA.

layer by acting on the two aforementioned actuators: the flow rate and
valve aperture (see Fig. 1-(d)). Third, the proposed method has been
tested in a real facility located at Plataforma Solar de Almería (PSA).
It should be remarked that the previous published works were only
tested in simulation. Moreover, a comparative simulation study with
two start-up methods previously proposed for the same facility and
with a manual operation is provided in order to evidence the benefits
achieved by the application of the proposed technique.

2. Plant description

The facility used as reference in this paper (see Fig. 2) is located
in PSA (www.psa.es), and it is a test-bed for evaluating solar mem-
brane distillation modules (Zaragoza, Ruiz-Aguirre, & Guillén-Burrieza,
2014). The layout of the system is shown in Fig. 3, and it includes
a solar thermal field, a storage device and a membrane distillation
module (thermal load).

The solar field of the facility is based on stationary flat-plate col-
lectors Solaris CP1 Nova of 2 m2, commercialized by Solaris (Spain).
The collectors are disposed in two rows including five collectors each
one. The nominal thermal power at about 90 ◦C is 7 kW, using water
with antifreeze as heat transfer medium. In addition, the solar field is
equipped with an expansion vessel and a cut valve (valve 2 in Fig. 3),
which are used to absorb circuit pressure increases and protect the flat-
plate collectors from evaporations. In particular, the valve is closed
when the facility is not in operation, so if the temperature of the solar
fluid increases and vapour is produced inside the absorber pipes, it
flows to the expansion vessel. When the solar pump is turned on, the
valve is opened and the water inside the expansion vessel is pushed
again towards the collectors.

The solar field is directly linked with a thermal storage tank with a
volume of 1.5 m3. This device is used to balance transients and irradi-
ance disturbances, as well as a buffer system to store thermal energy.
The other side of the tank is connected with the thermal load which in
this case is a membrane distillation unit, as was previously mentioned.
Note that this connection is made through a heat exchanger, which is
included in the membrane distillation unit. This technology, as most
solar powered processes, requires a minimum operating temperature
which in this case is 60 ◦C (Gil, Roca, Ruiz-Aguirre, Zaragoza and
Berenguel, 2018). This fact implies that the storage tank must be at
a certain operating point in terms of temperature before feeding the
membrane distillation unit.

A Supervisory Control And Data Acquisition (SCADA) system is
in charge of monitoring and controlling the installation with a 1 s
sampling time. This system is coupled to the plant by means of an ad-
vanced data acquisition system manufactured by National Instruments.
The measured and controlled variables of interest for this work are
summarized in Table 1.

Table 1
Variables measured at the facility.

Variable Description Unit

FT𝑙 Water flow rate coming from the load to the tank [L/min]
FP1 Pump 1 input frequency percentage [%]
FT1 Solar field water flow rate [L/min]
T𝑎 Ambient temperature [◦C]
TT𝑙 Temperature coming from the load to the tank [◦C]
TT1 Inlet solar field temperature [◦C]
TT2 Outlet solar field temperature [◦C]
TT3 Temperature at the top of the tank [◦C]
TT4 Temperature around the middle of the tank [◦C]
TT5 Temperature at the bottom of the tank [◦C]
V1 Valve 1 aperture [%]

3. System modelling

The facility was completely modelled in order to design the control
system and perform simulation tests. Notice that the calibration and
validation procedures of the models were already presented in Gil,
Roca, Zaragoza and Berenguel (2018).

Firstly, the outlet solar field temperature was modelled using a
lumped-parameter model as the one described in Roca, Berenguel,
Yebra, and Alarcón-Padilla (2008). In this model, the outlet solar
field temperature (TT2) is calculated based on the main variables that
affect its performance: (i) global irradiance (I), (ii) inlet solar field
temperature (TT1), (iii) ambient temperature (T𝑎), and (iv) solar field
water flow rate (FT1). The model is formulated as follows:

𝐴𝑐 ⋅𝜌 ⋅𝑐𝑝 ⋅
𝑑TT2(𝑡)

𝑑𝑡
= 𝛽 ⋅I(𝑡)− 𝐻

𝐿𝑒𝑞
⋅(T̄(𝑡)−T𝑎(𝑡))−𝑐𝑝 ⋅𝑚̇𝑒𝑞(𝑡) ⋅

TT2(𝑡) − TT1(𝑡)
𝐿𝑒𝑞

,

(1)

where:

𝐿𝑒𝑞 = 𝐿 ⋅ 𝑛𝑐𝑠, 𝑚̇𝑒𝑞(𝑡) =
FT1(𝑡) ⋅ 𝜌

𝑐𝑓
, T̄(𝑡) = TT1(𝑡) + TT2(𝑡)

2
. (2)

Notice that all the variables are defined in Tables 1 and 4, and the
fluid considered in the model was water without antifreeze. It should
be noted that this model is one of the most used to model solar thermal
fields, especially for control purposes (Camacho, Berenguel, Rubio, &
Martínez, 2012).

Secondly, TT1 was computed according to the mix produced in the
three way mixing valve (Valve 1 in Fig. 3), which was modelled by
means of a static mass balance:

TT1(𝑡) = TT2(𝑡) ⋅
V1m(𝑡)
100

+ TT5(𝑡) ⋅ (1 −
V1m(𝑡)
100

), (3)

where V1m was calculated according to the nonlinear static character-
istic curve of the valve, which relates the fraction of the mass flow with
the position of the valve stem. For modelling this nonlinear behaviour,
several experimental tests were carried out, introducing positive and
negative steps in the valve aperture, observing the static values of TT1,
TT2 and TT5, and calculating with Eq. (3) the value of V1m. Then,
the experimental points were fitted by five order polynomials. Thereby,
V1m for positive variations of the valve aperture was calculated as:

V1m(𝑡) = 1.6562 ⋅ 10−7 ⋅ V1(𝑡)5 − 4.1953 ⋅ 10−5 ⋅ V1(𝑡)4

+ 0.0033 ⋅ V1(𝑡)3 − 0.0664 ⋅ V1(𝑡)2 + 0.3292 ⋅ V1(𝑡),
(4)

whereas for the negative ones it was calculated as:

V1m(𝑡) = −3.3958 ⋅ 10−7 ⋅ V1(𝑡)5 + 7.2667 ⋅ 10−5 ⋅ V1(𝑡)4

− 0.0053 ⋅ V1(𝑡)3 + 0.1719 ⋅ V1(𝑡)2 − 1.8433 ⋅ V1(𝑡).
(5)

Moreover, both equations were limited between 0 and 100, which
is the operating range of V1. Fig. 4 shows the adjustment between the
experimental points and the polynomials.

Thirdly, the storage tank was modelled using a three-nodes stratified
dynamic model, following the ideas presented in Duffie and Beckman
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Fig. 3. Schematic diagram of the facility.

Fig. 4. Valve aperture fitting.

(2013). Thus, the temperature of each node was calculated by means
of an energy balance as:
𝑑TT3(𝑡)

𝑑𝑡
= 1

𝜌 ⋅ 𝑉𝑎
⋅
[
𝑚̇𝑠𝑓 (𝑡) ⋅ (TT2(𝑡) − TT3(𝑡))

+ 𝑚̇𝑙(𝑡) ⋅ (TT4(𝑡) − TT3(𝑡)) −
𝛼1 ⋅ (TT3(𝑡) − Ta(𝑡))

𝑐𝑝

]
,

(6)

𝑑TT4(𝑡)
𝑑𝑡

= 1
𝜌 ⋅ 𝑉𝑏

⋅
[
𝑚̇𝑠𝑓 (𝑡) ⋅ (TT3(𝑡) − TT4(𝑡))

+ 𝑚̇𝑙(𝑡) ⋅ (TT5(𝑡) − TT4(𝑡)) −
𝛼2 ⋅ (TT4(𝑡) − Ta(𝑡))

𝑐𝑝

]
,

(7)

𝑑TT5(𝑡)
𝑑𝑡

= 1
𝜌 ⋅ 𝑉𝑐

⋅
[
𝑚̇𝑠𝑓 (𝑡) ⋅ (TT4(𝑡) − TT5(𝑡))

+ 𝑚̇𝑙(𝑡) ⋅ (TT𝑙(𝑡) − TT5(𝑡)) −
𝛼3 ⋅ (TT5(𝑡) − Ta(𝑡))

𝑐𝑝

]
.

(8)

All the variables and parameters are also defined in Tables 1 and 4. It
should be remarked that, although the stratification volumes vary with
respect to the time, constant volumes according to the actual position
of the temperature transmitters in the tank were identified. Besides,
the parameters modelling the thermal losses were obtained by using
real data and characterization techniques as presented in Gil, Roca,
Ruiz-Aguirre et al. (2018) and Gil, Roca, Zaragoza et al. (2018).

Fourthly, as the solar field water flow rate was varying during the
daily operation due to the control system performance, the residence

time of the fluid in the pipes was not constant. Therefore, there were
variable transport delays which had to be estimated and included in
the model to perform accurate simulations of the system, especially to
test the controller (as control loops were affected by varying delays).
These transport delays were estimated as flow-dependent delays as
proposed in Normey-Rico, Bordons, Berenguel, and Camacho (1998).
Taking into account that the flow rate changes at each sampling time
𝑡𝑠, the transport delay, 𝑡𝑟,𝑖−𝑗 , can be estimated as integer multiples, 𝑛𝑖−𝑗 ,
of the sampling time, that is 𝑛𝑖−𝑗 ⋅ 𝑡𝑠 ≈ 𝑡𝑟,𝑖−𝑗 . Thus, the value of 𝑛𝑖−𝑗 was
computed at each sampling time as:

𝑙𝑖−𝑗 = ∫
𝑡𝑟,𝑖−𝑗

0
𝑣𝑖−𝑗 (𝑡)𝑑𝑡 → 𝑙𝑖−𝑗 =

𝑡𝑠
𝐴𝑝

ℎ=𝑛𝑖−𝑗−1∑
ℎ=0

𝑓𝑖−𝑗 (𝑘 − 1), (9)

where 𝑖 and 𝑗 are referred to the points 1, 2, . . . , 6 presented in Fig. 3,
with 𝑖−𝑗 ∈ {1−2, 2−3, 2−5, 4−5, 5−6}, 𝑘 is the actual sampling time, and
the rest of parameters are defined in Tables 2 and 4. It should be noted
that the temperature transmitters TT1 and TT2 are located right at the
inlet and at the outlet of the solar field respectively, and therefore, the
flow-dependent delays between these transmitters and the solar field
were not significant.

Finally, several transfer functions of the First Order Plus Dead
Time (FOPDT) were employed to model the effect of the control vari-
ables and actuators involved in the system with respect to the con-
trolled variables. These transfer functions were experimentally ob-
tained, performing open-loop tests with step changes in the actuators,
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Table 2
Distance between points.

Distance between points (𝑙𝑖−𝑗 ) Value

𝑙1–2 15.30 [m]
𝑙2–3 1.73 [m]
𝑙2–5 0.77 [m]
𝑙4–5 1.69 [m]
𝑙5–6 12.12 [m]

Table 3
Transfer functions experimentally obtained.
𝐺(𝑠) 𝑌 (𝑠) 𝑈 (𝑠) 𝐾 𝜏[𝑠] 𝑡𝑑 [𝑠]

𝐺1(𝑠) FT1(𝑠) FP1(𝑠) 0.234 [L/min %] 5 1
𝐺2(𝑠) TT2(𝑠) FT1(𝑠) −1.37 [◦C min/L] 66.62 16
𝐺3(𝑠) TT1(𝑠) V1(𝑠) 0.102 [◦C/%] 43 79

Table 4
Definition of the parameters involved in the model.

Parameter Description Unit

𝐴𝑐 Cross-section area of one fluid 1.539⋅10−4 [m2]
inside the flat-plate collector

𝐴𝑝 Pipe cross-section area 7.068⋅10−4 [m2]
𝑐𝑓 Conversion factor to account for 3.6⋅106 [s L/min m3]

connections, number of modules
and L/min conversion

𝑐𝑝 Specific heat capacity of water [J/kg ◦C]
𝑓𝑖−𝑗 Water flow rate between points 𝑖 and 𝑗 [m3/s]
𝐻 Solar field global losses coefficient 5.88 [J/s ◦C]
𝐾 Static gain
𝑙𝑖−𝑗 Distance between points 𝑖 and 𝑗 [m]
𝐿 Collector absorber tube length 1.95 [m]
𝐿𝑒𝑞 Equivalent absorber tube length [m]
𝑚̇𝑒𝑞 Equivalent solar-field mass flow rate [kg/s]
𝑚̇𝑙 Load mass flow rate [kg/s]
𝑚̇𝑠𝑓 Solar field mass flow rate [kg/s]
𝑛𝑐𝑠 Number of series-connections 5

in a collectors group
𝑛𝑖−𝑗 Integer multiple for estimating [–]

the delay between point 𝑖 and 𝑗
𝑡𝑑 Time delay [s]
𝑡𝑟,𝑖−𝑗 Transport delay between points 𝑖 and 𝑗 [s]
𝑡𝑠 Sampling time [s]
T̄ Equivalent absorber tube [◦C]

mean temperature
𝑣𝑖−𝑗 Velocity rate between points 𝑖 and 𝑗 [m/s]
V𝑎 Volume, first stratification 0.4 [m3]
V𝑏 Volume, second stratification 0.3 [m3]
V𝑐 Volume, third stratification 0.8 [m3]
V1m Variable modelling the nonlinear [%]

behaviour of valve 1
𝛼1 Thermal losses coefficient, 3.3 [J/s K]

first stratification
𝛼2 Thermal losses coefficient, 2.9 [J/s K]

second stratification
𝛼3 Thermal losses coefficient, 3.3 [J/s K]

third stratification
𝛽 Irradiance model parameter 0.134 [m]
𝜌 Water density [kg/m3]
𝜏 Representative time constant [s]

and using the reaction curve method to obtain the parameters of the
FOPDT transfer functions as done in Gil, Roca, Zaragoza et al. (2018).
In Table 3 the transfer functions, 𝐺(𝑠) = 𝑌 (𝑠)∕𝑈 (𝑠) = 𝐾 ⋅ 𝑒−𝑡𝑑 𝑠∕(𝜏 ⋅ 𝑠+1),
for the mean operating range of each of the control variables are shown,
where 𝐾 is the static gain, 𝜏 the representative time constant, and 𝑡𝑑
the delay time.

4. Control system

The goal of the proposed hierarchical controller consists on im-
proving the start-up procedure of the plant used as test-bed. The
thermal load of the facility, as most solar-powered processes, requires

a determined operating temperature to start the operation, which in
this case is 60 [◦C]. Moreover, it should be remarked that the thermal
load is connected to the fluid coming from the tank through a heat ex-
changer, so the temperature at the top of the tank must be even higher.
Therefore, if the temperature in the tank does not allow operating the
membrane distillation unit, a start-up procedure must be implemented,
in which the solar field is used to increase the temperature of the tank.

Traditionally, qualified operators perform this procedure in a man-
ual way attending to heuristic rules as the ones presented in Cirre
(2007). First, when the global irradiance reaches values between 500–
600 [W/m2], normal range in which most solar thermal facilities
are turned on Dinter and Gonzalez (2014) and Kolb (2011), pump 1
is started, and the fluid is recirculated only through the solar field
(i.e. with valve 1 close to the solar field). Afterwards, when a high
temperature (such as 80 [◦C]) is reached at the outlet of the solar field,
valve 1 is opened towards the tank, circulating the fluid through it
until reaching the required temperature to operate the thermal load.
However, this manual procedure presents two main problems. The first
one is related to the irradiance disturbances, since the operator must
close valve 1 when there are severe irradiance disturbances to avoid
loading the tank with cold fluid, which could be hard to perform in a
manual way, especially when the disturbances are caused by passing
clouds. The second problem is associated to the stratification of the
storage tank. This kind of tanks are usually operated with several
degrees of stratification (Duffie & Beckman, 2013), that means that the
temperature at the top of the tank is higher than in the bottom. So,
depending on the degree of stratification, when performing the manual
start-up procedure and opening the valve 1 to recirculate the fluid
through the tank, the temperature at the outlet of the solar field can
drop drastically until the tank reaches a certain degree of homogeneity.
For these reasons, the manual procedure can take long time, and it
requires the full attention of an operator to ensure that the tank is not
being loaded with cold fluid.

The first automatic approach for improving this manual start-up
procedure was developed in the previous paper (Gil, Roca, Ruiz-Aguirre
et al., 2018). In that work, the steady-state model of the solar field was
used to estimate the value of irradiance required to turn the solar field
on for heating the tank. In addition, a predictive controller was used to
calculate the setpoints at the outlet of the solar field, trying to maximize
the temperature in the tank, and a cascade controller was proposed for
tracking these setpoints by acting in pump 1. Thus, the problem related
to the irradiance disturbances was improved, and the solar field was
turned on in a more deterministic way. However, the problem related to
the stratification of the tank was not considered. A second step towards
the improvement of the start-up procedure was presented in Gil, Roca,
Berenguel and Guzmán (2018), in which valve 1, which was fixed
in open position to feed the tank in the work mentioned above, was
used as control variable allowing to obtain a proper temperature at
the entrance of the solar field that guarantees a minimum temperature
for heating the tank. The control structure proposed in that work was
composed of a reference governor and a multivariable controller. On
the one hand, the reference governor solved an optimization problem,
using the steady-state model of the solar field, aimed at maximizing the
temperature at the top of the tank, guaranteeing that the temperature
of the fluid flowing to the tank was higher than the one at the top of the
tank. On the other hand, the multivariable controller was tasked with
tracking the setpoints computed by the reference governor by acting
on both pump 1 and valve 1. Therefore, the irradiance disturbance and
tank stratification problems were improved with this approach.

In the present work, the idea for improving the start-up procedure
is the same that the one presented in Gil, Roca, Berenguel et al. (2018),
which consists on using valve 1 as a control variable for heating
the tank faster. However, the control structure has been considerably
improved by using a hierarchical control system composed of two
layers (see Fig. 5): (i) an upper layer based on a predictive controller,
and (ii) a regulatory layer based on PID controllers. We have opted
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Fig. 5. Schematic diagram of the hierarchical control system.

for a hierarchical control structure (where the top layer calculates
the setpoints to be tracked by the lower layer) instead of a classical
optimal control structure (where the optimization directly calculates
the control signals that are sent to the actuators) for two fundamental
reasons: firstly, it is a more intuitive structure for the operators of
the installation, allowing to maintain classic PID controllers in the
regulation layer; secondly, because optimal control strategies provide
very aggressive control signals, which are not adequate for this type
of installation. The schematic diagram of the hierarchical structure is
shown in Fig. 6. In the upper layer, the predictive controller uses the
nonlinear model of the system presented in Section 3 for making the
predictions and calculating the setpoints for the regulatory layer. In this
way, a prediction horizon and a nonlinear model are considered in the
control procedure, allowing to calculate the setpoints more accurately
than in the approach proposed in Gil, Roca, Berenguel et al. (2018),
in which a steady-state model and static values are used for calculat-
ing the references. The regulatory layer comprises a cascade control
scheme for controlling the outlet solar field temperature by acting on
pump 1, and a Filtered Smith Predictor (FSP) structure for controlling
the inlet temperature of the solar field by using valve 1. These two
control systems were also used in the two loops of the multivariable
controller proposed in Gil, Roca, Berenguel et al. (2018). However, in
this work, the multivariable approach has not been considered due to
the low interaction between the variables involved in the process, as
was analysed in Gil, Roca, Berenguel et al. (2018). Moreover, the FSP
controller has been improved by adding the nonlinear model of valve
1 (see Fig. 5).

4.1. Regulatory layer

The PID based regulatory layer includes two loops, and its objective
consists on tracking the setpoints computed by the upper layer for
the two controlled variables, i.e. TT1 and TT2, as well as maintaining
them near steady state conditions around these references despite
temperature or irradiance disturbances.

In order to control TT2, a cascade control loop is employed (see
Fig. 6). The design and test of this loop were already presented in Gil,
Roca, Zaragoza et al. (2018). According to Fig. 6, the slave controller
(PI-2) is tasked with controlling the flow rate (FT1) by using the
input frequency of pump 1 (FP1), whereas the outer one (PI-1) is
responsible for maintaining the desired temperature at the outlet of the
solar field (TT2SP) by acting on the flow rate (FT1PID). In addition, a
feedforward (FF) including the steady-state model of the solar field is
used for improving the disturbance rejection of the loop. Notice that

Table 5
Parameters of controller blocks of the regulatory layer. k𝑐 and T𝑖 are the proportional
gain and integral time of the Proportional Integral (PI) controller, and 𝜏𝐹 the
characteristic time constant of the low pass filters. Notice that the PI controllers have
been implemented using the ideal PID transfer function.

Block k𝑐 T𝑖 [s] 𝜏𝐹 [s]

LPF-1 – – 75
LPF-2 – – 60
LPF-3 – – 40
LPF-4 – – 43
LPF-5 – – 39.50
PI-1 −0.42 [L/min ◦C] 72.60 –
PI-2 2.84 [% min/L] 4.92 –
PI-3 14.01 [% ◦C] 43 –

at the outlet of the feedforward, a low pass filter (LPF-1) is added to
achieve a better dynamical behaviour. In this way, the setpoint for the
slave loop (FT1SP), is calculated taking into account the contributions
of the feedforward (FT1FF) and the outer loop (FT1PID), as well as
the feedback. Finally, a low pass filter (LPF-2) is also included in the
reference for reducing overshoots against reference step changes. The
parameters of each of the blocks of this loop are shown in Table 5.

The second loop is used for controlling TT1 by acting on the Valve 1
aperture (V1). In this loop, a FSP structure is adopted (Normey-Rico &
Camacho, 2007). This structure is appropriate for the problem at hand,
since the nominal delay of the process (79 [s]) is dominant with respect
to the characteristic time constant (43 [s]), see Section 3. In addition,
there are modelling dead-time errors due to the transport delays caused
by the variations of the flow rate, which degrades performance and
can cause instability. In this way, the FSP approach adds robustness
to the controller (Normey-Rico & Camacho, 2007), enabling to achieve
the desired performance. The schematic diagram of the controller is
shown in Fig. 7. Notice that the configuration of this loop was presented
in Gil, Roca, Berenguel et al. (2018). However, in the present approach,
a modification is introduced by including the nonlinear model of valve
1 and the mix produced in it, Eqs. (3), (4), and (5), in the fast
model of the FSP structure. These static equations allow us to calculate
TT1 taking into account the nonlinear characteristics of Valve 1, thus
improving the control performance. Besides, a low pass filter (LPF-4)
with the dynamic obtained at the medium operating range of V1 is
used to complete the fast model and compute the predicted value of
inlet temperature after the delay ̂TT1(𝑡 + 𝑡𝑑 ). For modelling the time
delay (𝑡𝑑), the nominal error model shown in Table 3 has been used.
Moreover, the filter of the SP structure (LPF-5) has been designed
taking into account the variations between the maximum and minimum
dead times observed in the system and the selected nominal dead time.
These differences are around ±25 [%], so the time constant of the filter
can be computed as 𝜏𝐹 = 0.5 ⋅ 𝑡𝑑 , according to the recommendations
given in Normey-Rico and Camacho (2007). It should be remarked that
the reference (TT1SP) is filtered by means of a low pass filter (LPF-3).
The parameters of the controller are also presented in Table 5.

Finally, it should be remarked that an antiwindup scheme is in-
cluded in each of the control loops. The operating limits of each of
the control variables are 10–90 [%], 7.5-20 [L/min], and 20–80 [%]
for pump 1 (FP1), water flow rate (FT1) and valve 1 (V1) respectively.
Notice that with frequencies lower than 10 [%] the pump is turned off.
Both controllers have been implemented with a sampling time of 1 [s],
which was chosen according to the fastest representative time constant
of the variables involved in the loops, which is the one of the transfer
function relating the flow rate and the pump frequency (see Table 3).

4.2. Upper layer

This layer is in charge of calculating the setpoints, TT1SP and TT2SP,
for the regulatory layer, trying to increase TT3 faster, so that the
operational time of the facility is maximized. The control methodology
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Fig. 6. Schematic diagram of the outlet solar field temperature controller.

Fig. 7. Schematic diagram of the inlet solar field temperature controller.

chosen for developing this layer is the MPC technique. This advanced
control strategy is one of the most generic ways of formulating a control
problem, and it has been selected because it intrinsically deals with the
main problems presented in the facility used in this work, mainly long
time delays and disturbances (Camacho & Bordons, 2004). Besides, this
control technique has been already applied in solar thermal fields with
satisfactory results (De Andrade, Álvarez, Pagano, & Berenguel, 2015;
Gallego, Merello, Berenguel, & Camacho, 2019).

There are different algorithms in the family of MPC controllers,
however, the basis of all of them are the same:

1. use of a system model to compute the prediction of the process
output in a prediction horizon;

2. formulation of an optimization problem to calculate the control
sequence along the control horizon; and

3. use of a receding strategy, displacing at each sampling time the
horizon towards the future, and applying in the actual system
only the first control signal of the set computed at each step.

Their differences are due to the model that they use for representing the
system and the noises, as well as the cost function that must be mini-
mized. In this work, as the model of the facility is nonlinear, an MPC
algorithm able to cope with this kind of models must be chosen. Thus,
the Practical Nonlinear Model Predictive Control (PNMPC) algorithm is
used due to the several advantages that it presents with respect to other
nonlinear MPC techniques (Plucenio, Pagano, Bruciapaglia, & Normey-
Rico, 2007) as: (i) it can cope with different nonlinear model structures,
(ii) it is simple to compute, and (iii) it does not use iterative algorithms
for linearizing the process model. In addition, it has been already
tested in other nonlinear processes with successful results (Andrade,
Pagano, Álvarez, & Berenguel, 2013; Castilla, Álvarez, Normey-Rico, &
Rodríguez, 2014; Gil, Roca, Ruiz-Aguirre et al., 2018).

4.2.1. PNMPC algorithm
In MPC techniques, the prediction of the output process variable 𝐘̂,

in a determined prediction horizon 𝑁 , is calculated in a vectorial form
as:

𝐘̂ = 𝐟 +𝐆 ⋅∆𝐮, (10)

where 𝐘̂=[Ŷ(𝑡+1|𝑡), Ŷ(𝑡+2|𝑡)… Ŷ(𝑡+𝑁|𝑡)]𝑇 ,1 𝐟=[f̂(𝑡+1|𝑡), f̂(𝑡+2|𝑡)… f̂(𝑡+
𝑁|𝑡)]𝑇 , ∆𝐮=[𝛥𝑢(𝑡|𝑡), 𝛥𝑢(𝑡+1|𝑡)…𝛥𝑢(𝑡+𝑁𝑢−1|𝑡)]𝑇 , 𝑁𝑢 being the control

1 The nomenclature x̂(t+k|𝑡) refers to the value of x at discrete instant time
t+𝑘, computed with the information acquire up to instant t.

horizon. f is known as free response whereas G⋅∆u is called forced
response and ∆u is the future control increment. As was previously
mentioned, one of the differences among MPC algorithms is the way
in which the free response f and the step response matrix G are
calculated. In linear systems, they can be easily computed based on
the superposition principle (Camacho & Bordons, 2004). However, in
nonlinear processes, the superposition principle does not hold, and an
approximation for calculating 𝐘̂ must be performed. The strategy for
estimating 𝐘̂ using the PNMPC algorithm (Plucenio et al., 2007) is
given by:

𝐘̂ ≈ 𝐟 +𝐆𝐏𝐍𝐌𝐏𝐂 ⋅∆𝐮, (11)
𝐟 = 𝑓 (⃖⃖𝐘⃖, 𝛥⃖⃖𝐮, 𝛥⃖⃖𝐯), (12)

𝐆𝐏𝐍𝐌𝐏𝐂 = 𝜕𝐘̂
𝜕∆𝐮

, (13)

where 𝑓 (⋅) is a function of its arguments, ⃖⃖𝐘⃖ is a set of past and present
process outputs, 𝛥⃖⃖𝐮 is a set of past increments in the inputs, 𝛥⃖⃖𝐯 is a
set of past increments in the measurable disturbances, f is the vector
of predictions provided by the nonlinear model obtained with 𝛥𝐮 = 𝟎,
and G𝐏𝐍𝐌𝐏𝐂 is the Jacobian matrix computed in the current point 𝑢. To
compute both f and G𝐏𝐍𝐌𝐏𝐂, the procedure presented in Plucenio et al.
(2007) and described in Algorithm 1 must be used. Note that, although
this technique is only an approximation, it provides better results than
if a linear model were used, since f is directly calculated with the
nonlinear model of the process, while G𝐏𝐍𝐌𝐏𝐂 is computed by lineariz-
ing the model around the trajectory, thus allowing this technique to
consider the nonlinearity along the prediction horizon (Plucenio et al.,
2007).

Following the formulation of the proposed control system, the PN-
MPC strategy is employed in this work to make the prediction of the top
tank temperature, 𝐘̂𝐓𝐓𝟑, as a function of the increments in the setpoints
of the loops included in the regulatory layer (∆TT1𝐒𝐏 and ∆TT2𝐒𝐏),
which are the actual manipulated variables involved in the upper layer.
According to the PNMPC procedure the prediction is given by:

𝐘̂𝐓𝐓𝟑 ≈ 𝐟𝐓𝐓𝟑 + [𝐆𝐏𝐍𝐌𝐏𝐂−𝟏 𝐆𝐏𝐍𝐌𝐏𝐂−𝟐] ⋅ [∆𝐓𝐓𝟏𝐒𝐏;∆𝐓𝐓𝟐𝐒𝐏], (14)
𝐟𝐓𝐓𝟑 = 𝑓 (⃖⃖𝐘⃖𝐓𝐓𝟑, 𝛥⃖⃖⃖⃖⃖⃖⃖⃖𝐓𝐓𝟏𝐒𝐏, 𝛥⃖⃖⃖⃖⃖⃖⃖⃖𝐓𝐓𝟐𝐒𝐏, 𝛥⃖⃖𝐯), (15)

𝐆𝐏𝐍𝐌𝐏𝐂−𝟏 =
𝜕𝐘̂𝐓𝐓𝟑

𝜕∆𝐓𝐓𝟏𝐒𝐏
, (16)

𝐆𝐏𝐍𝐌𝐏𝐂−𝟐 =
𝜕𝐘̂𝐓𝐓𝟑

𝜕∆𝐓𝐓𝟐𝐒𝐏
, (17)
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Algorithm 1: Method to compute F and G𝐏𝐍𝐌𝐏𝐂

1. To calculate Ŷ0, which is a vector of length 𝑁 , the model must
be executed with past measurable disturbances, outputs, and
inputs with ∆u=[0 0. . . 0]𝑇 . So that, F = Ŷ0.

2. To calculate the first column of GPNMPC. Ŷ1 is computed as
stated in the step above, but with ∆u=[𝜖 0. . . 0]𝑇 , where 𝜖 is a
little increment in the control action, i.e. 𝑢(𝑘−1)

1000 .

GPNMPC(:,1)= Ŷ
1
−Ŷ0

𝜖 .

3. To compute the second column of the GPNMPC, Ŷ2 is calculated

with ∆U=[0 𝜖. . . 0]𝑡. GPNMPC(:,2)= Ŷ
2
−Ŷ0

𝜖 .
4. The same method as in the two previous steps must be

repeated until completing the remaining columns of matrix
GPNMPC. It should be remarked that the number of columns of
GPNMPC is given by the control horizon 𝑁𝑢, so the last column

is computed as: GPNMPC(:, 𝑁𝑢)=
Ŷ𝑁𝑢−Ŷ0

𝜖 .

where ⃖⃖𝐘⃖𝐓𝐓𝟑 is a set of past and present values of TT3, 𝛥⃖⃖⃖⃖⃖⃖⃖⃖𝐓𝐓𝟏𝐒𝐏 is a set of
past values of input 𝛥TT1SP, and 𝛥⃖⃖⃖⃖⃖⃖⃖⃖𝐓𝐓𝟐𝐒𝐏 is a set of past values of input
𝛥TT2SP. It should be remarked that the main disturbances that affect
to the facility are the irradiance and the ambient temperature ones, so
that 𝛥⃖⃖𝐯 is composed by a set of past increments of these two variables.

4.2.2. Treatment of the disturbances and prediction errors
As in other MPC techniques, the PNMPC strategy completes the

predictions including a model for taking into account disturbances and
prediction errors. This model is given by:

Λ = 𝜇(𝑡) ⋅ 𝟏𝑁×1, (18)

𝛥𝜇(𝑡) = 𝜙
𝛺
(Y(𝑡) − Ŷ(𝑡)), (19)

where 1 is a vector of length 𝑁×1, 𝜙 and 𝛺 (which includes an integra-
tor) are the numerator and denominator respectively of a discrete time
filter, and Y(𝑡)−Ŷ(𝑡) is the error between the actual output value and the
predicted one. This method is comparable to the 𝐶𝐴𝑅𝐼𝑀𝐴 model (Ca-
macho & Bordons, 2004). The intention is to add the integral of the
filtered prediction error to each predicted process output. (Eq. (18)).
The numerator and denominator of the discrete time filter are normally
considered as design parameters. The most popular structure of this
filter is 𝜙(𝑞−1)/𝛺(𝑞−1) = 1/(1−𝑞−1), where 𝑞−1 is the backwards shift
operator. However, the robustness of the disturbance model can be
improved by considering the numerator as 𝜙(𝑞−1) = 1−𝑎 ⋅ 𝑞−1, with
0 ≪ 𝑎 ≤ 1 (De Keyser & Ionescu, 2003). In this way, the structure
used in this work is given by 𝜙(𝑞−1)/𝛺(𝑞−1) = (1−𝑎 ⋅ 𝑞−1)/(1−𝑞−1).

4.2.3. Objective function
The set of control actions is computed by minimizing an objective

function (J). In this case, the aim of the control procedure is to maxi-
mize the temperature at the top of the storage tank (TT3). Therefore,
the first term of the objective function is aimed at maximizing the
predictions of this variable, ŶTT3(𝑡 + 𝑘|𝑡) along the prediction horizon
𝑁 , which means ∀ 𝑘 ∈ 1,… , 𝑁 . Besides, a second term has been added
to penalize the variations in the control actions, 𝛥TT1SP(𝑡 + 𝑘 − 1) and
𝛥TT2SP(𝑡 + 𝑘 − 1), along the control horizon 𝑁𝑢, that is ∀ 𝑘 ∈ 1,… , 𝑁𝑢
(to avoid aggressive control actions):

J = −
𝑘=𝑁∑
𝑘=1

ŶTT3(𝑡+𝑘|𝑡)+𝜆⋅
𝑘=𝑁𝑢∑
𝑘=1

(|𝛥TT1SP(𝑡+𝑘−1)|+|𝛥TT2SP(𝑡+𝑘−1)|), (20)

where 𝜆 is a weighting factor. In the problem at hand, the two control
actions have the same importance in the optimization problem, thus
only one 𝜆 was used in J.

4.2.4. Constraints
The optimization problem is subjected to several constraints which

are defined according to the process requirements. As the fluid flowing
through the pipes of the solar field is water, the temperature must be
lower than 100 [◦C] to avoid vapour formation during the operation:

TT2(𝑡 + 𝑘 − 1) < 100 ∀ 𝑘 ∈ 1,… , 𝑁𝑢, (21)

In addition, TT2 cannot be lower than TT1, neither lower than TT3 to
avoid cooling down the tank:

TT2(𝑡 + 𝑘 − 1) > TT1(𝑡 + 𝑘 − 1) ∀ 𝑘 ∈ 1,… , 𝑁𝑢, (22)
TT2(𝑡 + 𝑘 − 1) > ŶTT3(𝑡 + 𝑘|𝑡) ∀ 𝑘 ∈ 1,… , 𝑁𝑢, (23)

Finally, the outlet temperature of the solar field can vary between
the maximum and minimum temperature reachable at each instant,
TT2max and TT2min respectively. These limits can be calculated using
the model of the solar field (Eq. (1)) in steady-state conditions as was
done in Gil, Roca, Ruiz-Aguirre et al. (2018), according to the operating
conditions (i.e global irradiance level, ambient temperature, inlet solar
field temperature) and the maximum and minimum water flow rate,
FT1max and FT1min respectively:

TT2min(𝑡 + 𝑘 − 1|𝑡) = 𝑓 (I(𝑡),T𝑎(𝑡),TT1(𝑡 + 𝑘 − 1),FT1max)

∀ 𝑘 ∈ 1,… , 𝑁𝑢, (24)
TT2max(𝑡 + 𝑘 − 1|𝑡) = 𝑓 (I(𝑡),T𝑎(𝑡),TT1(𝑡 + 𝑘 − 1),FT1min)

∀ 𝑘 ∈ 1,… , 𝑁𝑢. (25)

Note that the irradiance and ambient temperature are kept constant
along the prediction horizon to compute the equations formulated
above. It was tested that maintaining irradiance constant, the results
obtained are comparable to those obtained if a prediction technique
such as the one proposed in Pawlowski, Guzmán, Rodríguez, Berenguel,
and Normey-Rico (2011) were applied, due to the low reliability of
these kind of techniques. Thus, the constraint can be formulated as:

TT2min(𝑡+𝑘−1|𝑡) ≤ TT2(𝑡+𝑘−1) ≤ TT2max(𝑡+𝑘−1|𝑡) ∀ 𝑘 ∈ 1,… , 𝑁𝑢. (26)

4.3. Procedure to turn on the hierarchical controller

The procedure to turn on the hierarchical controller is divided
in two phases. In the first one, as it was done in Gil, Roca, Ruiz-
Aguirre et al. (2018), the steady-state model of the solar field is used
to calculate the value of global irradiance required to start-up the
solar field. By using this model, the value of global irradiance can be
calculated as:

Ith(𝑡) = 𝑓 (FT1max(𝑡),TT1(𝑡),TT2(𝑡),T𝑎(𝑡)). (27)

To consider the operating conditions of the tank when calculating
this value, TT2(𝑡) has been fixed at the same value than the top tank
temperature TT3(𝑡). In the same way, as the fluid is initially recirculated
only through the solar field when starting the operation (see the second
phase to turn on the solar field), TT1(𝑡) is set to a degree below
TT2(𝑡) to consider thermal losses in the pipes. In addition, the water
flow rate was fixed at its maximum operating range. To choose this
value several simulation tests were carried out checking this procedure
with the maximum and minimum water flow rate. These tests showed
that by using the minimum range, the required global irradiance is
lower, however, if there is cold fluid in the pipes, the time that the
fluid must be recirculated through the solar field for reaching the tank
temperature is higher.

In the second phase, once the actual global irradiance value reaches
the calculated one, i.e. Ith(𝑡) ≤I(𝑡), the fluid is only recirculated through
the solar field until reaching the tank temperature, time instant in
which the hierarchical control system is turned on. Also note that, in
order to avoid chattering problems, the conditions are checked with
mean values of the last five minutes instead of instant ones.
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Fig. 8. Illustrative open loop test. (1) Inlet temperature of the solar field (TT1), outlet temperature of the solar field (TT2), and global irradiance (I), and (2) solar field water
flow rate (FT1).

5. Results and discussion

A simulation and an experimental campaign were carried out for
evaluating the proposed approach. The controller was implemented
in MATLAB 2018a, using the YALMIP toolbox (Löfberg, 2004) and
the fmincon solver (MATLAB, 2018). Regarding the controller set-up,
the sampling time of the lower layer was fixed at 1 s, which was
chosen taken into account the fastest representative time constant of
the variables involved in the loops, as mentioned above. The sampling
time of the upper layer was fixed at 10 min, which was selected
according to the settling time of the lower layer controllers (around
8 min). The prediction horizon 𝑁 and the control horizon 𝑁𝑢 were set
to 5 and 1, respectively. These values were selected taking into account
traditional recommendations in MPC controllers, 𝑁 large enough to
contemplate the transient part of the response, and 𝑁𝑢 ≪ 𝑁 . Finally, 𝜆
and 𝑎 were fixed at 0.2 and 0.8 respectively, which were selected after
exhaustive simulations until obtaining the desired closed loop response.

In what follows: (i) the implementation of the approach in the real
facility and the results obtained with the application of the controller
are presented, and (ii) a comparison among the results obtained in
simulation with the approach presented in this paper, with a manual
operation, and with the strategies proposed in Gil, Roca, Berenguel
et al. (2018) and Gil, Roca, Ruiz-Aguirre et al. (2018) is shown.

5.1. Implementation of the algorithm in the real facility and experimental
results

Due to an anomalous behaviour in the operation of the expansion
vessel of the solar field, the control algorithm had to be slightly mod-
ified for doing the experimental tests. Note that this behaviour should
not occur, and it is an exception that happens only in this plant. So that,
for applying the algorithm in other facilities, it must be implemented
as has been described above.

An open-loop test is shown in Fig. 8 to visualize the effect that gives
rise to this anomalous behaviour. As can be seen, when a positive or
a negative change is applied in the flow rate, the inlet temperature
of the solar field drastically drops, and then, it is quickly restored,
causing an undesired transient in TT1 that can produce oscillations and
even instability during the automatic operation. Conversely, it can be
observed that this transient is filtered by the solar field, and therefore,
it does not affect TT2. Note that when the flow rate is decreased
the pressure also decreases, and part of the water remaining in the
expansion vessel comes out momentarily cooling the entrance of the
circuit. When the flow rate is increased and due to the underdamped
behaviour of the pump (see the last change in Fig. 8), there is also a
small pressure drop, and again, water from the expansion vessel comes
out. It should be remarked that an attempt has been made to model

Fig. 9. Decision maker.

this phenomenon, but it has been impossible both with models based
on first principles and with empirical models, since the temperature
drop has no recognizable patterns.

Thus, to avoid feeding back the controllers with the actual TT1
during these transients, experimental tests were carried out to find both
the maximum duration of this transitory effect when a change in the
flow rate is applied, and the minimum ramp change in the flow rate
that causes them. In this way, it was experimentally tested that, in the
worst case, the maximum time was 140 [s], whereas flow rates with
slopes lower than 8 [%] do not affect the inlet temperature.

Once these two issues were characterized, a decision maker was
designed to decide if the control loops that require TT1, see Figs. 6
and 7, are fed back with the real temperature or with an estimated
temperature calculated with the model (see Eq. (3)). The schematic
diagram of the decision maker is presented in Fig. 9. The inputs of the
block are the solar field water flow rate (FT1), the actual inlet solar field
temperature (TT1), and the temperature calculated by Eq. (3) (TT1𝑚).
If the slope of the flow rate is less than 8 [%], the output of the block
(TT1𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘) is the actual TT1, whereas if the slope is higher than
this value, the output is TT1𝑚 during 140 [s]. It should be remarked
that for doing the transitions between TT1 and TT1𝑚, a low pass filter
is used with a characteristic time constant of 15 [s], thus avoiding
discontinuities.

Next step was to test the control system in the real facility. Several
experiments with different temperature initial conditions in the storage
tank were performed in order to evaluate the hierarchical controller.
Fig. 10 shows one representative test carried out on the day 15 March,
2019. In this test, the initial temperatures in the tank were 58, 50.6, and
47.6 [◦C] for TT3, TT4 and TT5 respectively. It should be remembered
that the temperature at the top of the tank must be higher than 60 [◦C]
for operating the thermal load. So, with these conditions, the tank
was unloaded in terms of thermal energy, and therefore, the start-up
procedure had to be carried out. In addition, it should be remarked
that the degree of stratification was high, what made the automatic
operation even more difficult.

The operation was started around 9.00 pm. As stated in Section 4.3,
first, the algorithm calculated the value of global irradiance that al-
lowed to start-up the solar field for heating the tank. Then, the algo-
rithm verified at each sample time the actual value of irradiance, and
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when it reached the calculated one, the second phase was initialized. In
the second phase, pump 1 was turned on with valve 1 closed towards
the solar field, i.e., the fluid was recirculated through the solar field.
This phase was used to avoid turning on the hierarchical controller
during the temperature transients produced by the cold fluid stored
in the pipes. Finally, when the outlet temperature of the solar field
reached the one at the top of the tank, the hierarchical controller was
turned on. Thus, in the test, the calculated value of irradiance was
407.9 [W/m2], which was reached around 9.28 [h], time instant in
which the second phase was started. As can be seen in Fig. 10-(2), this
second phase was prolonged around 12 [min], until TT2 reached the
value of TT3 around 9.49 [h].

When the second phase was completed, the hierarchical controller
was turned on. The first setpoints calculated by the upper layer for
each of the control loops were 60.34 and 56.54 [◦C], for TT2SP and
TT1SP respectively. As TT2 was below its reference, the lower layer
controller decreased the flow rate. It is important to observe that flow
decrease caused TT1 to drop as a result of the anomalous behaviour
of the expansion vessel commented before. Nevertheless, thanks to the
performance of the decision maker, the controllers were fed back with
an estimated value obtained with the model during this period, see
Fig. 10-(2).

As can also be seen in Fig. 10-(2), to maximize TT3, the upper
layer maintained the setpoint of TT1 around the same value, while
increased TT2 setpoint according to the irradiance conditions. This fact
was specially significant for the inlet solar field temperature control
loop, since if TT2 increases, for maintaining TT1 around a determined
value, the controller has to gradually open valve 1 to mix the fluid
coming from the solar field with the one in the bottom of the tank,
which is colder. In the test, this procedure can be observed in Fig. 10-
(3) between 9.49 and 11.50 [h]. This gradual opening of the valve
allowed to extract cold fluid from the tank, heating it through the solar
field, and introducing it at the upper part of the tank in a controlled
way, thus decreasing the stratification of the tank and increasing its
temperature, see Fig. 10-(1).

Regarding the lower layer controllers, first, the TT1 controller
tracked the references correctly, performing the operation mentioned
in the previous paragraph until instant time 11.50 [h], moment in
which the valve was totally opened (see Fig. 10-(3)). Second, the TT2
controller also tracked the references properly, and as can be seen,
the feedforward was in charge of providing the nominal flow rate,
what caused the PID signal to be always around zero except in some
transients. Note that from 11.50 [h], the actuators were saturated and
small tracking errors can be observed.

5.2. Comparison with other control strategies and a manual operation

In order to evaluate the benefits achieved by using the proposed
hierarchical control approach, its performance was compared with an
operation using the manual procedure and the strategies proposed
in Gil, Roca, Berenguel et al. (2018) and Gil, Roca, Ruiz-Aguirre et al.
(2018). Note that, it is not compared with the approach presented
in Lopez-Alvarez et al. (2018) as it was proposed to be applied only
to direct two-tank storage configurations, and therefore, it cannot be
adapted to the facility used as reference in this paper. The comparison
was carried out in simulation so that all methodologies have the same
operating conditions. Real meteorological data from PSA (see Fig. 11)
were used on the day March 8, 2017. In addition, the initial tempera-
tures of the tank were 58, 50.6, and 47.6 [◦C] for TT3, TT4 and TT5
respectively, as in the experimental test shown in the previous section.

For doing the comparison, the time taken to reach 65 [◦C] from the
beginning of the simulation was measured for each one of the start-
up methodologies. As can be seen in Fig. 11 the simulations started
at 7.00 am. However, each methodology turned on the solar field
according to its start-up policy. The strategies proposed (Gil, Roca,
Berenguel et al., 2018; Gil, Roca, Ruiz-Aguirre et al., 2018) and the

Table 6
Time in reaching 65 [◦C] at the top of the tank with each one of the approaches.

Starting-up method Time [min]

Manual 331.08
Approach presented in Gil, Roca, Ruiz-Aguirre et al. (2018) 322.66
Approach presented in Gil, Roca, Berenguel et al. (2018) 302.61
Hierarchical controller 296.36

hierarchical controller turned on the solar field when the irradiance
reached 408.2 [W/m2]. Note that the level is almost the same that in
the experimental test shown in the previous section since the tank tem-
perature conditions, which have higher influence in this calculation,
are the same. Conversely, the level for turning on the solar field in the
manual procedure was fixed at 550 [W/m2], medium level of the range
in which qualified operators turn on the solar field in this kind of plants
(see Section 4). It should be remarked that the manual operation was
programmed as described in Section 4.

Thus, the results can be analytically and graphically seen in Ta-
ble 6 and Fig. 11 respectively. The operation that takes more time to
reach the determined temperature was the manual one, with a time of
331.08 [min]. This is due to the difficulty in performing this operation
when the tank has a high degree of stratification, and also when there
are disturbances in the irradiance during the start phase as happened
in this test. The operation carried out with the strategy presented
in Gil, Roca, Ruiz-Aguirre et al. (2018) took a time of 322.66 [min].
Note that in this strategy the flow rate is used to control TT2 and
therefore it is able to reject irradiance disturbances, thus improving the
results obtained with the manual operation. However, this operation
has problems if the tank is stratified since the valve is not used as
control variable. In this way, it can be seen that the time is clearly less
with the strategies that use the valve as control variable, since they can
cope with both the irradiance disturbance and the tank stratification
problems. The strategy proposed in Gil, Roca, Berenguel et al. (2018)
required 302.61 [min] for reaching the reference temperature in the
tank, whereas the proposed hierarchical controller took 296.36 [min].
This improvement is mainly due to the fact of taking into account a pre-
diction horizon in the upper layer instead of using a static optimization
problem. In addition, it should be remarked that this improvement is
achieved without adding much calculation effort, as there is not much
difference between solving the optimization problem formulated in Gil,
Roca, Berenguel et al. (2018) and the proposed in this paper; which is
based on a PNMPC controller.

6. Conclusions

This paper shows an optimal real-time predictive control method-
ology for starting-up solar thermal fields with direct storage configura-
tion. The methodology is based on a hierarchical controller including
an MPC based layer and a regulatory one composed of PID controllers.
Real experimental tests in a pilot plant with single-tank with direct
storage configuration located at PSA are shown. In addition, a simu-
lated comparative analysis with other techniques already proposed in
the literature and with a manual operation is presented.

The results evidence how the proper use of a control algorithm
that: (i) takes into consideration irradiance disturbances and operating
conditions at each sampling time, and (ii) uses a receding control strat-
egy to consider the future tank states to calculate the control signals,
can considerably reduce the time spent in the start-up procedure. This
fact is especially notable when there is a big degree of stratification in
the storage tank. The comparison carried out shows how the proposed
controller can reduce the start-up procedure in 34 min with respect to a
manual operation, and in 26 [min] if a controller that acts only over the
flow rate were used. This improvement is due to the use of the mixing
valve as control variable apart from the water flow rate (typical control
variable in solar thermal fields), which allows the controller to cope
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Fig. 10. Experimental tests. (1) Tank temperatures (TT3, TT4 and TT5) and global irradiance (I), (2) inlet and outlet temperatures of the solar field (TT1 and TT2), setpoints
(TT1SP and TT2SP) and temperature calculated by the decision maker TT1𝑚, and (3) control signals of the outlet solar field temperature control loop (FT1, FT1FF and FT1PID) and
control signal of the inlet solar field temperature control loop (V1).

Fig. 11. Global irradiance data used in the simulations, and time in which the temperature 65 [◦C] was reached at the top of the tank with each one of the start-up procedures.

with both the irradiance disturbance and temperature stratification
problems during the start-up phase.

Note that although the procedure has been tested in a low-
temperature solar field design, it could also be used in medium and high
concentration solar thermal plants (with parabolic trough collectors or
solar towers) using a similar layout as the one of the plant used as
reference in this work, including the thermal storage and the mixing
valve. However, it must be mentioned that the obtained results cannot
be directly extrapolated to plants that use different heat transfer media
due to the difference in thermal properties and transport delays. For
this reason, future works will focus on evaluating the performance of
the proposed technique in this kind of plants.
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A B S T R A C T

The scarcity of water experienced in Almería (south-eastern Spain), and in Mediterranean countries generally,
has the potential to compromise one of its main economic drivers – agriculture. A possible solution is to combine
thermal desalination technologies with crop cultivation. Accordingly, this paper proposes a distributed model
predictive controller for the efficient operation of a distributed energy system comprising a solar-powered
membrane distillation facility and a greenhouse, which is the most widespread type of crop cultivation in this
region. The controller is in charge of calculating the optimal feed flow rates for each of the membrane distillation
modules included in the desalination facility, according to the water requirements of the greenhouse and the
thermal energy consumption of the membrane distillation plant (one of the main weak points of the technology).
Simulation results using models for two real facilities located in Almería are presented; they show how the
proposed distributed approach is able to manage industrial-scale plants in an optimal way. In addition, auto-
matic operation is compared with manual operation (a non-optimal one), showing that the operation’s thermal
efficiency can be improved by 5 % when applying the proposed technique, while satisfying the water demand.
This means important thermal energy savings of around 50MWh/season less thermal energy consumption for an
8 ha cultivation area.

1. Introduction

Almería is located in the southeast of Spain, a semi-desertic zone
with a severe water scarcity problem. Nevertheless, agriculture is one of
the economic drivers for this dry region covering a surface area of more
than 29035 ha of effective greenhouse production [1]. This is made
possible thanks to the availability of untapped water resources, rivers or
aquifers, and the use of drip irrigation and efficient control systems
combined with the area’s great agricultural potential due to its fa-
vourable climatic conditions.

The development of water-intensive agriculture has led to this re-
gion becoming highly competitive in international markets; however,
the intensification of irrigation and the required infrastructure (re-
servoirs, dams, canals, wells and pools) have had ecological and social
impacts which, in some cases, are already irreversible [2]. The devel-
opment of irrigation in the southeast of Spain is associated with the
overexploitation of major river aquifers, which urgently demands so-
lutions to mitigate the problem and make the economy sustainable with

regard to water use. As pointed out by [3], the horticultural sector is on
the right path towards a green economy; for this, desalinated and re-
claimed water should be used for irrigation demand, thus ensuring
aquifer sustainability [4]. In fact, Spain is the leader in using desali-
nized water for agricultural purposes [5]. Reverse Osmosis (RO) is the
most commonly employed technology and the most commercially ex-
tended [6], mainly due to its competitive costs compared to other de-
salination techniques [7]. Despite this, membrane distillation (MD) is a
potential technology which is becoming increasingly attractive [8]. Its
principal advantages are: it only requires low-grade thermal energy so
it can be easily coupled to solar thermal systems [9] and low electricity
consumption; it does not usually require chemical pretreatment; the
product quality is excellent and insensitive to the feed-water salinity,
feed flow rate and temperature, making it suitable for zero-liquid dis-
charge schemes. Given this last advantage, MD can be used not only for
desalting seawater but also for producing clean water from con-
taminated feedwater [10]; thus, it is useful for improving the treated
water quality for irrigation.
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Even though Solar-powered MD (SMD) processes are currently re-
latively expensive compared to other desalination technologies [8],
they could provide a feasible solution for small applications in places
with high solar irradiance and water scarcity. Moreover, due to the low
working temperature, their operation and maintenance is simple, and
they can easily be coupled to small production plants such as green-
houses. Nonetheless, in order to combine these successfully and to re-
duce the cost of the water produced, adequate optimization and control

techniques are required to manage SMD facilities according to the solar
energy dynamics [11].

Various control approaches for SMD plants have been presented in
the literature, of which the ones posited in [12,13] stand out. In the first
paper, a neural network-based control system was proposed to max-
imize the SMD facility’s distillate production based on the irradiance
conditions. In the second paper, a real-time hierarchical controller was
presented which aimed to optimize not only the plant’s distillate

Nomenclature

Symbol Description(Units)
A Surface area (m2)
cf Conversion factor (3.6·106 s·W/(h·kW))
cp Specific heat capacity (J/(kg·°C))
D Distillate production (L/h)
F Feed flow rate (L/h)
H Absolute humidity (kg water/kg air)
ṁ Mass flow ratekg s/
Ṁ Mass flow rate per square meter (kg/(s·m2))
Q Heat flux (W/m2)
T Temperature (°C)
V volume (m3)
α Heat exchanger transfer coefficient (689.30W/(m ·2 K))
δ Weighting factor for the tracking error (-)
ΔT Temperature difference (°C)
ε Convergence factor (–)
ζ Weighting factor for the STEC (–)
η Auxiliary factor for the calculation of the outlet heat ex-

changer temperatures (–)
θ Heat exchanger auxiliary factor (–)
λ Weighting factor for the control action
ρ Density (kg/m3)
σ Maximum number of iterations (–)
Subscript Description
a Air

AQ Aquastill module
cnv Convective
cr Crop
cs in, Input at the cold side of the heat exchanger
cs out, Output at the cold side of the heat exchanger
cv Cover
dehum Dehumidification
ext Exterior
feed Feed MD water
g Greenhouse
he Heat exchanger
hs in, Input at the hot side of the heat exchanger
hs out, Output at the cold side of the heat exchanger
hum Humidification
i ith MD module in the plant
int Interior
m Model output
sol Solar
ss Soil surface
SS Solar Spring module
trp Transpiration
ven Ventilation
1 Relative to the hot side of the heat exchanger (deminer-

alized water fluid)
2 Relative to cold side of the heat exchanger (sea water

fluid)

Fig. 1. Schematic diagram of the facility simulated for the case study.
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production but also the cost savings related to the pumping system and
the MD module’s thermal efficiency, which is one of the technology’s
main drawbacks, as reported in [14] and analysed in [15]. Never-
theless, these strategies were applied to stand-alone pilot plants, which
considered the SMD facility as having only one MD module, and did not
consider a particular water demand. This is especially relevant since,
when designing a potential industrial SMD plant application, such as
proposed in this paper, the SMD facility must contain multiple MD
modules to satisfy the water requirements. This is because a single
commercial MD module has a relatively low distillate production,
around 30 L/h under the best operating conditions [16]. This scenario
completely alters the control problem, requiring new approaches to be
formulated.

To the best of our knowledge, only [17] has addressed the issue of
optimally connecting a solar-powered desalination process to a green-
house. In that work, a Multi-Effect Distillation (MED) unit was eval-
uated for the desalination plant. To optimally connect both facilities, a
centralized Model Predictive Control (MPC) technique was used to
control the distillate volume that the desalination plant had to produce
to meet the greenhouse water demand. However, the control system did
not take into consideration other objectives such as minimizing the
thermal energy consumption, which is equally essential for this
thermal-powered desalination technology, as analysed in [18,19].
Furthermore, a single MED unit was considered for the solar desalina-
tion plant, thus invalidating the centralized control approach for in-
dustrial SMD plants.

In our paper, a Distributed MPC (DMPC) strategy is proposed to
optimally manage a distributed energy system made up of an SMD plant
and a greenhouse. The DMPC technique is in charge of computing the
feed flow rates for each of the MD modules in the SMD facility, tasked
with reducing the specific thermal energy consumption of the MD
modules while maintaining the necessary water level for irrigation
purposes. In formulating the DMPC technique proposed, each of the MD
modules included in the SMD facility is considered as an agent of the
decentralized controller; thus, each agent solves a simple MPC problem
with the objective mentioned above, only exchanging information with
neighbouring agents following the ideas presented in [20]. This allows
us to considerably reduce the computational power required by a
centralized approach such as the one proposed in [17], making it pos-
sible to compute optimal solutions within the required sampling time
when considering industrial-scale SMD plants. The simulation results
presented show that the proposed DMPC technique is able to optimally
manage an industrial SMD plant in real time, assuring the water re-
quirements of the consumer agent, while reducing the MD modules’
thermal energy consumption; an issue not addressed in the literature to
date.

The paper is organized as follows: in Section 2 presents the case
study. The models are described in Section 3. The control algorithms
are formulated in Section 4. The performance of the controller is de-
picted and analysed in Section 5. Finally, the conclusions are sum-
marized in Section 6.

2. Case study

The facility studied in this work basically consists of a distributed
energy system comprising an SMD plant and a greenhouse (see Fig. 1).
In this plant, the greenhouse acts as the consumer, requiring fresh water
for crop irrigation, while the desalination plant acts as the producer,
providing the required fresh water. In addition, a water storage tank
(3m3) is used to connect both facilities. It should be noted that the plant
is a simulation based on two real facilities, which are presented in the
following subsections.

2.1. Solar distillation plant

The SMD plant (see Fig. 2) is located at the Plataforma Solar de

Almería (PSA, www.psa.es, southeast Spain). It is one of the few MD
plants that is fully described in the literature [21]. In this facility, the
thermal energy required for the distillation process is provided by a
solar field made up of flat-plate collectors. This solar field is directly
connected to a storage tank (1.5 m3), which is used as an energy buffer
system. Finally, the distillation module is coupled to the heat genera-
tion circuit through a heat exchanger.

There are several commercial MD modules available at PSA, using
different MD configurations. The two modules used in this work (see
Fig. 2) are the Aquastill unit, which is based on Air–gap Membrane
Distillation technology, comprehensively described in [16], and Solar
Spring technology, which has a Permeate-gap Membrane Distillation
configuration, and was described and analysed in [22]. In the case
study (see Fig. 1), four MD units (two of each commercial module) were
used in order to scale the desalination plant’s distillate production to
the greenhouse water requirements.

Inside the MD unit (see Fig. 3) the sea water is first pumped through
the module’s condenser channel. Due to the module’s design con-
straints, the feed flow rate has a limited operating range between 400
and 600 L/h. After this, the feed fluid passes through the heat ex-
changer, where it is heated using the recirculating fluid coming from
the solar field. It is then circulated through the module’s evaporator
channel. The evaporator inlet temperature varies between 60 and 80 °C;
the upper limit being imposed by the membrane materials while the
lower is set because, below this temperature, the module produces very
little distillate. The temperature difference created on both sides of the
channels produces a pressure difference that forces the vapour mole-
cules from the evaporator channel to the condenser channel. Finally, in
the evaporator channel, the volatile components of the heated solution
pass through a hydrophobic, microporous membrane (becoming dis-
tillate following a condensation process) whereas the non-volatile mo-
lecules are rejected in the form of brine.

2.2. Greenhouse

The greenhouse (see Fig. 4) used as the reference in this work is
located at the Experimental Station of the Cajamar Foundation, also in
south-eastern Spain (40 km from the PSA). The structure comprises a
multi-span “Almeria-type” greenhouse (E-W orientation), with an

Fig. 2. SMD pilot plant at the PSA. From top to bottom and from left to right:
the solar field, the Solar Spring module and the Aquastill module.
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821m2 surface and a cultivation area of 616m2. The greenhouse has a
polyethylene cover equipped with an automatic ventilation system with
side windows on the north and south walls, a biomass-fuelled heating
system, a diesel aerothermal system, LED lights, and a humidification/
dehumidification system from condensation with a water extraction
capacity of 900 L/day.

The crop grows in N-S-oriented rows, inside coconut coir bags, with
three droppers and six plants each. Throughout the crop season, several
internal and external measurements are monitored continuously.
Outside the greenhouse, a weather station measures air temperature
and relative humidity with a ventilated sensor, solar radiation, photo-
synthetic active radiation, rain detection, CO2, wind direction, and
wind speed. During the trials, several greenhouse climate variables
were measured, especially air temperature, relative humidity, solar
radiation, PAR, soil and cover temperature, and CO2 concentration.

Irrigation was periodically applied throughout each day to the crop.
The irrigation frequency was controlled using a demand tray system;
fixed volumes were applied. The demand tray system, which uses
water-level sensors, is the most commonly used system for auto-
matically activated irrigation of soilless crops in SE Spain. A water-level
sensor is installed in a small water reservoir in which the water volume
(and therefore the surface level) is in equilibrium with the substrate
water content. When the water level in the reservoir drops to the
physical level of the sensor, as a result of crop uptake, irrigation is
activated. The physical height of the sensor is adjusted by the grower
based on measured drainage volumes and experience. This method can
be used once the crop root system is established. A microlysimeter was
chosen to measure the transpiration, drainage and crop water loss
measurements. The device consists of two electronic weighing scales
connected to a personal computer. The first (150 kg 1 g, Sartorius) re-
cords the weight of a bag with six plants plus a support structure. The
second weighing scale (20 kg 0.5 g, Sartorius), which follows the first,
measures the drainage weight from the substrate bag. A more detailed
description of the greenhouse has been presented elsewhere [23].

3. System modelling

The case study presented in the previous section was used to eval-
uate the performance of a DMPC technique which manages the optimal

operation of the desalination plant to meet the crop’s water require-
ments while reducing the MD modules’ thermal energy consumption.
Consequently, a model capable of accurately representing the beha-
viour of both facilities is required.

3.1. SMD facility model

The SMD facility model can be divided into two different compo-
nents linked by a heat exchanger: (1) the heat generation system,
comprising the solar field and the storage tank, and (2) the desalination
unit. The model for the heat generation system has already been pre-
sented in [11] (the solar field, pipes and heat exchanger) and [13] (the
storage tank). To simplify the simulations in this work, temperature
profiles at the hot side inlet of the heat exchanger have been employed.
These temperature profiles were obtained by simulating a model of the
heat generation circuit (the solar field and thermal storage tank) with
real meteorological data from PSA, similar to those used in this work,
and using the operational strategy proposed in [13].

The heat exchanger was modelled using a first principles-based
static model following the ideas proposed in [24]:= − −− ηT T ·(T T ),hs out m hs in hs in cs in, , 1 , , (1)= + −− −ηT T ·(T T ),cs out m cs in hs in hs out m, , 2 , , (2)

where:

= −−η e
e
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m c
m c
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̇ ·
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m c
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̇ ·
̇ ·
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1 ,1

2 ,2 (4)

⎜ ⎟= ⎛⎝ − ⎞⎠θ α
m c m c

·A · 1
̇ ·

1
̇ ·

.he
p p1 ,1 2 ,2 (5)

All variables and constants are defined in the Nomenclature table in
the appendices. The surface area of the heat exchanger (Ahe) is 3.15m2.
The surface area of the heat exchanger (Ahe) is 3.15m2. Moreover, as
was presented in [13], a time delay and a first-order filter have been
added to each model output so as to include the required dynamics to fit
the experimental data. For the case of −Tcs out m, , the time delay is 23 s
and the representative time constant is 40 s, whilst for −Tcs out m, , the time
delay is 15 s and the time constant is 20 s.

As was mentioned in Section 2.1, two kinds of MD modules have
been used in this work. The models for the MD units consist of static
equations obtained from the experimental data, employing the Re-
sponse Surface Methodology (RSM). The model for the first module,
Solar Spring (SS-1 and SS-2 in Fig. 1), was presented in [22] and is
given by:

= − + − − +D
A ·( 1.088 0.024·T 0.018·T 0.001·F 0.00006·T ·

F),
cs out feed cs outSS , ,

(6)△ = − + − +T 0.201875 0.1385·T 0.158·T 0.0049·F,cs out feed, (7)

where ASS is the surface area of the Solar Spring module membrane,

Fig. 3. Schematic diagram of a single MD unit.

Fig. 4. Greenhouse facilities. From left to right and from top to bottom: the
greenhouse, the dropper and the tomato crop lines.
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10m2. The units for each term in Eq. (6) are L/hm2, whereas the ones
for Eq. (7) are in °C.

The model for the Aquastill module (AQ-1 and AQ-2 in Fig. 1) was
developed in [16] and is described by the following equations:

= + − − +D
A ·(0.135 0.003·T 0.0204·T 0.001·F 0.00004·T ·

F),
cs out feed cs outAQ , ,

(8)△ = − + − +T 0.739 0.078·T 0.067·T 0.0019·F.cs out feed, (9)

As in the previous model, AAQ is the surface area of the Aquastill
module membrane, which in this case is 24m2. The units for the terms
in Eq. (8) are L/hm2 whereas the ones for Eq. (9) are in °C. It should be
pointed out that in Eqs. (7) and (9), △T is the temperature difference
between the evaporator channel inlet temperature and the condenser
channel outlet temperature of the MD module, and D is the distillate
production. Static models are used here because the MD modules have
fast dynamics when compared to the other facility systems. However,
one can observe that they are affected by the temperature coming from
the heat generation circuit (Tcs out, ) and, therefore, by its dynamics.

Finally, the feed flow rate is controlled by pump 1, supplying flow
rates between 1600 and 2000 L/h. This feed flow rate is a shared re-
source between the four modules; it is not enough to feed all the
modules working at the maximum flow rate (the maximum flow rate of
each module is 600 L/h). This limitation might be a design decision
based on the cost of pumping the sea water and because maximum
thermal efficiency is achieved when the MD modules are run at the
minimum feed flow rate, as will be shown in Section 4.1. Then, valves
V1, V2, V3 and V4, which vary their opening between 0 and 1, divert
part of the flow into the corresponding module (see Fig. 1). In addition,
V1 and V5, V2 and V6, V3 and V7, and V4 and V8, are opened or closed
at the same time and at the same value in order to maintain the same
flow rate at the inlets of the two channels of each module.

3.2. Greenhouse model

A simplified pseudo-physical climate model, completely described
in [23], has been used for the purpose of this work. The state variables
for the system are the inside air temperature (Ta int, ) and the humidity

(Ha int, ). The three main external systems interacting with the green-
house are the outside air, the soil surface, and the crop. Thus, the
greenhouse air temperature (Ta int, ) can be modelled using the following
balance:

= + + − −− −c ρ d
dt

Q Q Q Q Q
V
A

T ,p a a
g

ss

a int
sol a cnv cv a cnv ss a ven trp cr,

,
, , , , (10)

where Qsol a, represents the radiative flux heating the inside air through
the cover, −Qcnv cv a, is the convective flux with the cover, −Qcnv ss a, is the
convective flux with the soil surface, Qven is the heat lost by natural
ventilation and infiltration, and Qtrp cr, is the latent heat effect of crop
transpiration. The remaining variables are presented in the Nomen-
clature section (see the appendices). Moreover, the greenhouse’s inside
absolute humidity (Ha int, ), which is the amount of water vapour in the
greenhouse air, is modelled on a vapour mass balance [23]:

= + − − −ρ d
dt

M M M MV
A

H ̇ ̇ ̇ ̇ ,a
a

ss

a int
trp cr hum dehum vent int ext

,
, , (11)

where Ṁtrp cr, is the crop transpiration flux, which relates to the amount
of water lost by the plants during the transpiration process and must be
recovered by irrigation, Ṁhum is the water flux provided by the humi-
dification system, Ṁdehum is the water flux removed by the dehumidi-
fication system, and −Ṁvent int ext, is the outflow by natural ventilation and
infiltration. The remaining variables are presented in the Nomenclature
section (see the appendices).

It should be noted that the cultivation area in the model was fixed at
308m2 in order to scale the greenhouse water consumption to the
production of the four MD modules.

4. Control system

The main idea is to develop a control algorithm capable of providing
optimal feed flow rate distribution among the MD modules, according
to the greenhouse water demand and the thermal efficiency of the MD
modules at each instant. For this purpose, DMPC controllers [25,26] are
an attractive approach given that, in industrial applications, the
number of required MD modules significantly increases and the appli-
cation of a centralized controller could prove very difficult for com-
putational power and communications.

Fig. 5. 3D response surfaces. (1) Distillate production from the Aquastill module, (2) Distillate production from the Solar Spring module, (3) STEC of the Aquastill
module, and (4) STEC of the Solar Spring module.
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In the next section, the performance of each MD module in terms of
distillate production and thermal efficiency is shown and analysed.
Based on this analysis, we first formulate the centralized controller and
then we present the distributed approach. Subsequently, the simulation
results and some conclusions are presented.

4.1. Optimal operation of the MD modules

Before presenting the control system development, it is important to
analyse and even visualize the performance of each module in order to
clarify how the control system has been designed. Two of the most
important metrics used in describing the performance of membrane
distillation modules are the distillate production and the thermal effi-
ciency. Thus, in this section, 3D response surface plots of each module
are presented, showing the behaviour of the two metrics with respect to
the evaporator inlet temperature and the feed flow rate; the two most
important variables influencing them.

Conversely, the distillate production value can be directly obtained,
simply by measuring the quantity of distillate produced in each sample
time. The thermal efficiency of the process must be estimated using one
of the performance metrics presented in the literature. In this case, the
Specific Thermal Energy Consumption (STEC) has been selected
[21,16,22]. This metric provides the amount of thermal energy re-
quired to produce a volume unit of distillate, and it can be calculated as
follows:

= −ρ c
c

STEC(kWh/m )
F· · ·(T T )

·D
.feed p cs out cs in

f

3 ,2 , ,

(12)

Please note that all the variables involved in the previous equation
are defined in the Nomenclature section.

Fig. 5 shows the 3D response surface plots. Regarding the distillate
production, one can observe that the maximum value is obtained when
operating at the maximum feed flow rate and evaporator inlet tem-
perature for both modules (see Fig. 5-1 and Fig. 5-2). However, in the
case of STEC, which must be at the minimum to obtain a higher thermal
efficiency in the process, the optimal operating points are reached by
working at the maximum evaporator inlet temperature and the
minimum feed flow rate in both cases (see Fig. 5-3 and Fig. 5-4). In
addition, when comparing the two modules, the Aquastill module has
higher distillate production and thermal efficiency than the Solar
Spring module. So, to summarize, the most important conclusions on
which to base the control system development are that: (i) the eva-
porator inlet temperature should be the highest possible (this depends
on solar irradiance) to obtain optimal performance, (ii) contrary oper-
ating conditions are required in the feed flow rate to maximize the
distillate production and thermal efficiency in both modules, and (iii)
the Aquastill module produces more distillate and is more efficient than
the Solar Spring module.

4.2. Centralized control approach

MPC is a control technique that is widely used in both industry and
academia. MPC can include (but is not limited to) optimal control, dead
time, multivariable processes and the use of future setpoints if they are
available [27]. By using a finite receding control horizon strategy, it can
also deal with constraints and nonlinear processes. MPC controllers use
the following structure and features (see Fig. 6):

• Explicit use of a process model to predict future process behaviour
̂ +y t j t( | ).

• Minimization of a cost function to calculate the control signal u t t( | ).
This objective function usually tries to maintain the process as clo-
sely as possible to a determined reference +w t j t( | ).

• The use of a finite receding control horizon, meaning that a set of
control signals is calculated for the whole horizon

+ … + −u t t u t t u t N t( ( | ), ( 1| ), , ( 1| ))u although only the first control
signal is applied whilst the rest are rejected; the procedure is then
repeated for the next sampling period.

The main differences between the MPC strategies are firstly in the
process model and noise model, and secondly in the cost function.
These differences can cause distinct behaviour in a feedback loop.

Given the many advantages of the MPC strategy when compared to
other control strategies [27], it was chosen as the most suitable for this
work. Therefore, assuming prediction and control horizons with lengths
of N and Nu, respectively, the cost function for a system can be for-
mulated as follows:

̂∑ ∑= + − + + += =
−

J δ y t j t w t j t λ u t j·[ ( | ) ( | )] ·[Δ ( )] ,
j

N

j

N

1

2

0

1
2

u

(13)

where the system output prediction and the desired reference, ̂ +y t j t( | )
and +w t j t( | ) respectively, are estimated for sample time +t j using the
information available at sample time t. On the other hand, +u t jΔ ( ) is
the variation in the control action at sample time +t j( ) whereas δ and
λ are weighting factors that penalize the future tracking errors and
control efforts, respectively, along their horizons.

With regard to the constraints, there are mainly three kinds that can
be found affecting system outputs and control actions:⩽ ⩽ ∀ ⩾Δu u t u tΔ ( ) Δ , 0,min max (14a)⩽ ⩽ ∀ ⩾u u t u t( ) , 0,min max (14b)⩽ ⩽ ∀ ⩾y y t y t( ) , 0.min max (14c)

In the previous equations, the first constraint, Eq. (14a), limits the
control effort in order to avoid abrupt changes in the actuator that may
cause disruption. The second one, Eq. (14b), relates to the physical hard
constraints of the actuator. Finally, the third constraint, Eq. (14c), gives
the lower and upper limits, ymin and ymax respectively, of the output
variable (also applicable to predicted future values). In this work, the
cost function presented in Eq. (13) has been modified to the problem at
hand. Thus, for the centralized control approach, the cost function is
given by:

̂ ̂∑ ∑∑= + + + − +
+ += =

=
−

J ζ y t j t δ w t j y t j t

λ u t j

· ( | ) ·[ ( ) ( | )]

·Δ ( ),

j

N

STEC
j

N

tank tank

j

N
1 1

0

1u

(15)

Fig. 6. MPC strategy.
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where = −ζ δ(1 ), ̂ySTEC is the mean STEC value for the four MD
modules, ̂ytank is the level of the tank and wtank is the minimum tank
level allowed. In addition, it should be pointed out that the set of inputs
u is composed of the feed flow rate for each of the MD modules, ac-
cording to Fig. 1, = − − − −u [F F F F ]AQ 1 SS 1 SS 2 AQ 2 .

4.3. Distributed control

In this work, a system composed of M subsystems or agents, i.e. the
MD modules, is considered. So, for each agent, i, Eq. (15) can be re-
written as follows:

̂ ̂∑ ∑∑= + + + − +
+ += =

=
−

J ζ y t j t δ w t j y t j t

λ u t j

· ( | ) ·[ ( ) ( | )]

·Δ ( ).

i
j

N

STEC
j

N

tank tank

j

N

i i

1 1

0

1u

(16)

Regarding the constraints, as has been indicated before, each agent,
i can have its own constraints, as shown in Eqs. ((14)). However, this
work is concerned with a plant that is formed by interconnecting M
dynamic subsystems which share a common resource. Let= … M{1, , }M be the set of agents or subsystems. In this case, the
shared resource is the water flow supplied from the feed water tank
and, to impose a limit on it, a new constraint which couples all the
subsystems must be considered. Such a constraint can be defined as
follows:∑ + ⩽ ∀ = … −= u t j b j N( ) , 0, , 1,
i

M

i u
1 (17)

where b is the allowable resource. For the problem at hand, this con-
straint is related to the total feed water flow supplied from the feed
water tank to the whole system, which could be limited by design de-
cisions as previously mentioned. So, the optimization problem for the
whole system, including the M subsystems, can be formulated as fol-
lows:

̂ ̂∑ ∑∑ ∑= + + + − +
+ += =

= =
−

P t f u

ζ y t j t δ w t j y t j t

λ u t j

( ): min (Δ )
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(18a)∑ + ⩽ ∀ = … −= u t j b j Ns.to: ( ) , 0, , 1
i

M

i u
1 (18b)⩽ + ⩽ ∀ = … −u u t j u j N( ) , 0, , 1.min i max u (18c)

The optimization problem P t( ) defined by Eq. ((18)) would consist
of a set of M decoupled subproblems if it were not for the coupling
constraint in Eq. (18b). The first term, ySTEC in Eqs. (15) and (16), which
is related to the mean STEC of the four MD modules, is added to
maximize the thermal efficiency of the SMD plant operation. On the
other hand, the tank level, ytank, should not have a value lower than
1500 L; that is, ⩾y 1500tank , this value has been chosen as it ensures the
greenhouse supply for two days without MD production, given that the
average consumption per day is around 750 L. However, setting this
constraint as a hard constraint makes the optimization problem un-
feasible; thus, a soft constraint has been added to the second term of
both Eqs. (15) and (16), where wtank is set to 1500 L for the whole
prediction horizon.

It should be mentioned that the two terms involved in the objective
function require contrary operating conditions since, to maximize the
thermal efficiency, the MD modules must be run at the minimum feed
flow rate value, whereas to maximize the distillate production to in-
crease the tank level, the MD modules must be fed at the maximum flow

(see Section 4.1). Nevertheless, the two objectives do not always have
to be maximized at the same time; hence, the following function is used
to set the weighting factors ζ and δ :

= ⎧⎨⎪⎩⎪
⩽+ < <⩾ζ

if x c

d x e if c x f

if x f

0 ,

· ,

1 . (19)

In this function, x is the tank level at instant time t c, and f are
specific tank levels, and d and e are the first-order polynomial factors. It
should be remembered that = −δ ζ(1 ). Therefore, if the tank level is
below c, only the part related to increasing the tank level is considered
in the objective function. Conversely, if the tank level is above f, the
objective function is aimed at maximizing the STEC, whereas if the tank
level is between c and f, the two objectives are considered, calculating
the weighting factors by means of a first-order polynomial, and thus
obtaining a soft transition between the two objectives while avoiding
chattering problems in the control signals.

Additionally, it should be pointed out that, among the set of con-
straints presented in Eq. (18), only the constraint related to the physical
limitations of the actuators has been included in the problem. This is
because it is the only limitation imposed by the system since the feed
flow rate of the MD modules must be between 400 and 600 L/h, which
is umin equal to 400 and umax equal to 600 L/h.

The procedure that each agent or subsystem i must perform at each
iteration l within a sample period t is the following [20]: read the de-
cisions made by the neighbours, coordinate its iterations and calculate
its own control actions by solving problem P t( ). For this, the agent will
need to receive the residual feed water flow from the upstream agent
and the previous control signal −+u t( 1)i 1 from the downstream agent;
the latest prediction for output +̂y t( )i 1 and the latest control increment+u tΔ ( )i

l
1 .
Upon satisfying a convergence criterion (i.e. the difference between

the results of two iterations being less than a minimum established
threshold ε) or reaching the maximum number of iterations σ , the ob-
tained control values are applied to the valves, the horizon is shifted to
the next sample time, and the process is repeated. This procedure is
given in pseudo-code in Algorithm 1.

Finally, to solve this optimization problem, function fmincon, which
can be found in the MATLAB Optimization Toolbox[28], has been used.

5. Results and discussion

This section shows the results of the simulation experiments carried
out to evaluate the effectiveness of the proposed control strategy. The
results are presented as follows: (i) the simulation set-up is presented,
(ii) the controller set-up is shown and discussed, (iii) the convergence of
the DMPC approach to optimal solutions is checked by comparing the
results obtained from the DMPC algorithm with those of the centralized
approach, (iv) the use of the DMPC approach is justified by scaling up
the problem to industrial-scale plants and measuring the maximum
time spent by the DMPC and the centralized formulations in solving the
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control problem, and (v) the automatic operation benefits are presented
by comparing the performance with a non-optimal management of the
facility; namely, manual operation.

5.1. Simulation set-up

The schematic diagrams showing how the simulations were per-
formed for the centralized and distributed approaches are presented in
Figs. 7 and 8. As can be observed, the experimental campaign was
performed using the temperature profiles of the SMD plant’s heat
generation circuit (Ths in, in Figs. 7 and 8), as mentioned above. These
temperature profiles were connected to a simulator that emulated the
behaviour of the MD modules and the greenhouse using the models
presented in Section 3. To simulate the greenhouse model, meteor-
ological data from the Experimental Station of the Cajamar Foundation
were employed, on the day of July 20th, 2017. Additionally, in the
simulations, both control approaches used linearized models of the
system around the operating point u for predicting ̂ySTEC and ̂ytank; these
are obtained at each sampling time using the technique presented in
[29]. Note that the linear models are calculated only once in the dis-
tributed approach (see Fig. 8) since the strategy has been implemented
in only one computer; however, in real implementations, they must be
calculated for each of the agents included in the optimization problem.
It should be pointed out that linearized models rather than nonlinear
ones have been used in the controllers due to the high computational
effort required for solving the optimization problem with the latter.
Accordingly, the controllers have to cope with uncertainties caused by
disturbances, modelling errors and neglected dynamics. Moreover, the
use of two different kinds of MD modules, each behaving differently,
increases the automatic operation complexity.

In the experiments, the maximum feed flow rate provided by pump
1 (see Fig. 1) was limited to 2000 L/h (as mentioned in Section 3.1),
that is b= 2000 L/h, trying to mimic the conditions that would occur in
industrial processes. One must bear in mind that, in this case study,
only four modules are required to meet the water requirements of the
pilot greenhouse. This pilot configuration was chosen since it accurately
represents practical situations, and facilitates the visualization of the
results. However, when considering industrial-scale greenhouses, the
number of commercial MD modules increases considerably, and the
feed flow rate may be limited either by design (as mentioned in Section
3.1) or by operational constraints, requiring adequate control algo-
rithms to deal with these situations.

The MD modules come into operation when the evaporator inlet
temperature is higher than 60 °C (the lower operational limit of the
modules) and are turned off when it is lower than 60 °C. This strategy
has been implemented using the procedure presented in [13], in which
mean values are used for checking instead of instant ones, thus avoiding
chattering problems. In this way, the MD modules are started after
reaching 60 °C, specifically at 63.6 °C under the conditions used in the
simulations. Moreover, as the initial point, valves V1, V2, V3 and V4
were fixed at 0.5, corresponding to a feed flow rate of 475 L/h in each
MD module, and the initial distillate tank level was 1600 L.

5.2. Controller set-up

Regarding the controller set up, the sampling time was set at
10min; this was selected considering the representative time constants
of the crop transpiration inside the greenhouse and the temperature of
the heat generation circuit of the SMD plant. The horizons were se-
lected considering traditional recommendations for MPC controllers,≪N Nu , and N large enough to contemplate the transient part of the
response, thus ensuring stable closed-loop performance. The final va-
lues were =N 6 and =N 2u . In the same way, λ was fixed at 0.1; this
was chosen following an exhaustive simulation until the desired closed-
loop response was obtained. Moreover, σ was fixed to 200. This para-
meter relates to the maximum number of DMPC algorithm iterations at
each sample time. A large number was chosen so that the DMPC al-
gorithm would stop when reaching the threshold criterion, instead of
reaching the set one.

c was fixed at 1510 L whilst g was fixed at 1620 L. The first value
was chosen since c should be slightly higher than the minimum tank
level (1500 L), thus allowing the controller to consider the thermal
efficiency term in the objective function as much as possible.
Conversely, g was chosen to allow a soft change between the two ob-
jectives included in the objective function. Comprehensive simulations
were carried out with several g values, showing that with g values closer
to the ones for c, abrupt changes in the control signals might occur,
which could cause chattering problems. Besides, the thermal efficiency
index did not improve considerably. The polynomial factors were fixed
at [d, e]= [0.0091, −13.6383], obtained by interpolating c and g.
Finally, the controller was implemented in MATLAB code running on a
PC with an Intel Core i5-6500T CPU 2.50 GHz with 8 GB of RAM.

5.3. Convergence of the DMPC approach to optimal solutions

This section presents the simulations performed to check the con-
vergence of the DMPC approach to optimal solutions. It should be
mentioned that the distributed controller approximates the centralized
one, and the theoretical optimal solution must be the same as that of the
centralized algorithm. For this reason, the same test was carried out
with the centralized and the distributed algorithm in order to graphi-
cally and quantitatively compare both approaches.

The results of the simulations for the centralized and distributed
controllers are shown in Figs. 9 and 10, respectively. Note that both the
hot side inlet temperature of the heat exchanger (see Figs. 9-1 and 10-1)
and the greenhouse consumption (see Figs. 9-4 and 10-4) directly de-
pend on the solar irradiance. Although the global irradiance curve has
not been included in the graphics for the sake of simplicity, in Almería,
on a summer’s day, the solar midday is at around 2.00 pm. Conse-
quently, one can observe how the greenhouse water consumption (see
Figs. 9-4 and 10-4) is maximum around this time instant. However, the
temperature at the heat exchanger inlet is maximum later on due to the
volume of water accumulated in the storage tank placed between the
solar field and the heat exchanger (see Figs. 9-1 and 10-1). Conse-
quently, the distillate production of the four MD modules also reaches

Fig. 7. Centralized approach simulation scheme.
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the maximum later on since it depends on this temperature (see Figs. 9-
4 and 10-4).

As pointed out before, the automatic operation starts when the inlet
temperature of the evaporator channel of each MD module is higher
than 60 °C (see Figs. 9-1 and 10-1). This condition is checked using the
heat exchanger model, as presented in [13]. At this moment, the tank
level is 1575 L (notice that the greenhouse consumes water before the
modules are started); therefore, in the objective function, both the
distillate production and the STEC objectives are taken into account
with the weighting factors calculated using the polynomial. For this
reason, in the first sampling time, the controllers increase the feed flow
rate diverted for the Aquastill modules and decrease that delivered to
the Solar Spring modules (see Figs. 9-2 and 10-2). This procedure is
repeated for the following sampling times, until saturating the control
signals. In this way, the MD modules that have a higher distillate pro-
duction and a lower STEC (the Aquastill modules) are fed at the max-
imum feed flow rate (600 L/h) whereas the Solar Spring modules are
fed at the minimum feed flow rate (400 L/h). With this optimal dis-
tribution, the mean distillate production of the four MD modules is
augmented, while the mean STEC is reduced (see Figs. 9-3 and 10-3),
thus achieving optimal performance and maintaining the desired level
in the distillate tank. At around 16.00 h, the greenhouse water

consumption decreases and the tank level increases (see Figs. 9-4 and
10-4). Thus, in the objective function, the weighting factor part related
to the STEC increases in accordance with the polynomial, while the feed
flow rates of the Aquastill modules are reduced by the controller (see
Figs. 9-2 and 10-2). At around 17.30 h, the distillate tank level is over
1,620 L, so only the objective function part related to the STEC is
considered. Accordingly, the feed flow rates of the Aquastill modules
decrease faster until they reach the minimum value (see Figs. 9-2 and
10-2); this is to increase the operation’s thermal efficiency (see Figs. 9-4
and 10-4).

The performance of both controllers is very similar, and the differ-
ences between them can be observed only in the control signals during
the transients. These are caused by the way in which the control signals
are calculated by the DMPC algorithm (see Algorithm1). However,
these differences hardly affect the overall system performance in terms
of distillate production and thermal efficiency (see Figs. 9 and 10). This
fact can be quantitatively checked in Table 1, where the mean STEC of
the operation and the distillate produced by the four MD modules are
summarized for the centralized MPC case, and for several DMPC cases
with different values of ε. All the simulations were performed under the
same operating conditions as those employed in Figs. 9 and 10.
Therefore, as can be seen in Table 1, for a ε equal to −10 5, the same

Fig. 8. Distributed approach simulation scheme.

Fig. 9. Results obtained with the centralized approach. (1) Temperature at the hot side heat exchanger inlet (Ths,in), and the temperature leaving the cold side of the
heat exchanger (Tcs,out); (2) MD modules feed flow rates ( −FAQ 1, −FSS 1, −FSS 2, and −FAQ 2); (3) mean distillate production from the four MD modules (D) and the mean
STEC (STEC); and (4) tank level, objective (minimum allowed tank level), greenhouse water consumption, and MD production.
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results in terms of STEC and distillate production are obtained as those
for the centralized approach. In the same way, when increasing ε, the
results are still almost the same until reaching the value of −10 1, which
is the limit. At this value, the controller still provides a stable response
and an optimal distribution of the feed flow rate. However, with ε
higher than −10 1, the algorithm converges to solutions that are far from
optimal.

5.4. Justification for using the DMPC approach

One of the main advantages of the DMPC approach is that the op-
timization problem that each agent has to solve is simple and small,
independent of the number of agents involved in the system. This in-
fluences the time spent by the algorithm in reaching a stationary

Fig. 10. Results obtained with the distributed approach ( = −ε 10 4). (1) Temperature at the heat exchanger inlet, hot side (Ths,in), and the temperature leaving the cold
side of the heat exchanger (Tcs,out); (2) MD modules feed flow rates ( −FAQ 1, −FSS 1, −FSS 2; and −FAQ 2) (3) mean distillate production of the four MD modules (D) and
mean STEC (STEC); and (4) tank level, objective (minimum allowed tank level), greenhouse water consumption, and MD production.

Table 1
Comparison between an operation using the centralized MPC controller, an
operation using several varying DMPC configurations ε, and an operation with
no controller, using a static setpoint in valves V1, V2, V3 and V4 equal to 0.5.

Controller STEC Distillate
[kWh/m3] [L]

No 190.35 1719.00
MPC 180.56 1733.82
DMPC ( = −ε 10 1) 180.57 1733.80

DMPC ( = −ε 10 2) 180.57 1733.80

DMPC ( = −ε 10 3) 180.57 1733.80

DMPC ( = −ε 10 4) 180.56 1733.81

DMPC ( = −ε 10 5) 180.56 1733.82

Fig. 11. Maximum time spent for each algorithm to solve the optimization problem in a sampling time depending on the number of hectares to be irrigated. The
number of MD modules required for each case is also shown. These simulations have been performed fixing = −ε 10 4 in the distributed algorithm.
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solution, so that it is analysed both for the centralized and the dis-
tributed approaches. The facility used in this work is a small pilot plant;
thus, the centralized problem formulation is favoured. Conversely,
when considering industrial-scale facilities, the number of MD modules
required to meet the water requirement increases considerably, and so
does the computation time. For this reason, several simulations have
been carried out increasing the number of crop hectares that must be
irrigated by the SMD plant; this allows us to analyse the maximum time
spent for each algorithm to solve the optimization problem in a sam-
pling time (see Fig. 11).

As can be seen in Fig. 11, and as pointed out previously, the cen-
tralized approach is slightly favoured when considering small-scale
facilities (i.e. 1 or 2 hectares). Conversely, when considering extensive
crops areas, the time spent by the centralized approach exponentially
increases – for 16 ha, the time is almost equal to the sampling time itself
and the algorithm does not provide an optimal solution within the re-
quired time period. The time required by the distributed approach also
increases depending on the number of hectares but in a linear way, thus
allowing optimal solutions to be obtained for large facilities in the re-
quired time period, one of the main advantages of this algorithm and
one of the main reasons for choosing it for this application. It is also
important to point out that expanding the algorithm for larger plants is
very easy since the introduction of a new agent in the problem only
requires changes in the neighbouring agents, without reprogramming
the entire algorithm.

In addition to the benefits achieved regarding the time spent solving
the optimization problem, the DMPC approach offers the following
general advantages of these kinds of algorithms: (i) the risk of failure is
reduced because the system does not depend on a centralized con-
troller, so the greenhouse supply is not compromised, (ii) the commu-
nication between agents is easier because each agent is only connected
to its neighbours, hence simplifying the communication network in an
industrial facility.

5.5. Benefits of optimal operation

The results obtained with the MPC controllers were compared to an
operation using static control signals of 0.5 in valves V1, V2, V3 and V4.
To perform this comparison, the same operating conditions as those
considered in Section 5.1 were employed. The results of this simulation

are presented in Table 1. The mean STEC for the operation with static
values in the valves was 190.35 kWh/m3 while the total distillate
production was 1719 L. When a controller was used to optimally dis-
tribute the feed flow rate, almost 10 kWh (around 5%) less thermal
energy was required to produce 1m3 of distillate while the total dis-
tillate production increased by more than 14 L.

To analyse the energy savings achieved using the proposed MPC
approach, the results obtained in this case study have been extrapolated
to the industrial scale. According to the study performed in [30], a
tomato crop has a water requirement of 4110m3/ha in a season. In
addition, if the water consumed by the humidification system during a
season is considered (200 L/m2[31]), the water demand increases even
more. In Fig. 12, the absolute thermal energy savings have been plotted
for the case of a tomato crop (also considering the humidification
system) based on the number of hectares that must be irrigated.

It should be pointed out that the improvements achieved using the
control system are almost constant, independent of the operating con-
ditions, since the worst operating conditions occur when there are
passing clouds or the global irradiance level is low. However, an ade-
quate control system for the solar field [13] and the appropriate use of a
storage system reduces the irradiance disturbance effect on the MD
system. It should also be pointed out that these savings could be con-
sidered in the design phase, allowing one to reduce the costs associated
with oversizing the thermal energy sources. Similarly, it could be very
relevant for daily operation, especially in cases where non-renewable
sources are used (i.e. boilers), given that a considerable amount of fuel,
biomass, multi-fuel, or any type of power can potentially be saved, thus
reducing the daily operating costs.

6. Conclusions

This paper has addressed the optimal management of a distributed
energy system comprising a solar membrane distillation facility and a
greenhouse, connected by a buffer system. The scenario includes the
generation of thermal energy using flat-plate solar collectors, and the
distribution of this energy between the different MD modules included
in the SMD plant to meet the greenhouse water demand.

A DMPC technique has been developed for optimal plant operation.
In this control approach, each agent solves a simple MPC problem,
exchanging information only with the neighbouring agents and

Fig. 12. Absolute energy savings in a season depending on the number of hectares to be irrigated. The number of MD modules required for each case is also shown.
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optimally distributing the available resources as a whole. in addition,
two weighted objectives were considered in the cost function defining
the optimization problem. The first aimed to maximize the thermal
efficiency of the SMD system, which is identified as one of the main
weak point of this technology. The second related to the intermediate
buffer level located between the SMD facility and the greenhouse,
which must be higher than a specific minimum value to guarantee the
greenhouse water supply. Based on these objectives, the control algo-
rithm computes the optimal distribution of the feed flow rate for each
MD module. Simulation experiments using real meteorological data
from the Plataforma Solar de Almería and the Experimental Station of
the Cajamar Foundation were performed, showing that:

• The DMPC controller is suitable for managing these kinds of plants,
improving the thermal efficiency of the facility and maintaining the
intermediate tank level above the objective.

• The same results as for a centralized approach can be achieved using
the proposed DMPC controller, meaning that the DMPC controller
can converge to optimal results. The DMPC approach approximates
the centralized controller so the optimal results for the DMPC al-
gorithms are those of the centralized one.

• However, when industrial-scale SMD plants are considered, where
the number of MD modules included in the plant, and therefore the
number of agents involved in the optimization problem, sig-
nificantly increases, only the DMPC approach is able to provide
optimal results.

• The application of the DMPC strategy allows us to reduce the spe-
cific thermal energy consumption of the SMD plant by 5 % com-
pared to manual operation. These thermal energy savings mean that,
for an industrial-scale cultivation area (i.e. 8 ha), around 50 MWh/
season less thermal energy is required; this could be very relevant
both for the design phase and for daily operation, especially when
also considering non-renewable sources to feed the MD modules.

Declaration of Competing Interest

None.

Acknowledgement

This work has been funded by the National R+D+i Plan Projects
DPI2014-56364-C2-1/2-R and DPI2017-85007-R of the Spanish
Ministry of Science, Innovation and Universities and ERDF funds.

References

[1] De Rafael GH, Fernández-Prados JS. Intensive agriculture, marketing and social
structure: the case of South-eastern Spain. Agric Econ 2018;64(8):367–77. https://
doi.org/10.17221/318/2016-AGRICECON.

[2] Cazcarro I, Duarte R, Martín-Retortillo M, Pinilla V, Serrano A. Water scarcity and
agricultural growth in Spain: from curse to blessing. Nat Resour Econ Growth: Learn
History Routledge, London 2015:339–61.

[3] Garcia-Caparros P, Contreras JI, Baeza R, Segura ML, Lao MT. Integral management
of irrigation water in intensive horticultural systems of Almería. Sustainability
2017;9(12):2271. https://doi.org/10.3390/su9122271.

[4] Aznar-Sánchez JA, Belmonte-Ureña LJ, Velasco-Muñoz JF, Valera DL. Aquifer sus-
tainability and the use of desalinated seawater for greenhouse irrigation in the
campo de Níjar, Southeast Spain. Int J Environ Res Public Health 2019;16(5):898.
https://doi.org/10.3390/ijerph16050898.

[5] Martínez-Alvarez V, González-Ortega M, Martin-Gorriz B, Soto-García M, Maestre-
Valero J. The use of desalinated seawater for crop irrigation in the Segura River
Basin (South-eastern Spain). Desalination 2017;422:153–64. https://doi.org/10.
1016/j.desal.2017.08.022.

[6] Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, et al. Membrane-based
seawater desalination: present and future prospects. Desalination 2017;401:16–21.
https://doi.org/10.1016/j.desal.2016.10.002.

[7] Martínez-Álvarez V, Martin-Gorriz B, Soto-García M. Seawater desalination for crop

irrigation: a review of current experiences and revealed key issues. Desalination
2016;381:58–70. https://doi.org/10.1016/j.desal.2015.11.032.

[8] González D, Amigo J, Suárez F. Membrane distillation: perspectives for sustainable
and improved desalination. Renewable Sustainable Energy Rev 2017;80:238–59.
https://doi.org/10.1016/j.rser.2017.05.078.

[9] Elzahaby AM, Kabeel A, Bassuoni M, Elbar ARA. Direct contact membrane water
distillation assisted with solar energy. Energy Conversion Manage
2016;110:397–406. https://doi.org/10.1016/j.enconman.2015.12.046.

[10] Fernández-Ibáñez P, Polo-López MI, Malato S, Ruiz-Aguirre A, Zaragoza G. Solar
photocatalytic disinfection of water for reuse in irrigation. Geothermal, Wind and
Solar Energy Applications in Agriculture and Aquaculture CRC Press; 2017. p.
195–211.

[11] Gil JD, Roca L, Zaragoza G, Berenguel M. A feedback control system with reference
governor for a solar membrane distillation pilot facility. Renewable Energy
2018;120:536–49. https://doi.org/10.1016/j.renene.2017.12.107.

[12] Porrazzo R, Cipollina A, Galluzzo M, Micale G. A neural network-based optimizing
control system for a seawater-desalination solar-powered membrane distillation
unit. Comput Chem Eng 2013;54:79–96.

[13] Gil JD, Roca L, Ruiz-Aguirre A, Zaragoza G, Berenguel M. Optimal operation of a
solar membrane distillation pilot plant via nonlinear model predictive control.
Comput Chem Eng 2018;109:151–65. https://doi.org/10.1016/j.compchemeng.
2017.11.012.

[14] Rahimpour MR, Kazerooni NM, Parhoudeh M. Water treatment by renewable en-
ergy-driven membrane distillation. Current Trends and Future Developments on
(Bio-) Membranes Elsevier; 2019. p. 179–211. https://doi.org/10.1016/B978-0-12-
813545-7.00008-8.

[15] Miladi R, Frikha N, Kheiri A, Gabsi S. Energetic performance analysis of seawater
desalination with a solar membrane distillation. Energy Conversion Manage
2019;185:143–54. https://doi.org/10.1016/j.enconman.2019.02.011.

[16] Ruiz-Aguirre A, Andrés-Mañas J, Fernández-Sevilla J, Zaragoza G. Experimental
characterization and optimization of multi-channel spiral wound air gap membrane
distillation modules for seawater desalination. Separation Purification Technol
2018;205:212–22. https://doi.org/10.1016/j.seppur.2018.05.044.

[17] Roca L, Sánchez-Molina JA, Rodríguez F, Bonilla J, de la Calle A, Berenguel M.
Predictive control applied to a solar desalination plant connected to a greenhouse
with daily variation of irrigation water demand. Energies 2016;9(3):194. https://
doi.org/10.3390/en9030194.

[18] Carballo JA, Bonilla J, Roca L, De la Calle A, Palenzuela P, Alarcón-Padilla DC.
Optimal operating conditions analysis for a multi-effect distillation plant according
to energetic and exergetic criteria. Desalination 2018;435:70–6. https://doi.org/10.
1016/j.desal.2017.12.013.

[19] Ortega-Delgado B, Giacalone F, Catrini P, Cipollina A, Piacentino A, Tamburini A,
et al. Reverse electrodialysis heat engine with multi-effect distillation: Exergy
analysis and perspectives. Energy Conversion Manage 2019;194:140–59. https://
doi.org/10.1016/j.enconman.2019.04.056.

[20] Scherer HF, Pasamontes M, Guzmán JL, Álvarez JD, Camponogara E, Normey-Rico
J. Efficient building energy management using distributed model predictive control.
J Process Control 2014;24(6):740–9. https://doi.org/10.1016/j.jprocont.2013.09.
024.

[21] Zaragoza G, Ruiz-Aguirre A, Guillén-Burrieza E. Efficiency in the use of solar
thermal energy of small membrane desalination systems for decentralized water
production. Appl Energy 2014;130:491–9. https://doi.org/10.1016/j.apenergy.
2014.02.024.

[22] Ruiz-Aguirre A, Andrés-Mañas J, Fernández-Sevilla J, Zaragoza G. Modeling and
optimization of a commercial permeate gap spiral wound membrane distillation
module for seawater desalination. Desalination 2017;419:160–8. https://doi.org/
10.1016/j.desal.2017.06.019.

[23] Rodríguez F, Berenguel M, Guzmán JL, Ramírez-Arias A. Modeling and control of
greenhouse crop growth. Springer; 2015.

[24] de la Calle A, Roca L, Bonilla J, Palenzuela P. Dynamic modeling and simulation of
a double-effect absorption heat pump. Int J Refrig 2016;72:171–91. https://doi.
org/10.1016/j.ijrefrig.2016.07.018.

[25] Rahman M, Oo A. Distributed multi-agent based coordinated power management
and control strategy for microgrids with distributed energy resources. Energy
Conversion Manage 2017;139:20–32. https://doi.org/10.1016/j.enconman.2017.
02.021.

[26] Rubio FR, Navas SJ, Ollero P, Lemos JM, Ortega MG. Control óptimo aplicado a
campos de colectores solares distribuidos. Revista Iberoamericana de Automática e
Informática industrial 2018;15:327–38. https://doi.org/10.4995/riai.2018.8944.

[27] Camacho E, Bordons C. Model predictive control. London: Springer-Verlag Ltd;
2004.

[28] Matlab optimization toolbox release 2018. 2018. The MathWorks, Natick, MA, USA.
[29] Plucenio A, Pagano D, Bruciapaglia A, Normey-Rico J. A practical approach to

predictive control for nonlinear processes. IFAC Proc Vol 2007;40(12):210–5.
https://doi.org/10.3182/20070822-3-ZA-2920.00035.

[30] Becerra AT, Bravo XL. La agricultura intensiva del poniente almeriense. Diagnóstico
e instrumentos de gestión ambiental. M+ A Revista Electrónica de Medioambiente
2010;8:18–40.

[31] Cámara-Zapata JM, Sánchez-Molina JA, Rodríguez F, López JC. Evaluation of a
dehumidifier in a mild weather greenhouse. Appl Thermal Eng 2019;146:92–103.
https://doi.org/10.1016/j.applthermaleng.2018.09.107.

J.D. Gil, et al. Energy Conversion and Management 198 (2019) 111791

12



CHAPTER 2. CONTRIBUTION TO SCIENTIFIC JOURNALS

2.3.2 A general optimal operating strategy for commercial membrane distillation fa-
cilities
Research in this field is supported by the following journal paper:

Title A general optimal operating strategy for commercial membrane
distillation pilot facility

Authors J. D. Gil, P. R. C. Mendes, E. Camponogara, L. Roca,
J. D. Álvarez, J. E. Normey-Rico

Journal Renewable Energy
Year 2020
Volume 156
Pages 220-234
DOI https://doi.org/10.1016/j.renene.2020.04.074
IF (JCR 2018) 5.439
Categories Energy & Fuels (17/103) Q1

Green & Sustainable Science & Technology (7/35) Q1

Contribution of the Ph.D. candidate
The Ph.D. candidate, J. D. Gil, is the main contributor and first author of this paper.

Apart from the main work, it also gave rise to a contribution to a international conference:

• J. D. Gil, M. Muñoz, L. Roca, F. Rodríguez, and M. Berenguel,“An IoT based Control
System for a Solar Membrane Distillation Plant used for Greenhouse Irrigation," in Global
IoT Summit (GIoTS). IEEE, 2019, pp. 1–6.

Also, to the following contribution to a national conference:

• J. D. Gil, L. Roca, M. Berenguel, and G. Zaragoza, “Aportaciones de la desalación solar
térmica a la sostenibilidad del sistema agrícola en Almería,” in 1er Congreso de Jóvenes
Investigadores en Ciencias Agroalimentarias. Almería, España, 2018.

105

https://doi.org/10.1016/j.renene.2020.04.074


A general optimal operating strategy for commercial membrane
distillation facilities

Juan D. Gil a, Paulo R.C. Mendes c, d, E. Camponogara c, Lidia Roca a, b, J.D. �Alvarez a, *,
Julio E. Normey-Rico c

a Centro Mixto CIESOL, ceiA3, Universidad de Almería, Ctra, Sacramento s/n, Almería, 04120, Spain
b CIEMAT-Plataforma Solar de Almería, Ctra, de Sen�es s/n, Tabernas, 04200, Almería, Spain
c Federal University of Santa Catarina, Department of Automation and Systems engineering, Florian�opolis, Brazil
d Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany

a r t i c l e i n f o

Article history:
Received 23 December 2019
Received in revised form
4 March 2020
Accepted 13 April 2020
Available online 23 April 2020

Keywords:
Thermal efficiency
Desalination
Solar energy
Benders decomposition
Model predictive control

a b s t r a c t

The high thermal energy consumption is one of the main drawbacks hampering the commercial
implementation of Membrane Distillation (MD) technology. The development of adequate operating
strategies can help to reduce these energy requirements. Accordingly, this paper focuses on the optimal
management of the array of MD modules composing a commercial-scale MD plant, trying to reduce their
thermal energy consumption while ensuring a given water need. For this aim, the array of MD modules is
modelled as a Mixed Integer Programming (MIP) system to consider that some modules can be turned
on/off depending on the operation specifications. An algorithm based on the Generalized Bender
Decomposition (GBD) is then developed for the efficient solution of the problem. This algorithm is
incorporated in a Model Predictive Control (MPC) strategy allowing to manage the plant in real time. The
effectiveness of the proposed strategy is verified using a practical example. The obtained results are
compared with a manual and a previous strategy presented in literature, showing that for a sunny day,
around the 65 and 55% of the thermal energy consumed by these methodologies can be saved, which
means important thermal energy savings that can be relevant for the industrial implementation of MD
technology.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Membrane Distillation (MD) is an arising thermally driven
separation method under investigation. This technology enables
the use of low-grade thermal energy to desalinate water, what puts
MD based processes in a competitive position to relieve water-
energy stress nexus sustainably [1]. Despite this fact, its low en-
ergy efficiency, mainly caused by its high thermal energy con-
sumption per unit of distillate produced, has hampered the
industrial commercialization of the technology so far [2].

From the process point of view, MD stands out from conven-
tional desalination technologies as: i) it is able to treat high salinity

feed waters [3], ii) it has a high rejection factor [4], iii) it is driven by
the partial pressure difference between both sides of the mem-
brane, which is originated by a temperature difference instead of a
mechanical power that increases exergy and costs [5], iv) it oper-
ates at low pressure around 0.1 MPa, which is much lower than the
one required by Reverse Osmosis (RO) processes 2.5e8.5 MPa [5],
and v) it is conducted at low temperature (lower than 90 �C), which
allows MD units to be coupled with low grade solar energy [4,6].
This last advantage, together with the simplicity of the process,
make MD systems especially suitable for developing stand-alone
plants to be applied in offgrids locations; with good irradiance
conditions and small-medium water needs [7]. Nevertheless, for
making MD technology competitive at industrial-scale, its specific
thermal energy consumption must be reduced by improving both
the MD module design and configuration [8], and the operating
strategies [6].

Regarding the design of MD modules, remarkable improve-
ments have been reported in the literature in the last decades.
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These investigations were aimed at creating new membranes,
configurations and modules, and to understand the membrane
fouling [2]. These research efforts have caused a breakthrough in
terms of thermal efficiency, going from a specific thermal energy
consumption of 628 kWh/m3 (MD modules without heat recovery
[9]) to the current consumption of commercial-scale modules,
around 100 kWh/m3 at optimal operating conditions [10]. Note that
this number is far from the consumption of conventional processes
as RO, around 2e4 kWh/m3 [11]. However, as was pointed out
before, what is interesting of MD technology is that these energy
requirements (around 95%) can be provided by solar energy [12].
Consequently, there are also numerous works proposing effective
combinations [13] and new designs of integrated solar membrane-
based desalination systems [14], showing that the overall efficiency
can be improved up to 15%. Undoubtedly, the development in the
design of the modules is still an open research field, but due to the
growth of the technology, other research areas focused on the
operation of MDmodules are gaining interest in recent years. These
works are mainly aimed to optimize the operating parameters of
MD units [15], and to develop control and optimal management
methods for improving the performance of the technology in real
time [7].

With respect to the optimization of the operating parameters,
several authors are working on the development of effective sta-
tistical or black-box models that allow to find optimal operating
conditions of MD units [16]. The statistical model most widely used
for this aim is the Response SurfaceMethodology (RSM). These kind
of research works are based on the same procedure [17e20]: i) to
design and conduct an experimental campaign in a determined
operating range, ii) to adjust the selected outputs of the model by
means of the RSM method, and iii) to find the optimal operating
conditions within the studied operating range by applying an
optimization method. Similarly, other authors used black-box
models based on Artificial Neural Networks instead of RSM
models with the same objectives [19,21,22]. Even though all these
studies show how the thermal efficiency can be considerably
improved by using the optimal static operating conditions they
present, these conditions are difficult to achieve when using an
energy source with an intermittent nature such as solar energy
[23].

In this sense, the development of control and optimal operating
strategies to be applied in real-time become essential. In Ref. [24]
two control modes based on on/off controllers for the day and night
were presented in simulation, trying to maintain the distillate
production stable even in cloudy days. A neural network based
controller that optimizes the distillate production under intermit-
tent conditions was presented and experimentally tested in
Ref. [25]. In spite of irradiance disturbances, a feedback control
system with reference governor for fixing a suitable operating
temperature at the inlet of the MD module was proposed and
experimentally tested in Ref. [26]. Moreover, the work [7] experi-
mentally demonstrated that the thermal energy demand of an MD
module can be reduced in 1.21 kWh/m3 by making an optimal
management of the solar field powering it. In summary, the works
presented above are fundamentally focused on the operation of the
solar field, rejecting irradiance disturbances and maintaining
desired temperature setpoints to maximize both, distillate pro-
duction and thermal energy efficiency. However, not only the
temperature affects the performance of MD modules but also the
feed water flow rate [27]. The optimal management of this variable
is especially relevant because a tradeoff solution must be adopted
to maximize both thermal efficiency and distillate production in
current commercial-scale MD modules [19,28], thus requiring
properly formulated optimization problems.

In industrial-scale plants, the optimal operation of the feed

water flow rate is even more critical. Due to the low production of
current MD commercial modules (around 30 L/h in optimal oper-
ating conditions [18]), an industrial-scale plant must include mul-
tiple MD units. Accordingly, an optimal management of this
variable can considerably reduce the Specific Thermal Energy
Consumption (STEC) of the facility. To the best of the authors
knowledge, only a previous work [29] deals with this problem. In
that work, a distributed Model Predictive Control (MPC) approach
was proposed aimed at reducing the STEC while assuring water
needs. The tests performed in that work demonstrated how the
distributed MPC controller can reduce by 5% the mean STEC of the
operation. This percentage means a thermal energy saving of about
50 MWh per season in an application in which an MD industrial
plant is combined with an 8 ha cultivation area. Nevertheless, it
should be commented that the principal objective of that work was
to demonstrate how an effective distributed MPC technique can
manage the facility optimally when the water resources were
limited and not all the MD modules could be fed at their optimal
operating range. In this way, in the formulation of the control
system, only continuous variables for the feed water flow rate
(within its operating range 400e600 L/h) were considered.

Motivated by the above literature review, the main gaps
observed in terms of MD operational strategies are the followings:

1. The real-time management methods proposed in the literature
for Solar-powered MD (SMD) systems are focused on the heat
generation circuit. The optimal operation of the feed water flow
rate of the MDmodules has hardly been addressed in these real-
timemethodologies, which can significantly improve the energy
efficiency especially if the water demand is variable.

2. The developed methods are mainly applied to pilot-scale plants.
In industrial plants, the presence of multipleMDmodules totally
alters the formulation of the problem, which has not been well
discussed in the aforementioned literature.

3. The only published work that addresses the management of an
industrial-scale plant uses only continuous variables in the
optimization problem. With this formulation only the STEC can
be minimized. If binary variables for turning on and off MD
modules are introduced in the problem, the distillate production
can be better adapted to the water demand.

In order to address the above issues, in the present work it is
proposed a general optimal operating strategy for reducing the
total thermal energy consumption of commercial-scale SMD plants
connected to a consumer agent. The strategy is focused on the
management of the desalination unit of the facility, as the optimal
management of the solar field has been previously treated in the
literature [7,25,26]. The contributions developed in this paper are
the followings: firstly, conventional models used inMD systems are
adapted to the Mixed Integer Programming (MIP) methodology. In
this formulation, the binary variables are related to valve apertures
that allows to turn on/off the MD units installed in the facility,
whereas the continuous variables are related to the feed water flow
rate of each MD module. Based on this model, a Mixed Integer
Nonlinear Programming (MINLP) optimization problem is formu-
lated, tasked with reducing both the STEC and the total thermal
energy consumption, while assuring the water requirements. Sec-
ondly, it is proposed an efficient algorithm based on the General-
ized Benders Decomposition (GBD) method [30] that enables the
use of simpler optimization solvers, Mixed Integer Linear Pro-
gramming (MILP) and Quadratic Programming (QP)methods rather
than MINLP for solving the overall problem, which proved to reach
optimal results more efficiently. This algorithm is then incorpo-
rated into an MPC controller [31] which reflects the operational
strategy. Thirdly, to demonstrate the effectiveness of our proposal,
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we present an exhaustive analysis by applying the developed
technique in a practical case study, and comparing the obtained
results to those obtained with a non-optimal management method
(a manual operation) and with the ones obtained with the previous
approach presented in Ref. [29]. This analysis evidences significant
gains in relation to previous/manual approaches showing for
example that for a sunny day, around the 65 and 55% of the thermal
energy consumed by these operating methodologies can be saved,
which can mean important contributions toward the commercial-
ization of MD technology.

The rest of the paper is arranged as follows: Section 2 is dedi-
cated to the description of the system and the optimization prob-
lem associated to themanagement of the facility. Section 3 is aimed
at formulating the proposed operating strategy. Section 4 shows
the performance of the management technique in a practical case
study, and Section 5 summerizes the conclusion obtained from the
results.

2. System description and problem formulation

2.1. System description

Fig. 1 shows a general schematic diagram of an SMD plant used
for desalination purposes [4]. In this plant, a solar thermal field is
used as thermal source. The outlet of the solar field is coupled to a
storage tank that is used as buffer system for damping irradiance
disturbances or storing the remaining thermal energy of the pro-
cess. Then, a heat exchanger is employed to connect the MD
modules and the heat generation circuit. As can be seen, the
desalination unit is formed by an array of MD modules which are
bonded in parallel according to Fig. 2. The feed water enters the MD
unit, which uses the thermal energy transferred by the solar field to
produce distillate and brine. In the process, the brine is rejected
while the distillate is stored in the distillate tank. Finally, the water
demand agent takes the required freshwater from this tank.

Regarding the operation of the MD modules, as illustrated in
Fig. 2, the feed water is pumped by a main pipe to which all the MD
modules are joined. The available valves (Vm in Fig. 2) allow to turn
on/off each MD module. If a module is in operation, the feed water
flows through the condenser channel. In this stage, the feed solu-
tion is preheated with the latent heat of condensation and with the
sensible heat that crosses the membrane. Afterwards, the pre-
heated solution is circulated to the heat exchanger where it is
heated with the fluid coming from the solar field storage tank.
Later, the hot solution flows through the evaporator channel where
the volatile molecules are evaporated and pass through the mem-
brane and the non-volatile ones are rejected in the form of brine. At
the end, the volatile molecules are condensed and driven to the
distillate tank. A more complete description of the process can be
found elsewhere [10,18].

2.2. MD module modelling

As this work is focused on the management of the desalination
unit, a model that accurately represents the behaviour of each of
the MD modules contained in the unit must be used for the
formulation of the problem. As was mentioned in the introduction
section, most works presented in the literature use the RSM
methodology as the modelling approach. This method provides
linear or quadratic polynomial functions obtained from experi-
mental data to fit the outputs of MD processes. In this work, we use
the RSM models presented in Refs. [10,18,29]. By following these
works, each subsystem m, i.e. each MD module included in the
array, can be modelled according to Fig. 3. So, each subsystem m is
characterized by:

� Input: feed water flow rate (FmðkÞ2Rþ).
� Outputs: distillate production (dmðkÞ2Rþ) and the temperature
difference (DTmðkÞ2Rþ) between the outlet of the condenser
channel (Tcout;m) and the inlet of the evaporator channel (Tein;m)
of the MD module. It should be remarked that this variable can
be considered as the driving force of the process, which will be
used to calculate the amount of thermal energy consumed by
each MD module.

� Disturbances: inlet temperature of the condenser channel of the
MD module (Tcin;mðkÞ2Rþ) and inlet temperature of the evap-
orator channel of the MD module (Tein;mðkÞ2Rþ).

where pi, with i ¼ 1;…;9, are constant polynomial coefficients, and
the rest of variables are defined in Appendix A.

dmðkÞ¼p1 þ p2,Tein;mðkÞ þ p3,Tcin;mðkÞ þ p4,FmðkÞ
þ p5,Tein;mðkÞ,FmðkÞ; (1)

DTmðkÞ¼p6 þ p7,Tein;mðkÞ þ p8,Tcin;mðkÞ þ p9,FmðkÞ; (2)

dmðkÞ¼adm;1ðkÞ,dmðkÞ þ adm;2ðkÞ,FmðkÞ; (3)

DTmðkÞ¼aTm;1ðkÞ,dmðkÞ þ aTm;2ðkÞ,FmðkÞ; (4)

where:

adm;1ðkÞ¼p1 þ p2,Tein;mðkÞ þ p3,Tcin;mðkÞ; (5)

adm;2ðkÞ¼p4 þ p5,Tein;mðkÞ; (6)

Fig. 1. Schematic diagram of an industrial-scale SMD plant.
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2.3. MIP modelling of the array of MD modules

To formulate the whole optimization problem, binary variables
have been introduced in the model presented above. These vari-
ables are physically related to the valves located at the inputs and
outputs of each MD module (Vm in Fig. 2). In this way, considering
M ¼ f1;…;mg the set ofMDmodules in the array, theMIPmodel of
the whole system can be written as, cm2M :

aTm;1ðkÞ¼ p6 þ p7,Tein;mðkÞ þ p8,Tcin;mðkÞ; (7)

aTm;2ðkÞ¼ p9; (8)

dmðkÞ2f0;1g; (9)

dmðkÞ , FMin
m � FmðkÞ � dmðkÞ,FMax

m ; (10)

FMin
m and FMax

m are the minimum and maximum feed flow rate
allowed of eachMDmodule respectively, and dm denotes the binary
variable related to the valve of MDm-module, which assumes value
1 if the valve is open and 0 otherwise.

In addition, it must be remarked that all the subsystems are
coupled by the total distillate production, dT ðkÞ, and by the total
water flow rate income FT ðkÞ, which is:X
m2M

dmðkÞ¼dT ðkÞ; (11)

X
m2M

FmðkÞ¼ FTðkÞ; (12)

FMin
T � FTðkÞ � FMax

T ; (13)

where FMin
T and FMax

T are the minimum and maximum flow rate
provided by the feed water pump.

2.4. Optimization problem formulation

The main objective of the optimization problem is to minimize
the total thermal energy consumption of the facility while assuring
the water demand. To achieve this, the manipulated variables
available in the real facility are the aperture of the Vm valve (dmðkÞ)
and the feed water flow rate (FmðkÞ) of each MD module. Thus, to
formulate the optimization problem, three main things must be
considered.

First, the total distillate production must be equal or higher than
the water demand, what can be directly included in the optimiza-
tion problem as a constraint. Nevertheless, as shown in Fig. 1, there
is a storage tank available between the consumer and the producer
agent. So, the production constraint can be formulated according to
the water level of the tank. Note that, the behaviour of this element
is like an integrator which allows to filter the water demand, thus
smoothing the production constraint.

Second, the total thermal energy consumption of the desalina-
tion unit can be directly reduced by turning on as few modules as
possible at each moment. This can be achieve by optimally man-
aging the binary variables according to the operating water needs.

Third, when a module is turned on, the total thermal energy it
consumes can be reduced by improving its thermal efficiency. In
MD processes, one of the most widely used metrics to estimate the
thermal efficiency is the STEC [4,10,18]. The STEC is defined as the
amount of thermal energy required to produce a volume unit of
distillate (kWh=m3). For a single m-module, it can be calculated as
follows:

SmðkÞ¼ c1,FmðkÞ,DTmðkÞ
dmðkÞ ; (14)

Fig. 2. Connection of a single MD module in the array of MD modules.

Fig. 3. Single MD module characterization. f denotes a linear function.
Note that k is related to the current time. Thus, following the ideas proposed in
Refs. [10,18,29], the model of a single MDm-module can be written in a generic way as.

J.D. Gil et al. / Renewable Energy 156 (2020) 220e234 223



c1 ¼
r,cp
cf

; (15)

where SmðkÞ is the STEC of MD m-module, and the rest of variables
and constants are defined in Appendix A. It should be noted that to
maximize the distillate production (to meet the water needs) and
to minimize the STEC in current commercial MD modules, the
maximun and minimum feed flow rate must be applied respec-
tively [29]. Thus, the operation of the feed flow rate of each MD
module is not trivial, and a tradeoff solution must be taken at each
sample time depending on the operating conditions.

According to the above issues, the optimization problem can be
formulated as:

min
X

m2M

c1,FmðkÞ,DTmðkÞ
dmðkÞ ; (16)

subject to, cm2M :

dmðkÞ¼adm;1ðkÞ , dmðkÞþadm;2ðkÞ , FmðkÞþ c2,ð1� dmðkÞÞ; (17)

DTmðkÞ¼aTm;1ðkÞ,dmðkÞ þ aTm;2ðkÞ,FmðkÞ; (18)

dmðkÞ , FMin
m � FmðkÞ � 0; (19)

FmðkÞ� dmðkÞ,FMax
m � 0; (20)

dmðkÞ2f0;1g; (21)

and the constraints that couple all the MD modules and the con-
sumer and producer agent:X
m2M

FmðkÞ¼ FTðkÞ; (22)

FMin
T � FT ðkÞ � FMax

T ; (23)

X
m2M

dmðkÞ¼ dT ðkÞ; (24)

ðdT ðkÞ�DðkÞÞ , c3 þ LT ðk�1Þ � L* (25)

LMin
T � LTðkÞ � LMax

T (26)

where c2 is a large number (i.e., 106) used to avoid division by zero
in Eq. (16), DðkÞ is the water demand of the consumer agent, c3 is
the conversion factor, LT ðkÞ is the water level of the distillate tank,
LMin
T and LMax

T are themaximum andminimum level of the tank, and
L* is the setpoint water level of the distillate tank. Note that all the
units and description of the variables are available in Appendix A.

In the formulation of the optimization problem, the objective
function, Eq. (16), is focused on minimizing the sum of the STEC of
eachMDmodule. The summation term allows tominimize the total
thermal energy consumption of the whole system, while the STEC
calculation allows to enhance the thermal efficiency of the modules
turned on at each sampling time. The constraints in Eqs. 17e24
define the model of the system and the physical limits of the
manipulated variables. Eq. (25) is related to the production needs,
which have been introduced in the problem according to the water
level of the distillate tank, as was explained before. Finally, it should
be remarked that the disturbances and water demand are known,

and therefore, they are fixed in the optimization problem.
Note that, the formulated problem is an MINLP problem due to

the nonlinearity of the objective function Eq. (16), and the presence
of binary and continuous variables. Regarding the feasibility of the
problem, the only constraint that can turn the problem infeasible is
Eq. (25). However, as long as the desalination unit and the solar
field powering it are well sized according to the water needs the
problem will be feasible. In addition, the tank level setpoint can be
adapted to the plant operation in the starting of the operation, if the
tank starts with level zero. Nevertheless, smoothing techniques
could also be applied in this constraint such as the use of slack
variables if necessary.

It should be also remarked that the boundary conditions of the
problem mainly change according to the operating temperature
(temperature at the inlet of the evaporator channel of the MD
modules), which depends on solar irradiance. Therefore, the
problem must be solved in real time to achieve an optimal opera-
tion. However, the nonlinearity of the problem requires a high
computational power which prevents the problem from being
solved quickly by using MINLP solvers, especially when the number
of agents in the array of MD modules is large. Therefore, in the
following section we propose an efficient algorithm based on the
GBD method for solving this problem.

3. The GBD-based MPC operating strategy

In this section the GBD and the MPC methods are introduced.
Then, the MINLP problem presented in the previous section is
formulated according to these two methodologies.

3.1. Benders decomposition method

Considering a generic MINLP problem:

½x; y�minf ðx; yÞ: (27)

s:t: hðx; yÞ¼0; (28)

gðx; yÞ � 0; (29)

x2X4Rnx ; (30)

y2Yny ¼f0;1g; (31)

the basic idea of the GBD method [30] consists on solving this
problem on a iterative way, computing at each iteration an upper
and a lower bound in the solution space of the MINLP model. These
bounds are obtained by decomposing the overall MINLP problem
into two problems: the master problem which provides the lower
bound, and the primal problem which provides the upper bound.

The primal problem corresponds to the problem defined in Eqs.
27e31 with the y-variables fixed in a particular solution 0e1, which
is denoted by yl, being l the iteration counter:

½x; y�minf
�
x; yl

�
: (32)

s:t: h
�
x; yl

�
¼0; (33)

g
�
x; yl

�
� 0; (34)
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x2X4Rnx : (35)

Remark 3.1. Note that the solution of this primal problem is the
global solution for problem (27)-(31).

At this point, two different cases can be distinguished: feasible
primal, and infeasible primal. If the solution of the primal problem is
feasible at iteration l, it provides information of: i) the value of xl, ii)
the value of the upper bound, which is the value of f ðxl;ylÞ, and iii)
the value of the optimal Lagrange multipliers vectors ll and ml

related to the set of equality (h) and inequality (g) constraints
respectively. The aforementioned information allows us to formu-
late the following Lagrange function, which is called the optimallity
cut:

Ll
�
x; y; ll;ml

�
¼ f ðx; yÞþ llThðx; yÞ þ mlTgðx; yÞ: (36)

On the other hand, if the solution of the primal problem at
iteration l is infeasible, only the constraints of the primal problem
are considered, and the following optimization problem is formu-
lated in order to identify a feasible solution:

min
x;g

g (37)

s:t: h
�
x; yl

�
¼0; (38)

g
�
x; yl

�
� gl; (39)

Fig. 4. GBD algorithm.
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g � 0; (40)

x2X: (41)

The solution of this problem provides information about the
Lagrange multipliers related to the equality and inequality con-
straints, which are denoted in this case as l

l
and ml respectively.

These multipliers allows us to formulate the feasibility cut as:

L
l
�
x; y; l

l
;ml
�
¼ l

lT
hðx; yÞ þ mlTgðx; yÞ: (42)

Remark 3.2. It should be noted that at each iteration only one cut
is generated, depending if the primal problem is feasible or infea-
sible. In addition, the upper bound is generated only if the primal
problem is feasible.

The master problem is defined according to the duality theory
being based on the projection of the overall MINLP problem in the
y-space (see Ref. [30] for more details):

½y;m0�minm0 (43)

s:t: m0 � Ll
1
�
xl

1
; y; ll

1

;ml1
�
l1 ¼1;…; L1; (44)

0� L
l2
�
xl

2
; y; l

l2
;ml2

�
l2 ¼ 1;…; L2; (45)

where L1 and L2 are the last iteration counters at which the opti-
mallity and feasibility cuts were updated.

Remark 3.3. The master problem is equivalent to the MINLP (27)-
(31). Also, the value of the variable m0 is the value of the lower bound.

The whole algorithm is solved on an iterative way according to
the flow-chart presented in Fig. 4. The iterations terminate when
the gap between the upper and the lower bound is lower than a
given tolerance factor, which is, UB � LB þ ε, where UB and LB are
the upper and lower bounds respectively and ε is a tolerance factor.

3.2. Model Predictive Control

The MPC strategy is one of the most widespread control
methodologies used in both industry and academia. The MPC is not
an explicit control technique, but rather comprises a wide range of
control methods based on the use of a model of the system for
obtaining the control actions by minimizing an objective function
[31]. Specifically, the procedure used in MPC controllers is given by
(see Fig. 5):

1. The outputs of the process for a given prediction horizon N, are
predicted at each time k by using a model of the system. The
predicted outputs, denoted by bzðkþjjkÞ for j ¼ 1;…;N, depend
on past outputs, inputs and disturbances, and on the value of
future control actions uðkþj�1jkÞ for j ¼ 1;…;N. Note that the
notation ðkþjjkÞ is related to the predicted value of a variable at
the instant time kþ j, calculated with the information available
at instant k.

2. The set of future control actions is calculated by minimizing a
determined objective function.

3. The control action uðkjkÞ is sent to the system while the rest of
control signals are rejected because at the next sampling time,bzðkþ1Þwill be known, allowing to repeat the first step with the

updated information. This methodology is known as the
receding horizon concept.

It should be remarked that, the application of the MPC tech-
nique in the problem concerning this work is specially suitable due
to the presence of the distillate tank. This method allows us to
predict the level of the tank taking into account future water de-
mands, and therefore, to induce the optimal management and high
performance of the desalination plant.

3.3. The GBD-based MPC algorithm

Once both techniques have been introduced, the decomposition
of the overall MINLP problem (see Eqs. 16e25) is formulated ac-
cording to them. It should be pointed out that the problem treated
in this work has the same structure of the generic problem pre-
sented in Section 3.1, with a set of binary, dm; cm2M , and
continuous variables, Fm;cm2M . Therefore, the primal problem
will be the projection of the overall MINLP problem in the Fm-space,
while the master problem will be the projection of the problem in
the dm-space.

It should be also taken into account that the variables adm;1, a
d
m;2,

aTm;1 and aTm;2 can be predicted along the prediction horizon, as they
depend on the measurable temperatures (see Section 2.3).

Thus, the feasible primal problem can cast:

min
X
j¼1

N X
m2M

c1,Fmðkþ j� 1jkÞ,DbTmðkþ jjkÞfdmlðkþ j� 1jkÞ
; (46)

subject to, cm2M and j ¼ 1;…;N:

cdmðkþ jjkÞ ¼ bad
m;1ðkþ jjkÞ,dlmðkþ j� 1jkÞ

þbad
m;2ðkþ jjkÞ,Fmðkþ j� 1jkÞ;

(47)

fdmlðkþ j�1jkÞ¼ cdml�1ðkjkÞþ c2,
�
1� dlmðkþ j�1jkÞ

�
; (48)

Fig. 5. MPC strategy.
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DbTmðkþ jjkÞ ¼ baT
m;1ðkþ jjkÞ,dlmðkþ j� 1jkÞ

þbaT
m;2ðkþ jjkÞ,Fmðkþ j� 1jkÞ;

(49)

dlm

�
kþ j�1jkÞ , FMin

m � Fmðkþ j�1jk
�
� 0; (50)

Fm
�
kþ j�1jkÞ� dlmðkþ j�1jk

�
, FMax

m � 0; (51)

FMin
T � FT ðkþ j�1jkÞ � FMax

T ; (52)

ðcdT ðkþ jjkÞ� bDðkþ jjkÞÞ , c3 þcLT ðkþ j�1jkÞ � L*; (53)

LMin
T � LTðkþ jjkÞ � LMax

T (54)

and

X
j¼1

N X
m2M

Fmðkþ j�1jkÞ¼ FT ðkþ j� 1jkÞ; (55)

X
j¼1

N X
m2M

cdmðkþ jjkÞ¼cdT ðkþ jjkÞ: (56)

As can be seen, for the calculation of the STEC in Eq. (46), an
estimation of the distillate production, fdml

, is used instead of the
actual distillate production, cdmðk þ jjkÞ. One should highlight that
the objective function of the overall MINLP problem, Eq. (16), can be
rewritten as follows, by combining it with Eq. (18):

min
X

m2M

c1,FmðkÞ,aTm;1ðkÞ,dðkÞ
dmðkÞ þ

X
m2M

c1,aTm;2ðkÞ,FmðkÞ2
dmðkÞ ;

(57)

where for dmðkÞ>0, the right part of the equation is convex
whereas the left part is quasi-convex. The estimation of the distil-
late production allows us to eliminate this quasi-convex part in the
objective function, rendering the objective function convex. Note
that, the estimation is updated at each iteration of the algorithm as
shown in Eq. (48), where cdml�1ðkjkÞ is the value of cdmðkjkÞ calcu-
lated in the previous iteration l� 1. In this way, in the last iterations,fdml

reaches a static value which is the optimum or very close to the
optimum, ensuring the stability of the solution. In addition, by
using the estimation, Eq. (46) can be formulated as:

min
X
j¼1

N X
m2M

c1,Fmðkþ j� 1jkÞ,baT
m;1ðkþ jjkÞ,dlmðkþ j� 1jkÞfdmlðkþ j� 1jkÞ

þ
X
j¼1

N X
m2M

c1,baT
m;2ðkþ jjkÞ,Fmðkþ j� 1jkÞ2fdmlðkþ j� 1jkÞ

;

(58)

where all the parameters involved in the equation are constants,
except Fmðk þ j � 1jkÞ, what enables the problem to be solved with
a simple QP solver.

The infeasible primal problem can be formulated as:

min
X
j¼1

N

gðkþ jÞ; (59)

subject to, cm2M and for j ¼ 1;…;N:

cdmðkþ jjkÞ�
hbad

m;1ðkþ jjkÞ,dlmðkþ j�1jkÞ
bad
m;2

�
kþ jjkÞ,Fmðkþ j�1jk

��i
�gðkþ jÞ�0;

(60)

�cdm�kþ j
���k�þh

�
�bad

m;1

�
kþ j

���k�,dlm�kþ j�1
���k�þbad

m;2ðkþ jjkÞ,Fmðkþ j�1jkÞ

�
i
�gðkþ jÞ�0;

(61)

dlm

�
kþ j�1jkÞ , FMin

m � Fmðkþ j� 1jk
�
�gðkþ jÞ � 0; (62)

Fm
�
kþ j�1jkÞ� dlmðkþ j�1jk

�
, FMax

m �gðkþ jÞ � 0; (63)

FMin
T � FTðkþ j�1jkÞ�gðkþ jÞ � 0; (64)

FTðkþ j�1jkÞ� FMax
T �gðkþ jÞ � 0; (65)

L* � ½ðcdT ðkþ jjkÞ� bDðkþ jjkÞÞ , c3 þcLT ðkþ j�1jkÞ� �gðkþ jÞ
� 0;

(66)

LMin
T � LT ðkþ j�1jkÞ�gðkþ jÞ � 0; (67)

LT ðkþ j�1jkÞ� LMax
T �gðkþ jÞ � 0; (68)

and

X
j¼1

N X
m2M

Fmðkþ j�1jkÞ� FTðkþ j�1jkÞ�gðkþ jÞ � 0; (69)

FT

0@kþ j�1jkÞ�
X
j¼1

N X
m2M

Fmðkþ j�1jk
1A�gðkþ jÞ � 0; (70)

X
j¼1

N X
m2M

cdmðkþ jjkÞ�cdT ðkþ jjkÞ�gðkþ jÞ � 0; (71)

cdT
0@kþ jjkÞ�

X
j¼1

N X
m2M

cdmðkþ jjk
1A�gðkþ jÞ � 0: (72)

This problem is proposed only with the constraints of the
feasible primal problem according to the GBD theory. Also, the
equality constraints have been rewritten as inequality constraints
for the sake of simplicity in the implementation of the method. It is
worth noting that, this optimization problem can be worked out
with an LP solver.

Finally, the master problem is written as:
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min
X
j¼1

N

m0ðkþ jÞ; (73)

subject to, cj ¼ 1:::N, l1 ¼ 1;…;L1, and l2 ¼ 1;…;L2

m0ðkþjÞ�
X
m2M

ll
1

1;mðkþjÞ,
h
Fl

1

mðkþj�1jkÞ�dmðkþj�1jkÞ,FMax
m

i
þ

X
m2M

ll
1

2;mðkþjÞ,
h
dm
�
kþj�1jkÞ,FMin

m �Fl
1

mðkþj�1jk
�i

þ

Jl
1

primalðkþjjkÞ;
(74)

0�
X
m2M

l
l2

1;m

 
kþj

!
,

"bdl2

m

 
kþj

�����k
!
�
 bad

m;1

 
kþj

�����k
!

,dm

 
kþj�1

�����k
!
þ

bad
m;2

�
kþj

���k�,Fl2m�kþj�1
���k��

�
i
þ
X
m2M

l
l2

2;m

 
kþj

!
,

"
�bdl2

m

 
kþj

�����k
!
þ

�bad
m;1ðkþjjkÞ,dmðkþj�1jkÞþbad

m;2

�
kþjjkÞ,Fl2mðkþj�1jk

��i
þ

X
m2M

l
l2

3;mðkþjÞ,
h
Fl

2

mðkþj�1jkÞ�dmðkþj�1jkÞ,FMax
m

i
þ

X
m2M

l
l2

4;mðkþjÞ,
h
dm
�
kþj�1jkÞ,FMin

m �Fl
2

mðkþj�1jk
�i

; (75)

where Jl
1

primalðkþjjkÞ is the value of the objective function of the
feasible primal problem, ll

1

1;mðkþjÞ and ll
1

2;mðkþjÞ are the Lagrange
multipliers of the constraints Eqs. (50) and (51) at iteration l1, ob-
tained from the solution of the feasible primal problem, and
l
l2

1;mðk þ jÞ, ll
2

2;mðk þ jÞ, ll
2

3;mðkþjÞ and l
l2

4;mðkþjÞ are the ones related
to Eqs. (60)e(63) obtained from the solution of the infeasible primal
problem at iteration l2. Observe also that Eq. (74) is related with the
optimallity cuts and Eq. (75) with the feasibility ones. It should be
also remarked that this problem is an MILP problem that can be
worked out with a suitable algorithm.

The algorithm is solved according to the resolution method
presented in Fig. 4. In addition, Fig. 6 shows the variables shared
between problems at each iteration. Note that, the prediction of

variables bad
m;1, bad

m;2, baT
m;1 and baT

m;2 is global information, and,
therefore, it is known for all the problems.

4. Results and discussion

4.1. Case study

The case study adopted in this work is based on two real facil-
ities located in Almería (southeast Spain). On the one hand, for the
desalination unit, the SMD facility of the Plataforma Solar de
Almería (PSA, www.psa.es) was used as reference [4]. Among the
different commercial MDmodules useable at PSA, the Aquastill unit
and the Solar Spring one were chosen (see Fig. 7) to be part of the
array of MD modules. These two modules were selected since they
have different behaviours in terms of distillate production and
thermal efficiency, what adds complexity to the problem. The
Aquastill module has a lower thermal energy consumption and a
higher distillate production than the Solar Spring one, as was stated
in Ref. [29]. One should bear in mind that the models of these two
modules were already presented and validated in literature in
Ref. [10,18] for the Solar Spring and Aquastill module respectively.
These models can be formulated according to the generic method
described in Section 2.2 and 2.3. Table 1 presents the value of the
polynomial coefficients of the RSM models of each MD module.

On the other hand, a greenhouse was selected as consumer
agent. Note that the combination of greenhouses and SMD plants is
a potential industrial application of MD technology [29], and of
thermal powered desalination technologies in general [32]. Be-
sides, a greenhouse presents a variable water demand according to
themeteorological conditions [32], whichmakes the use of optimal
management techniques in the desalination unit essential. In this
way, a multi-span ‘‘Almeria-type” greenhouse (see Fig. 8) located at
the Experimental Station of the Cajamar Foundation (also in the
southeast of Spain) was employed in the simulations. The dynam-
ical model of the greenhouse, the validation of the model, and a
detailed description of the greenhouse environment were pre-
sented in [33]. Note that in this model, thewater demand is decided
according to the crop transpiration flux, which relates to the
amount of water lost by the plants during the transpiration process
and must be recovered by irrigation.

4.2. Simulation set-up

The simulations were performed following the scheme
deployed in Fig. 9. As can be observed, the real facility in the
simulation loop was composed by the model of the array of MD
modules, themodel of the heat exchanger connecting the solar field
and the desalination unit, and the model of the greenhouse. Note
that, for these two last elements, the same models from Ref. [29]
were employed. Also, in the simulations, the array of MD modules
was composed by the same number of Solar Spring and Aquastill
modules, placing the Solar Spring modules in the odd numbers of
the array and the Aquastill modules in the even ones. In addition,
the maximum and minimum feed flow rate (FMin

m and FMax
m ) of each

MD module was stated as 400 and 600 L/h respectively, in accor-
dance with the operating range of these commercial MD modules
(see Ref. [10,18] for more details). The minimum range of the feed
water pump (FMin

T ) was fixed at zero and the maximum (FMax
T ) at

Nm,600, where Nm is the number of MD modules in the array.
It should be highlighted that, real data were used to feed the

models mentioned above, what adds reliability to the simulations.
In order to simplify the simulation loop, a temperature profile at the
entrance of the heat exchanger was used (Ths;in in Fig. 9) instead of
including the complete heat generation model. These profiles were
obtained by simulating the complete model of the heat generation

Fig. 6. Information shared between problems. The variables shared are cm2 M .
Observe that the MPC nomenclature has not been included in the figure for the sake of
simplicity.

J.D. Gil et al. / Renewable Energy 156 (2020) 220e234228



circuit (which was presented in Ref. [26]) with real meteorological
data, similar to the ones used as input of the greenhousemodel, and
with the operational strategy presented in Ref. [7]. Themodel of the
greenhouse was directly fed with real meteorological data (see
Fig. 9), which were obtained from Experimental Station of the
Cajamar Foundation. It should be remarked that, in the prediction
model of the MPC strategy, the meteorological conditions as well as

inlet temperature at the hot side of the heat exchanger (Ths;in) were
maintained constant along the prediction horizon. Also, the feed
temperature (Tfeed) was fixed at 20 �C (average temperature of the
Mediterranean sea).

In the simulation loop, the MPC controller received the states
from the different models comprising the real simulating facility,
and sent the corresponding control action u (i.e., dm and Fm;
cm2M ) to the array of MD modules at each sampling time. The
sampling time of the systemwas established in 10min according to
the representative time constant of the greenhouse water demand
and the desired closed loop behaviour [29].

All the simulations were performed using MATLAB code [34]
(MATLAB version 2018a) running on a PC with an Intel Core i5-
6500T CPU 2.50 GHz with 8 GB of RAM. Moreover, it should be
noted that the overall MINLP problem was solved with the BARON
solver (version 1.88) [35], whereas the optimization problems of
the GBD method were solved with the CPLEX solver [36] (version
12.6.1).

4.3. Study of efficiency of the proposed algorithm

One of the main benefits of the developed management method
is that simpler optimization problems, such as QP, LP and MILP, are

Fig. 7. Commercial MD modules at PSA. From left to right: Solar Spring and Aquastill modules.

Table 1
Polynomial coefficients of the RSM models of the Aquastill and Solar Spring
modules.

Coefficient Module

Aquastill Solar Spring

p1 (L/h) 3.24 �10.88
p2 (L/(h,oC)) 0.072 0.24
p3 (L/(h,oC)) �0.4896 �0.18
p4 (�) �0.024 �0.01
p5 (1/oC) 0.0096 0.0006
p6 (oC) �0.739 �0.2018
p7 (�) 0.078 0.1385
p8 (�) �0.067 �0.158
p9 (h/(L,oC)) 0.0019 0.0049

Fig. 8. Greenhouse environment. From left to right and from top to bottom: the greenhouse, the dropper and the tomato crop lines.
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solved instead of an overall MINLP one. This fact directly influences
the time spent in reaching an optimal solution of the problem. So
that, in this section, the GBD based method and MINLP solver are
analyzed in terms of computational time. To do this, several sim-
ulations were carried out, increasing the number of agents (i.e., the
number of MD modules in the array). The time spent by each res-
olution method to work out the overall MINLP problem in a single
sampling time was measured.

Table 2 summerizes the results of the different simulations and
Fig. 10 graphically represents these results. As can be observed, five
cases were simulated, with 4, 8, 16, 32 and 64 MDmodules. For the
two first cases, in which the number of MD modules was small,
both algorithms solved the problem quickly, reaching the same
value in the objective function. In the third case, the time required
by the MINLP solver was doubled in comparison with the two first
cases, whereas the one of the GBD based approach remained almost
constant. In the two last cases, the time spent by the MINLP solver
increased exponentially (see Fig. 10). Note that with 64 MD mod-
ules, the time spent by the MINLP solver is much longer than the
system’s sampling time (600 s). This fact means that the MINLP
solver cannot be usedwhen considering a plant equal or larger than
that size. It is worth noting that, this also happens when using the
MPC strategy with long prediction horizons, since for the purpose
of the optimization problem, it has the same effect as using a large
number of MD modules in the array.

Finally, it should be remarked that the GBD algorithm reached
almost the same values that the global MINLP solver in the objec-
tive function (see Table 2), which indicates convergence to optimal
solutions. The slight differences are due to the value chosen for ε ¼
0:5. This value was taken considering the trade-off between reso-
lution time and accuracy. Nevertheless, it should be remarked that
the aforementioned differences are not representative in compar-
ison to the magnitude of the objective function.

4.4. Simulation study

To assess the running of the proposed algorithm during a daily
operation of the facility, different tests were executed with several
values of the prediction horizon N. For these tests, the desalination
unit was configured with four MD modules, and the greenhouse
with a size of 308m2, as in the tests performed in Ref. [29]. It should
be highlighted that, this small scale plant was chosen for being
representative of the system and allowing to visualize the results
on a easy way. Besides, the tests were performed with meteoro-
logical data from the Experimental Station of the Cajamar Foun-
dation on the day of June 6th, 2017. It should be also remarked that,
as the array of modules included identical modules (i.e., two of
Aquastill and two of Solar Spring), a term in the objective function
was added to prevent chattering problems in the switching on and
off of the modules between one sampling time and the next. The
term added to the primal and master problems consisted ofP
m2M

ðdmðkþ j� 1jkÞ � dmðkþ j� 2jkÞÞ2.
Figs. 11 and 12 show two representative tests with N ¼ 1 and

N ¼ 4 respectively. Please note that the global irradiance has not
been included in the figures for the sake of simplicity. However, it
should be remarked that the dynamical behaviour of both, the inlet
temperature at the hot side of the heat exchanger (Ths;in) and the
water demand (D) depends directly on this variable. In this way, in
the simulations, the water consumption of the greenhouse was
maximum around the solar midday (see Fig. 11-4,12-(4)). Never-
theless, Ths;in reached themaximumvalue later (see Fig.11-1,12-(1))
because of the volume of water accumulated in the solar field

Fig. 9. Simulation scheme.

Table 2
Results reached with each resolution method when increasing the number of MD
modules in the array. V-obj is the value of the objective function.

Number of MD units GBD algorithm MINLP algorithm

Time V-obj Time V-obj

[s] [kWh/m3] [s] [kWh/m3]

4 0.29 112.25 1.50 112.25
8 0.29 112.30 1.60 112.28
16 0.30 224.50 3.77 224.50
32 1.56 382.40 102.23 382.06
64 5.67 455.20 1619.72 451.55

Fig. 10. Results reached with each resolution method when increasing the number of
MD modules in the array.
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storage tank (see Fig. 1).
As can be observed in Fig. 11-5,12-(5), the simulations started

with a level in the distillate tank equal to the setpoint level, which
was set as 1500 L. Therefore, as soon as the water demand was

higher than zero, the controller turned on one of the Aquastill
modules (which are the most efficient) at its minimum feed flow
rate, 400 L/h (see Fig. 11-2,12-(2)). This fact caused the level of the
tank to increase as the production was higher than the demand,

Fig. 11. Simulation results obtained during a daily operation of the plant with the proposed approach with N ¼ 1. (1) Temperature at the inlet of the hot side of the heat exchanger
(Ths;in), (2) feed flow rates of each MD module included in the desalination unit (F1; F2; F3 and F4), (3) STEC of each module (S1 ; S2; S3 and S4) and total STEC of the whole system
(total STEC), (4) water demand (D) and total distillate production (dT ), and (5) actual water level of the tank (LT ) and desire level (L*).

Fig. 12. Simulation results obtained during a daily operation of the plant with the proposed approach with N ¼ 4. (1) Temperature at the inlet of the hot side of the heat exchanger
(Ths;in), (2) feed flow rates of each MD module included in the desalination unit (F1; F2; F3 and F4), (3) STEC of each module (S1 ; S2; S3 and S4) and total STEC of the whole system
(total STEC), (4) water demand (D) and total distillate production (dT ), and (5) actual water level of the tank (LT ) and desire level (L*).
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and therefore, at the next sampling time, themodulewas turned off
again. From sample 55, there were differences between the per-
formance of the management method in both tests, which were
caused by the value of the prediction horizon.

In general terms, it can be seen how the controller with N ¼ 1
(see Fig. 11), which means to take into account a prediction of
10 min at each sampling time, used more modules than in the case
with N ¼ 4 because of the low prediction horizon. This was espe-
cially relevant around midday when the controller with N ¼ 1 (see
Fig. 11-(2)) turned on one of the less efficient modules twice for
three and four sampling times respectively. Regarding the
controller with N ¼ 4 (which means to consider a prediction of
40 min at each sampling time), it can be seen that (see Fig. 12),
thanks to a longer prediction horizon, the controller anticipated the
increase in water demand better. In this way, it augmented the
production of one of the aquastill modules progressively by
increasing its feed flow rate (see Fig. 12-(2) from sample 55 to
sample 66). Then, it turned on the other Aquastill module, and in
the solar midday, it activated one of the Solar Spring modules only
once during a single sampling time. Note that, the advantages
achieved by operating the facility this waywere directly reflected in
the thermal energy consumption of the desalination unit. This fact
can be seen in Fig. 11-3,12-(3). Observe as the total STEC (which is
the sum of the STEC of the four MD modules, the value of the
objective function) in the case with N ¼ 1 was higher than the one
of the controller with N ¼ 4 from sample 62 to sample 66, due to
the use of twoMDmodules. This happened also in the solar midday
from sample 80 to 88.

Moreover, Table 3 summerizes the results obtained in the
operation with different values of N. Observe as both, the total
thermal energy consumption and the mean STEC of the operation
decreased as the prediction horizon increased fromN ¼ 1 to N ¼ 4.
On the contrary, for higher horizons, the value of these two metrics
was worse. This was caused by errors in the predictions. It is worth
noting that, thewater demand decreased at the end of the solar day
according to the global irradiance. However, the water demandwas
fixed constant along the prediction horizon. This caused the pro-
duction to be greater than necessary, what penalized the thermal
energy consumption of the desalination unit when using a larger
prediction horizon than N ¼ 4.

4.5. Comparison with previous and non-optimal approaches

In this section, three representative days with different meteo-
rological conditions were used to compare a manual operation, an
operation performed with the approach presented in Ref. [29], and
an operation with the management method presented in this pa-
per. The data corresponded to July 10th, 2017, June 6th, 2017 and
March 4th, 2015 (test 1, 2 and 3 respectively). The first day was a
sunny day, similar to the one presented in the previous section but
with a higher level of irradiance (see the cumulative global irradi-
ance, CTI, for test 1 in Table 4). This fact caused the water

consumption of the greenhouse to be higher, and the desalination
unit to operate around 80% of its capacity to cover the needs when
the demand was maximum. The second day corresponded to the
test presented in the previous section. Note that, in that test, the
water needs required the operation of the desalination unit to be
around 50% of its capacity in the moments of maximum con-
sumption. The third test was a cloudy day, so that, the water re-
quirements of the greenhouse were low, which could be covered
with the operation of the desalination unit at less than 30% of its
capacity.

It should be remarked that in both, the manual method and the
one presented in Ref. [29], the four modules included in the desa-
lination unit were turned on as long as the water demand was
higher than zero. On the one hand, the manual operation were
performed with the feed flow rate of each MD module fixed at
500 L/h. On the other hand, with the method presented in Ref. [29],
the feed flow rate of each MD module was manipulated according
to the water needs trying to reduce the STEC.

Table 4 shows the results obtained with each technique. As can
be seen, in the first test, the manual procedure required
1213.57 kWh of thermal energy, whereas the approach presented
in Ref. [29] 982.48 kWh (see Table 4). The amount of thermal en-
ergy saved by using the proposed technique is considerable, around
65 and 55% with respect to the manual operation and the one
performed with procedure presented in Ref. [29] respectively. This
was the result by two main facts. First, the total distillate produc-
tion (1015.10 L) was almost totally adjusted to the water demand
(1013.03 L), which was achieved by manipulating the number of
MD modules turned on at each sampling time according to the
water needs. This allowed the controller to use only the most
efficient MD modules at the beginning and at the end of the day
(when the water demand was low), thus saving a large amount of
thermal energy. Second, when a module was turned on, its STEC
was minimized, which also allowed to reduce the total thermal
energy consumption. In the second test, the performance was
similar to the previous one, but in this case, as thewater needs were
lower, the amount of thermal energy saved was even higher,
around 85 and 80% in comparison with the manual procedure and
the method proposed in Ref. [29] respectively. In the third test, the
level of irradiance was lower, and therefore, the water re-
quirements too. In this case, the benefits attained by using the
proposed technique were greater as the water needs could be met
using only the most efficient modules in the array during the whole
operation. Thus, less than the 5% of the thermal energy required by
the manual operation and the one performed with the approach in
Ref. [29] was used with the application of the proposed method.

5. Conclusions

This paper proposes a general optimal operating strategy aimed
at reducing the total thermal energy consumption of commercial
membrane distillation facilities. The proposed approach is based on
the Generalized Benders Decomposition (GBD) method, which al-
lows us to solve the MINLP optimization problem associated to the
management of the facility in a simple and efficient way. In addi-
tion, a Model Predictive Control (MPC) strategy is employed to
reflect the operational strategy in real time. The developed method
was applied in a practical case study, in which an SMD plant was
connected to a greenhouse with a variable water demand. The
obtained results allow us to draw the following conclusions:

� The developed strategy can be applied in any commercial
desalination facility based on membrane distillation as long as
the MD modules are modelled with the RSM method.

Table 3
Results obtained in the operation with different values of N. DP is the total distillate
production, M-STEC is the mean STEC of the MD facility during the operation and
TTEC is the total thermal energy consumption.

DP [L] M-STEC [kWh/m3] TTEC [kWh]

N ¼ 1 691.86 261.03 180.59
N ¼ 2 692.19 258.54 178.95
N ¼ 3 692.94 257.80 178.78
N ¼ 4 693.51 257.22 178.38
N ¼ 5 694.26 258.11 179.19
N ¼ 6 695.36 259.30 180.30
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� The efficiency analysis performed showed as the developed
technique reaches almost the same results of an MINLP solver.
However, the resolution time was considerable improved. For
example, for a facility with 64 MD modules, an MINLP solver
required 1619.72 s for solving the problem in a single sampling
time, whereas the proposed approach only 5.67 s.

� Regarding the operation, the proposed method was able to
manage the facility optimally when coupled to a variable water
demand, deciding at each sampling time the number of MD
modules turned on and their operating feed flow rate, reducing
the total thermal energy consumption of the desalination unit
and ensuring the water needs.

� The comparison performed with a manual operation and with a
previous proposed approach in literature showed how, in a
sunny day, around the 65 and 55% of the thermal energy used by
these methods can be saved with the application of the devel-
oped technique. In a cloudy day, the benefits are even higher, so
that, the proposed approach used less than 5% of the energy
required by the other operating methods. These improvements
could be very important for both the design of SMD commercial
facilities and their daily operation, especially if non-renewable
sources are also taken into account to feed the desalination
unit or as a backup for cloudy days.
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Appendix A. Nomenclature

Table 4
Comparison of results. CTI is the cumulative global irradiance,WD is the total water demand, DP is the total cumulative distillate production, M-STEC is themean STEC (thermal
efficiency) of the MD facility during the operation and TTEC is the total thermal energy consumption.

Test 1 Test 2 Test 3

CTI ¼ 29951 [kJ/m2] CTI ¼ 26488 [kJ/m2] CTI ¼ 17406 [kJ/m2]

WD ¼ 1013.03 [L] WD ¼ 690.95 [L] WD ¼ 210.62 [L]

DP M-STEC TTEC DP M-STEC TTEC DP M-STEC TTEC

[L] [kWh/m3] [kWh] [L] [kWh/m3] [kWh] [L] [kWh/m3] [kWh]

Manual operation 1589.70 763.40 1213.57 1312.60 831.33 1091.20 1095.70 859.25 941.48
Procedure proposed in [29] 1383.34 710.23 982.48 1152.40 805.42 928.16 957.15 832.17 796.51
Proposed approach 1015.10 426.99 433.43 693.51 257.22 178.38 211.46 139.82 26.04

Variable Description Units

c1 Constant used in the STEC calculation kWh/oC.m3

c2 Constant for the GBD algorithm 106

c3 Conversion factor for the tank level calculation 0.16 h
cf Conversion factor to the STEC 3:6,106 s,W/h,kW
cp Specific heat capacity of sea water J/kg,oC
CTI Cumulative global irradiance kJ/m3

D Water demand L/h
dm Distillate production of MD m-module L/h
DP Total cumulative distillate production L
dT Total distillate production L/h
Fm Feed flow rate of MD m-module L/h
FMax
m Maximum feed flow rate of MD m-module L/h

FMin
m

Maximum feed flow rate of MD m-module L/h

FT Feed water source flow rate L/h
FMax
T

Maximum feed flow rate of feed pump L/h

FMin
T

Minimum feed flow rate of feed pump L/h

LT Water level of the distillate tank L
LMax
T

Maximum water level of the distillate tank L

LMin
T

Minimum water level of the distillate tank L

L* Setopint level of the distillate tank L
M-STEC Mean STEC of the MD facility kWh/m3

pi with i ¼ 1;…;9, Polynomial coefficients e

Sm Specific thermal energy consumption of MD m-module kWh/m3

Tcin;m Inlet temperature of the condenser channel of MD m-module oC
Tcout;m Outlet temperature of the condenser channel of MD m-module oC
Tcs;in Inlet temperature at the cold side of the heat exchanger oC
Tcs;out Outlet temperature at the cold side of the heat exchanger oC

(continued on next page)
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Variable Description Units

Tein;m Inlet temperature of the evaporator channel of MD m-module oC
TFeed Feed water source temperature oC
Ths;in Inlet temperature at the hot side of the heat exchanger oC
Ths;out Outlet temperature at the hot side of the heat exchanger oC
TTEC Total thermal energy consumption kWh
Vm Valve aperture %
WD Total cumulative water demand L

adm;j
with j ¼ 1…,2, Auxiliary variable 1 for the MILP model e

aTm;j
with j ¼ 1…2, Auxiliary variable 2 for the MILP model e

dm Valve position 0e1
DTm Temperature difference between the inlet of the evaporator channel and the outlet of the condenser channel of the MD m-module oC
r Density of sea water kg/m3
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2.4 Tutorial on modelling and control of membrane distillation technol-
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2.4.1 Modelado y control automático en destilación por membranas solar: funda-
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Resumen

La destilación por membranas es un proceso de separación impulsado térmicamente en fase de investigación. Esta tecnologı́a
destaca principalmente por la simplicidad del proceso y su baja temperatura de operación, lo que permite que pueda ser alimentada
con energı́a solar de media-baja temperatura. Ası́, la destilación por membranas se ha convertido en una solución prometedora, efi-
ciente y sostenible para desarrollar plantas de desalación de pequeño o mediano tamaño en lugares aislados con buenas condiciones
de radiación. No obstante, para que esta tecnologı́a pueda llegar a ser implementada a escala industrial se debe seguir investigando y
mejorando aspectos relacionados tanto con el diseño de las membranas y de los módulos como con la propia operación de estos. En
relación con la operación, el desarrollo de modelos y técnicas de control cobran un papel fundamental. En este trabajo se presenta
una revisión de las técnicas de control y modelado aplicadas en este campo, describiendo las principales metodologı́as empleadas
y los retos futuros que quedan por abordar, incluyendo además un ejemplo ilustrativo.

Palabras clave: Modelado, Control, Destilación por membranas, Desalación, Energı́a solar térmica.

Modelling and automatic control in solar membrane distillation: Fundamentals and proposals for its technological develop-
ment

Abstract

Membrane distillation is a termally-driven separation process under investigation. This technology stands out for the simplicity
of the process and for its low operating temperature, which allows it to be combined with low grade solar energy. Thus, membrane
distillation has become a promising, efficient and sustainable solution for the development of small-medium stand-alone desalina-
tion facilities to be implemented in offgrids areas with good irradiance conditions. However, in order to develop this technology
on an industrial scale, research must continue to improve aspects related to both the design of membranes and modules and their
operation. Regarding the operation, the development of models and control techniques play a fundamental role. This paper presents
a review of the control and modeling techniques applied in this field, describing the main methodologies employed and the future
challenges to be addressed, also including an illustrative example.

Keywords: Modelling, Control, Membrane distillation, Desalination, Solar thermal energy.

1. Introducción

La creciente demanda de agua asociada al crecimiento ec-

onómico y de la población, ası́ como a la disminución de las
reservas de agua como consecuencia del cambio climático y la
contaminación, están agravando el problema de la escasez de

∗Autor para correspondencia: juandiego.gil@ual.es
Attribution-NonCommercial-NoDerivatives 4,0 International (CC BY-NC-ND 4,0)



Gil, Juan D. et al. / Revista Iberoamericana de Automática e Informática Industrial 00 (2020) 1–?? 2

agua en el mundo. Diversos estudios estiman que el 60 % de
la población mundial sufrirá escasez severa de agua en 2025
(Schewe et al., 2014). Estas estadı́sticas demuestran que las
fuentes de agua convencionales, como acuı́feros, lagos, agua
de lluvia o deshielo, ya no son suficientes para satisfacer las
demandas humanas en áreas con escasez de agua. Este hecho
entra en conflicto directo con los objetivos mundiales de desa-
rrollo sostenible aprobados por la Organización de las Nacio-
nes Unidas (ONU) en 2015, entre los que destaca uno dirigido
a “garantizar la disponibilidad de agua y su gestión sostenible y
el saneamiento para todos”(Jones et al., 2018).

El agua no solo está limitada en cuanto a cantidad, sino que
también en la calidad suficiente para el consumo humano. Una
de las principales consecuencias del cambio climático es la de-
gradación de los recursos hı́dricos, ya que los fenómenos de
precipitación extremos transportan patógenos y otros contami-
nantes a las vı́as fluviales a través de escorrentı́as e inundacio-
nes (DeNicola et al., 2015). Además, hay que sumar otras con-
secuencias del cambio climático como la sequı́a y la desertifica-
ción, las cuales están aumentando significativamente cubriendo
áreas cada vez más amplias del planeta.

El problema de la escasez agua resulta paradójico si se tiene
en cuenta que vivimos en un planeta en el que dos tercios de la
superficie están cubiertos de agua. Sin embargo, alrededor del
99 % del total es demasiado salada (agua de mar) o inaccesible
(capas de hielo y acuı́feros). Ası́, el agua pura en estado lı́qui-
do prácticamente no se encuentra en la naturaleza, y lo que se
denomina agua en realidad es una disolución de diversas sales
en agua. La Organización Mundial de la Salud (OMS) estable-
ce que el agua potable debe tener un contenido salino menor a
0.05 % (WHO, 2011). En este contexto es donde la desalación,
que se define como el proceso de eliminar sales y minerales di-
sueltos del agua salina para producir agua potable, puede ser
una alternativa muy atractiva y viable para combatir el déficit
hı́drico.

Aunque la desalación se posiciona como una de las solucio-
nes más prometedoras, un uso intensivo e irresponsable de esta
tecnologı́a puede ocasionar serios problemas, entre los que des-
tacan aquellos relacionados con el alto consumo energético de
las tecnologı́as de desalación actuales. Si las plantas de desala-
ción se alimentan mediante fuentes de energı́a convencionales,
se requerirá la quema de grandes cantidades de combustibles
fósiles, contribuyendo a la emisión de CO2 y, por consiguiente,
a la contaminación medioambiental. Por el contrario, si dichas
plantas se alimentan con energı́as renovables, la desalación se
puede convertir en una nueva fuente de agua dulce eficiente y
sostenible, que cubra las necesidades básicas y, que lo haga con
un impacto mı́nimo en el medio ambiente. La habitual coinci-
dencia geográfica entre la escasez de agua y la alta radiación
solar, hace de la energı́a solar térmica la tecnologı́a más apro-
piada y eficiente para alimentar las plantas de desalación. Ası́,
la tecnologı́a destilación por membranas (Membrane Distilla-
tion, MD) destaca como uno de los procesos de desalación más
adecuados para ser combinado con este tipo de fuentes energéti-
cas, debido principalmente a su baja temperatura de operación
(Zaragoza et al., 2014).

MD es una tecnologı́a de separación emergente en fase de
investigación, que permite el uso de energı́a solar térmica de ba-
ja temperatura para la obtención de agua desalada, lo que la co-

loca en una posición competitiva para reducir la tensión a la que
está sometida el binomio energı́a-agua en la actualidad (Desh-
mukh et al., 2018). Sin embargo, su baja eficiencia energética,
debido principalmente a su alto consumo energético por unidad
de destilado producido, ha obstaculizado su implementación a
escala comercial hasta el momento. Por este motivo, para lo-
grar que la técnica MD sea competitiva a escala industrial, los
avances tecnológicos deben estar enfocados a reducir su consu-
mo energético especı́fico a partir de la mejora tanto en aspectos
relacionados con el diseño de los módulos, como en aquellos
relacionados con la propia operación.

En las últimas décadas, se han publicado numerosos traba-
jos que presentan mejoras notables en el diseño de los módu-
los MD. Estas investigaciones se han centrado en la creación
de nuevas membranas, nuevos módulos y configuraciones, y
en comprender el ensuciamiento de la membrana, fenómeno
que se conoce como fouling (González et al., 2017). Estos
trabajos han originado un gran progreso en términos de efi-
ciencia energética, yendo de un consumo térmico especı́fi-
co de 810 kWh/m3 en módulos MD sin recuperación de ca-
lor y en condiciones de operación óptimas (Guillén-Burrieza
et al., 2011), al consumo actual de los módulos comerciales,
49 kWh/m3 también referido a condiciones de operación ópti-
mas pero en módulos con recuperación de calor (Andrés-Mañas
et al., 2020b). Una de las razones que hace a la tecnologı́a MD
especialmente interesante es que estos requerimientos energéti-
cos se pueden cubrir mediante energı́a solar de media-baja tem-
peratura o mediante fuentes de energı́a de baja entalpı́a como
calor residual (Wang and Chung, 2015).

Aunque el avance en el diseño de los módulos es aún una ra-
ma de investigación abierta, este ha sido uno de los temas más
tratados en la literatura, y por tanto, se encuentra en una fase
de madurez avanzada. Es por esto que, de acuerdo a las ideas
presentadas en Thomas et al. (2017), la destilación por mem-
branas se encuentra en una nueva fase de investigación, en la
cual, el foco de los trabajos de investigación se encuentra pues-
to en otras áreas como son aquellas centradas en la operación
de los módulos MD. Estos trabajos están dirigidos al modela-
do y optimización de las principales variables que intervienen
en los procesos MD (Ruiz-Aguirre et al., 2018), y al desarrollo
de metodologı́as de control y optimización para la mejora del
rendimiento térmico de los módulos MD en tiempo real (Gil
et al., 2018a). Se debe remarcar que este tipo de trabajos pue-
den ser fundamentales para el desarrollo de plantas sostenibles
MD alimentadas con energı́a solar (Solar Membrane Distilla-
tion, SMD), ya que estas requieren que el sistema sea optimiza-
do en tiempo real de acuerdo a las condiciones de irradiancia.

En este trabajo se presenta una revisión del estado del ar-
te de las técnicas de modelado y control aplicadas a este ti-
po de plantas. En primer lugar, se describirá la tecnologı́a de
destilación por membranas poniendo de manifiesto sus princi-
pales ventajas y su interés para la implementación industrial.
Además, se presentará un resumen de las principales instalacio-
nes SMD que hay actualmente en el mundo. En segundo lugar,
se hará un repaso de las técnicas de modelado que se han apli-
cado hasta el momento en esta tecnologı́a. En tercer lugar, se re-
visarán los principales enfoques de control aplicados a sistemas
MD, indicando los principales objetivos que se persiguen y las
técnicas de control empleadas. A continuación, se expondrán
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algunas de las potenciales aplicaciones industriales de la tecno-
logı́a MD, mostrando cómo los algoritmos de control pueden
ser un elemento fundamental para su desarrollo. Por último, se
expondrán los retos futuros a abordar.

2. Tecnologı́a de destilación por membranas

2.1. Descripción de la tecnologı́a
La destilación por membranas es un proceso de separación

impulsado térmicamente, basado en el transporte de moléculas
en estado gaseoso a través de una membrana hidrófoba y mi-
croporosa (Khayet and Matsuura, 2011). Las fuerzas de tensión
superficial de dicha membrana evitan el paso de las moléculas
en estado lı́quido a través de los poros de esta, mientras que las
moléculas en estado gaseoso la atraviesan gracias a la diferen-
cia de presión parcial de vapor que se origina a ambos lados de
la membrana, la cual se establece por una diferencia de tempe-
ratura.

El funcionamiento general de un módulo MD con recupe-
ración de calor se puede explicar en base a la Figura 1. El agua
de alimentación entra por el canal de alimentación donde se
precalienta con el calor sensible que atraviesa el canal de con-
densación. Posteriormente, la solución precalentada se dirige
al intercambiador de calor, donde se calienta con el fluido que
proviene del circuito de generación de calor (normalmente ba-
sado en un campo solar térmico de media-baja temperatura). A
continuación, la solución caliente se circula al canal de evapo-
ración. La diferencia de temperatura que hay entre los dos lados
de la membrana genera una diferencia de presión parcial de va-
por, la cual fuerza a las moléculas en estado gaseoso a pasar
desde el canal de evaporación al de condensación a través de la
membrana. Finalmente, estas moléculas se condensan de forma
que se obtiene destilado, mientras que las moléculas que no han
pasado a estado gaseoso se rechazan en forma de salmuera. Se
debe resaltar que se pueden encontrar diferentes configuracio-
nes MD que se clasifican de acuerdo a la forma de generar la
diferencia de presión a través de la membrana y el lugar donde
tiene lugar la condensación. Por tanto, la descripción anterior
varı́a en función de la configuración adoptada, ver Alkhudhiri
et al. (2012) donde se explica este hecho en profundidad.

Figura 1: Diagrama esquemático de un módulo MD.

Desde el punto de vista del proceso, la tecnologı́a MD tiene
una serie de ventajas que la hacen destacar en comparación con
otras tecnologı́as de desalación, como son:

Su habilidad para tratar soluciones con alta concentra-
ción en sal (Kim et al., 2015; Andrés-Mañas et al., 2020b;
Ruiz-Aguirre et al., 2019).

Su alto factor de rechazo, teóricamente del 100 % (Alk-
hudhiri et al., 2012). Nótese que en la práctica alcanza
valores mayores al 99 % (Ruiz-Aguirre et al., 2019).

Su fuerza impulsora se origina a través de una diferencia
de temperatura, en lugar de ser originada mediante fuen-
tes mecánicas que incrementan el consumo exergético del
proceso y los costes (Luo and Lior, 2016).

Su baja presión de operación, de alrededor de 0.1 MPa,
mucho menor que la requerida por tecnologı́as conven-
cionales de desalación como la ósmosis inversa 2.5-
8.5 MPa (Miladi et al., 2019).

Su baja temperatura de operación (menor de 90 oC),
lo que permite que pueda ser fácilmente acoplada con
energı́a solar de baja temperatura (Zaragoza et al., 2014;
Andrés-Mañas et al., 2020a) y otras fuentes como calor
residual (Wang and Chung, 2015).

Esta última ventaja, junto a la simplicidad del proceso, convier-
ten a la tecnologı́a MD en uno de los sistemas de desalación más
adecuados para el desarrollo de plantas de desalación alimenta-
das con energı́a solar en lugares aislados con buenas condicio-
nes de radiación y requerimientos de agua no muy elevados.

2.2. Instalaciones SMD

Con el fin de evaluar el rendimiento y viabilidad de la tec-
nologı́a al ser alimentada con energı́a solar (e implantada en lu-
gares aislados) se han diseñado e instalado varias plantas SMD
a escala piloto por todo el mundo. En concreto, en España y Jor-
dania, se han instalado plantas piloto en el marco del proyecto
“SMADES” (Koschikowski et al., 2009; Banat et al., 2007), el
cual demostró la factibilidad y viabilidad del desarrollo de plan-
tas de desalación autónomas MD alimentadas con energı́a solar
para satisfacer demandas de agentes consumidores aislados de
la red de agua pública. En la Tabla 1 se presenta un resumen
de las principales instalaciones SMD en el mundo, mostrando
su localización, año de construcción y capacidad de produc-
ción. Se debe destacar que solo se han incluido plantas MD no
compactas, es decir, plantas en las que la unidad de desalación
(módulo MD) y el sistema de generación de calor (i.e., el campo
solar térmico) están separados.

Aunque las plantas SMD de la Tabla 1 se han diseñado me-
diante diferentes métodos y por diferentes equipos investiga-
dores, todas ellas se pueden describir en base al diagrama es-
quemático mostrado en la Figura 2. De este modo, la energı́a
térmica requerida por el proceso de destilación se consigue a
través de un campo solar térmico. La salida de este campo está
conectada a un tanque de almacenamiento térmicamente aisla-
do, que se puede utilizar para almacenar energı́a térmica o para
filtrar perturbaciones en la radiación. Además, casi todas las
plantas cuentan con un circuito hidráulico que permite evitar el
uso de dicho tanque y llevar a cabo la conexión directa entre el
campo solar y el módulo MD cuando las condiciones de irra-
diancia sean favorables. Por último, el módulo MD se conecta
a este sistema de generación de energı́a térmica mediante un
intercambiador de calor. Se debe destacar que las diferentes ca-
pacidades de las plantas estudiadas se deben principalmente al
número de módulos MD utilizados en la unidad de desalación
o a la configuración o eficiencia de los módulos MD utilizados
en cada planta.
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Tabla 1: Resumen de las instalaciones SMD seleccionadas a escala piloto no compactas. PSA significa Plataforma Solar de Almerı́a y UAL Universidad de Almerı́a.
Referencia Localización Año Capacidad [m3/dı́a]

Banat et al. (2007) Áqaba (Jordania), 29o31’N 2007 0.90
Koschikowski et al. (2009) Gran Canaria (España), 27o58’N 2009 1.60

Dow et al. (2010) Edenhope (Australia), 37o03’S 2010 0.12
Cipollina et al. (2012) Palermo (Italia), 28o06’N 2012 0.15

Gabsi et al. (2013) Mahares (Túnez), 34o32’N 2013 0.21
Chafidz et al. (2014) Riyadh, (Arabia Saudı́) 24o38’N 2014 0.10

Gil et al. (2018b) Almerı́a, (España) situada en la PSA, 36o50’N 2014 0.60
Andrés-Mañas et al. (2020a) Almerı́a, (España) situada en la UAL, 36o49’N 2014 0.29

Figura 2: Diagrama esquemático general de una planta SMD.

La mayorı́a de los estudios llevados a cabo en las instala-
ciones SMD mostrados en la Tabla 1 están dedicados a eva-
luar diferentes tipos y diseños de módulos MD en términos de
eficiencia térmica y producción de destilado. Sin embargo, en
pocas instalaciones se hacen evaluaciones económicas de la tec-
nologı́a. En este sentido, solo en el trabajo de Guillén-Burrieza
et al. (2015) se analizó una planta piloto SMD en términos
económicos, mostrando cómo el precio del agua ronda los 10-
11.30 e/m3 para una instalación con capacidad de 100 m3/dı́a.
Estos resultados demostraron la viabilidad económica de la tec-
nologı́a para plantas de pequeño o mediano tamaño al ser com-
parada con una instalación de la misma capacidad basada en la
tecnologı́a de ósmosis inversa alimentada con energı́a fotovol-
taica, donde el precio ascendı́a a 11.7-15.6 e/m3. No obstante,
se debe destacar que se requieren trabajos en los cuales se utili-
cen módulos MD más actuales y eficientes, puesto que los pre-
cios comentados anteriormente pueden ser significativamente
más bajos.

2.3. Índices de desempeño para la evaluación de la tecno-
logı́a MD

Antes de describir las estrategias de modelado y control em-
pleadas en la tecnologı́a MD, se deben definir los ı́ndices de
desempeño que se utilizan para evaluar los módulos MD. Es
importante comentar que no hay un ı́ndice estándar para la eva-
luación de estos procesos y por este motivo, se pueden encon-
trar varios métodos en la literatura (Ruiz-Aguirre et al., 2015).
En primer lugar, para cuantificar la producción de los módulos
MD se suele utilizar el flujo de destilado por unidad de superfi-
cie (D, medido en L/(h·m2)), el cual se puede calcular como:

D =
ṁd

ρd · Am
· c1, (1)

donde ṁd es el flujo másico de destilado (kg/s), ρd es la ma-
sa especı́fica del destilado (kg/m3), Am es la superficie de la
membrana del módulo (m2) y c1 es un factor de conversión de
unidades con valor 3.6·106 (L·s/(m3·h)).

Para la evaluación de la eficiencia térmica de los módulos,
en la literatura principalmente se utilizan dos ı́ndices de desem-
peño. Por un lado, la Razón de Salida Ganada (Gained Output
Ratio, GOR (-)) que se define como el calor latente necesario
para evaporar todo el flujo másico de destilado producido com-
parado con el calor externo aportado:

GOR =
ṁd · ∆hv

Q̇
, (2)

donde ∆hv es la entalpı́a de vaporización (kJ/kg) y Q̇ es el flujo
de calor que se le aporta al sistema (kJ/s). Por otro lado, tam-
bién se suele usar un ı́ndice denominado Consumo Especı́fi-
co de Energı́a Térmica (Specific Thermal Energy Consumption,
STEC (kWh/m3)), el cual da información acerca de la cantidad
de energı́a necesaria para producir una unidad de volumen de
destilado. El STEC se puede calcular como:

STEC =
Q̇ · ρd

ṁd · c2
·, (3)

donde c2 es un factor de conversión de unidades con valor
3600 (kJ/kWh).

3. Modelado de plantas MD

En esta sección se hace una revisión de las principales técni-
cas de modelado propuestas en este campo. En primer lugar, se
describen las técnicas de modelado usadas para caracterizar los
módulos MD y, posteriormente, las utilizadas para modelar el
resto de componentes de una planta piloto SMD como la des-
crita en la subsección anterior.

3.1. Modelado de módulos MD
El desarrollo de modelos de módulos MD, ya sean basados

en primeros principios o en datos empı́ricos, se ha convertido
en una herramienta fundamental para predecir el funcionamien-
to de estos procesos bajo diferentes condiciones de operación.
Estos modelos no solo ayudan a analizar el comportamiento de
los módulos MD bajo las condiciones de operación requeridas,
sino que también son esenciales para el desarrollo de técnicas
de control (Porrazzo et al., 2013; Gil et al., 2019a) y para el
desarrollo de algoritmos dirigidos a obtener un diseño óptimo
de la planta (Chen et al., 2012). De este modo, a continuación
se hace una revisión de los enfoques de modelado utilizados
hasta el momento en la literatura abordando, tanto los modelos
basados en datos experimentales como los basados en primeros
principios.
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3.1.1. Modelos basados en datos experimentales de módulos
MD

En el caso particular de la tecnologı́a MD, la existencia de
diferentes diseños internos (diferentes longitudes del canal, an-
churas del canal, número de canales, etc.) ası́ como de tipos de
módulos y membranas dificulta la construcción de modelos ba-
sados en primeros principios. Se debe tener en cuenta que la
variación de estos parámetros no resulta en un cambio propor-
cional en el rendimiento del proceso, haciendo que no se pueda
establecer fácilmente un modelo general (Ruiz-Aguirre et al.,
2018). Además, en la mayorı́a de los módulos MD a escala co-
mercial no se dispone de la información suficiente para realizar
dichos modelos teóricos, por lo que se necesita una colabora-
ción más estrecha entre el mundo académico y los desarrollado-
res industriales de módulos MD. Por estas razones, la mayorı́a
de los procesos MD (especialmente los módulos comerciales)
se modelan mediante modelos basados en datos experimentales.
Dos de las técnicas de modelado más utilizadas en este cam-
po son la Metodologı́a de Superficie de Respuesta (Response
Surface Methodology, RSM) y las Redes Neuronales Artificia-
les (Artificial Neural Network, ANN). Estos modelos son váli-
dos para ajustar procesos lineales y no lineales multivariables.
Su principal ventaja radica en la rapidez a la hora de obtener-
los una vez se dispone del conjunto de datos experimentales.
Sin embargo, se debe tener en cuenta que no se pueden usar
para extrapolar los resultados a otros sistemas, y que son solo
válidos para el rango de operación en el cual se han obtenido.
Además, este tipo de modelos representan directamente la sali-
da final del modelo, y no permiten estudiar el fenómeno fı́sico
que ocurre en el sistema. Por el contrario, sı́ que son válidos
para visualizar y analizar el rango de operación del módulo y
entender el comportamiento del sistema.

La metodologı́a RSM (Hill and Hunter, 1966) es una técni-
ca estadı́stica que utiliza funciones cuadráticas para caracterizar
procesos lineales o con no linealidades suaves. En esta metodo-
logı́a se diseñan campañas experimentales centradas en aplicar
cambios en forma de escalón, llamados niveles, a uno de los
grados de libertad (entradas) mientras que los otros se man-
tienen constantes. Posteriormente, se ajusta un modelo polino-
mial en base a la respuesta experimental observada en cada ni-
vel para cada variable independiente. El modelo RSM tiene la
siguiente estructura:

q = γ0 +

v∑

i=1

γi · wi +

v∑

i=1

γii · w2
i +

v∑

1≤i≤ j

γi j · wi · w j, (4)

donde v es el número de variables, γ0 es el coeficiente de com-
pensación (offset), γi son los coeficientes de los términos linea-
les, wi y w j son entradas del modelo, γii representa los coefi-
cientes de los términos cuadráticos, γi j los coeficientes de in-
teracción entre entradas del modelo y q la salida del modelo.

Por su parte, la metodologı́a ANN (más conocida en el
ámbito de la Automática) consiste también en un modelo ma-
temático compuesto por elementos simples interconectados y
organizados en una estructura de capas, los cuales procesan in-
formación en respuesta a entradas externas tratando de imitar
el comportamiento de las neuronas biológicas (Demuth et al.,
2014). Esta técnica se ha convertido en una herramienta emer-
gente durante los últimos años en el campo de la MD ya que,

en comparación con la técnica RSM, es capaz de ajustar con
éxito casi todos los procesos no lineales, tanto estáticos como
dinámicos. Ası́, cobra especial importancia cuando se utilizan
variables independientes que inducen comportamientos no li-
neales en el sistema, como es el caso de la salinidad de la solu-
ción de alimentación del módulo MD.

De este modo, se pueden encontrar diferentes trabajos de
modelado basados en RSM en la literatura. En la mayorı́a
de ellos se utiliza la metodologı́a RSM para predecir el flu-
jo de destilado, como es el caso de Fadhil et al. (2019); El-
zahaby et al. (2016); Khalifa and Lawal (2016); Bouguecha
et al. (2016); Mohammadi et al. (2015); Boubakri et al. (2014);
Khayet and Matsuura (2011); Khayet and Cojocaru (2012a);
Khayet et al. (2007). Por el contrario, solo unos pocos predicen
aparte del flujo del destilado algún ı́ndice de desempeño rela-
cionado con el consumo térmico del módulo como el STEC o el
GOR (Gil et al., 2018c; Ruiz-Aguirre et al., 2018; Cheng et al.,
2018; Ruiz-Aguirre et al., 2017; He et al., 2014). Además, en
casi todos los trabajos se utilizan como variables de entrada la
temperatura y caudal del agua de alimentación y la temperatura
a la entrada del canal de evaporación del módulo, y solo en Gil
et al. (2018c); Mohammadi et al. (2015); Khayet et al. (2007)
se incluye la salinidad del agua de alimentación como entra-
da del modelo. De forma similar, se pueden encontrar trabajos
basados en la metodologı́a ANN para predecir el flujo de des-
tilado como es el caso de Yang et al. (2020); Cao et al. (2016);
Porrazzo et al. (2013); Khayet and Cojocaru (2013, 2012b); Ta-
vakolmoghadam and Safavi (2012). Por otra parte, solo en Gil
et al. (2018c); Shirazian and Alibabaei (2017) se tienen en cuen-
ta como salida también ı́ndices de desempeño como el STEC o
el GOR. Sin embargo, únicamente en Gil et al. (2018c); Cao
et al. (2016) se utiliza como entrada la salinidad del agua de
alimentación.

En base a los trabajos revisados se puede observar cómo las
entradas más utilizadas en este tipo de modelos son la tempe-
ratura y caudal del agua de alimentación y la temperatura de
entrada del canal de evaporación del módulo MD, y la variable
de salida más utilizada es el flujo de destilado. Se debe destacar
que solo unos pocos trabajos tienen en cuenta la salinidad como
variable de entrada en la metodologı́a RSM y además, utilizan
rangos de entrada pequeños para dicha variable. De acuerdo a
las ideas presentadas en Gil et al. (2018c), la metodologı́a ANN
es más adecuada para realizar modelos cuando se considera es-
ta variable debido a su comportamiento no lineal. Nótese que el
estudio de la influencia de esta variable es importante, ya que
una de las principales aplicaciones industriales de la tecnologı́a
MD consiste en tratar salmueras procedentes de otras tecno-
logı́as de desalación, como se verá más adelante en la sección 5.
También cabe destacar que hay pocos trabajos que utilicen co-
mo variable de salida algún ı́ndice de desempeño relacionado
con el rendimiento térmico del módulo, lo cual es especialmen-
te relevante, ya que es uno de los principales puntos débiles de
la tecnologı́a. El estudio del comportamiento de esta variable
bajo diferentes condiciones de operación puede ser determinan-
te para el desarrollo comercial de la tecnologı́a MD. Por último,
se debe destacar que muchos de los modelos desarrollados están
basados en datos obtenidos en módulos a escala de laboratorio
y solo en unos pocos trabajos (Gil et al., 2018c; Ruiz-Aguirre
et al., 2018, 2017; Porrazzo et al., 2013) se utilizan módulos
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de MD a escala comercial, por lo que aún se necesita el desa-
rrollo de trabajos de investigación para estudiar y optimizar el
comportamiento de los módulos comerciales MD.

3.1.2. Modelos basados en primeros principios de módulos
MD

En la literatura también se han presentado diferentes traba-
jos tratando el modelado basado en primeros principios de este
tipo de sistemas. El objetivo principal de dichos trabajos con-
siste en estudiar el comportamiento temporal de los módulos en
base a diversos parámetros de diseño, como son el tamaño de la
membrana o su porosidad, y diferentes condiciones de opera-
ción, con variaciones en temperatura de entrada a ambos cana-
les del módulo, en la concentración, y en el caudal del agua de
alimentación. A continuación, se presenta una revisión somera
de estos tipos de trabajos.

En Chang et al. (2010) se presentó un modelo dinámico ba-
sado en balances de masa y energı́a para estudiar la resistencia
de transferencia de materia y calor del módulo. En Tang et al.
(2011) se presentó el modelo de un módulo MD mediante la
metodologı́a de Dinámica de Fluidos Computacional (Compu-
tational Fluid Dynamics, CFD), el cual tiene como objetivo
estudiar la transmisión de masa y de calor en los poros de la
membranas. En Yu et al. (2011) se propuso también un modelo
basado en CFD para analizar la transferencia de masa y materia
en un módulo MD. En Alsaadi et al. (2013) se presentó un mo-
delo basado en balances de energı́a y masa con el objetivo de
predecir el flujo de vapor de destilado. En Zhang et al. (2015)
se utilizó un modelo CFD para estudiar la distribución de vapor
y lı́quido en la membrana del módulo. En Hayer et al. (2015)
se incorporaron los efectos de la difusión de Knudsen, difusión
molecular y flujo viscoso a la metodologı́a CFD para estudiar
el coeficiente de polarización de temperatura del módulo. En
Karanikola et al. (2015) se presentó un modelo basado en ba-
lances de masa y energı́a para estudiar los perfiles de tempera-
tura y producción de destilado del módulo. En Gustafson et al.
(2016) se presentó un enfoque similar al anterior, pero que per-
mite también predecir la concentración del destilado. En Eleiwi
et al. (2016) se modeló un módulo MD mediante ecuaciones
de advección-difusión, las cuales describen los mecanismos de
transferencia de calor y de masa que se dan lugar dentro del
módulo. En Karam and Laleg-Kirati (2016) se presentó un mo-
delo dinámico basado en la analogı́a entre los sistemas térmi-
cos y eléctricos. Este modelo captura las respuestas espaciales
y temporales de la distribución de temperatura a lo largo de la
dirección del flujo, y predice la salida del flujo de agua des-
tilada. En Karam et al. (2017) se realizó un modelo con los
mismos objetivos mencionados anteriormente, pero en este ca-
so, el sistema se caracterizó mediante un modelo de parámetros
concentrados. En Perfilov et al. (2018) se propuso un modelo
de predicción general basado en la metodologı́a CFD, con el
objetivo de obtener perfiles detallados de temperatura, presión,
concentración y flujo de salida de destilado. Otro enfoque in-
teresante se propuso en el trabajo de Amigo et al. (2018) en el
cual se presentó un modelo basado en CFD para comprender la
relación entre la hidrodinámica y el fouling. En Esfandiari et al.
(2019) se introduce un modelo basado en CFD para predecir el
flujo de destilado del módulo, el cual contiene ecuaciones de
masa, energı́a y fenómenos de transferencia de impulso.

En base a la revisión realizada, se puede observar que la me-
todologı́a de modelado más usada es la CFD. Esta metodologı́a
de modelado se basa en el uso de una aproximación numérica
para simular el flujo de caudal. Además, esta técnica permite
predecir temperaturas y concentraciones a lo largo del módu-
lo (Hitsov et al., 2015). Del mismo modo, se puede ver cómo
la mayorı́a de estos modelos se han desarrollado para estudiar
y analizar los fenómenos de transferencia de materia y calor
dentro del módulo con el fin de optimizar su diseño y funcio-
namiento. Por otra parte, se debe comentar que aunque todos
los modelos mencionados en el párrafo anterior fueron valida-
dos experimentalmente, en la mayorı́a de casos los datos fueron
obtenidos con módulos a escala de laboratorio. Las validacio-
nes de este tipo de modelos en módulos a escala comercial son
escasas y solo se pueden encontrar algunos ejemplos en la lite-
ratura como es el caso de los trabajos de Winter (2015) y Hitsov
et al. (2017). Una de las principales dificultades que impiden di-
chas validaciones se debe a que, para el desarrollo de este tipo
de modelos, algunos de los fenómenos fı́sicos que ocurren den-
tro del módulo MD se simplifican, lo que hace que los modelos
pierdan fiabilidad y sea más complicado validarlos en módulos
comerciales.

3.2. Modelado de plantas SMD

Tal y como se mostró en la Figura 2, los dispositivos que
se incluyen en este tipo de instalaciones, además del módulo
de MD, son los tı́picos de un campo solar térmico: captado-
res solares, tanques de almacenamiento aislados térmicamente
e intercambiadores de calor. Para este tipo de dispositivos exis-
ten modelos basados en primeros principios bien conocidos y
validados en sistemas reales en la literatura (Duffie and Beck-
man, 2013). Es por esto que en la mayorı́a de trabajos de mo-
delado de este tipo de plantas se utilizan estos modelos (Ding
et al., 2005; Chang et al., 2010; Abdallah et al., 2013; Gil et al.,
2018a,b). Además, en Gil et al. (2019b) se adaptaron dichos
modelos a la metodologı́a de modelado dinámico lógico mixto
(Mixed-Logical Dynamical, MLD) con el fin de representar el
carácter hı́brido de la planta SMD. También se debe comentar
que los trabajos de modelado en este ámbito no se han limita-
do a los mencionados modelos basados en primeros principios,
sino que también se han presentado modelos basados en ANN
para modelar la planta completa (Porrazzo et al., 2013).

4. Sistemas de control para plantas SMD

Aunque la tecnologı́a MD este todavı́a en fase experimen-
tal, se encuentra en un estado de madurez avanzado, y los tra-
bajos de investigación centrados en la mejora de las estrategias
de operación para este tipo de sistemas están cobrando cada vez
más importancia. En este ámbito, los sistemas de control tienen
un papel fundamental ya que, al utilizar una fuente de energı́a
intermitente como la energı́a solar, se debe realizar una gestión
óptima de la planta de acuerdo al comportamiento de la irra-
diancia solar, la cual se puede conseguir mediante técnicas de
control avanzadas. En esta sección se hace una revisión de los
principales enfoques de control aplicados hasta el momento en
plantas SMD, los cuales se resumen en la Tabla 2, remarcando
los principales objetivos que se persiguen y las metodologı́as de
control empleadas.
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4.1. Objetivos

Antes de describir las metodologı́as de control empleadas,
se deben establecer los objetivos de control de este tipo de ins-
talaciones, los cuales se pueden dividir en dos niveles. En pri-
mer lugar, se pueden diferenciar los objetivos de bajo nivel, que
consisten en mantener las principales variables que intervienen
en el proceso, como caudal y temperatura, en torno a valores
deseados. Esto es fundamental para asegurar un régimen esta-
cionario y poder llevar a cabo la evaluación de los módulos en
distintas condiciones de operación. En segundo lugar, se en-
cuentran los objetivos de alto nivel, los cuales están relaciona-
dos con el funcionamiento del módulo de desalación y consis-
ten en maximizar su producción y rendimiento energético.

Las estructuras de control de bajo nivel tienen como obje-
tivo tareas clásicas de regulación en sistemas alimentados con
energı́a solar térmica (Camacho et al., 2012). Ası́, los objetivos
que se buscan se pueden resumir en: i) controlar los distintos
caudales de la instalación haciendo uso de los variadores de
frecuencia de las bombas de la instalación, ii) controlar la tem-
peratura y rechazar las perturbaciones de radiación actuando
sobre el caudal del campo solar, y iii) mantener una tempera-
tura estable a la entrada del intercambiador de calor encargado
de proporcionar la energı́a térmica al módulo de destilación por
membranas.

Por otra parte, los objetivos de los bucles de control de alto
nivel están relacionados con la mejora de los ı́ndices de desem-
peño del módulo MD. Para establecer dichos objetivos conviene
analizar las variables que afectan al funcionamiento del módu-
lo las cuales son: caudal del agua de alimentación, temperatura
de alimentación, concentración de la solución de alimentación,
y temperatura a la entrada del canal de evaporación. De estas
variables, la temperatura y concentración del agua de alimenta-
ción son perturbaciones y vienen impuestas por la solución de
alimentación con la que se este trabajando. Por el contrario, la
temperatura a la entrada del canal de evaporación se puede ma-
nipular actuando sobre los bucles de bajo nivel del campo solar,
al igual que el caudal de alimentación el cual se puede variar
actuando sobre la bomba de alimentación. Una vez descritas
las variables, los objetivos de alto nivel que se han tratado hasta
el momento en la literatura consiste en maximizar la produc-
ción de destilado y la eficiencia energética del módulo. Como
se mostró en Ruiz-Aguirre et al. (2017, 2018), para maximizar
la producción de destilado tanto el caudal de alimentación como
la temperatura a la entrada del canal de evaporación del módulo
deben ser máximos, lo que se traduce en que los bucles de alto
nivel deben tratar de maximizar estas variables. Para maximi-
zar la eficiencia energética del módulo MD, se suele minimizar
el ı́ndice de desempeño STEC o maximizar el GOR, de forma
que se reduzca la cantidad de energı́a térmica necesaria para
producir una unidad de volumen de destilado. Para minimizar
el STEC o maximizar el GOR la temperatura a la entrada del
canal de condensación también debe ser máxima (Ruiz-Aguirre
et al., 2017, 2018) sin embargo, en la mayorı́a de módulos MD
el caudal de alimentación debe ser mı́nimo (al contrario que pa-
ra maximizar la producción de destilado). Este hecho da a lugar
a problemas de optimización multiobjetivo en el caso de que se
tenga en cuenta tanto la producción de destilado como el STEC,
tal y como se presentó en Gil et al. (2018c).

4.2. Lazos de control básicos/clásicos

En esta subsección se revisan las arquitecturas de control
de bajo nivel propuestas para plantas SMD. Se debe mencionar
que la mayorı́a de las estructuras de control incluidas en este
apartado utilizan lazos de control simples basados en contro-
ladores todo/nada y controladores Proporcionales, Integrales y
Derivativos (PID) (Mercader et al., 2019). Del mismo modo,
los sistemas de control desarrollados para los objetivos de bajo
nivel en plantas SMD suelen incorporar controladores anticipa-
tivos los cuales se utilizan como complemento a los controla-
dores por realimentación con el fin de mejorar el seguimiento a
referencias y el rechazo a perturbaciones. Una descripción más
detallada de estos tipos de sistemas de control se puede encon-
trar en Åström and Hägglund (2006).

En Chang et al. (2010) se presentó una arquitectura de con-
trol de bajo nivel compuesta por controladores todo/nada y con-
troladores PI para mantener la temperatura de entrada al inter-
cambiador de calor de un planta SMD a un nivel deseado a pe-
sar de las perturbaciones de radiación. En Chen et al. (2012) se
propusieron dos modos de control basados en controladores PI,
uno para el dı́a, el cual estaba encargado de controlar la tem-
peratura a la entrada del intercambiador de calor manipulando
el caudal de entrada por la parte del campo solar del tanque de
almacenamiento, y otro para la noche, encargado de controlar
dicha temperatura manipulando el caudal de entrada del tanque
de almacenamiento térmico por la parte del intercambiador de
calor. En Porrazzo et al. (2013) se presentó un enfoque de con-
trol más completo el cual utiliza un control anticipativo basado
en un modelo de red neuronal que proporciona la referencia de
caudal de alimentación del módulo MD en base a las condicio-
nes de operación de las principales perturbaciones del sistema:
irradiancia y temperatura del agua de alimentación. En la Figu-
ra 3 se presenta el diagrama esquemático de la arquitectura de
control propuesta. Además, se debe destacar que esta arquitec-
tura de control se probó experimentalmente en la planta SMD
descrita en Cipollina et al. (2012), a diferencia de los dos tra-
bajos mencionados previamente los cuales fueron desarrollados
en simulación.

En Gil et al. (2018b) se presentó y probó experimentalmente
en la planta SMD de la PSA una arquitectura de control com-
pleta para el sistema de generación de energı́a térmica de la ins-
talación. La arquitectura de control tiene como objetivo prin-
cipal mantener la temperatura a la entrada del intercambiador
de calor a un nivel deseado. Para ello, se desarrollaron diferen-
tes bucles de control clásicos encargados de controlar la tem-
peratura a la salida del campo solar (bucle de control 1 en la
Figura 4), la temperatura a la entrada del intercambiador de ca-
lor (bucle de control 3 en la Figura 4), y el caudal a la entrada
del intercambiador de calor (bucle de control 4 en la Figura 4).
Los bucles de control de las tres últimas variables menciona-
das están basados en controladores PID clásicos. Por el contra-
rio, para controlar la temperatura a la salida del campo solar
se utilizó un esquema de control en cascada (ver Figura 5). En
este esquema, el controlador esclavo tiene como objetivo con-
trolar el caudal del campo solar actuando sobre el variador de
frecuencia de la bomba del mismo. Por su parte, el controla-
dor maestro se encarga de controlar la temperatura de salida
del campo solar actuando sobre el caudal. Además, este esque-
ma de control en cascada incluye un controlador anticipativo
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Figura 3: Adaptación del diagrama esquemático de la estructura de control propuesta en Porrazzo et al. (2013).

Figura 4: Adaptación del diagrama esquemático de la planta SMD de la PSA con los bucles de control de bajo nivel, adaptados de Gil et al. (2018a,b)

que tiene implementado un modelo basado en primeros prin-
cipios del campo solar, de forma que se calcula el caudal de
operación en base a las principales perturbaciones del proceso
(irradiancia, temperatura ambiente y temperatura de entrada al
campo) y la referencia de temperatura. También se debe men-
cionar que aunque el bucle de control de la temperatura a la
entrada del intercambiador (bucle de control 3 en la Figura 4)
está basado en un controlador PID el cual manipula la apertura
de la válvula de tres vı́as en base a la referencia establecida, este
se complementó con un controlador anticipativo para rechazar
las perturbaciones de temperatura provenientes del sistema de
distribución. Este controlador anticipativo también tiene imple-
mentado un modelo basado en primeros principios pero en este
caso, el correspondiente a la mezcla que se produce en la válvu-
la de tres vı́as y proporciona la apertura de la válvula en base a
la referencia de temperatura y a las principales perturbaciones
(TT3 y TT5 en la Figura 4). Por último, se debe mencionar que
en este trabajo también se propuso un generador de referencias
que calcula las referencias de cada uno de los bucles de control
mencionados anteriormente en base a la temperatura deseada a
la entrada del intercambiador de calor.

Hay que destacar que en la Figura 4 también se han inclui-
do dos bucles de control de bajo nivel presentados en Gil et al.

(2018a) con el fin de que el lector pueda visualizar la estructu-
ra de control completa implementada en la planta piloto de la
PSA. Estos bucles tienen como objetivo controlar el caudal a
la salida del tanque de almacenamiento por la parte del sistema
de distribución y el caudal de alimentación del módulo MD,
bucles de control 2 y 5 respectivamente en la Figura 4. Estas
variables se controlan actuando sobre el variador de frecuencia
de las bombas 2 y 4 respectivamente (ver Figura 4).

4.3. Sistemas de control avanzados

La mayorı́a de sistemas de control avanzados presentados
en el ámbito de MD utilizan la metodologı́a de Control Pre-
dictivo Basado en Modelo (Model Predictive Control, MPC), y
tratan de maximizar los objetivos de alto nivel mencionados an-
teriormente. La metodologı́a MPC es especialmente adecuada
para este tipos de objetivos ya que puede ser utilizada para con-
trolar sistemas con dinámicas complejas, como la que presen-
ta la planta SMD a causa de las perturbaciones de irradiancia.
Además, incorpora intrı́nsecamente compensaciones para retar-
dos y trata de forma natural el rechazo a perturbaciones, dos de
los principales problemas presentes en plantas SMD. Una des-
cripción más detallada de la estrategia MPC se puede encontrar
en Camacho and Bordons (2004) y en Rubio et al. (2018). A
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Figura 5: Adaptación del diagrama esquemático del controlador en cascada para la temperatura del campo solar presentado en Gil et al. (2018b).

continuación se muestran los principales enfoques de control
aplicado a plantas SMD en este sentido.

En Karam and Laleg-Kirati (2015) se presentó un sistema
de control en tiempo real basado en la metodologı́a MPC y en
la técnica de búsqueda del extremo de Newton. El objetivo de
la estructura de control consiste en maximizar la producción
de destilado actuando sobre el caudal de alimentación y tenien-
do en cuenta las perturbaciones de temperatura de alimentación
y temperatura a la entrada al canal de evaporación del módu-
lo. Los resultados en simulación mostraron cómo el controla-
dor buscó en cada momento el máximo de la función objetivo
(la máxima producción de destilado posible) dependiendo de la
temperatura de la alimentación. En Gil et al. (2018a) se pro-
puso un enfoque más complejo basado en una arquitectura de
control jerárquica de dos capas que fue probada experimental-
mente en la planta SMD de la PSA. El diagrama esquemático
de la arquitectura de control se muestra en la Figura 6. En es-
ta estructura, la capa superior está formada por un controlador
MPC no lineal el cual calcula las referencias óptimas para la ca-
pa de control directa, formada por los bucles de control de bajo
nivel propuestos en Gil et al. (2018b). Se debe mencionar que la
capa superior incluye métodos de predicción de perturbaciones
y que la capa inferior cuenta con controladores anticipativos pa-
ra rechazar perturbaciones. Además, se propusieron dos modos
de control para la operación eficiente de la instalación SMD en
base a las condiciones de operación, al igual que un procedi-
miento de arranque automático para el campo solar y el módulo
MD. La arquitectura de control fue probada tanto en simulación
como en la planta real, utilizando tres funciones objetivo dife-
rentes en la capa superior del controlador jerárquico, las cua-
les tratan de maximizar la producción de destilado, minimizar
el STEC y la relación entre la producción de destilado y los
costes de operación. Los resultados obtenidos mostraron cómo,
en comparación con una operación manual, la producción de
destilado se puede mejorar en 14-20 L/dı́a (5-7 %), el consumo
térmico se puede reducir entre 0.41-1.21 kWh/m3 (0.5-1 %) y
los costes se pueden disminuir entre 0.11-0.14 e/m3 (9-10 %)
dependiendo de la función objetivo utilizada en la capa supe-
rior.

En Gil et al. (2019b) se presentó una mejora al trabajo
mencionado anteriormente desarrollando un controlador MPC
hı́brido, el cual incluye un modelo MLD de la instalación SMD.
Este hecho permite considerar la naturaleza hı́brida de la planta
en la formulación del problema de control, teniendo en cuenta
cambios entre modos de operación a lo largo del horizonte de
predicción. El objetivo principal de la arquitectura de control
consistió en maximizar el número de horas de operación de la

instalación ası́ como la producción de destilado. El controla-
dor se probó en simulación, utilizando el modelo de la planta
SMD de la PSA. Los resultados mostraron cómo la operación
se puede alargar en un 11 %, mientras que la producción de
destilado se aumenta en un 1.40 % en comparación con opera-
ciones manuales. En Bendevis et al. (2020) se propuso un con-
trolador simplificado libre de modelo, obtenido a partir de una
estrategia MPC. El controlador resultante incluye dos modos de
operación, uno para el dı́a y otro para la noche, en los que se uti-
liza un controlador bang-bang y un controlador con consignas
fijas respectivamente. El objetivo de la técnica propuesta con-
sistió en maximizar la producción de destilado de un módulo
MD actuando sobre el caudal de alimentación del mismo. Los
resultados en simulación mostraron cómo se puede aumentar
la producción mensual en torno al 30 % en comparación con
una operación manual. Por último, en Guo et al. (2020) se pre-
sentó una estrategia de control MPC basado en un observador
de estados no lineal para maximizar la producción de destilado
del módulo MD. Además, en el problema de optimización de
la estrategia MPC se tuvieron en cuentan los costes económi-
cos asociados a la operación de la bomba de alimentación del
módulo MD.

Figura 6: Adaptación del diagrama esquemático de la estructura de control
jerárquica propuesta en Gil et al. (2018a).

5. Sistemas de control para aplicaciones MD industriales:
Combinación entre plantas SMD e invernaderos

Como se ha mencionado anteriormente, la tecnologı́a MD
es interesante en campos donde otras tecnologı́as de separación
no pueden ser aplicadas. Ası́, es especialmente relevante su ha-
bilidad para trabajar con soluciones de alimentación con alta
concentración, lo que convierte a MD en una solución sosteni-
ble para tratar las salmueras producidas por otras tecnologı́as
de desalación como la ósmosis inversa, lo cual fue ensayado
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Tabla 2: Enfoques de control existentes hasta la fecha para plantas SMD.
Referencia Tipo de estudio Metodologı́as de control Objetivos
Chang et al. (2010) Simulación Controladores ON/OFF De bajo nivel: mantener una temperatura

Controladores PID estable a la entrada del intercambiador de
calor por la parte del campo solar.

Chen et al. (2012) Simulación Controladores PID De bajo nivel: mantener una temperatura
estable a la entrada del intercambiador de
calor por la parte del campo solar.

Porrazzo et al. (2013) Experimental Controladores PID De bajo nivel: controlar el caudal de
Controladores anticipativos alimentación del módulo MD en base a las

perturbaciones de radiación y temperatura
de alimentación.

Gil et al. (2018b) Experimental Controladores PID De bajo nivel: mantener una temperatura
Controladores anticipativos estable a la entrada del intercambiador de
Controladores en cascada calor por la parte del campo solar.

Karam and Laleg-Kirati (2015) Simulación Controlador MPC De alto nivel: maximizar la producción
de destilado

Gil et al. (2018a) Experimental Controlador jerárquico De alto nivel: maximizar producción
Controlador MPC no lineal de destilado, minimizar STEC y reducir
Controladores PID la relación entre costes de operación y

producción de destilado.
∗Los tres objetivos mencionados
se probaron por separado.

Gil et al. (2019b) Simulación Controlador MPC hı́brido De alto nivel: maximizar la producción
de destilado del módulo MD y sus horas
de operación.

Bendevis et al. (2020) Simulación Controlador libre de modelo De alto nivel: maximizar la producción
de destilado del módulo MD.

Guo et al. (2020) Simulación Controlador MPC De alto nivel: maximizar la producción
de destilado del módulo MD.

a escala piloto en Gil et al. (2018c). Además, aparte de las
caracterı́sticas mencionadas en la sección 2.1, MD destaca ya
que es menos complicada y barata de instalar que otras tecno-
logı́as, tiene pocos requerimientos de mantenimiento, y el ensu-
ciamiento de la membrana es mı́nimo. Todas estas caracterı́sti-
cas permiten que las plantas SMD puedan ser totalmente au-
tomatizadas, desarrollando plantas de desalación de pequeño-
medio tamaño autónomas, que puedan ser implantadas en luga-
res donde otras tecnologı́as de desalación no sean viables desde
el punto de vista técnico o económico.

Una de las posibles aplicaciones de la tecnologı́a MD con-
siste en alimentar cultivos en zonas aisladas y cercanas a la cos-
ta. Tal y como se propuso en Gil et al. (2019a), Almerı́a (sureste
de España) es una de las zonas potenciales de aplicación de di-
cha tecnologı́a debido a la creciente escasez de agua que está
sufriendo y las grandes superficies de cultivo bajo invernade-
ro que tiene, las cuales se han convertido en el principal motor
económico de la provincia. Sin embargo, para que la combi-
nación entre plantas SMD e invernaderos sea exitosa, se deben
desarrollar estrategias de control que gestionen en tiempo real
la instalación SMD de acuerdo a las condiciones de irradiancia
y a la demanda de agua variable de los cultivos. La Figura 7
presenta el diagrama esquemático del caso de estudio adoptado
en Gil et al. (2019a) para analizar la viabilidad de este tipo de
instalaciones operadas mediante técnicas de control avanzadas.
Como se puede apreciar, en este tipo de instalaciones indus-
triales hay una diferencia principal respecto a las plantas piloto

SMD estudiadas hasta el momento en la literatura (ver Figu-
ra 2); la unidad de desalación que ya no está compuesta por un
solo módulo MD sino que se requieren múltiples módulos para
satisfacer las necesidades de agua. Esto es debido a que la pro-
ducción de destilado de los módulos MD comerciales actuales
es relativamente baja, en torno a 60 L/h en condiciones de ope-
ración óptimas (Andrés-Mañas et al., 2020b). Ası́, las estrate-
gias de control propuestas hasta ahora en la literatura centradas
en objetivos de bajo nivel, como mantener la temperatura de
entrada al intercambiador de calor por la parte del campo solar
en niveles deseados, siguen siendo válidas. Por el contrario, la
inclusión de múltiples módulos MD en la unidad de desalación
cambia totalmente el paradigma de control de las estrategias
propuestas para maximizar la producción de destilado o la efi-
ciencia térmica en plantas piloto, lo que requiere la formulación
de nuevos enfoques de control. En Gil et al. (2019a) se propuso
un controlador distribuido MPC encargado de calcular los cau-
dales óptimos de alimentación para cada módulo MD, tratando
de minimizar el consumo térmico especı́fico de la unidad de
desalación al mismo tiempo que se satisface los requerimien-
tos de agua del invernadero. En la formulación del controlador,
cada módulo MD se consideró como un agente independiente
de modo que, cada agente resuelve un problema MPC con los
objetivos mencionados anteriormente, intercambiando informa-
ción solamente con los agentes vecinos. Los resultados mostra-
ron cómo el problema de control se resuelve de una forma más
eficiente en términos temporales que con una estrategia centra-
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Figura 7: Adaptación del diagrama esquemático del caso de estudio utilizado en Gil et al. (2019a).

lizada y que, el consumo térmico de la planta se puede llegar
a reducir en un 5 % de media respecto a operaciones manuales.
Estos ahorros significan que para una superficie de 8 ha, se pue-
de llegar a ahorrar 50 MWh de energı́a térmica por campaña, lo
cual puede ser muy relevante para tener en cuenta en la fase de
diseño de la planta y en la operación diaria de la misma.

No obstante, los resultados presentados en Gil et al. (2019a)
se pueden seguir mejorando si se introducen variables binarias
en el problema de control que permitan encender y apagar los
módulos MD dependiendo de los requerimientos de agua del in-
vernadero. El problema de control MPC a resolver en ese caso
se puede formular de forma general como:

mı́n J =

4∑

i=1

N∑

j=1

STECi(t + j|t). (5)

Sujeto a:
4∑

i=1

N∑

j=1

Pi(t + j|t) ≤
N∑

j=1

D(t + j|t), (6)

∀i = 1, 2, 3, 4 y∀ j = 0, . . . ,N − 1:

δi(t + j) · Qmin ≤ Qi(t + j) ≤ δi(t + j) · Qmax (7)

δi(t + j) ∈ {0, 1}, (8)

donde STECi(t + j|t) es el STEC para cada uno de los módulo
i, con i = 1, 2, 3, 4, de los mostrados en la Figura 7, calculado
para el instante de tiempo t + j con la información disponible
en el instante t. Pi(t + j|t) es la producción de destilado de cada
módulo en L/h y D(t + j|t) la demanda de agua del invernadero
en L/h. Qmin y Qmax son los rangos de caudal máximo y mı́ni-
mo de cada módulos MD los cuales, para los módulos utiliza-
dos (los mismos que en Gil et al. (2019a)), son 400 y 600 L/h
respectivamente y Qi es el caudal de agua de alimentación del
módulo i. Las variables δi están referidas a la posición 0-1 de
las válvulas V1, V2, V3 y V4 de la Figura 7, donde 0 significa
válvula cerrada, es decir módulo apagado y 1, módulo encendi-
do. Por último N es el horizonte de predicción. Como se puede
apreciar, el problema de control consiste en minimizar el valor

del STEC total de la planta, asegurando que la producción de
la planta MD sea mayor que los requerimientos de agua del in-
vernadero. Se debe resaltar que el STEC para cada módulo se
calcula de acuerdo a la ecuación (3) mientras que la producción
de destilado con los modelos RSM presentados en Gil et al.
(2019a). Del mismo modo, se debe remarcar que las variables
de decisión del problema son Qi y δi, ∀i = 1, 2, 3, 4. Además,
es importante destacar que si δi es igual a 0 entonces, tanto el
STEC como la producción de destilado del módulo i también
lo son. Nótese que el problema de optimización resultante es
un problema de Optimización Entera Mixta No Lineal (Mixed
Integer Non Linear Optimization, MINLP).

Con el objetivo de visualizar los resultados que se pueden
llegar a conseguir se ha realizado una simulación representativa
con datos reales de temperatura y demanda de agua obtenidos
de la PSA y la Estación Experimental de la Fundación Cajamar
(ubicada también en la provincia de Almerı́a) respectivamente.
Además, se han comparado los resultados obtenidos con una
operación manual con consignas estáticas de 500 L/h para el
agua de alimentación de cada módulo y con todos los módulos
encendidos en todo momento. Los resultados se presentan en la
Figura 8.

En la Figura 8-2 se puede apreciar, que los ahorros de
energı́a térmica son considerables al aplicar la técnica de con-
trol cuando se consideran demandas de agua variables como
la del invernadero. El STEC medio de la operación automática
es de 412.80 kWh/m3, mientras que el de la operación manual
de 1142.2 kWh/m3. Se puede observar cómo el mayor ahorro se
produce al inicio y final del dı́a ya que el controlador solo arran-
ca los módulos necesarios para cubrir la demanda de agua. Este
hecho puede ser muy relevante en aplicaciones industriales, ya
que permite no tener que sobredimensionar el campo solar o la
fuente de energı́a térmica, lo que supone un ahorro económico
en la fase de diseño. Del mismo modo, en la Figura 8-3 se pue-
de ver cómo la demanda de agua del invernadero se satisface en
todo momento.

Se debe remarcar que el caso simulado con cuatro módulos
MD y un invernadero de tamaño 392 m2 corresponde a un ca-
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Figura 8: Comparación de resultados entre una operación automática y una manual.

so de estudio a escala piloto. Información más detallada acerca
del caso de estudio se puede encontrar en el trabajo Gil et al.
(2019a). Además, se ha utilizado un horizonte de predicción
pequeño de N = 5 con un tiempo de muestreo de 10 min y
los modelos con los que se trabajan son estáticos de acuerdo
a la metodologı́a RSM. En casos reales con superficies de cul-
tivos más grandes, el número de módulos requeridos aumenta
considerablemente, por lo que aumenta también el número de
variables binarias en el problema y, por tanto, los problemas
combinatorios y de no convexidades asociados a los problemas
de optimización MINLP.

6. Retos futuros

Aunque en la bibliografı́a especializada se pueden encon-
trar una gran cantidad de contribuciones cientı́ficas relaciona-
dos con el modelado y, en menor medida, con el control en
MD, existen numerosos retos futuros y brechas por cubrir en la
literatura en ambas áreas, las cuales se resumen a continuación.

En lo que concierne a los modelos basados en datos expe-
rimentales, los trabajos futuros deben estar centrados en mode-
lar módulos comerciales considerando la eficiencia térmica de
estos como un parámetro de salida del modelo. La eficiencia
térmica es un parámetro crucial en estos tipos de procesos ali-
mentados con energı́a térmica y además, destaca como uno de
los puntos más débiles de la tecnologı́a. Por esta razón, es de-
terminante incluir este parámetro como salida de los modelos,
pudiendo ası́ analizar su comportamiento bajo diferentes condi-
ciones de operación y permitiendo que se tenga en cuenta a la
hora de diseñar plantas MD, lo cual puede ayudar a la correcta
implementación industrial de la tecnologı́a. Del mismo modo,
se debe incluir la concentración del agua de alimentación como
parámetro de entrada de los modelos, lo cual ha sido breve-
mente discutido en la literatura hasta el momento. Este hecho
permite estudiar la aplicación de módulos MD para tratar sal-
mueras procedentes de otras plantas de desalación, una de las
ramas de aplicación con más futuro de la tecnologı́a MD. Res-
pecto a los modelos basados en primeros principios, la principal
brecha observada radica en que estos tipos de modelos han sido

principalmente validados a escala de laboratorio. Las simpli-
ficaciones asumidas a la hora de realizar estos modelos hacen
que su validación con módulos comerciales sea difı́cil de lle-
var a cabo. Ası́, se requieren nuevos trabajos de investigación
dedicados a desarrollar modelos más detallados y precisos que
puedan ser ajustados y calibrados para módulos MD comercia-
les. Además, de manera general es importante destacar la nece-
sidad de definir una norma enfocada a homogeneizar la calidad
de los resultados evaluados durante las campañas experimenta-
les, tanto para procesos de obtención de modelos como para la
propia evaluación de los módulos MD empleados. Esta norma
deberı́a especificar bajo qué criterios se pueden dar como váli-
dos los valores experimentales obtenidos y su aplicación darı́a
como resultado la garantı́a de los resultados proporcionados.

Por otra parte, las lı́neas de investigación abiertas relaciona-
das con el control automático de procesos MD son aún mayo-
res ya que, tal y como se ha podido ver a lo largo del presente
artı́culo, se han presentado muy pocos trabajos en este ámbi-
to hasta el momento. En este sentido, los tipos de trabajos de
control se pueden dividir en dos partes de acuerdo a los obje-
tivos de control que se persiguen. Desde el punto de vista de
objetivos de bajo nivel los trabajos futuros son más limitados,
ya que esta rama se centra principalmente en controlar el siste-
ma de generación de energı́a térmica de la instalación SMD, el
cual está basado en un campo solar térmico. Para este tipo de
sistemas se han presentado numerosas publicaciones detallando
arquitecturas de control precisas y testadas experimentalmente
(Camacho et al., 2012; Rubio et al., 2018). Por el contrario, se
han presentado muy pocos trabajos centrados en objetivos de
alto nivel como maximizar la producción de destilado o la efi-
ciencia térmica del módulo. Además, en los enfoques propues-
tos, estos ı́ndices de desempeño se tratan por separado los cua-
les en la mayorı́a de casos requieren condiciones de operación
contrapuestas (Gil et al., 2018c). Por lo que uno de los trabajos
que quedan por abordar consiste en desarrollar algoritmos de
control multiobjetivo que gestionen en tiempo real (Rodrı́guez-
Blanco et al., 2018) la instalación SMD tratando de maximizar
ambos objetivos. Del mismo modo, se requiere la inclusión de
términos económicos en la estrategias de control de forma que
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se minimicen los costes de producción del agua desalada, lo
cual solo ha sido tratado en Gil et al. (2018a) donde solo se
tuvieron en cuenta los costes de operación del sistema de ge-
neración de energı́a térmica. También se requieren trabajos de
control centrados en gestionar instalaciones industriales MD ya
que, como se ha visto para el caso de aplicación de MD para
el riego de cultivos, en estos sistemas se dispone de múltiples
módulos MD. En este sentido, el único trabajo de control pre-
sentado hasta la fecha es el propuesto en Gil et al. (2019a) en el
cual se gestionó el caudal de alimentación en base a la demanda
de agua del invernadero y tratando de minimizar el STEC. Sin
embargo, también se pueden introducir variables binarias en es-
te tipo de enfoques de control de modo que en cada momento
únicamente los módulos estrictamente necesarios para satisfa-
cer la demanda de agua estén encendidos, ahorrando ası́ tanto
energı́a térmica como costes de operación como se ha mostrado
en la simulación incluida en el apartado anterior. En estas apli-
caciones se abre otra lı́nea de trabajo de control ya que, si se
trabajan con demandas de aguas grandes el número de módulos
MD requeridos también lo será. Por tanto, el numero de varia-
bles de control aumenta a medida que aumenta el número de
módulos MD de la unidad de desalación, requiriendo algorit-
mos de control distribuidos (Gil et al., 2019a) o algoritmos para
descomponer enfoques centralizados de forma que los proble-
mas de control se puedan resolver de forma sencilla y rápida.
Por último, cabe destacar que también se necesitan enfoques de
control centrados en las demás aplicaciones industriales de la
tecnologı́a MD como es el caso del tratamiento de salmueras.
En este tipo de procesos, aparte de las perturbaciones clásicas
del módulo MD como temperatura de entrada al canal de eva-
poración y temperatura de la solución de alimentación, se añade
una nueva, la concentración de la solución de alimentación que
va aumentando a lo largo de la operación hasta que se consiguen
separar completamente las partı́culas volátiles y no volátiles de
esta (Ghaffour et al., 2019).

7. Conclusiones

Este trabajo ha presentado una revisión del estado del ar-
te de las metodologı́as de modelado y control propuestas para
sistemas MD. Se muestra cómo esta tecnologı́a presenta una se-
rie de caracterı́sticas interesantes que permiten cubrir nichos de
aplicación a los que no pueden acceder otros procesos de sepa-
ración, como son el desarrollo de plantas de desalación de pe-
queño o mediado tamaño para lugares aislados o el tratamiento
de soluciones de alimentación con alta concentración. Sin em-
bargo, para que estas aplicaciones se lleguen a implementar a
nivel industrial, se requiere el desarrollo de modelos precisos
y de algoritmos de control adecuados para su correcta opera-
ción. En base a la revisión de la literatura llevada a cabo en este
sentido se concluye que:

1. Es necesario el desarrollo de modelos basados en da-
tos experimentales que consideren el rendimiento térmi-
co del módulo MD como variable de salida y la concen-
tración de la solución de alimentación como variable de
entrada, de forma que se puedan tener en cuenta estas
variables en el proceso de diseño de la planta y en las
estrategias de control formuladas para su operación.

2. Se requiere el desarrollo de modelos basados en primeros
principios para módulos MD comerciales. La mayorı́a de
los enfoques presentados hasta el momento se validan en
módulos a escala de laboratorio cuyos resultados no pue-
den extrapolarse exitosamente a módulos comerciales.

3. En los enfoques de control aún queda un largo camino
por recorrer ya que hasta el momento este tema ha sido
tratado escasamente en la literatura. Se precisan enfoques
de control multiobjetivo para maximizar la producción de
destilado y la eficiencia energética de los módulos MD en
operaciones en tiempo real, formulaciones de control que
tengan en cuentan criterios económicos y sobre todo, es-
trategias de control dirigidas a mejorar el rendimiento de
la tecnologı́a en las aplicaciones industriales menciona-
das con antelación.
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Multimodel assessment of water scarcity under climate change. Proceedings
of the National Academy of Sciences 111 (9), 3245–3250.
DOI: 10.1073/pnas.1222460110

Shirazian, S., Alibabaei, M., 2017. Using neural networks coupled with particle
swarm optimization technique for mathematical modeling of air gap mem-
brane distillation (AGMD) systems for desalination process. Neural Com-
puting and Applications 28 (8), 2099–2104.
DOI: 10.1007/s00521-016-2184-0

Tang, N., Zhang, H., Wang, W., 2011. Computational fluid dynamics numeri-
cal simulation of vacuum membrane distillation for aqueous NaCl solution.
Desalination 274 (1-3), 120–129.
DOI: 10.1016/j.desal.2011.01.078

Tavakolmoghadam, M., Safavi, M., 2012. An optimized neural network model
of desalination by vacuum membrane distillation using genetic algorithm.
Procedia Engineering 42, 106–112.
DOI: 10.1016/j.proeng.2012.07.400

Thomas, N., Mavukkandy, M. O., Loutatidou, S., Arafat, H. A., 2017. Mem-
brane distillation research & implementation: Lessons from the past five de-
cades. Separation and Purification Technology 189, 108–127.
DOI: 10.1016/j.seppur.2017.07.069

Wang, P., Chung, T.-S., 2015. Recent advances in membrane distillation pro-
cesses: Membrane development, configuration design and application ex-
ploring. Journal of Membrane Science 474, 39–56.
DOI: 10.1016/j.memsci.2014.09.016

WHO, 2011. Guidelines for drinking-water quality. World Health Organization,
Chronicle 38 (4), 104–8.

Winter, D., 2015. Membrane distillation: A thermodynamic, technological and
economic analysis. Shaker Verlag.

Yang, C., Peng, X., Zhao, Y., Wang, X., Fu, J., Liu, K., Li, Y., Li, P., 2020.
Prediction model to analyze the performance of VMD desalination process.
Computers & Chemical Engineering 132, 106619.
DOI: 10.1016/j.compchemeng.2019.106619

Yu, H., Yang, X., Wang, R., Fane, A. G., 2011. Numerical simulation of heat
and mass transfer in direct membrane distillation in a hollow fiber module
with laminar flow. Journal of Membrane Science 384 (1-2), 107–116.
DOI: 10.1016/j.memsci.2011.09.011

Zaragoza, G., Ruiz-Aguirre, A., Guillén-Burrieza, E., 2014. Efficiency in the
use of solar thermal energy of small membrane desalination systems for de-
centralized water production. Applied Energy 130, 491–499.
DOI: 10.1016/j.apenergy.2014.02.024

Zhang, L., Xiang, J., Cheng, P. G., Tang, N., Han, H., Yuan, L., Zhang,
H., Wang, S., Wang, X., 2015. Three-dimensional numerical simulation of
aqueous NaCl solution in vacuum membrane distillation process. Chemical
Engineering and Processing: Process Intensification 87, 9–15.
DOI: 10.1016/j.cep.2014.11.002



3. Conclusions and future works

In this Ph.D. thesis, several operating methodologies, developed from an automatic control point
of view, have been proposed for the optimal operation of MD based facilities. The different
works presented along the Ph.D. thesis have been carried out according to the development
phases of a control engineering project as mentioned. In this way, the first research work focused
on the development of a complete model and a regulation control layer for SMD plants. The
second research line was devoted to the design of hierarchical control strategies for the optimal
operation of SMD plants, mainly focused on the management of the heat generation circuit
powering the MD unit. The third research work dealt with the development of control structures
for MD industrial plants. In this case, the control algorithms were tasked with the optimal
management of the desalination unit, which was composed by multiple MD modules. Finally,
the thesis project culminated with a tutorial on modelling and control methodologies for MD
plants, which was developed based on the experience acquired up through the thesis development
and a literature review of the state-of-art in this field.

The main conclusion of the whole work is that adequate control algorithms, developed using
accurate models, could be essential tools for the industrial implementation of MD technology.
Their use can help to improve fundamental performance parameters in MD processes as to reduce
the thermal energy consumption of the MD modules and to augment their distillate production
according to operating conditions. Additionally, they can be used to reduce operational costs.
This overall conclusion is supported by the specific conclusions of each of the research lines
addressed in this thesis, which are summarized in the following sections. Based on these findings,
some ideas for future research works are provided as well.

3.1 Conclusions on modelling and low-level control of solar membrane
distillation plants
The conclusions in this research line can be divided into two parts according to the two scientific
contributions presented. The first work was included in Section 2.1.1, and the main conclusions
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that can be drawn from the results obtained are:

• It is possible to accurately characterize the heat generation circuit of an SMD plant by
using the set of models proposed. The validation of the whole model in the SMD plant of
the PSA confirmed it. For example, the mean square error in most parts of the plant (i.e.,
storage tank, distribution system, heat exchanger, etc.) was around 0.5 oC, whereas the one
at the outlet of the solar field was around 1 oC. Besides, the whole dynamic model resulted
in a powerful tool to develop and test control strategies to be applied in SMD plants.
• The settling time to establish the desired operating temperature at the entrance of the

MD module in SMD plants can be considerably reduced by using an adequate direct
control structure formed by PID controllers. This was experimentally demonstrated as the
settling time achieved with the proposed control algorithm was around 20 min, whereas the
time spent in manual operations performed by qualify operators amounted to 40-50 min,
meaning a reduction in time of around 50 %.
• The disturbance rejection when using the direct connection mode, i.e., when the solar

field is directly connected to the MD modules without using thermal storage, can also be
improved by using a direct control layer. In manual mode, this task was highly difficult to
perform due to the intermittent nature of solar energy.

Regarding the second contribution, which was included in Section 2.1.2 and was aimed at
presenting the modelling of a commercial MD module and determining its optimal operating
conditions, the following conclusions can be drawn:

• The ANN methodology is more appropriate than the RSM one when using inputs that
induce nonlinear behavior, such as salinity of feed solution. This is supported by the
comparison of predictive abilities performed between the two modelling techniques,
which revealed that the coefficient of determination (R2) achieved by the RSM technique
was 0.770 while the one of the ANN was 0.982 to adjust the specific thermal energy
consumption of the module; the output which presented nonlinear behavior concerning
feed solution salt concentration.
• Real-time management methods are required to optimally perform batch operations aimed

at desalting brines from other desalination techniques. This was revealed by the multi-
objective optimization study carried out using the ANN model, which evidenced how
different operating conditions are required depending on the level of the feed water salinity.

3.2 Conclusions on hierarchical controllers for the optimal operation
of solar membrane distillation plants
In this research line hierarchical controllers were developed from the models and direct control
system proposed during the first phase. In this case, the conclusion can be also divided according
to the journal papers published. Firstly, a hierarchical control structure for the optimal operation
of SMD plants was proposed (see Section 2.2.1). This controller was tasked with improved
high-level control objectives in SMD plants, as to maximize the distillate production or thermal
efficiency or to minimize operating costs. The controller was tested both in simulation, to
carry out comparisons, and experimentally in the pilot plant of the PSA to validate the control
performance. The obtained results derived in the following conclusions:

• Hierarchical control techniques are useful methodologies to develop optimal operating
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management strategies for SMD plants. This was supported by the experimental results
obtained with the application of the proposed controller in the pilot plant of the PSA and
the improvement achieved in comparison to conventional manual operations.
• The distillate production and thermal efficiency of an SMD plant can be increased by

using these real-time control techniques. This was demonstrated in the simulations
performed using a week of data with different meteorological conditions obtained from
PSA. The relative improvements achieved were 5-7 % and 0.5-1 % in comparison to manual
operations for the distillate production and thermal efficiency respectively. Note that the
figure depends on the objective function chosen in the upper layer of the hierarchical
controller.
• Operating costs can be reduced as well. In this case the relative improvements with respect

to a manual operation ranged between 9-10 %, also depending on the objective function
selected in the upper layer.

The second hierarchical controller proposed was aimed at improving the start phase of SMD
plants (see Section 2.2.2). This controller was also tested in both simulation and experimentally,
and the obtained results allows us to draw the following conclusions:

• As in the previous case, the experimental tests showed as hierarchical controllers are
powerful tools to improve the start-up phase of SMD plants, dealing with irradiance
disturbances and stratification problems in the storage tank in real-time.
• Specifically, the time in reaching the required operating temperature in the storage tank

of an SMD plant can be considerably reduced by means of the proposed hierarchical
controller. For example, the time is reduced by 9 and 11 % compared to a manual
and a previous control procedure previously published in literature respectively. This is
mainly due to the fact that the controller considered irradiance disturbances and operating
conditions at each sampling time, the upper layer was based on a receding control strategy,
and the control system used the mixing valve apart from the flow rate as control variable.

3.3 Conclusions on control and optimization strategies for membrane
distillation industrial applications
The research carried out in this line was focused on the management of the desalination unit of
industrial SMD plants, in which multiple MD units must be used to meet the water requirements.
The first work (see Section 2.3.1) was tasked with the development of a DMPC strategy in charge
of calculating the feed flow rate for each of the MD modules trying to reduce the specific thermal
energy consumption while meeting water needs. The main findings of this work are summarized
below:

• The proposed DMPC algorithm showed satisfactory results for the management of SMD
industrial plants reaching the same solutions as those obtained with a centralized MPC
approach, which demonstrated its convergence to optimal results.
• The benefit achieved in terms of resolution time makes the DMPC algorithm more suitable

than the centralized one for these facilities. For example, when dealing with a large number
of MD modules, the problem concerning the optimal management of the plant could only
be solved by the DMPC algorithm.
• The thermal energy consumption in these MD industrial applications can be significantly

reduced by using an adequate control technique. The results obtained with the application
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of the DMPC strategy showed a reduction in the specific thermal energy consumption of
5 % in comparison to a manual operation.

In the second work of this research line, which was included in Section 2.3.2, the objectives
were the same but apart from the feed flow rate, binary variables to turn ON/OFF the different
MD modules at each sampling time were also considered in the control problem, leading to
an MINLP problem. Therefore, a general and efficient method for solving the problem and
reflecting the operating strategy was proposed. The outcomes of that paper allow us to draw the
following conclusions:

• The developed strategy can be applied in any MD plant independently of the power source,
as long as the MD modules are modelled by the RSM method.
• The developed technique considerably improves the time spent in solving the problem by

an MINLP solver. This was supported by the comparison performed among the proposed
technique and an MINLP solver, which revealed that for a case with 64 MD modules the
MINLP solver required 1619.72 s while the proposed algorithm only 5.67 s.
• The improvements achieved in terms of energy savings are meaningful with the application

of the proposed management method. For example, on a sunny day, around 65 and 55 %
of the thermal energy required by manual operation and by the one performed with the
DMPC algorithm mentioned above, respectively, was saved. In cloudy days, the proposed
technique used less than 5 % required by the aforementioned operating methods.

3.4 Conclusion on the tutorial on modelling and control of membrane
distillation technology

The last work developed in the framework of the thesis was a tutorial on modelling and control
approaches for the MD technology. In this work, the different proposals made in this thesis
project as well as others published papers in the literature related to this emerging research
field were summarized and reviewed, describing the main techniques used and presenting the
technological development achieved trough their application in MD plants. The main conclusions
that arise from the review performed are:

• Concerning the modelling of MD modules, it is necessary to develop models based on
experimental data that take into account the thermal efficiency of the MD module as output,
and the salinity of the feed solution as input. These models could be the basis for the
development of operating strategies or to design an MD plant for potential applications as
desalting brines from other desalination plants.
• Similarly, the development of first principles models for commercial MD modules is

required. Most current approaches are validated with lab-scale MD modules whose results
cannot be extrapolated to commercial MD modules successfully.
• Regarding control approaches, there is still a long way to go since this topic has been

sparingly addressed in literature so far. So that, multiobjective control approaches to
maximize the distillate production and energy efficiency of MD modules in real-time as
well as control formulations that take into account economic criteria are required, and
above all, control strategies aimed at improving the performance of MD technology in its
potential industrial applications.
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3.5 Recommendations for future research
This thesis provides a wide range of tools based on modelling and automatic control for efficient
management of the operation of MD based plants. Although it may serve as a reference in this
new research field in the MD technology, there is still room for investigating and developing new
models and operating strategies. In what follows, the future challenges and gaps to be filled in
both areas are summarized.

As described, there are well-known models in the literature that can be successfully adapted
to characterize the heat generation circuit of an SMD plant. Conversely, the models for the MD
module are more limited. Most approaches proposed so far only predict the distillate production
and they use limited input variables that do not allow to explore the entire field of application
of MD technology. Consequently, it is required the development of models that consider also
the thermal efficiency of MD modules as an output. This parameter is crucial in these kinds
of thermal powered processes, in addition, it stands out as one of the main drawbacks of the
technology. The development of these models could be relevant for the design of new operating
strategies that optimize both the distillate production and thermal efficiency in real-time. In the
same line, it is necessary to include variables as the salinity of the feed solution as input in the
models. As a result, the performance of the MD modules in potential applications as desalting
brines from other desalination technologies could be better assessed.

Moreover, and as said before, most of the published models are based on experimental data.
The models based on first principles for MD modules are scarce and they are mainly validated
in lab-scale MD modules. The simplifications assumed when formulating these models make
their validation with commercial modules difficult to carry out. Thus, research efforts must be
devoted to developing more detailed and accurate models than can be adjusted and calibrated for
commercial MD modules. At this point, perhaps, closer collaboration between MD developers
and academia is required. This could help to better understand the dynamics that occur inside
the MD module opening new research opportunities in the control field, as the development of
low-level controllers aimed at improving the MD module performance.

With regard to automatic control approaches, the related open research lines are even greater,
since, as it has been pointed out throughout this thesis, very few works have been presented in
this field so far. The kinds of works required can be divided into two branches according to
the control objectives being pursued or the type of control methodology employed. On the one
hand, the future work concerning low-level control structures is more limited since this branch is
mainly focused on controlling the heat generation circuit of the SMD plant, which is based on
a thermal solar field. For these systems numerous works have been published detailing accu-
rate and experimentally tested control architectures [78]. However, a new line coul be opened
for improving aspects related to the performance of the MD modules. But, for this purpose,
it is fundamental to develop accurate dynamic models for commercial MD modules as said above.

On the other hand, very few papers focused on high-level control objectives, i.e., maximiz-
ing distillate production or thermal efficiency, have been presented. For example, in the one
developed in this thesis [4], these parameters were optimized using as decision variable only
the operating temperature, leading to control structures with only one objective. Nevertheless,
in most commercial MD modules these objectives require contrary operating conditions in the
feed flow rate to be optimized [64]. Accordingly, future research works could be focused on the
development of multiobjective control algorithms to manage the SMD facility in real-time trying
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to optimize both goals. Again, models capable of predicting both variables are needed to the
proper design of these control structures as previously mentioned. Likewise, the inclusion of
economic terms in the control strategies is needed in order to decrease the costs of desalinated
water. A first attempt was presented in [4], but only the operational costs of the heat generation
circuit were taken into account. Therefore, the control formulation must be extended to the
whole SMD plant.

Another interesting research line is the development of control structures for industrial
applications. In this sense, the works developed in this thesis [7, 138] have evidenced that the
control formulations change with respect to the ones developed for MD pilot plants, as multiple
MD modules are required instead of a single one. The main problems that arise here are related
to the computing time, since the number of control variables in the problem increases according
to the number of MD modules in the desalination unit. Therefore, distributed approaches or
algorithms to decompose centralized approaches, so that the problems can be easily and quickly
solved, should be developed. Note that the works in [7, 138] are based on these control techniques,
but other algorithms or control structures can be tested to improve the obtained results. Finally,
control approaches focused on the other industrial applications of the MD technology such as
brine treatment should be also formulated. In these types of applications, apart from the classic
disturbances of the MD modules as inlet temperature of the evaporator channel and temperature
of the feed solution, a new one must be considered: the salinity concentration of the feed solution.
This variable increases throughout the operation until the volatile and non-volatile particles of the
feed solution are completely separated. Thus, real-time control approaches to improve module
performance must be formulated as was stated in [5].
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4. Other contributions

As specified in the previous contents, the main research work of this thesis is supported by: i)
7 papers in JCR journals (4 in Q1, 2 in Q2 and 1 in Q3), ii) 6 contributions to international
conferences, iii) 6 contributions to national conferences, iv) 1 article in a general outreach
magazine, and v) 2 research stays. Aside from this work, several collaborations have been
performed resulting in publications derived directly from the thesis. In addition, the Ph.D.
candidate has participated in two research projects and contributed as a reviewer on several
occasions. Apart from the aforementioned research activities, the Ph.D. candidate has also been
involved in teaching activities and has collaborated in one group of innovation and good teaching
practices, resulting in a publication in a national conference. All this information is summarized
in this chapter.

4.1 Derived publications and research work
4.1.1 Scientific journals

During the development of the thesis, several collaborations with partners from the University of
Almería, Plataforma Solar de Almería, Salesian University of Ecuador, and the Federal University
of Santa Catarina were performed. This research work resulted in 4 publications in JCR journals
ranked in Q1. The topic of each of the publications was: i) the inclusion of MD technology
in an agroindustrial environment and its management through Internet of Things tools, ii) the
evaluation of a novel vacuum multi-effect MD module powered with solar energy, iii) the analysis
of the apparent delays of flat-plate solar fields, and iv) the modelling of a flat-plate solar field
used to power thermal desalination facilities. The works are referenced below according to the
previous order:

• M. Muñoz, J. D. Gil, L. Roca, F. Rodríguez, and M. Berenguel, “An IoT Architecture for
Water Resource Management in Agroindustrial Environments: A Case Study in Almería
(Spain),” Sensors, vol. 20, pp. 596, 2020.
• J. A. Andrés-Mañas, L. Roca, A. Ruiz-Aguirre, F. G. Acién, J. D. Gil, and G. Zaragoza,
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“Application of solar energy to seawater desalination in a pilot system based on vacuum
multi-effect membrane distillation,” Applied Energy, vol. 258, pp. 114068, 2020.
• G. Ampuño, L. Roca, J. D. Gil, M. Berenguel, and J. E. Normey-Rico, “Apparent delay

analysis for a flat-plate solar field model designed for control purposes”. Solar Energy,
vol. 177, pp. 241-254, 2019.
• G. Ampuño, L. Roca, M. Berenguel, J. D. Gil, M. Pérez, and J. E. Normey-Rico, “Model-

ing and simulation of a solar field based on flat-plate collectors”. Solar Energy, vol. 170,
pp. 369-378, 2018.

4.1.2 International conferences
Similarly, the different collaborations mentioned above and other performed with partners from
the University of Sevilla and the Università degli Studi di Brescia (Italy) resulted in four contri-
butions to international conferences also covering topics related to the thesis as modelling and
control of solar thermal fields or other thermal processes as refrigerated chambers:

• J. L. Guzmán, M. Berenguel, A. Merchan, J. D. Gil, and J. D. Álvarez, “A virtual lab for
modeling and control of a solar collector field," IFAC–PapersOnLine (In press).
• A. Tosi, L. Roca, J. D. Gil, A. Visioli, and M. Berenguel,“Multivariable controller for

stationary flat plate solar collectors," in 7th International Conference on Systems and
Control, pp. 7-12, IEEE, 2018.
• G. Bejarano, D. Rodríguez, J. A. Alfaya, J. D. Gil, and M. G. Ortega,“Optimization and

cascade robust temperature control of a refrigerated chamber," IFAC–PapersOnLine, vol.
51(25), pp. 110-115, 2018.
• G. Ampuño, L. Roca, M. Berenguel, J. D. Gil, M. Pérez, “Modeling and simulation of

a heat generation system for a Multi-Effect Desalination plant based on solar flat-plate
collectors," in 11th ISES European Solar Energy Congress, 2016.

4.1.3 National conferences
Additionally, the Ph.D. candidate has actively participated in the different conferences organized
by the Department of Informatics of the University of Almería. This participation gave rise to
the following publications:

• J. D. Gil, “Estrategias de control jerárquico y optimización aplicadas a plantas de des-
tilación por membranas alimentadas con energía solar," in I Jornadas de Doctorado en
Informática de la Universidad de Almería, JSIDI, 2019.
• J. D. Gil, “Aportaciones desde el punto de vista del modelado y del control automático a

la tecnología de destilación por membranas alimentadas con energía solar" in II Jornadas
de Doctorado en Informática de la Universidad de Almería, JSIDI, 2019.
• J. D. Gil, “Sistemas de control para las fases de arranque y operación en plantas de

destilación solar por membranas a escala industrial," in III Jornadas de Doctorado en
Informática de la Universidad de Almería, JSIDI, 2019.

4.1.4 Collaboration in research projects
The research activity developed in this thesis has contributed to the development of two national
research projects in which the Ph.D candidate got involved in the work team:

• Control and energy management strategies in production environments with support of
renewable energy (ENERPRO).
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Ref.: DPI2014-56364-C2-1-R.
Funded: Spanish Ministry of Economy, Industry and Competitiveness and ERDF funds.
• Control and optimal management of heterogeneous resources in agroindustrial production

districts integrating renewable energies (CHROMAE).
Ref.: DPI2017-85007-R.
Funded: Spanish Ministry of Science, Innovation and Universities and ERDF funds.

4.1.5 Contribution as reviewer
The Ph.D. candidate has also contributed to research by accepting invitations to participate
as reviewer. Specifically, the Ph.D. candidate has been invited to review contributions to: i)
international conferences such as “The 2018 IFAC Conference on Advances in Proportional-
Integral-Derivative Control" and the “21st IFAC World Congress", ii) national conferences as the
“Jornadas de Automática", and iii) JCR journals such as Energy Conversion and Management,
Computer & Chemical Engineering, and Revista Iberoamericana de Automática e Informática
industrial. All the topics covered were related to those treated in the thesis as control algorithms
and MD technology.

4.2 Teaching activities
As a complement to the research work, the Ph.D. candidate has participated in teaching activities,
namely 225 hours, related to the research topics treated in the thesis. The subjects taught include
Electrical Machines and Drives Controls, Control of Production Processes and Systems, Big
Data Applications, and Real Time Systems. Moreover, the Ph.D. candidate has also participated
in an Innovation and Good Teaching Practices group, devoted to the improvement of teaching
activity and the quality of learning of students of the University of Almería. In particular, the
one in which the Ph.D. student took part was:

• Desarrollo de una plataforma de simulación de plantas industriales para su utilización en
prácticas de automatización de procesos (Development of an industrial plant simulation
platform for use in process automation practices).

One of the results of this project was presented as a contribution to the following national
conference:

• J. A. Sánchez-Molina, J. D. Álvarez, M. Berenguel, J. D. Gil, J. García-Donaire, J. L.
Guzmán, A. Hoyo, J. C. Moreno and F. Rodríguez, “Innovation and Good Teaching Prac-
tices groups: Desarrollo de una plataforma de simulación de plantas industriales para su
utilización en prácticas de automatización de procesos (Development of an industrial plant
simulation platform for use in process automation practices)," in Jornadas de Innovación
Docente y Experiencias Profesionales en la Universidad de Almería. 2019.
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